Rev 154 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed
| Rev | Author | Line No. | Line |
|---|---|---|---|
| 96 | pmbaty | 1 | /* |
| 2 | Stockfish, a UCI chess playing engine derived from Glaurung 2.1 |
||
| 3 | Copyright (C) 2004-2008 Tord Romstad (Glaurung author) |
||
| 4 | Copyright (C) 2008-2015 Marco Costalba, Joona Kiiski, Tord Romstad |
||
| 169 | pmbaty | 5 | Copyright (C) 2015-2018 Marco Costalba, Joona Kiiski, Gary Linscott, Tord Romstad |
| 96 | pmbaty | 6 | |
| 7 | Stockfish is free software: you can redistribute it and/or modify |
||
| 8 | it under the terms of the GNU General Public License as published by |
||
| 9 | the Free Software Foundation, either version 3 of the License, or |
||
| 10 | (at your option) any later version. |
||
| 11 | |||
| 12 | Stockfish is distributed in the hope that it will be useful, |
||
| 13 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
||
| 14 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
||
| 15 | GNU General Public License for more details. |
||
| 16 | |||
| 17 | You should have received a copy of the GNU General Public License |
||
| 18 | along with this program. If not, see <http://www.gnu.org/licenses/>. |
||
| 19 | */ |
||
| 20 | |||
| 21 | #include <algorithm> |
||
| 22 | #include <cassert> |
||
| 23 | |||
| 24 | #include "bitboard.h" |
||
| 25 | #include "endgame.h" |
||
| 26 | #include "movegen.h" |
||
| 27 | |||
| 28 | using std::string; |
||
| 29 | |||
| 30 | namespace { |
||
| 31 | |||
| 32 | // Table used to drive the king towards the edge of the board |
||
| 33 | // in KX vs K and KQ vs KR endgames. |
||
| 34 | const int PushToEdges[SQUARE_NB] = { |
||
| 35 | 100, 90, 80, 70, 70, 80, 90, 100, |
||
| 36 | 90, 70, 60, 50, 50, 60, 70, 90, |
||
| 37 | 80, 60, 40, 30, 30, 40, 60, 80, |
||
| 38 | 70, 50, 30, 20, 20, 30, 50, 70, |
||
| 39 | 70, 50, 30, 20, 20, 30, 50, 70, |
||
| 40 | 80, 60, 40, 30, 30, 40, 60, 80, |
||
| 41 | 90, 70, 60, 50, 50, 60, 70, 90, |
||
| 42 | 100, 90, 80, 70, 70, 80, 90, 100 |
||
| 43 | }; |
||
| 44 | |||
| 45 | // Table used to drive the king towards a corner square of the |
||
| 46 | // right color in KBN vs K endgames. |
||
| 47 | const int PushToCorners[SQUARE_NB] = { |
||
| 48 | 200, 190, 180, 170, 160, 150, 140, 130, |
||
| 49 | 190, 180, 170, 160, 150, 140, 130, 140, |
||
| 50 | 180, 170, 155, 140, 140, 125, 140, 150, |
||
| 51 | 170, 160, 140, 120, 110, 140, 150, 160, |
||
| 52 | 160, 150, 140, 110, 120, 140, 160, 170, |
||
| 53 | 150, 140, 125, 140, 140, 155, 170, 180, |
||
| 54 | 140, 130, 140, 150, 160, 170, 180, 190, |
||
| 55 | 130, 140, 150, 160, 170, 180, 190, 200 |
||
| 56 | }; |
||
| 57 | |||
| 58 | // Tables used to drive a piece towards or away from another piece |
||
| 59 | const int PushClose[8] = { 0, 0, 100, 80, 60, 40, 20, 10 }; |
||
| 60 | const int PushAway [8] = { 0, 5, 20, 40, 60, 80, 90, 100 }; |
||
| 61 | |||
| 62 | // Pawn Rank based scaling factors used in KRPPKRP endgame |
||
| 63 | const int KRPPKRPScaleFactors[RANK_NB] = { 0, 9, 10, 14, 21, 44, 0, 0 }; |
||
| 64 | |||
| 65 | #ifndef NDEBUG |
||
| 66 | bool verify_material(const Position& pos, Color c, Value npm, int pawnsCnt) { |
||
| 67 | return pos.non_pawn_material(c) == npm && pos.count<PAWN>(c) == pawnsCnt; |
||
| 68 | } |
||
| 69 | #endif |
||
| 70 | |||
| 71 | // Map the square as if strongSide is white and strongSide's only pawn |
||
| 72 | // is on the left half of the board. |
||
| 73 | Square normalize(const Position& pos, Color strongSide, Square sq) { |
||
| 74 | |||
| 75 | assert(pos.count<PAWN>(strongSide) == 1); |
||
| 76 | |||
| 77 | if (file_of(pos.square<PAWN>(strongSide)) >= FILE_E) |
||
| 78 | sq = Square(sq ^ 7); // Mirror SQ_H1 -> SQ_A1 |
||
| 79 | |||
| 80 | if (strongSide == BLACK) |
||
| 81 | sq = ~sq; |
||
| 82 | |||
| 83 | return sq; |
||
| 84 | } |
||
| 85 | |||
| 86 | } // namespace |
||
| 87 | |||
| 88 | |||
| 89 | /// Endgames members definitions |
||
| 90 | |||
| 91 | Endgames::Endgames() { |
||
| 92 | |||
| 93 | add<KPK>("KPK"); |
||
| 94 | add<KNNK>("KNNK"); |
||
| 95 | add<KBNK>("KBNK"); |
||
| 96 | add<KRKP>("KRKP"); |
||
| 97 | add<KRKB>("KRKB"); |
||
| 98 | add<KRKN>("KRKN"); |
||
| 99 | add<KQKP>("KQKP"); |
||
| 100 | add<KQKR>("KQKR"); |
||
| 101 | |||
| 102 | add<KNPK>("KNPK"); |
||
| 103 | add<KNPKB>("KNPKB"); |
||
| 104 | add<KRPKR>("KRPKR"); |
||
| 105 | add<KRPKB>("KRPKB"); |
||
| 106 | add<KBPKB>("KBPKB"); |
||
| 107 | add<KBPKN>("KBPKN"); |
||
| 108 | add<KBPPKB>("KBPPKB"); |
||
| 109 | add<KRPPKRP>("KRPPKRP"); |
||
| 110 | } |
||
| 111 | |||
| 112 | |||
| 113 | /// Mate with KX vs K. This function is used to evaluate positions with |
||
| 114 | /// king and plenty of material vs a lone king. It simply gives the |
||
| 115 | /// attacking side a bonus for driving the defending king towards the edge |
||
