Rev 96 | Rev 169 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed
Rev | Author | Line No. | Line |
---|---|---|---|
96 | pmbaty | 1 | /* |
2 | Stockfish, a UCI chess playing engine derived from Glaurung 2.1 |
||
3 | Copyright (C) 2004-2008 Tord Romstad (Glaurung author) |
||
4 | Copyright (C) 2008-2015 Marco Costalba, Joona Kiiski, Tord Romstad |
||
5 | Copyright (C) 2015-2016 Marco Costalba, Joona Kiiski, Gary Linscott, Tord Romstad |
||
6 | |||
7 | Stockfish is free software: you can redistribute it and/or modify |
||
8 | it under the terms of the GNU General Public License as published by |
||
9 | the Free Software Foundation, either version 3 of the License, or |
||
10 | (at your option) any later version. |
||
11 | |||
12 | Stockfish is distributed in the hope that it will be useful, |
||
13 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
||
14 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
||
15 | GNU General Public License for more details. |
||
16 | |||
17 | You should have received a copy of the GNU General Public License |
||
18 | along with this program. If not, see <http://www.gnu.org/licenses/>. |
||
19 | */ |
||
20 | |||
21 | #include <algorithm> |
||
22 | #include <cassert> |
||
23 | |||
24 | #include "bitboard.h" |
||
25 | #include "endgame.h" |
||
26 | #include "movegen.h" |
||
27 | |||
28 | using std::string; |
||
29 | |||
30 | namespace { |
||
31 | |||
32 | // Table used to drive the king towards the edge of the board |
||
33 | // in KX vs K and KQ vs KR endgames. |
||
34 | const int PushToEdges[SQUARE_NB] = { |
||
35 | 100, 90, 80, 70, 70, 80, 90, 100, |
||
36 | 90, 70, 60, 50, 50, 60, 70, 90, |
||
37 | 80, 60, 40, 30, 30, 40, 60, 80, |
||
38 | 70, 50, 30, 20, 20, 30, 50, 70, |
||
39 | 70, 50, 30, 20, 20, 30, 50, 70, |
||
40 | 80, 60, 40, 30, 30, 40, 60, 80, |
||
41 | 90, 70, 60, 50, 50, 60, 70, 90, |
||
42 | 100, 90, 80, 70, 70, 80, 90, 100 |
||
43 | }; |
||
44 | |||
45 | // Table used to drive the king towards a corner square of the |
||
46 | // right color in KBN vs K endgames. |
||
47 | const int PushToCorners[SQUARE_NB] = { |
||
48 | 200, 190, 180, 170, 160, 150, 140, 130, |
||
49 | 190, 180, 170, 160, 150, 140, 130, 140, |
||
50 | 180, 170, 155, 140, 140, 125, 140, 150, |
||
51 | 170, 160, 140, 120, 110, 140, 150, 160, |
||
52 | 160, 150, 140, 110, 120, 140, 160, 170, |
||
53 | 150, 140, 125, 140, 140, 155, 170, 180, |
||
54 | 140, 130, 140, 150, 160, 170, 180, 190, |
||
55 | 130, 140, 150, 160, 170, 180, 190, 200 |
||
56 | }; |
||
57 | |||
58 | // Tables used to drive a piece towards or away from another piece |
||
59 | const int PushClose[8] = { 0, 0, 100, 80, 60, 40, 20, 10 }; |
||
60 | const int PushAway [8] = { 0, 5, 20, 40, 60, 80, 90, 100 }; |
||
61 | |||
62 | // Pawn Rank based scaling factors used in KRPPKRP endgame |
||
63 | const int KRPPKRPScaleFactors[RANK_NB] = { 0, 9, 10, 14, 21, 44, 0, 0 }; |
||
64 | |||
65 | #ifndef NDEBUG |
||
66 | bool verify_material(const Position& pos, Color c, Value npm, int pawnsCnt) { |
||
67 | return pos.non_pawn_material(c) == npm && pos.count<PAWN>(c) == pawnsCnt; |
||
68 | } |
||
69 | #endif |
||
70 | |||
71 | // Map the square as if strongSide is white and strongSide's only pawn |
||
72 | // is on the left half of the board. |
||
73 | Square normalize(const Position& pos, Color strongSide, Square sq) { |
||
74 | |||
75 | assert(pos.count<PAWN>(strongSide) == 1); |
||
76 | |||
77 | if (file_of(pos.square<PAWN>(strongSide)) >= FILE_E) |
||
78 | sq = Square(sq ^ 7); // Mirror SQ_H1 -> SQ_A1 |
||
79 | |||
80 | if (strongSide == BLACK) |
||
81 | sq = ~sq; |
||
82 | |||
83 | return sq; |
||
84 | } |
||
85 | |||
86 | // Get the material key of Position out of the given endgame key code |
||
87 | // like "KBPKN". The trick here is to first forge an ad-hoc FEN string |
||
88 | // and then let a Position object do the work for us. |
||
89 | Key key(const string& code, Color c) { |
||
90 | |||
91 | assert(code.length() > 0 && code.length() < 8); |
||
92 | assert(code[0] == 'K'); |
||
93 | |||
94 | string sides[] = { code.substr(code.find('K', 1)), // Weak |
||
95 | code.substr(0, code.find('K', 1)) }; // Strong |
||
96 | |||
97 | std::transform(sides[c].begin(), sides[c].end(), sides[c].begin(), tolower); |
||
98 | |||
99 | string fen = sides[0] + char(8 - sides[0].length() + '0') + "/8/8/8/8/8/8/" |
||
100 | + sides[1] + char(8 - sides[1].length() + '0') + " w - - 0 10"; |
||
101 | |||
154 | pmbaty | 102 | StateInfo st; |
103 | return Position().set(fen, false, &st, nullptr).material_key(); |
||
96 | pmbaty | 104 | } |
105 | |||
106 | } // namespace |
||
107 | |||
108 | |||
109 | /// Endgames members definitions |
||
110 | |||
111 | Endgames::Endgames() { |
||
112 | |||
113 | add<KPK>("KPK"); |
||
114 | add<KNNK>("KNNK"); |
