Subversion Repositories Games.Chess Giants

Rev

Rev 154 | Go to most recent revision | Details | Last modification | View Log | RSS feed

Rev Author Line No. Line
96 pmbaty 1
/*
2
  Stockfish, a UCI chess playing engine derived from Glaurung 2.1
3
  Copyright (C) 2004-2008 Tord Romstad (Glaurung author)
4
  Copyright (C) 2008-2015 Marco Costalba, Joona Kiiski, Tord Romstad
5
  Copyright (C) 2015-2016 Marco Costalba, Joona Kiiski, Gary Linscott, Tord Romstad
6
 
7
  Stockfish is free software: you can redistribute it and/or modify
8
  it under the terms of the GNU General Public License as published by
9
  the Free Software Foundation, either version 3 of the License, or
10
  (at your option) any later version.
11
 
12
  Stockfish is distributed in the hope that it will be useful,
13
  but WITHOUT ANY WARRANTY; without even the implied warranty of
14
  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15
  GNU General Public License for more details.
16
 
17
  You should have received a copy of the GNU General Public License
18
  along with this program.  If not, see <http://www.gnu.org/licenses/>.
19
*/
20
 
21
#ifndef BITBOARD_H_INCLUDED
22
#define BITBOARD_H_INCLUDED
23
 
24
#include <string>
25
 
26
#include "types.h"
27
 
28
namespace Bitbases {
29
 
30
void init();
31
bool probe(Square wksq, Square wpsq, Square bksq, Color us);
32
 
33
}
34
 
35
namespace Bitboards {
36
 
37
void init();
38
const std::string pretty(Bitboard b);
39
 
40
}
41
 
42
const Bitboard DarkSquares = 0xAA55AA55AA55AA55ULL;
43
 
44
const Bitboard FileABB = 0x0101010101010101ULL;
45
const Bitboard FileBBB = FileABB << 1;
46
const Bitboard FileCBB = FileABB << 2;
47
const Bitboard FileDBB = FileABB << 3;
48
const Bitboard FileEBB = FileABB << 4;
49
const Bitboard FileFBB = FileABB << 5;
50
const Bitboard FileGBB = FileABB << 6;
51
const Bitboard FileHBB = FileABB << 7;
52
 
53
const Bitboard Rank1BB = 0xFF;
54
const Bitboard Rank2BB = Rank1BB << (8 * 1);
55
const Bitboard Rank3BB = Rank1BB << (8 * 2);
56
const Bitboard Rank4BB = Rank1BB << (8 * 3);
57
const Bitboard Rank5BB = Rank1BB << (8 * 4);
58
const Bitboard Rank6BB = Rank1BB << (8 * 5);
59
const Bitboard Rank7BB = Rank1BB << (8 * 6);
60
const Bitboard Rank8BB = Rank1BB << (8 * 7);
61
 
62
extern int SquareDistance[SQUARE_NB][SQUARE_NB];
63
 
64
extern Bitboard  RookMasks  [SQUARE_NB];
65
extern Bitboard  RookMagics [SQUARE_NB];
66
extern Bitboard* RookAttacks[SQUARE_NB];
67
extern unsigned  RookShifts [SQUARE_NB];
68
 
69
extern Bitboard  BishopMasks  [SQUARE_NB];
70
extern Bitboard  BishopMagics [SQUARE_NB];
71
extern Bitboard* BishopAttacks[SQUARE_NB];
72
extern unsigned  BishopShifts [SQUARE_NB];
73
 
74
extern Bitboard SquareBB[SQUARE_NB];
75
extern Bitboard FileBB[FILE_NB];
76
extern Bitboard RankBB[RANK_NB];
77
extern Bitboard AdjacentFilesBB[FILE_NB];
78
extern Bitboard InFrontBB[COLOR_NB][RANK_NB];
79
extern Bitboard StepAttacksBB[PIECE_NB][SQUARE_NB];
80
extern Bitboard BetweenBB[SQUARE_NB][SQUARE_NB];
81
extern Bitboard LineBB[SQUARE_NB][SQUARE_NB];
82
extern Bitboard DistanceRingBB[SQUARE_NB][8];
83
extern Bitboard ForwardBB[COLOR_NB][SQUARE_NB];
84
extern Bitboard PassedPawnMask[COLOR_NB][SQUARE_NB];
85
extern Bitboard PawnAttackSpan[COLOR_NB][SQUARE_NB];
86
extern Bitboard PseudoAttacks[PIECE_TYPE_NB][SQUARE_NB];
87
 