| 116 | /// of the board, and for keeping the distance between the two kings small. |
||
| 117 | template<> |
||
| 118 | Value Endgame<KXK>::operator()(const Position& pos) const { |
||
| 119 | |||
| 120 | assert(verify_material(pos, weakSide, VALUE_ZERO, 0)); |
||
| 121 | assert(!pos.checkers()); // Eval is never called when in check |
||
| 122 | |||
| 123 | // Stalemate detection with lone king |
||
| 124 | if (pos.side_to_move() == weakSide && !MoveList<LEGAL>(pos).size()) |
||
| 125 | return VALUE_DRAW; |
||
| 126 | |||
| 127 | Square winnerKSq = pos.square<KING>(strongSide); |
||
| 128 | Square loserKSq = pos.square<KING>(weakSide); |
||
| 129 | |||
| 130 | Value result = pos.non_pawn_material(strongSide) |
||
| 131 | + pos.count<PAWN>(strongSide) * PawnValueEg |
||
| 132 | + PushToEdges[loserKSq] |
||
| 133 | + PushClose[distance(winnerKSq, loserKSq)]; |
||
| 134 | |||
| 135 | if ( pos.count<QUEEN>(strongSide) |
||
| 136 | || pos.count<ROOK>(strongSide) |
||
| 137 | ||(pos.count<BISHOP>(strongSide) && pos.count<KNIGHT>(strongSide)) |
||
| 169 | pmbaty | 138 | || ( (pos.pieces(strongSide, BISHOP) & ~DarkSquares) |
| 139 | && (pos.pieces(strongSide, BISHOP) & DarkSquares))) |
||
| 96 | pmbaty | 140 | result = std::min(result + VALUE_KNOWN_WIN, VALUE_MATE_IN_MAX_PLY - 1); |
| 141 | |||
| 142 | return strongSide == pos.side_to_move() ? result : -result; |
||
| 143 | } |
||
| 144 | |||
| 145 | |||
| 146 | /// Mate with KBN vs K. This is similar to KX vs K, but we have to drive the |
||
| 147 | /// defending king towards a corner square of the right color. |
||
| 148 | template<> |
||
| 149 | Value Endgame<KBNK>::operator()(const Position& pos) const { |
||
| 150 | |||
| 151 | assert(verify_material(pos, strongSide, KnightValueMg + BishopValueMg, 0)); |
||
| 152 | assert(verify_material(pos, weakSide, VALUE_ZERO, 0)); |
||
| 153 | |||
| 154 | Square winnerKSq = pos.square<KING>(strongSide); |
||
| 155 | Square loserKSq = pos.square<KING>(weakSide); |
||
| 156 | Square bishopSq = pos.square<BISHOP>(strongSide); |
||
| 157 | |||
| 158 | // kbnk_mate_table() tries to drive toward corners A1 or H8. If we have a |
||
| 159 | // bishop that cannot reach the above squares, we flip the kings in order |
||
| 160 | // to drive the enemy toward corners A8 or H1. |
||
| 161 | if (opposite_colors(bishopSq, SQ_A1)) |
||
| 162 | { |
||
| 163 | winnerKSq = ~winnerKSq; |
||
| 164 | loserKSq = ~loserKSq; |
||
| 165 | } |
||
| 166 | |||
| 167 | Value result = VALUE_KNOWN_WIN |
||
| 168 | + PushClose[distance(winnerKSq, loserKSq)] |
||
| 169 | + PushToCorners[loserKSq]; |
||
| 170 | |||
| 171 | return strongSide == pos.side_to_move() ? result : -result; |
||
| 172 | } |
||
| 173 | |||
| 174 | |||
| 175 | /// KP vs K. This endgame is evaluated with the help of a bitbase. |
||
| 176 | template<> |
||
| 177 | Value Endgame<KPK>::operator()(const Position& pos) const { |
||
| 178 | |||
| 179 | assert(verify_material(pos, strongSide, VALUE_ZERO, 1)); |
||
| 180 | assert(verify_material(pos, weakSide, VALUE_ZERO, 0)); |
||
| 181 | |||
| 182 | // Assume strongSide is white and the pawn is on files A-D |
||
| 183 | Square wksq = normalize(pos, strongSide, pos.square<KING>(strongSide)); |
||
| 184 | Square bksq = normalize(pos, strongSide, pos.square<KING>(weakSide)); |
||
| 185 | Square psq = normalize(pos, strongSide, pos.square<PAWN>(strongSide)); |
||
| 186 | |||
| 187 | Color us = strongSide == pos.side_to_move() ? WHITE : BLACK; |
||
| 188 | |||
| 189 | if (!Bitbases::probe(wksq, psq, bksq, us)) |
||
| 190 | return VALUE_DRAW; |
||
| 191 | |||
| 192 | Value result = VALUE_KNOWN_WIN + PawnValueEg + Value(rank_of(psq)); |
||
| 193 | |||
| 194 | return strongSide == pos.side_to_move() ? result : -result; |
||
| 195 | } |
||
| 196 | |||
| 197 | |||
| 198 | /// KR vs KP. This is a somewhat tricky endgame to evaluate precisely without |
||
| 199 | /// a bitbase. The function below returns drawish scores when the pawn is |
||
| 200 | /// far advanced with support of the king, while the attacking king is far |
||
| 201 | /// away. |
||
| 202 | template<> |
||
| 203 | Value Endgame<KRKP>::operator()(const Position& pos) const { |
||
| 204 | |||
| 205 | assert(verify_material(pos, strongSide, RookValueMg, 0)); |
||
| 206 | assert(verify_material(pos, weakSide, VALUE_ZERO, 1)); |
||
| 207 | |||
| 208 | Square wksq = relative_square(strongSide, pos.square<KING>(strongSide)); |
||
| 209 | Square bksq = relative_square(strongSide, pos.square<KING>(weakSide)); |
||
| 210 | Square rsq = relative_square(strongSide, pos.square<ROOK>(strongSide)); |
||
| 211 | Square psq = relative_square(strongSide, pos.square<PAWN>(weakSide)); |
||
| 212 | |||
| 213 | Square queeningSq = make_square(file_of(psq), RANK_1); |
||
| 214 | Value result; |
||
| 215 | |||
| 216 | // If the stronger side's king is in front of the pawn, it's a win |