||
115 | add<KBNK>("KBNK"); |
||
116 | add<KRKP>("KRKP"); |
||
117 | add<KRKB>("KRKB"); |
||
118 | add<KRKN>("KRKN"); |
||
119 | add<KQKP>("KQKP"); |
||
120 | add<KQKR>("KQKR"); |
||
121 | |||
122 | add<KNPK>("KNPK"); |
||
123 | add<KNPKB>("KNPKB"); |
||
124 | add<KRPKR>("KRPKR"); |
||
125 | add<KRPKB>("KRPKB"); |
||
126 | add<KBPKB>("KBPKB"); |
||
127 | add<KBPKN>("KBPKN"); |
||
128 | add<KBPPKB>("KBPPKB"); |
||
129 | add<KRPPKRP>("KRPPKRP"); |
||
130 | } |
||
131 | |||
132 | |||
133 | template<EndgameType E, typename T> |
||
134 | void Endgames::add(const string& code) { |
||
135 | map<T>()[key(code, WHITE)] = std::unique_ptr<EndgameBase<T>>(new Endgame<E>(WHITE)); |
||
136 | map<T>()[key(code, BLACK)] = std::unique_ptr<EndgameBase<T>>(new Endgame<E>(BLACK)); |
||
137 | } |
||
138 | |||
139 | |||
140 | /// Mate with KX vs K. This function is used to evaluate positions with |
||
141 | /// king and plenty of material vs a lone king. It simply gives the |
||
142 | /// attacking side a bonus for driving the defending king towards the edge |
||
143 | /// of the board, and for keeping the distance between the two kings small. |
||
144 | template<> |
||
145 | Value Endgame<KXK>::operator()(const Position& pos) const { |
||
146 | |||
147 | assert(verify_material(pos, weakSide, VALUE_ZERO, 0)); |
||
148 | assert(!pos.checkers()); // Eval is never called when in check |
||
149 | |||
150 | // Stalemate detection with lone king |
||
151 | if (pos.side_to_move() == weakSide && !MoveList<LEGAL>(pos).size()) |
||
152 | return VALUE_DRAW; |
||
153 | |||
154 | Square winnerKSq = pos.square<KING>(strongSide); |
||
155 | Square loserKSq = pos.square<KING>(weakSide); |
||
156 | |||
157 | Value result = pos.non_pawn_material(strongSide) |
||
158 | + pos.count<PAWN>(strongSide) * PawnValueEg |
||
159 | + PushToEdges[loserKSq] |
||
160 | + PushClose[distance(winnerKSq, loserKSq)]; |
||
161 | |||
162 | if ( pos.count<QUEEN>(strongSide) |
||
163 | || pos.count<ROOK>(strongSide) |
||
164 | ||(pos.count<BISHOP>(strongSide) && pos.count<KNIGHT>(strongSide)) |
||
165 | ||(pos.count<BISHOP>(strongSide) > 1 && opposite_colors(pos.squares<BISHOP>(strongSide)[0], |
||
166 | pos.squares<BISHOP>(strongSide)[1]))) |
||
167 | result = std::min(result + VALUE_KNOWN_WIN, VALUE_MATE_IN_MAX_PLY - 1); |
||
168 | |||
169 | return strongSide == pos.side_to_move() ? result : -result; |
||
170 | } |
||
171 | |||
172 | |||
173 | /// Mate with KBN vs K. This is similar to KX vs K, but we have to drive the |
||
174 | /// defending king towards a corner square of the right color. |
||
175 | template<> |
||
176 | Value Endgame<KBNK>::operator()(const Position& pos) const { |
||
177 | |||
178 | assert(verify_material(pos, strongSide, KnightValueMg + BishopValueMg, 0)); |
||
179 | assert(verify_material(pos, weakSide, VALUE_ZERO, 0)); |
||
180 | |||
181 | Square winnerKSq = pos.square<KING>(strongSide); |
||
182 | Square loserKSq = pos.square<KING>(weakSide); |
||
183 | Square bishopSq = pos.square<BISHOP>(strongSide); |
||
184 | |||
185 | // kbnk_mate_table() tries to drive toward corners A1 or H8. If we have a |
||
186 | // bishop that cannot reach the above squares, we flip the kings in order |
||
187 | // to drive the enemy toward corners A8 or H1. |
||
188 | if (opposite_colors(bishopSq, SQ_A1)) |
||
189 | { |
||
190 | winnerKSq = ~winnerKSq; |
||
191 | loserKSq = ~loserKSq; |
||
192 | } |
||
193 | |||
194 | Value result = VALUE_KNOWN_WIN |
||
195 | + PushClose[distance(winnerKSq, loserKSq)] |
||
196 | + PushToCorners[loserKSq]; |
||
197 | |||
198 | return strongSide == pos.side_to_move() ? result : -result; |
||
199 | } |
||
200 | |||
201 | |||
202 | /// KP vs K. This endgame is evaluated with the help of a bitbase. |
||
203 | template<> |
||
204 | Value Endgame<KPK>::operator()(const Position& pos) const { |
||
205 | |||
206 | assert(verify_material(pos, strongSide, VALUE_ZERO, 1)); |
||
207 | assert(verify_material(pos, weakSide, VALUE_ZERO, 0)); |
||
208 | |||
209 | // Assume strongSide is white and the pawn is on files A-D |
||
210 | Square wksq = normalize(pos, strongSide, pos.square<KING>(strongSide)); |
||
211 | Square bksq = normalize(pos, strongSide, pos.square<KING>(weakSide)); |
||
212 | Square psq = normalize(pos, strongSide, pos.square<PAWN>(strongSide)); |
||
213 | |||
214 | Color us = strongSide == pos.side_to_move() ? WHITE : BLACK; |
||
215 | |||
216 | if (!Bitbases::probe(wksq, psq, bksq, us)) |
||
217 | return VALUE_DRAW; |
||
218 | |||
219 | Value result = VALUE_KNOWN_WIN + PawnValueEg + Value(rank_of(psq)); |
||
220 | |||
221 | return strongSide == pos.side_to_move() ? result : -result; |
||
222 | } |
||
223 | |||
224 | |||
225 | /// KR vs KP. This is a somewhat tricky endgame to evaluate precisely without |