88
 
89
/// Overloads of bitwise operators between a Bitboard and a Square for testing
90
/// whether a given bit is set in a bitboard, and for setting and clearing bits.
91
 
92
inline Bitboard operator&(Bitboard b, Square s) {
93
  return b & SquareBB[s];
94
}
95
 
96
inline Bitboard operator|(Bitboard b, Square s) {
97
  return b | SquareBB[s];
98
}
99
 
100
inline Bitboard operator^(Bitboard b, Square s) {
101
  return b ^ SquareBB[s];
102
}
103
 
104
inline Bitboard& operator|=(Bitboard& b, Square s) {
105
  return b |= SquareBB[s];
106
}
107
 
108
inline Bitboard& operator^=(Bitboard& b, Square s) {
109
  return b ^= SquareBB[s];
110
}
111
 
112
inline bool more_than_one(Bitboard b) {
113
  return b & (b - 1);
114
}
115
 
116
 
117
/// rank_bb() and file_bb() return a bitboard representing all the squares on
118
/// the given file or rank.
119
 
120
inline Bitboard rank_bb(Rank r) {
121
  return RankBB[r];
122
}
123
 
124
inline Bitboard rank_bb(Square s) {
125
  return RankBB[rank_of(s)];
126
}
127
 
128
inline Bitboard file_bb(File f) {
129
  return FileBB[f];
130
}
131
 
132
inline Bitboard file_bb(Square s) {
133
  return FileBB[file_of(s)];
134
}
135
 
136
 
137
/// shift_bb() moves a bitboard one step along direction Delta. Mainly for pawns
138
 
139
template<Square Delta>
140
inline Bitboard shift_bb(Bitboard b) {
141
  return  Delta == DELTA_N  ?  b             << 8 : Delta == DELTA_S  ?  b             >> 8
142
        : Delta == DELTA_NE ? (b & ~FileHBB) << 9 : Delta == DELTA_SE ? (b & ~FileHBB) >> 7
143
        : Delta == DELTA_NW ? (b & ~FileABB) << 7 : Delta == DELTA_SW ? (b & ~FileABB) >> 9
144
        : 0;
145
}
146
 
147
 
148
/// adjacent_files_bb() returns a bitboard representing all the squares on the
149
/// adjacent files of the given one.
150
 
151
inline Bitboard adjacent_files_bb(File f) {
152
  return AdjacentFilesBB[f];
153
}
154
 
155
 
156
/// between_bb() returns a bitboard representing all the squares between the two
157
/// given ones. For instance, between_bb(SQ_C4, SQ_F7) returns a bitboard with
158
/// the bits for square d5 and e6 set. If s1 and s2 are not on the same rank, file
159
/// or diagonal, 0 is returned.
160
 
161
inline Bitboard between_bb(Square s1, Square s2) {
162
  return BetweenBB[s1][s2];
163
}
164
 
165
 
166
/// in_front_bb() returns a bitboard representing all the squares on all the ranks
167
/// in front of the given one, from the point of view of the given color. For
168
/// instance, in_front_bb(BLACK, RANK_3) will return the squares on ranks 1 and 2.
169
 
170
inline Bitboard in_front_bb(Color c, Rank r) {
171
  return InFrontBB[c][r];
172
}
173
 
174
 
175
/// forward_bb() returns a bitboard representing all the squares along the line
176
/// in front of the given one, from the point of view of the given color:
177
///        ForwardBB[c][s] = in_front_bb(c, s) & file_bb(s)
178
 
179
inline Bitboard forward_bb(Color c, Square s) {
180
  return ForwardBB[c][s];
181
}
182
 
183
 
184
/// pawn_attack_span() returns a bitboard representing all the squares that can be
185
/// attacked by a pawn of the given color when it moves along its file, starting
186
/// from the given square:
187
///       PawnAttackSpan[c][s] = in_front_bb(c, s) & adjacent_files_bb(s);
188
 