||
| 217 | if (wksq < psq && file_of(wksq) == file_of(psq)) |
||
| 218 | result = RookValueEg - distance(wksq, psq); |
||
| 219 | |||
| 220 | // If the weaker side's king is too far from the pawn and the rook, |
||
| 221 | // it's a win. |
||
| 222 | else if ( distance(bksq, psq) >= 3 + (pos.side_to_move() == weakSide) |
||
| 223 | && distance(bksq, rsq) >= 3) |
||
| 224 | result = RookValueEg - distance(wksq, psq); |
||
| 225 | |||
| 226 | // If the pawn is far advanced and supported by the defending king, |
||
| 227 | // the position is drawish |
||
| 228 | else if ( rank_of(bksq) <= RANK_3 |
||
| 229 | && distance(bksq, psq) == 1 |
||
| 230 | && rank_of(wksq) >= RANK_4 |
||
| 231 | && distance(wksq, psq) > 2 + (pos.side_to_move() == strongSide)) |
||
| 232 | result = Value(80) - 8 * distance(wksq, psq); |
||
| 233 | |||
| 234 | else |
||
| 154 | pmbaty | 235 | result = Value(200) - 8 * ( distance(wksq, psq + SOUTH) |
| 236 | - distance(bksq, psq + SOUTH) |
||
| 96 | pmbaty | 237 | - distance(psq, queeningSq)); |
| 238 | |||
| 239 | return strongSide == pos.side_to_move() ? result : -result; |
||
| 240 | } |
||
| 241 | |||
| 242 | |||
| 243 | /// KR vs KB. This is very simple, and always returns drawish scores. The |
||
| 244 | /// score is slightly bigger when the defending king is close to the edge. |
||
| 245 | template<> |
||
| 246 | Value Endgame<KRKB>::operator()(const Position& pos) const { |
||
| 247 | |||
| 248 | assert(verify_material(pos, strongSide, RookValueMg, 0)); |
||
| 249 | assert(verify_material(pos, weakSide, BishopValueMg, 0)); |
||
| 250 | |||
| 251 | Value result = Value(PushToEdges[pos.square<KING>(weakSide)]); |
||
| 252 | return strongSide == pos.side_to_move() ? result : -result; |
||
| 253 | } |
||
| 254 | |||
| 255 | |||
| 256 | /// KR vs KN. The attacking side has slightly better winning chances than |
||
| 257 | /// in KR vs KB, particularly if the king and the knight are far apart. |
||
| 258 | template<> |
||
| 259 | Value Endgame<KRKN>::operator()(const Position& pos) const { |
||
| 260 | |||
| 261 | assert(verify_material(pos, strongSide, RookValueMg, 0)); |
||
| 262 | assert(verify_material(pos, weakSide, KnightValueMg, 0)); |
||
| 263 | |||
| 264 | Square bksq = pos.square<KING>(weakSide); |
||
| 265 | Square bnsq = pos.square<KNIGHT>(weakSide); |
||
| 266 | Value result = Value(PushToEdges[bksq] + PushAway[distance(bksq, bnsq)]); |
||
| 267 | return strongSide == pos.side_to_move() ? result : -result; |
||
| 268 | } |
||
| 269 | |||
| 270 | |||
| 271 | /// KQ vs KP. In general, this is a win for the stronger side, but there are a |
||
| 272 | /// few important exceptions. A pawn on 7th rank and on the A,C,F or H files |
||
| 273 | /// with a king positioned next to it can be a draw, so in that case, we only |
||
| 274 | /// use the distance between the kings. |
||
| 275 | template<> |
||
| 276 | Value Endgame<KQKP>::operator()(const Position& pos) const { |
||
| 277 | |||
| 278 | assert(verify_material(pos, strongSide, QueenValueMg, 0)); |
||
| 279 | assert(verify_material(pos, weakSide, VALUE_ZERO, 1)); |
||
| 280 | |||
| 281 | Square winnerKSq = pos.square<KING>(strongSide); |
||
| 282 | Square loserKSq = pos.square<KING>(weakSide); |
||
| 283 | Square pawnSq = pos.square<PAWN>(weakSide); |
||
| 284 | |||
| 285 | Value result = Value(PushClose[distance(winnerKSq, loserKSq)]); |
||
| 286 | |||
| 287 | if ( relative_rank(weakSide, pawnSq) != RANK_7 |
||
| 288 | || distance(loserKSq, pawnSq) != 1 |
||
| 289 | || !((FileABB | FileCBB | FileFBB | FileHBB) & pawnSq)) |
||
| 290 | result += QueenValueEg - PawnValueEg; |
||
| 291 | |||
| 292 | return strongSide == pos.side_to_move() ? result : -result; |
||
| 293 | } |
||
| 294 | |||
| 295 | |||
| 296 | /// KQ vs KR. This is almost identical to KX vs K: We give the attacking |
||
| 297 | /// king a bonus for having the kings close together, and for forcing the |
||
| 298 | /// defending king towards the edge. If we also take care to avoid null move for |
||
| 299 | /// the defending side in the search, this is usually sufficient to win KQ vs KR. |
||
| 300 | template<> |
||
| 301 | Value Endgame<KQKR>::operator()(const Position& pos) const { |
||
| 302 | |||
| 303 | assert(verify_material(pos, strongSide, QueenValueMg, 0)); |
||
| 304 | assert(verify_material(pos, weakSide, RookValueMg, 0)); |
||
| 305 | |||
| 306 | Square winnerKSq = pos.square<KING>(strongSide); |
||
| 307 | Square loserKSq = pos.square<KING>(weakSide); |
||
| 308 | |||
| 309 | Value result = QueenValueEg |
||
| 310 | - RookValueEg |
||
| 311 | + PushToEdges[loserKSq] |
||
| 312 | + PushClose[distance(winnerKSq, loserKSq)]; |
||
| 313 | |||
| 314 | return strongSide == pos.side_to_move() ? result : -result; |
||
| 315 | } |
||
| 316 | |||
| 317 | |||
| 318 | /// Some cases of trivial draws |