||
226 | /// a bitbase. The function below returns drawish scores when the pawn is |
||
227 | /// far advanced with support of the king, while the attacking king is far |
||
228 | /// away. |
||
229 | template<> |
||
230 | Value Endgame<KRKP>::operator()(const Position& pos) const { |
||
231 | |||
232 | assert(verify_material(pos, strongSide, RookValueMg, 0)); |
||
233 | assert(verify_material(pos, weakSide, VALUE_ZERO, 1)); |
||
234 | |||
235 | Square wksq = relative_square(strongSide, pos.square<KING>(strongSide)); |
||
236 | Square bksq = relative_square(strongSide, pos.square<KING>(weakSide)); |
||
237 | Square rsq = relative_square(strongSide, pos.square<ROOK>(strongSide)); |
||
238 | Square psq = relative_square(strongSide, pos.square<PAWN>(weakSide)); |
||
239 | |||
240 | Square queeningSq = make_square(file_of(psq), RANK_1); |
||
241 | Value result; |
||
242 | |||
243 | // If the stronger side's king is in front of the pawn, it's a win |
||
244 | if (wksq < psq && file_of(wksq) == file_of(psq)) |
||
245 | result = RookValueEg - distance(wksq, psq); |
||
246 | |||
247 | // If the weaker side's king is too far from the pawn and the rook, |
||
248 | // it's a win. |
||
249 | else if ( distance(bksq, psq) >= 3 + (pos.side_to_move() == weakSide) |
||
250 | && distance(bksq, rsq) >= 3) |
||
251 | result = RookValueEg - distance(wksq, psq); |
||
252 | |||
253 | // If the pawn is far advanced and supported by the defending king, |
||
254 | // the position is drawish |
||
255 | else if ( rank_of(bksq) <= RANK_3 |
||
256 | && distance(bksq, psq) == 1 |
||
257 | && rank_of(wksq) >= RANK_4 |
||
258 | && distance(wksq, psq) > 2 + (pos.side_to_move() == strongSide)) |
||
259 | result = Value(80) - 8 * distance(wksq, psq); |
||
260 | |||
261 | else |
||
154 | pmbaty | 262 | result = Value(200) - 8 * ( distance(wksq, psq + SOUTH) |
263 | - distance(bksq, psq + SOUTH) |
||
96 | pmbaty | 264 | - distance(psq, queeningSq)); |
265 | |||
266 | return strongSide == pos.side_to_move() ? result : -result; |
||
267 | } |
||
268 | |||
269 | |||
270 | /// KR vs KB. This is very simple, and always returns drawish scores. The |
||
271 | /// score is slightly bigger when the defending king is close to the edge. |
||
272 | template<> |
||
273 | Value Endgame<KRKB>::operator()(const Position& pos) const { |
||
274 | |||
275 | assert(verify_material(pos, strongSide, RookValueMg, 0)); |
||
276 | assert(verify_material(pos, weakSide, BishopValueMg, 0)); |
||
277 | |||
278 | Value result = Value(PushToEdges[pos.square<KING>(weakSide)]); |
||
279 | return strongSide == pos.side_to_move() ? result : -result; |
||
280 | } |
||
281 | |||
282 | |||
283 | /// KR vs KN. The attacking side has slightly better winning chances than |
||
284 | /// in KR vs KB, particularly if the king and the knight are far apart. |
||
285 | template<> |
||
286 | Value Endgame<KRKN>::operator()(const Position& pos) const { |
||
287 | |||
288 | assert(verify_material(pos, strongSide, RookValueMg, 0)); |
||
289 | assert(verify_material(pos, weakSide, KnightValueMg, 0)); |
||
290 | |||
291 | Square bksq = pos.square<KING>(weakSide); |
||
292 | Square bnsq = pos.square<KNIGHT>(weakSide); |
||
293 | Value result = Value(PushToEdges[bksq] + PushAway[distance(bksq, bnsq)]); |
||
294 | return strongSide == pos.side_to_move() ? result : -result; |
||
295 | } |
||
296 | |||
297 | |||
298 | /// KQ vs KP. In general, this is a win for the stronger side, but there are a |
||
299 | /// few important exceptions. A pawn on 7th rank and on the A,C,F or H files |
||
300 | /// with a king positioned next to it can be a draw, so in that case, we only |
||
301 | /// use the distance between the kings. |
||
302 | template<> |
||
303 | Value Endgame<KQKP>::operator()(const Position& pos) const { |
||
304 | |||
305 | assert(verify_material(pos, strongSide, QueenValueMg, 0)); |
||
306 | assert(verify_material(pos, weakSide, VALUE_ZERO, 1)); |
||
307 | |||
308 | Square winnerKSq = pos.square<KING>(strongSide); |
||
309 | Square loserKSq = pos.square<KING>(weakSide); |
||
310 | Square pawnSq = pos.square<PAWN>(weakSide); |
||
311 | |||
312 | Value result = Value(PushClose[distance(winnerKSq, loserKSq)]); |
||
313 | |||
314 | if ( relative_rank(weakSide, pawnSq) != RANK_7 |
||
315 | || distance(loserKSq, pawnSq) != 1 |
||
316 | || !((FileABB | FileCBB | FileFBB | FileHBB) & pawnSq)) |
||
317 | result += QueenValueEg - PawnValueEg; |
||
318 | |||
319 | return strongSide == pos.side_to_move() ? result : -result; |
||
320 | } |
||
321 | |||
322 | |||
323 | /// KQ vs KR. This is almost identical to KX vs K: We give the attacking |
||
324 | /// king a bonus for having the kings close together, and for forcing the |
||
325 | /// defending king towards the edge. If we also take care to avoid null move for |
||
326 | /// the defending side in the search, this is usually sufficient to win KQ vs KR. |
||
327 | template<> |
||
328 | Value Endgame<KQKR>::operator()(const Position& pos) const { |
||
329 | |||
330 | assert(verify_material(pos, strongSide, QueenValueMg, 0)); |
||
331 | assert(verify_material(pos, weakSide, RookValueMg, 0)); |
||
332 | |||
333 | Square winnerKSq = pos.square<KING>(strongSide); |
||
334 | Square loserKSq = pos.square<KING>(weakSide); |
||
335 | |||
336 | Value result = QueenValueEg |
||
337 | - RookValueEg |
||
338 | + PushToEdges[loserKSq] |
||
339 | + PushClose[distance(winnerKSq, loserKSq)]; |
||
340 | |||
341 | return strongSide == pos.side_to_move() ? result : -result; |
||
342 | } |
||
343 | |||
344 | |||
345 | /// Some cases of trivial draws |
||
346 | template<> Value Endgame<KNNK>::operator()(const Position&) const { return VALUE_DRAW; } |
||
347 | |||
348 | |||
349 | /// KB and one or more pawns vs K. It checks for draws with rook pawns and |
||
350 | /// a bishop of the wrong color. If such a draw is detected, SCALE_FACTOR_DRAW |
||
351 | /// is returned. If not, the return value is SCALE_FACTOR_NONE, i.e. no scaling |
||
352 | /// will be used. |
||
353 | template<> |
||
354 | ScaleFactor Endgame<KBPsK>::operator()(const Position& pos) const { |
||
355 | |||
356 | assert(pos.non_pawn_material(strongSide) == BishopValueMg); |
||
357 | assert(pos.count<PAWN>(strongSide) >= 1); |
||
358 | |||
359 | // No assertions about the material of weakSide, because we want draws to |
||
360 | // be detected even when the weaker side has some pawns. |
||
361 | |||
362 | Bitboard pawns = pos.pieces(strongSide, PAWN); |
||
363 | File pawnsFile = file_of(lsb(pawns)); |
||
364 | |||
365 | // All pawns are on a single rook file? |
||
366 | if ( (pawnsFile == FILE_A || pawnsFile == FILE_H) |
||
367 | && !(pawns & ~file_bb(pawnsFile))) |
||
368 | { |
||
369 | Square bishopSq = pos.square<BISHOP>(strongSide); |
||
370 | Square queeningSq = relative_square(strongSide, make_square(pawnsFile, RANK_8)); |
||
371 | Square kingSq = pos.square<KING>(weakSide); |
||
372 | |||
373 | if ( opposite_colors(queeningSq, bishopSq) |
||
374 | && distance(queeningSq, kingSq) <= 1) |
||
375 | return SCALE_FACTOR_DRAW; |
||
376 | } |
||
377 | |||
378 | // If all the pawns are on the same B or G file, then it's potentially a draw |
||
379 | if ( (pawnsFile == FILE_B || pawnsFile == FILE_G) |
||
380 | && !(pos.pieces(PAWN) & ~file_bb(pawnsFile)) |
||
381 | && pos.non_pawn_material(weakSide) == 0 |
||
382 | && pos.count<PAWN>(weakSide) >= 1) |
||
383 | { |
||
384 | // Get weakSide pawn that is closest to the home rank |
||
385 | Square weakPawnSq = backmost_sq(weakSide, pos.pieces(weakSide, PAWN)); |
||
386 | |||
387 | Square strongKingSq = pos.square<KING>(strongSide); |
||
388 | Square weakKingSq = pos.square<KING>(weakSide); |
||
389 | Square bishopSq = pos.square<BISHOP>(strongSide); |
||
390 | |||
391 | // There's potential for a draw if our pawn is blocked on the 7th rank, |
||
392 | // the bishop cannot attack it or they only have one pawn left |
||
393 | if ( relative_rank(strongSide, weakPawnSq) == RANK_7 |
||
394 | && (pos.pieces(strongSide, PAWN) & (weakPawnSq + pawn_push(weakSide))) |
||
395 | && (opposite_colors(bishopSq, weakPawnSq) || pos.count<PAWN>(strongSide) == 1)) |
||
396 | { |
||
397 | int strongKingDist = distance(weakPawnSq, strongKingSq); |
||
398 | int weakKingDist = distance(weakPawnSq, weakKingSq); |
||
399 | |||
400 | // It's a draw if the weak king is on its back two ranks, within 2 |
||
401 | // squares of the blocking pawn and the strong king is not |
||
402 | // closer. (I think this rule only fails in practically |
||
403 | // unreachable positions such as 5k1K/6p1/6P1/8/8/3B4/8/8 w |
||
404 | // and positions where qsearch will immediately correct the |
||
405 | // problem such as 8/4k1p1/6P1/1K6/3B4/8/8/8 w) |
||
406 | if ( relative_rank(strongSide, weakKingSq) >= RANK_7 |
||
407 | && weakKingDist <= 2 |
||
408 | && weakKingDist <= strongKingDist) |
||
409 | return SCALE_FACTOR_DRAW; |
||
410 | } |
||
411 | } |
||
412 | |||
413 | return SCALE_FACTOR_NONE; |
||
414 | } |
||
415 | |||
416 | |||
417 | /// KQ vs KR and one or more pawns. It tests for fortress draws with a rook on |
||
418 | /// the third rank defended by a pawn. |
||
419 | template<> |
||
420 | ScaleFactor Endgame<KQKRPs>::operator()(const Position& pos) const { |
||
421 | |||
422 | assert(verify_material(pos, strongSide, QueenValueMg, 0)); |
||
423 | assert(pos.count<ROOK>(weakSide) == 1); |
||
424 | assert(pos.count<PAWN>(weakSide) >= 1); |
||
425 | |||
426 | Square kingSq = pos.square<KING>(weakSide); |
||
427 | Square rsq = pos.square<ROOK>(weakSide); |
||
428 | |||