||
| 319 | template<> Value Endgame<KNNK>::operator()(const Position&) const { return VALUE_DRAW; } |
||
| 320 | |||
| 321 | |||
| 322 | /// KB and one or more pawns vs K. It checks for draws with rook pawns and |
||
| 323 | /// a bishop of the wrong color. If such a draw is detected, SCALE_FACTOR_DRAW |
||
| 324 | /// is returned. If not, the return value is SCALE_FACTOR_NONE, i.e. no scaling |
||
| 325 | /// will be used. |
||
| 326 | template<> |
||
| 327 | ScaleFactor Endgame<KBPsK>::operator()(const Position& pos) const { |
||
| 328 | |||
| 329 | assert(pos.non_pawn_material(strongSide) == BishopValueMg); |
||
| 330 | assert(pos.count<PAWN>(strongSide) >= 1); |
||
| 331 | |||
| 332 | // No assertions about the material of weakSide, because we want draws to |
||
| 333 | // be detected even when the weaker side has some pawns. |
||
| 334 | |||
| 335 | Bitboard pawns = pos.pieces(strongSide, PAWN); |
||
| 336 | File pawnsFile = file_of(lsb(pawns)); |
||
| 337 | |||
| 338 | // All pawns are on a single rook file? |
||
| 339 | if ( (pawnsFile == FILE_A || pawnsFile == FILE_H) |
||
| 340 | && !(pawns & ~file_bb(pawnsFile))) |
||
| 341 | { |
||
| 342 | Square bishopSq = pos.square<BISHOP>(strongSide); |
||
| 343 | Square queeningSq = relative_square(strongSide, make_square(pawnsFile, RANK_8)); |
||
| 344 | Square kingSq = pos.square<KING>(weakSide); |
||
| 345 | |||
| 346 | if ( opposite_colors(queeningSq, bishopSq) |
||
| 347 | && distance(queeningSq, kingSq) <= 1) |
||
| 348 | return SCALE_FACTOR_DRAW; |
||
| 349 | } |
||
| 350 | |||
| 351 | // If all the pawns are on the same B or G file, then it's potentially a draw |
||
| 352 | if ( (pawnsFile == FILE_B || pawnsFile == FILE_G) |
||
| 353 | && !(pos.pieces(PAWN) & ~file_bb(pawnsFile)) |
||
| 354 | && pos.non_pawn_material(weakSide) == 0 |
||
| 355 | && pos.count<PAWN>(weakSide) >= 1) |
||
| 356 | { |
||
| 357 | // Get weakSide pawn that is closest to the home rank |
||
| 358 | Square weakPawnSq = backmost_sq(weakSide, pos.pieces(weakSide, PAWN)); |
||
| 359 | |||
| 360 | Square strongKingSq = pos.square<KING>(strongSide); |
||
| 361 | Square weakKingSq = pos.square<KING>(weakSide); |
||
| 362 | Square bishopSq = pos.square<BISHOP>(strongSide); |
||
| 363 | |||
| 364 | // There's potential for a draw if our pawn is blocked on the 7th rank, |
||
| 365 | // the bishop cannot attack it or they only have one pawn left |
||
| 366 | if ( relative_rank(strongSide, weakPawnSq) == RANK_7 |
||
| 367 | && (pos.pieces(strongSide, PAWN) & (weakPawnSq + pawn_push(weakSide))) |
||
| 368 | && (opposite_colors(bishopSq, weakPawnSq) || pos.count<PAWN>(strongSide) == 1)) |
||
| 369 | { |
||
| 370 | int strongKingDist = distance(weakPawnSq, strongKingSq); |
||
| 371 | int weakKingDist = distance(weakPawnSq, weakKingSq); |
||
| 372 | |||
| 373 | // It's a draw if the weak king is on its back two ranks, within 2 |
||
| 374 | // squares of the blocking pawn and the strong king is not |
||
| 375 | // closer. (I think this rule only fails in practically |
||
| 376 | // unreachable positions such as 5k1K/6p1/6P1/8/8/3B4/8/8 w |
||
| 377 | // and positions where qsearch will immediately correct the |
||
| 378 | // problem such as 8/4k1p1/6P1/1K6/3B4/8/8/8 w) |
||
| 379 | if ( relative_rank(strongSide, weakKingSq) >= RANK_7 |
||
| 380 | && weakKingDist <= 2 |
||
| 381 | && weakKingDist <= strongKingDist) |
||
| 382 | return SCALE_FACTOR_DRAW; |
||
| 383 | } |
||
| 384 | } |
||
| 385 | |||
| 386 | return SCALE_FACTOR_NONE; |
||
| 387 | } |
||
| 388 | |||
| 389 | |||
| 390 | /// KQ vs KR and one or more pawns. It tests for fortress draws with a rook on |
||
| 391 | /// the third rank defended by a pawn. |
||
| 392 | template<> |
||
| 393 | ScaleFactor Endgame<KQKRPs>::operator()(const Position& pos) const { |
||
| 394 | |||
| 395 | assert(verify_material(pos, strongSide, QueenValueMg, 0)); |
||
| 396 | assert(pos.count<ROOK>(weakSide) == 1); |
||
| 397 | assert(pos.count<PAWN>(weakSide) >= 1); |
||
| 398 | |||
| 399 | Square kingSq = pos.square<KING>(weakSide); |
||
| 400 | Square rsq = pos.square<ROOK>(weakSide); |
||
| 401 | |||
| 402 | if ( relative_rank(weakSide, kingSq) <= RANK_2 |
||
| 403 | && relative_rank(weakSide, pos.square<KING>(strongSide)) >= RANK_4 |
||
| 404 | && relative_rank(weakSide, rsq) == RANK_3 |
||
| 405 | && ( pos.pieces(weakSide, PAWN) |
||
| 406 | & pos.attacks_from<KING>(kingSq) |
||
| 407 | & pos.attacks_from<PAWN>(rsq, strongSide))) |
||
| 408 | return SCALE_FACTOR_DRAW; |
||
| 409 | |||
| 410 | return SCALE_FACTOR_NONE; |
||
| 411 | } |
||
| 412 | |||
| 413 | |||
| 414 | /// KRP vs KR. This function knows a handful of the most important classes of |
||
| 415 | /// drawn positions, but is far from perfect. It would probably be a good idea |
||
| 416 | /// to add more knowledge in the future. |
||
| 417 | /// |
||
| 418 | /// It would also be nice to rewrite the actual code for this function, |
||
| 419 | /// which is mostly copied from Glaurung 1.x, and isn't very pretty. |
||
| 420 | template<> |
||
| 421 | ScaleFactor Endgame<KRPKR>::operator()(const Position& pos) const { |
||
| 422 | |||
| 423 | assert(verify_material(pos, strongSide, RookValueMg, 1)); |
||
| 424 | assert(verify_material(pos, weakSide, RookValueMg, 0)); |
||
| 425 | |||
| 426 | // Assume strongSide is white and the pawn is on files A-D |
||
| 427 | Square wksq = normalize(pos, strongSide, pos.square<KING>(strongSide)); |
||
| 428 | Square bksq = normalize(pos, strongSide, pos.square<KING>(weakSide)); |
||
| 429 | Square wrsq = normalize(pos, strongSide, pos.square<ROOK>(strongSide)); |
||
| 430 | Square wpsq = normalize(pos, strongSide, pos.square<PAWN>(strongSide)); |
||
| 431 | Square brsq = normalize(pos, strongSide, pos.square<ROOK>(weakSide)); |
||
| 432 | |||
| 433 | File f = file_of(wpsq); |
||
| 434 | Rank r = rank_of(wpsq); |
||
| 435 | Square queeningSq = make_square(f, RANK_8); |
||
| 436 | int tempo = (pos.side_to_move() == strongSide); |
||
| 437 | |||
| 438 | // If the pawn is not too far advanced and the defending king defends the |
||
| 439 | // queening square, use the third-rank defence. |
||
| 440 | if ( r <= RANK_5 |
||
| 441 | && distance(bksq, queeningSq) <= 1 |
||
| 442 | && wksq <= SQ_H5 |
||
| 443 | && (rank_of(brsq) == RANK_6 || (r <= RANK_3 && rank_of(wrsq) != RANK_6))) |
||
| 444 | return SCALE_FACTOR_DRAW; |
||
| 445 | |||
| 446 | // The defending side saves a draw by checking from behind in case the pawn |
||
| 447 | // has advanced to the 6th rank with the king behind. |
||
| 448 | if ( r == RANK_6 |
||
| 449 | && distance(bksq, queeningSq) <= 1 |
||
| 450 | && rank_of(wksq) + tempo <= RANK_6 |
||
| 451 | && (rank_of(brsq) == RANK_1 || (!tempo && distance<File>(brsq, wpsq) >= 3))) |
||
| 452 | return SCALE_FACTOR_DRAW; |
||
| 453 | |||
| 454 | if ( r >= RANK_6 |
||
| 455 | && bksq == queeningSq |
||
| 456 | && rank_of(brsq) == RANK_1 |
||
| 457 | && (!tempo || distance(wksq, wpsq) >= 2)) |
||
| 458 | return SCALE_FACTOR_DRAW; |
||
| 459 | |||
| 460 | // White pawn on a7 and rook on a8 is a draw if black's king is on g7 or h7 |
||
| 461 | // and the black rook is behind the pawn. |
||
| 462 | if ( wpsq == SQ_A7 |
||
| 463 | && wrsq == SQ_A8 |
||
| 464 | && (bksq == SQ_H7 || bksq == SQ_G7) |
||
| 465 | && file_of(brsq) == FILE_A |
||
| 466 | && (rank_of(brsq) <= RANK_3 || file_of(wksq) >= FILE_D || rank_of(wksq) <= RANK_5)) |
||
| 467 | return SCALE_FACTOR_DRAW; |
||
| 468 | |||
| 469 | // If the defending king blocks the pawn and the attacking king is too far |
||
| 470 | // away, it's a draw. |
||
| 471 | if ( r <= RANK_5 |
||
| 154 | pmbaty | 472 | && bksq == wpsq + NORTH |
| 96 | pmbaty | 473 | && distance(wksq, wpsq) - tempo >= 2 |
| 474 | && distance(wksq, brsq) - tempo >= 2) |
||
| 475 | return SCALE_FACTOR_DRAW; |
||
| 476 | |||
| 477 | // Pawn on the 7th rank supported by the rook from behind usually wins if the |
||
| 478 | // attacking king is closer to the queening square than the defending king, |
||
| 479 | // and the defending king cannot gain tempi by threatening the attacking rook. |
||
| 480 | if ( r == RANK_7 |
||
| 481 | && f != FILE_A |
||
| 482 | && file_of(wrsq) == f |
||
| 483 | && wrsq != queeningSq |
||
| 484 | && (distance(wksq, queeningSq) < distance(bksq, queeningSq) - 2 + tempo) |
||
| 485 | && (distance(wksq, queeningSq) < distance(bksq, wrsq) + tempo)) |
||
| 486 | return ScaleFactor(SCALE_FACTOR_MAX - 2 * distance(wksq, queeningSq)); |
||
| 487 | |||
| 488 | // Similar to the above, but with the pawn further back |
||
| 489 | if ( f != FILE_A |
||
| 490 | && file_of(wrsq) == f |
||
| 491 | && wrsq < wpsq |
||
| 492 | && (distance(wksq, queeningSq) < distance(bksq, queeningSq) - 2 + tempo) |
||
| 154 | pmbaty | 493 | && (distance(wksq, wpsq + NORTH) < distance(bksq, wpsq + NORTH) - 2 + tempo) |
| 96 | pmbaty | 494 | && ( distance(bksq, wrsq) + tempo >= 3 |
| 495 | || ( distance(wksq, queeningSq) < distance(bksq, wrsq) + tempo |
||
| 154 | pmbaty | 496 | && (distance(wksq, wpsq + NORTH) < distance(bksq, wrsq) + tempo)))) |
| 96 | pmbaty | 497 | return ScaleFactor( SCALE_FACTOR_MAX |
| 498 | - 8 * distance(wpsq, queeningSq) |
||
| 499 | - 2 * distance(wksq, queeningSq)); |
||
| 500 | |||
| 501 | // If the pawn is not far advanced and the defending king is somewhere in |
||
| 502 | // the pawn's path, it's probably a draw. |
||
| 503 | if (r <= RANK_4 && bksq > wpsq) |
||
| 504 | { |
||
| 505 | if (file_of(bksq) == file_of(wpsq)) |
||
| 506 | return ScaleFactor(10); |
||
| 507 | if ( distance<File>(bksq, wpsq) == 1 |
||
| 508 | && distance(wksq, bksq) > 2) |
||
| 509 | return ScaleFactor(24 - 2 * distance(wksq, bksq)); |