429 | if ( relative_rank(weakSide, kingSq) <= RANK_2 |
||
430 | && relative_rank(weakSide, pos.square<KING>(strongSide)) >= RANK_4 |
||
431 | && relative_rank(weakSide, rsq) == RANK_3 |
||
432 | && ( pos.pieces(weakSide, PAWN) |
||
433 | & pos.attacks_from<KING>(kingSq) |
||
434 | & pos.attacks_from<PAWN>(rsq, strongSide))) |
||
435 | return SCALE_FACTOR_DRAW; |
||
436 | |||
437 | return SCALE_FACTOR_NONE; |
||
438 | } |
||
439 | |||
440 | |||
441 | /// KRP vs KR. This function knows a handful of the most important classes of |
||
442 | /// drawn positions, but is far from perfect. It would probably be a good idea |
||
443 | /// to add more knowledge in the future. |
||
444 | /// |
||
445 | /// It would also be nice to rewrite the actual code for this function, |
||
446 | /// which is mostly copied from Glaurung 1.x, and isn't very pretty. |
||
447 | template<> |
||
448 | ScaleFactor Endgame<KRPKR>::operator()(const Position& pos) const { |
||
449 | |||
450 | assert(verify_material(pos, strongSide, RookValueMg, 1)); |
||
451 | assert(verify_material(pos, weakSide, RookValueMg, 0)); |
||
452 | |||
453 | // Assume strongSide is white and the pawn is on files A-D |
||
454 | Square wksq = normalize(pos, strongSide, pos.square<KING>(strongSide)); |
||
455 | Square bksq = normalize(pos, strongSide, pos.square<KING>(weakSide)); |
||
456 | Square wrsq = normalize(pos, strongSide, pos.square<ROOK>(strongSide)); |
||
457 | Square wpsq = normalize(pos, strongSide, pos.square<PAWN>(strongSide)); |
||
458 | Square brsq = normalize(pos, strongSide, pos.square<ROOK>(weakSide)); |
||
459 | |||
460 | File f = file_of(wpsq); |
||
461 | Rank r = rank_of(wpsq); |
||
462 | Square queeningSq = make_square(f, RANK_8); |
||
463 | int tempo = (pos.side_to_move() == strongSide); |
||
464 | |||
465 | // If the pawn is not too far advanced and the defending king defends the |
||
466 | // queening square, use the third-rank defence. |
||
467 | if ( r <= RANK_5 |
||
468 | && distance(bksq, queeningSq) <= 1 |
||
469 | && wksq <= SQ_H5 |
||
470 | && (rank_of(brsq) == RANK_6 || (r <= RANK_3 && rank_of(wrsq) != RANK_6))) |
||
471 | return SCALE_FACTOR_DRAW; |
||
472 | |||
473 | // The defending side saves a draw by checking from behind in case the pawn |
||
474 | // has advanced to the 6th rank with the king behind. |
||
475 | if ( r == RANK_6 |
||
476 | && distance(bksq, queeningSq) <= 1 |
||
477 | && rank_of(wksq) + tempo <= RANK_6 |
||
478 | && (rank_of(brsq) == RANK_1 || (!tempo && distance<File>(brsq, wpsq) >= 3))) |
||
479 | return SCALE_FACTOR_DRAW; |
||
480 | |||
481 | if ( r >= RANK_6 |
||
482 | && bksq == queeningSq |
||
483 | && rank_of(brsq) == RANK_1 |
||
484 | && (!tempo || distance(wksq, wpsq) >= 2)) |
||
485 | return SCALE_FACTOR_DRAW; |
||
486 | |||
487 | // White pawn on a7 and rook on a8 is a draw if black's king is on g7 or h7 |
||
488 | // and the black rook is behind the pawn. |
||
489 | if ( wpsq == SQ_A7 |
||
490 | && wrsq == SQ_A8 |
||
491 | && (bksq == SQ_H7 || bksq == SQ_G7) |
||
492 | && file_of(brsq) == FILE_A |
||
493 | && (rank_of(brsq) <= RANK_3 || file_of(wksq) >= FILE_D || rank_of(wksq) <= RANK_5)) |
||
494 | return SCALE_FACTOR_DRAW; |
||
495 | |||
496 | // If the defending king blocks the pawn and the attacking king is too far |
||
497 | // away, it's a draw. |
||
498 | if ( r <= RANK_5 |
||
154 | pmbaty | 499 | && bksq == wpsq + NORTH |
96 | pmbaty | 500 | && distance(wksq, wpsq) - tempo >= 2 |
501 | && distance(wksq, brsq) - tempo >= 2) |
||
502 | return SCALE_FACTOR_DRAW; |
||
503 | |||
504 | // Pawn on the 7th rank supported by the rook from behind usually wins if the |
||
505 | // attacking king is closer to the queening square than the defending king, |
||
506 | // and the defending king cannot gain tempi by threatening the attacking rook. |
||
507 | if ( r == RANK_7 |
||
508 | && f != FILE_A |
||
509 | && file_of(wrsq) == f |
||
510 | && wrsq != queeningSq |
||
511 | && (distance(wksq, queeningSq) < distance(bksq, queeningSq) - 2 + tempo) |
||
512 | && (distance(wksq, queeningSq) < distance(bksq, wrsq) + tempo)) |
||
513 | return ScaleFactor(SCALE_FACTOR_MAX - 2 * distance(wksq, queeningSq)); |
||
514 | |||
515 | // Similar to the above, but with the pawn further back |
||
516 | if ( f != FILE_A |
||
517 | && file_of(wrsq) == f |
||
518 | && wrsq < wpsq |
||
519 | && (distance(wksq, queeningSq) < distance(bksq, queeningSq) - 2 + tempo) |
||
154 | pmbaty | 520 | && (distance(wksq, wpsq + NORTH) < distance(bksq, wpsq + NORTH) - 2 + tempo) |
96 | pmbaty | 521 | && ( distance(bksq, wrsq) + tempo >= 3 |
522 | || ( distance(wksq, queeningSq) < distance(bksq, wrsq) + tempo |
||
154 | pmbaty | 523 | && (distance(wksq, wpsq + NORTH) < distance(bksq, wrsq) + tempo)))) |
96 | pmbaty | 524 | return ScaleFactor( SCALE_FACTOR_MAX |