||
| 510 | } |
||
| 511 | return SCALE_FACTOR_NONE; |
||
| 512 | } |
||
| 513 | |||
| 514 | template<> |
||
| 515 | ScaleFactor Endgame<KRPKB>::operator()(const Position& pos) const { |
||
| 516 | |||
| 517 | assert(verify_material(pos, strongSide, RookValueMg, 1)); |
||
| 518 | assert(verify_material(pos, weakSide, BishopValueMg, 0)); |
||
| 519 | |||
| 520 | // Test for a rook pawn |
||
| 521 | if (pos.pieces(PAWN) & (FileABB | FileHBB)) |
||
| 522 | { |
||
| 523 | Square ksq = pos.square<KING>(weakSide); |
||
| 524 | Square bsq = pos.square<BISHOP>(weakSide); |
||
| 525 | Square psq = pos.square<PAWN>(strongSide); |
||
| 526 | Rank rk = relative_rank(strongSide, psq); |
||
| 169 | pmbaty | 527 | Direction push = pawn_push(strongSide); |
| 96 | pmbaty | 528 | |
| 529 | // If the pawn is on the 5th rank and the pawn (currently) is on |
||
| 530 | // the same color square as the bishop then there is a chance of |
||
| 531 | // a fortress. Depending on the king position give a moderate |
||
| 532 | // reduction or a stronger one if the defending king is near the |
||
| 533 | // corner but not trapped there. |
||
| 534 | if (rk == RANK_5 && !opposite_colors(bsq, psq)) |
||
| 535 | { |
||
| 536 | int d = distance(psq + 3 * push, ksq); |
||
| 537 | |||
| 538 | if (d <= 2 && !(d == 0 && ksq == pos.square<KING>(strongSide) + 2 * push)) |
||
| 539 | return ScaleFactor(24); |
||
| 540 | else |
||
| 541 | return ScaleFactor(48); |
||
| 542 | } |
||
| 543 | |||
| 544 | // When the pawn has moved to the 6th rank we can be fairly sure |
||
| 545 | // it's drawn if the bishop attacks the square in front of the |
||
| 546 | // pawn from a reasonable distance and the defending king is near |
||
| 547 | // the corner |
||
| 548 | if ( rk == RANK_6 |
||
| 549 | && distance(psq + 2 * push, ksq) <= 1 |
||
| 550 | && (PseudoAttacks[BISHOP][bsq] & (psq + push)) |
||
| 551 | && distance<File>(bsq, psq) >= 2) |
||
| 552 | return ScaleFactor(8); |
||
| 553 | } |
||
| 554 | |||
| 555 | return SCALE_FACTOR_NONE; |
||
| 556 | } |
||
| 557 | |||
| 558 | /// KRPP vs KRP. There is just a single rule: if the stronger side has no passed |
||
| 559 | /// pawns and the defending king is actively placed, the position is drawish. |
||
| 560 | template<> |
||
| 561 | ScaleFactor Endgame<KRPPKRP>::operator()(const Position& pos) const { |
||
| 562 | |||
| 563 | assert(verify_material(pos, strongSide, RookValueMg, 2)); |
||
| 564 | assert(verify_material(pos, weakSide, RookValueMg, 1)); |
||
| 565 | |||
| 566 | Square wpsq1 = pos.squares<PAWN>(strongSide)[0]; |
||
| 567 | Square wpsq2 = pos.squares<PAWN>(strongSide)[1]; |
||
| 568 | Square bksq = pos.square<KING>(weakSide); |
||
| 569 | |||
| 570 | // Does the stronger side have a passed pawn? |
||
| 571 | if (pos.pawn_passed(strongSide, wpsq1) || pos.pawn_passed(strongSide, wpsq2)) |
||
| 572 | return SCALE_FACTOR_NONE; |
||
| 573 | |||
| 574 | Rank r = std::max(relative_rank(strongSide, wpsq1), relative_rank(strongSide, wpsq2)); |
||
| 575 | |||
| 576 | if ( distance<File>(bksq, wpsq1) <= 1 |
||
| 577 | && distance<File>(bksq, wpsq2) <= 1 |
||
| 578 | && relative_rank(strongSide, bksq) > r) |
||
| 579 | { |
||
| 580 | assert(r > RANK_1 && r < RANK_7); |
||
| 581 | return ScaleFactor(KRPPKRPScaleFactors[r]); |
||
| 582 | } |
||
| 583 | return SCALE_FACTOR_NONE; |
||
| 584 | } |
||
| 585 | |||
| 586 | |||
| 587 | /// K and two or more pawns vs K. There is just a single rule here: If all pawns |
||
| 588 | /// are on the same rook file and are blocked by the defending king, it's a draw. |
||
| 589 | template<> |
||
| 590 | ScaleFactor Endgame<KPsK>::operator()(const Position& pos) const { |
||
| 591 | |||
| 592 | assert(pos.non_pawn_material(strongSide) == VALUE_ZERO); |
||
| 593 | assert(pos.count<PAWN>(strongSide) >= 2); |
||
| 594 | assert(verify_material(pos, weakSide, VALUE_ZERO, 0)); |
||
| 595 | |||
| 596 | Square ksq = pos.square<KING>(weakSide); |
||
| 597 | Bitboard pawns = pos.pieces(strongSide, PAWN); |
||
| 598 | |||
| 599 | // If all pawns are ahead of the king, on a single rook file and |
||
| 600 | // the king is within one file of the pawns, it's a draw. |
||
| 169 | pmbaty | 601 | if ( !(pawns & ~forward_ranks_bb(weakSide, ksq)) |
| 96 | pmbaty | 602 | && !((pawns & ~FileABB) && (pawns & ~FileHBB)) |
| 603 | && distance<File>(ksq, lsb(pawns)) <= 1) |
||
| 604 | return SCALE_FACTOR_DRAW; |
||
| 605 | |||
| 606 | return SCALE_FACTOR_NONE; |
||
| 607 | } |
||
| 608 | |||
| 609 | |||
| 610 | /// KBP vs KB. There are two rules: if the defending king is somewhere along the |
||
| 611 | /// path of the pawn, and the square of the king is not of the same color as the |
||
| 612 | /// stronger side's bishop, it's a draw. If the two bishops have opposite color, |
||
| 613 | /// it's almost always a draw. |
||
| 614 | template<> |
||
| 615 | ScaleFactor Endgame<KBPKB>::operator()(const Position& pos) const { |
||
| 616 | |||
| 617 | assert(verify_material(pos, strongSide, BishopValueMg, 1)); |
||
| 618 | assert(verify_material(pos, weakSide, BishopValueMg, 0)); |
||
| 619 | |||
| 620 | Square pawnSq = pos.square<PAWN>(strongSide); |
||
| 621 | Square strongBishopSq = pos.square<BISHOP>(strongSide); |
||
| 622 | Square weakBishopSq = pos.square<BISHOP>(weakSide); |
||
| 623 | Square weakKingSq = pos.square<KING>(weakSide); |
||
| 624 | |||
| 625 | // Case 1: Defending king blocks the pawn, and cannot be driven away |
||
| 626 | if ( file_of(weakKingSq) == file_of(pawnSq) |
||
| 627 | && relative_rank(strongSide, pawnSq) < relative_rank(strongSide, weakKingSq) |
||
| 628 | && ( opposite_colors(weakKingSq, strongBishopSq) |
||
| 629 | || relative_rank(strongSide, weakKingSq) <= RANK_6)) |
||
| 630 | return SCALE_FACTOR_DRAW; |
||
| 631 | |||
| 632 | // Case 2: Opposite colored bishops |
||
| 633 | if (opposite_colors(strongBishopSq, weakBishopSq)) |
||
| 634 | { |
||
| 635 | // We assume that the position is drawn in the following three situations: |
||
| 636 | // |
||
| 637 | // a. The pawn is on rank 5 or further back. |
||
| 638 | // b. The defending king is somewhere in the pawn's path. |
||
| 639 | // c. The defending bishop attacks some square along the pawn's path, |
||
| 640 | // and is at least three squares away from the pawn. |
||
| 641 | // |
||
| 642 | // These rules are probably not perfect, but in practice they work |
||
| 643 | // reasonably well. |
||
| 644 | |||
| 645 | if (relative_rank(strongSide, pawnSq) <= RANK_5) |
||
| 646 | return SCALE_FACTOR_DRAW; |
||
| 647 | |||
| 169 | pmbaty | 648 | Bitboard path = forward_file_bb(strongSide, pawnSq); |
| 96 | pmbaty | 649 | |
| 169 | pmbaty | 650 | if (path & pos.pieces(weakSide, KING)) |
| 651 | return SCALE_FACTOR_DRAW; |
||
| 652 | |||
| 653 | if ( (pos.attacks_from<BISHOP>(weakBishopSq) & path) |
||
| 654 | && distance(weakBishopSq, pawnSq) >= 3) |
||
| 655 | return SCALE_FACTOR_DRAW; |
||
| 96 | pmbaty | 656 | } |
| 657 | return SCALE_FACTOR_NONE; |
||
| 658 | } |
||
| 659 | |||
| 660 | |||
| 661 | /// KBPP vs KB. It detects a few basic draws with opposite-colored bishops |
||
| 662 | template<> |
||
| 663 | ScaleFactor Endgame<KBPPKB>::operator()(const Position& pos) const { |
||
| 664 | |||
| 665 | assert(verify_material(pos, strongSide, BishopValueMg, 2)); |
||
| 666 | assert(verify_material(pos, weakSide, BishopValueMg, 0)); |
||
| 667 | |||
| 668 | Square wbsq = pos.square<BISHOP>(strongSide); |
||
| 669 | Square bbsq = pos.square<BISHOP>(weakSide); |
||
| 670 | |||
| 671 | if (!opposite_colors(wbsq, bbsq)) |
||
| 672 | return SCALE_FACTOR_NONE; |
||
| 673 | |||
| 674 | Square ksq = pos.square<KING>(weakSide); |
||
| 675 | Square psq1 = pos.squares<PAWN>(strongSide)[0]; |
||
| 676 | Square psq2 = pos.squares<PAWN>(strongSide)[1]; |
||
| 677 | Rank r1 = rank_of(psq1); |
||
| 678 | Rank r2 = rank_of(psq2); |
||
| 679 | Square blockSq1, blockSq2; |
||
| 680 | |||
| 681 | if (relative_rank(strongSide, psq1) > relative_rank(strongSide, psq2)) |
||
| 682 | { |
||
| 683 | blockSq1 = psq1 + pawn_push(strongSide); |
||
| 684 | blockSq2 = make_square(file_of(psq2), rank_of(psq1)); |
||
| 685 | } |
||
| 686 | else |
||
| 687 | { |
||
| 688 | blockSq1 = psq2 + pawn_push(strongSide); |
||
| 689 | blockSq2 = make_square(file_of(psq1), rank_of(psq2)); |
||
| 690 | } |
||
| 691 | |||
| 692 | switch (distance<File>(psq1, psq2)) |
||
| 693 | { |
||
| 694 | case 0: |
||
| 695 | // Both pawns are on the same file. It's an easy draw if the defender firmly |
||
| 696 | // controls some square in the frontmost pawn's path. |
||
| 697 | if ( file_of(ksq) == file_of(blockSq1) |
||
| 698 | && relative_rank(strongSide, ksq) >= relative_rank(strongSide, blockSq1) |
||
| 699 | && opposite_colors(ksq, wbsq)) |
||
| 700 | return SCALE_FACTOR_DRAW; |
||
| 701 | else |
||
| 702 | return SCALE_FACTOR_NONE; |
||
| 703 | |||
| 704 | case 1: |
||
| 705 | // Pawns on adjacent files. It's a draw if the defender firmly controls the |
||
| 706 | // square in front of the frontmost pawn's path, and the square diagonally |
||
| 707 | // behind this square on the file of the other pawn. |
||
| 708 | if ( ksq == blockSq1 |
||
| 709 | && opposite_colors(ksq, wbsq) |
||
| 710 | && ( bbsq == blockSq2 |
||
| 711 | || (pos.attacks_from<BISHOP>(blockSq2) & pos.pieces(weakSide, BISHOP)) |
||
| 712 | || distance(r1, r2) >= 2)) |
||
| 713 | return SCALE_FACTOR_DRAW; |
||
| 714 | |||
| 715 | else if ( ksq == blockSq2 |
||
| 716 | && opposite_colors(ksq, wbsq) |
||
| 717 | && ( bbsq == blockSq1 |
||
| 718 | || (pos.attacks_from<BISHOP>(blockSq1) & pos.pieces(weakSide, BISHOP)))) |
||
| 719 | return SCALE_FACTOR_DRAW; |
||
| 720 | else |
||