525 | - 8 * distance(wpsq, queeningSq) |
||
526 | - 2 * distance(wksq, queeningSq)); |
||
527 | |||
528 | // If the pawn is not far advanced and the defending king is somewhere in |
||
529 | // the pawn's path, it's probably a draw. |
||
530 | if (r <= RANK_4 && bksq > wpsq) |
||
531 | { |
||
532 | if (file_of(bksq) == file_of(wpsq)) |
||
533 | return ScaleFactor(10); |
||
534 | if ( distance<File>(bksq, wpsq) == 1 |
||
535 | && distance(wksq, bksq) > 2) |
||
536 | return ScaleFactor(24 - 2 * distance(wksq, bksq)); |
||
537 | } |
||
538 | return SCALE_FACTOR_NONE; |
||
539 | } |
||
540 | |||
541 | template<> |
||
542 | ScaleFactor Endgame<KRPKB>::operator()(const Position& pos) const { |
||
543 | |||
544 | assert(verify_material(pos, strongSide, RookValueMg, 1)); |
||
545 | assert(verify_material(pos, weakSide, BishopValueMg, 0)); |
||
546 | |||
547 | // Test for a rook pawn |
||
548 | if (pos.pieces(PAWN) & (FileABB | FileHBB)) |
||
549 | { |
||
550 | Square ksq = pos.square<KING>(weakSide); |
||
551 | Square bsq = pos.square<BISHOP>(weakSide); |
||
552 | Square psq = pos.square<PAWN>(strongSide); |
||
553 | Rank rk = relative_rank(strongSide, psq); |
||
554 | Square push = pawn_push(strongSide); |
||
555 | |||
556 | // If the pawn is on the 5th rank and the pawn (currently) is on |
||
557 | // the same color square as the bishop then there is a chance of |
||
558 | // a fortress. Depending on the king position give a moderate |
||
559 | // reduction or a stronger one if the defending king is near the |
||
560 | // corner but not trapped there. |
||
561 | if (rk == RANK_5 && !opposite_colors(bsq, psq)) |
||
562 | { |
||
563 | int d = distance(psq + 3 * push, ksq); |
||
564 | |||
565 | if (d <= 2 && !(d == 0 && ksq == pos.square<KING>(strongSide) + 2 * push)) |
||
566 | return ScaleFactor(24); |
||
567 | else |
||
568 | return ScaleFactor(48); |
||
569 | } |
||
570 | |||
571 | // When the pawn has moved to the 6th rank we can be fairly sure |
||
572 | // it's drawn if the bishop attacks the square in front of the |
||
573 | // pawn from a reasonable distance and the defending king is near |
||
574 | // the corner |
||
575 | if ( rk == RANK_6 |
||
576 | && distance(psq + 2 * push, ksq) <= 1 |
||
577 | && (PseudoAttacks[BISHOP][bsq] & (psq + push)) |
||
578 | && distance<File>(bsq, psq) >= 2) |
||
579 | return ScaleFactor(8); |
||
580 | } |
||
581 | |||
582 | return SCALE_FACTOR_NONE; |
||
583 | } |
||
584 | |||
585 | /// KRPP vs KRP. There is just a single rule: if the stronger side has no passed |
||
586 | /// pawns and the defending king is actively placed, the position is drawish. |
||
587 | template<> |
||
588 | ScaleFactor Endgame<KRPPKRP>::operator()(const Position& pos) const { |
||
589 | |||
590 | assert(verify_material(pos, strongSide, RookValueMg, 2)); |
||
591 | assert(verify_material(pos, weakSide, RookValueMg, 1)); |
||
592 | |||
593 | Square wpsq1 = pos.squares<PAWN>(strongSide)[0]; |
||
594 | Square wpsq2 = pos.squares<PAWN>(strongSide)[1]; |
||
595 | Square bksq = pos.square<KING>(weakSide); |
||
596 | |||
597 | // Does the stronger side have a passed pawn? |
||
598 | if (pos.pawn_passed(strongSide, wpsq1) || pos.pawn_passed(strongSide, wpsq2)) |
||
599 | return SCALE_FACTOR_NONE; |
||
600 | |||
601 | Rank r = std::max(relative_rank(strongSide, wpsq1), relative_rank(strongSide, wpsq2)); |
||
602 | |||
603 | if ( distance<File>(bksq, wpsq1) <= 1 |
||
604 | && distance<File>(bksq, wpsq2) <= 1 |
||
605 | && relative_rank(strongSide, bksq) > r) |
||
606 | { |
||
607 | assert(r > RANK_1 && r < RANK_7); |
||
608 | return ScaleFactor(KRPPKRPScaleFactors[r]); |
||
609 | } |
||
610 | return SCALE_FACTOR_NONE; |
||
611 | } |
||
612 | |||
613 | |||
614 | /// K and two or more pawns vs K. There is just a single rule here: If all pawns |
||
615 | /// are on the same rook file and are blocked by the defending king, it's a draw. |
||
616 | template<> |
||
617 | ScaleFactor Endgame<KPsK>::operator()(const Position& pos) const { |
||
618 | |||
619 | assert(pos.non_pawn_material(strongSide) == VALUE_ZERO); |
||
620 | assert(pos.count<PAWN>(strongSide) >= 2); |
||
621 | assert(verify_material(pos, weakSide, VALUE_ZERO, 0)); |
||
622 | |||
623 | Square ksq = pos.square<KING>(weakSide); |
||
624 | Bitboard pawns = pos.pieces(strongSide, PAWN); |
||
625 | |||
626 | // If all pawns are ahead of the king, on a single rook file and |
||
627 | // the king is within one file of the pawns, it's a draw. |
||
628 | if ( !(pawns & ~in_front_bb(weakSide, rank_of(ksq))) |
||
629 | && !((pawns & ~FileABB) && (pawns & ~FileHBB)) |
||
630 | && distance<File>(ksq, lsb(pawns)) <= 1) |
||
631 | return SCALE_FACTOR_DRAW; |
||
632 | |||
633 | return SCALE_FACTOR_NONE; |
||
634 | } |
||
635 | |||