| 721 | return SCALE_FACTOR_NONE; |
||
| 722 | |||
| 723 | default: |
||
| 724 | // The pawns are not on the same file or adjacent files. No scaling. |
||
| 725 | return SCALE_FACTOR_NONE; |
||
| 726 | } |
||
| 727 | } |
||
| 728 | |||
| 729 | |||
| 730 | /// KBP vs KN. There is a single rule: If the defending king is somewhere along |
||
| 731 | /// the path of the pawn, and the square of the king is not of the same color as |
||
| 732 | /// the stronger side's bishop, it's a draw. |
||
| 733 | template<> |
||
| 734 | ScaleFactor Endgame<KBPKN>::operator()(const Position& pos) const { |
||
| 735 | |||
| 736 | assert(verify_material(pos, strongSide, BishopValueMg, 1)); |
||
| 737 | assert(verify_material(pos, weakSide, KnightValueMg, 0)); |
||
| 738 | |||
| 739 | Square pawnSq = pos.square<PAWN>(strongSide); |
||
| 740 | Square strongBishopSq = pos.square<BISHOP>(strongSide); |
||
| 741 | Square weakKingSq = pos.square<KING>(weakSide); |
||
| 742 | |||
| 743 | if ( file_of(weakKingSq) == file_of(pawnSq) |
||
| 744 | && relative_rank(strongSide, pawnSq) < relative_rank(strongSide, weakKingSq) |
||
| 745 | && ( opposite_colors(weakKingSq, strongBishopSq) |
||
| 746 | || relative_rank(strongSide, weakKingSq) <= RANK_6)) |
||
| 747 | return SCALE_FACTOR_DRAW; |
||
| 748 | |||
| 749 | return SCALE_FACTOR_NONE; |
||
| 750 | } |
||
| 751 | |||
| 752 | |||
| 753 | /// KNP vs K. There is a single rule: if the pawn is a rook pawn on the 7th rank |
||
| 754 | /// and the defending king prevents the pawn from advancing, the position is drawn. |
||
| 755 | template<> |
||
| 756 | ScaleFactor Endgame<KNPK>::operator()(const Position& pos) const { |
||
| 757 | |||
| 758 | assert(verify_material(pos, strongSide, KnightValueMg, 1)); |
||
| 759 | assert(verify_material(pos, weakSide, VALUE_ZERO, 0)); |
||
| 760 | |||
| 761 | // Assume strongSide is white and the pawn is on files A-D |
||
| 762 | Square pawnSq = normalize(pos, strongSide, pos.square<PAWN>(strongSide)); |
||
| 763 | Square weakKingSq = normalize(pos, strongSide, pos.square<KING>(weakSide)); |
||
| 764 | |||
| 765 | if (pawnSq == SQ_A7 && distance(SQ_A8, weakKingSq) <= 1) |
||
| 766 | return SCALE_FACTOR_DRAW; |
||
| 767 | |||
| 768 | return SCALE_FACTOR_NONE; |
||
| 769 | } |
||
| 770 | |||
| 771 | |||
| 772 | /// KNP vs KB. If knight can block bishop from taking pawn, it's a win. |
||
| 773 | /// Otherwise the position is drawn. |
||
| 774 | template<> |
||
| 775 | ScaleFactor Endgame<KNPKB>::operator()(const Position& pos) const { |
||
| 776 | |||
| 777 | Square pawnSq = pos.square<PAWN>(strongSide); |
||
| 778 | Square bishopSq = pos.square<BISHOP>(weakSide); |
||
| 779 | Square weakKingSq = pos.square<KING>(weakSide); |
||
| 780 | |||
| 781 | // King needs to get close to promoting pawn to prevent knight from blocking. |
||
| 782 | // Rules for this are very tricky, so just approximate. |
||
| 169 | pmbaty | 783 | if (forward_file_bb(strongSide, pawnSq) & pos.attacks_from<BISHOP>(bishopSq)) |
| 96 | pmbaty | 784 | return ScaleFactor(distance(weakKingSq, pawnSq)); |
| 785 | |||
| 786 | return SCALE_FACTOR_NONE; |
||
| 787 | } |
||
| 788 | |||
| 789 | |||
| 790 | /// KP vs KP. This is done by removing the weakest side's pawn and probing the |
||
| 791 | /// KP vs K bitbase: If the weakest side has a draw without the pawn, it probably |
||
| 792 | /// has at least a draw with the pawn as well. The exception is when the stronger |
||
| 793 | /// side's pawn is far advanced and not on a rook file; in this case it is often |
||
| 794 | /// possible to win (e.g. 8/4k3/3p4/3P4/6K1/8/8/8 w - - 0 1). |
||
| 795 | template<> |
||
| 796 | ScaleFactor Endgame<KPKP>::operator()(const Position& pos) const { |
||
| 797 | |||
| 798 | assert(verify_material(pos, strongSide, VALUE_ZERO, 1)); |
||
| 799 | assert(verify_material(pos, weakSide, VALUE_ZERO, 1)); |
||
| 800 | |||
| 801 | // Assume strongSide is white and the pawn is on files A-D |
||
| 802 | Square wksq = normalize(pos, strongSide, pos.square<KING>(strongSide)); |
||
| 803 | Square bksq = normalize(pos, strongSide, pos.square<KING>(weakSide)); |
||
| 804 | Square psq = normalize(pos, strongSide, pos.square<PAWN>(strongSide)); |
||
| 805 | |||
| 806 | Color us = strongSide == pos.side_to_move() ? WHITE : BLACK; |
||
| 807 | |||
| 808 | // If the pawn has advanced to the fifth rank or further, and is not a |
||
| 809 | // rook pawn, it's too dangerous to assume that it's at least a draw. |
||
| 810 | if (rank_of(psq) >= RANK_5 && file_of(psq) != FILE_A) |
||
| 811 | return SCALE_FACTOR_NONE; |
||
| 812 | |||
| 813 | // Probe the KPK bitbase with the weakest side's pawn removed. If it's a draw, |
||
| 814 | // it's probably at least a draw even with the pawn. |
||
| 815 | return Bitbases::probe(wksq, psq, bksq, us) ? SCALE_FACTOR_NONE : SCALE_FACTOR_DRAW; |
||
| 816 | } |