636 | |||
637 | /// KBP vs KB. There are two rules: if the defending king is somewhere along the |
||
638 | /// path of the pawn, and the square of the king is not of the same color as the |
||
639 | /// stronger side's bishop, it's a draw. If the two bishops have opposite color, |
||
640 | /// it's almost always a draw. |
||
641 | template<> |
||
642 | ScaleFactor Endgame<KBPKB>::operator()(const Position& pos) const { |
||
643 | |||
644 | assert(verify_material(pos, strongSide, BishopValueMg, 1)); |
||
645 | assert(verify_material(pos, weakSide, BishopValueMg, 0)); |
||
646 | |||
647 | Square pawnSq = pos.square<PAWN>(strongSide); |
||
648 | Square strongBishopSq = pos.square<BISHOP>(strongSide); |
||
649 | Square weakBishopSq = pos.square<BISHOP>(weakSide); |
||
650 | Square weakKingSq = pos.square<KING>(weakSide); |
||
651 | |||
652 | // Case 1: Defending king blocks the pawn, and cannot be driven away |
||
653 | if ( file_of(weakKingSq) == file_of(pawnSq) |
||
654 | && relative_rank(strongSide, pawnSq) < relative_rank(strongSide, weakKingSq) |
||
655 | && ( opposite_colors(weakKingSq, strongBishopSq) |
||
656 | || relative_rank(strongSide, weakKingSq) <= RANK_6)) |
||
657 | return SCALE_FACTOR_DRAW; |
||
658 | |||
659 | // Case 2: Opposite colored bishops |
||
660 | if (opposite_colors(strongBishopSq, weakBishopSq)) |
||
661 | { |
||
662 | // We assume that the position is drawn in the following three situations: |
||
663 | // |
||
664 | // a. The pawn is on rank 5 or further back. |
||
665 | // b. The defending king is somewhere in the pawn's path. |
||
666 | // c. The defending bishop attacks some square along the pawn's path, |
||
667 | // and is at least three squares away from the pawn. |
||
668 | // |
||
669 | // These rules are probably not perfect, but in practice they work |
||
670 | // reasonably well. |
||
671 | |||
672 | if (relative_rank(strongSide, pawnSq) <= RANK_5) |
||
673 | return SCALE_FACTOR_DRAW; |
||
674 | else |
||
675 | { |
||
676 | Bitboard path = forward_bb(strongSide, pawnSq); |
||
677 | |||
678 | if (path & pos.pieces(weakSide, KING)) |
||
679 | return SCALE_FACTOR_DRAW; |
||
680 | |||
681 | if ( (pos.attacks_from<BISHOP>(weakBishopSq) & path) |
||
682 | && distance(weakBishopSq, pawnSq) >= 3) |
||
683 | return SCALE_FACTOR_DRAW; |
||
684 | } |
||
685 | } |
||
686 | return SCALE_FACTOR_NONE; |
||
687 | } |
||
688 | |||
689 | |||
690 | /// KBPP vs KB. It detects a few basic draws with opposite-colored bishops |
||
691 | template<> |
||
692 | ScaleFactor Endgame<KBPPKB>::operator()(const Position& pos) const { |
||
693 | |||
694 | assert(verify_material(pos, strongSide, BishopValueMg, 2)); |
||
695 | assert(verify_material(pos, weakSide, BishopValueMg, 0)); |
||
696 | |||
697 | Square wbsq = pos.square<BISHOP>(strongSide); |
||
698 | Square bbsq = pos.square<BISHOP>(weakSide); |
||
699 | |||
700 | if (!opposite_colors(wbsq, bbsq)) |
||
701 | return SCALE_FACTOR_NONE; |
||
702 | |||
703 | Square ksq = pos.square<KING>(weakSide); |
||
704 | Square psq1 = pos.squares<PAWN>(strongSide)[0]; |
||
705 | Square psq2 = pos.squares<PAWN>(strongSide)[1]; |
||
706 | Rank r1 = rank_of(psq1); |
||
707 | Rank r2 = rank_of(psq2); |
||
708 | Square blockSq1, blockSq2; |
||
709 | |||
710 | if (relative_rank(strongSide, psq1) > relative_rank(strongSide, psq2)) |
||
711 | { |
||
712 | blockSq1 = psq1 + pawn_push(strongSide); |
||
713 | blockSq2 = make_square(file_of(psq2), rank_of(psq1)); |
||
714 | } |
||
715 | else |
||
716 | { |
||
717 | blockSq1 = psq2 + pawn_push(strongSide); |
||
718 | blockSq2 = make_square(file_of(psq1), rank_of(psq2)); |
||
719 | } |
||
720 | |||
721 | switch (distance<File>(psq1, psq2)) |
||
722 | { |
||
723 | case 0: |
||
724 | // Both pawns are on the same file. It's an easy draw if the defender firmly |
||
725 | // controls some square in the frontmost pawn's path. |
||
726 | if ( file_of(ksq) == file_of(blockSq1) |
||
727 | && relative_rank(strongSide, ksq) >= relative_rank(strongSide, blockSq1) |
||
728 | && opposite_colors(ksq, wbsq)) |
||
729 | return SCALE_FACTOR_DRAW; |
||
730 | else |
||
731 | return SCALE_FACTOR_NONE; |
||
732 | |||
733 | case 1: |
||
734 | // Pawns on adjacent files. It's a draw if the defender firmly controls the |
||
735 | // square in front of the frontmost pawn's path, and the square diagonally |
||
736 | // behind this square on the file of the other pawn. |
||
737 | if ( ksq == blockSq1 |
||
738 | && opposite_colors(ksq, wbsq) |
||
739 | && ( bbsq == blockSq2 |
||
740 | || (pos.attacks_from<BISHOP>(blockSq2) & pos.pieces(weakSide, BISHOP)) |
||
741 | || distance(r1, r2) >= 2)) |
||
742 | return SCALE_FACTOR_DRAW; |
||
743 | |||
744 | else if ( ksq == blockSq2 |
||
745 | && opposite_colors(ksq, wbsq) |
||
746 | && ( bbsq == blockSq1 |
||
747 | || (pos.attacks_from<BISHOP>(blockSq1) & pos.pieces(weakSide, BISHOP)))) |
||
748 | return SCALE_FACTOR_DRAW; |
||
749 | else |
||
750 | return SCALE_FACTOR_NONE; |
||
751 | |||
752 | default: |
||
753 | // The pawns are not on the same file or adjacent files. No scaling. |
||
754 | return SCALE_FACTOR_NONE; |
||
755 | } |
||
756 | } |
||
757 | |||
758 | |||
759 | /// KBP vs KN. There is a single rule: If the defending king is somewhere along |
||
760 | /// the path of the pawn, and the square of the king is not of the same color as |
||
761 | /// the stronger side's bishop, it's a draw. |
||
762 | template<> |
||
763 | ScaleFactor Endgame<KBPKN>::operator()(const Position& pos) const { |
||
764 | |||
765 | assert(verify_material(pos, strongSide, BishopValueMg, 1)); |
||
766 | assert(verify_material(pos, weakSide, KnightValueMg, 0)); |
||
767 | |||
768 | Square pawnSq = pos.square<PAWN>(strongSide); |
||
769 | Square strongBishopSq = pos.square<BISHOP>(strongSide); |
||
770 | Square weakKingSq = pos.square<KING>(weakSide); |
||
771 | |||
772 | if ( file_of(weakKingSq) == file_of(pawnSq) |
||
773 | && relative_rank(strongSide, pawnSq) < relative_rank(strongSide, weakKingSq) |
||
774 | && ( opposite_colors(weakKingSq, strongBishopSq) |
||
775 | || relative_rank(strongSide, weakKingSq) <= RANK_6)) |
||
776 | return SCALE_FACTOR_DRAW; |
||
777 | |||
778 | return SCALE_FACTOR_NONE; |
||
779 | } |
||
780 | |||
781 | |||
782 | /// KNP vs K. There is a single rule: if the pawn is a rook pawn on the 7th rank |
||
783 | /// and the defending king prevents the pawn from advancing, the position is drawn. |
||
784 | template<> |
||
785 | ScaleFactor Endgame<KNPK>::operator()(const Position& pos) const { |
||
786 | |||
787 | assert(verify_material(pos, strongSide, KnightValueMg, 1)); |
||
788 | assert(verify_material(pos, weakSide, VALUE_ZERO, 0)); |
||
789 | |||
790 | // Assume strongSide is white and the pawn is on files A-D |
||
791 | Square pawnSq = normalize(pos, strongSide, pos.square<PAWN>(strongSide)); |
||
792 | Square weakKingSq = normalize(pos, strongSide, pos.square<KING>(weakSide)); |
||
793 | |||
794 | if (pawnSq == SQ_A7 && distance(SQ_A8, weakKingSq) <= 1) |
||
795 | return SCALE_FACTOR_DRAW; |
||
796 | |||
797 | return SCALE_FACTOR_NONE; |
||
798 | } |
||
799 | |||
800 | |||
801 | /// KNP vs KB. If knight can block bishop from taking pawn, it's a win. |
||
802 | /// Otherwise the position is drawn. |
||
803 | template<> |
||
804 | ScaleFactor Endgame<KNPKB>::operator()(const Position& pos) const { |
||
805 | |||
806 | Square pawnSq = pos.square<PAWN>(strongSide); |
||
807 | Square bishopSq = pos.square<BISHOP>(weakSide); |
||
808 | Square weakKingSq = pos.square<KING>(weakSide); |
||
809 | |||
810 | // King needs to get close to promoting pawn to prevent knight from blocking. |
||
811 | // Rules for this are very tricky, so just approximate. |
||
812 | if (forward_bb(strongSide, pawnSq) & pos.attacks_from<BISHOP>(bishopSq)) |
||
813 | return ScaleFactor(distance(weakKingSq, pawnSq)); |
||
814 | |||
815 | return SCALE_FACTOR_NONE; |
||
816 | } |
||
817 | |||
818 | |||
819 | /// KP vs KP. This is done by removing the weakest side's pawn and probing the |
||
820 | /// KP vs K bitbase: If the weakest side has a draw without the pawn, it probably |
||
821 | /// has at least a draw with the pawn as well. The exception is when the stronger |
||
822 | /// side's pawn is far advanced and not on a rook file; in this case it is often |
||
823 | /// possible to win (e.g. 8/4k3/3p4/3P4/6K1/8/8/8 w - - 0 1). |
||
824 | template<> |
||
825 | ScaleFactor Endgame<KPKP>::operator()(const Position& pos) const { |
||
826 | |||
827 | assert(verify_material(pos, strongSide, VALUE_ZERO, 1)); |
||
828 | assert(verify_material(pos, weakSide, VALUE_ZERO, 1)); |
||
829 | |||
830 | // Assume strongSide is white and the pawn is on files A-D |
||
831 | Square wksq = normalize(pos, strongSide, pos.square<KING>(strongSide)); |
||
832 | Square bksq = normalize(pos, strongSide, pos.square<KING>(weakSide)); |
||
833 | Square psq = normalize(pos, strongSide, pos.square<PAWN>(strongSide)); |
||
834 | |||
835 | Color us = strongSide == pos.side_to_move() ? WHITE : BLACK; |
||
836 | |||
837 | // If the pawn has advanced to the fifth rank or further, and is not a |
||
838 | // rook pawn, it's too dangerous to assume that it's at least a draw. |
||
839 | if (rank_of(psq) >= RANK_5 && file_of(psq) != FILE_A) |
||
840 | return SCALE_FACTOR_NONE; |
||
841 | |||
842 | // Probe the KPK bitbase with the weakest side's pawn removed. If it's a draw, |
||
843 | // it's probably at least a draw even with the pawn. |
||
844 | return Bitbases::probe(wksq, psq, bksq, us) ? SCALE_FACTOR_NONE : SCALE_FACTOR_DRAW; |
||
845 | } |