189
inline Bitboard pawn_attack_span(Color c, Square s) {
190
  return PawnAttackSpan[c][s];
191
}
192
 
193
 
194
/// passed_pawn_mask() returns a bitboard mask which can be used to test if a
195
/// pawn of the given color and on the given square is a passed pawn:
196
///       PassedPawnMask[c][s] = pawn_attack_span(c, s) | forward_bb(c, s)
197
 
198
inline Bitboard passed_pawn_mask(Color c, Square s) {
199
  return PassedPawnMask[c][s];
200
}
201
 
202
 
203
/// aligned() returns true if the squares s1, s2 and s3 are aligned either on a
204
/// straight or on a diagonal line.
205
 
206
inline bool aligned(Square s1, Square s2, Square s3) {
207
  return LineBB[s1][s2] & s3;
208
}
209
 
210
 
211
/// distance() functions return the distance between x and y, defined as the
212
/// number of steps for a king in x to reach y. Works with squares, ranks, files.
213
 
214
template<typename T> inline int distance(T x, T y) { return x < y ? y - x : x - y; }
215
template<> inline int distance<Square>(Square x, Square y) { return SquareDistance[x][y]; }
216
 
217
template<typename T1, typename T2> inline int distance(T2 x, T2 y);
218
template<> inline int distance<File>(Square x, Square y) { return distance(file_of(x), file_of(y)); }
219
template<> inline int distance<Rank>(Square x, Square y) { return distance(rank_of(x), rank_of(y)); }
220
 
221
 
222
/// attacks_bb() returns a bitboard representing all the squares attacked by a
223
/// piece of type Pt (bishop or rook) placed on 's'. The helper magic_index()
224
/// looks up the index using the 'magic bitboards' approach.
225
template<PieceType Pt>
226
inline unsigned magic_index(Square s, Bitboard occupied) {
227
 
228
  Bitboard* const Masks  = Pt == ROOK ? RookMasks  : BishopMasks;
229
  Bitboard* const Magics = Pt == ROOK ? RookMagics : BishopMagics;
230
  unsigned* const Shifts = Pt == ROOK ? RookShifts : BishopShifts;
231
 
232
  if (HasPext)
233
      return unsigned(pext(occupied, Masks[s]));
234
 
235
  if (Is64Bit)
236
      return unsigned(((occupied & Masks[s]) * Magics[s]) >> Shifts[s]);
237
 
238
  unsigned lo = unsigned(occupied) & unsigned(Masks[s]);
239
  unsigned hi = unsigned(occupied >> 32) & unsigned(Masks[s] >> 32);
240
  return (lo * unsigned(Magics[s]) ^ hi * unsigned(Magics[s] >> 32)) >> Shifts[s];
241
}
242
 
243
template<PieceType Pt>
244
inline Bitboard attacks_bb(Square s, Bitboard occupied) {
245
  return (Pt == ROOK ? RookAttacks : BishopAttacks)[s][magic_index<Pt>(s, occupied)];
246
}
247
 
248
inline Bitboard attacks_bb(Piece pc, Square s, Bitboard occupied) {
249
 
250
  switch (type_of(pc))
251
  {
252
  case BISHOP: return attacks_bb<BISHOP>(s, occupied);
253
  case ROOK  : return attacks_bb<ROOK>(s, occupied);
254
  case QUEEN : return attacks_bb<BISHOP>(s, occupied) | attacks_bb<ROOK>(s, occupied);
255
  default    : return StepAttacksBB[pc][s];
256
  }
257
}
258
 
259
 
260
/// lsb() and msb() return the least/most significant bit in a non-zero bitboard
261
 
262
#ifdef USE_BSFQ
263
 
264
#  if defined(_MSC_VER) && !defined(__INTEL_COMPILER)
265
 
266
inline Square lsb(Bitboard b) {
267
  unsigned long idx;
268
  _BitScanForward64(&idx, b);
269
  return (Square) idx;
270
}
271
 
272
inline Square msb(Bitboard b) {
273
  unsigned long idx;
274
  _BitScanReverse64(&idx, b);
275
  return (Square) idx;
276
}
277
 
278
#  elif defined(__arm__)
279
 
280
inline int lsb32(uint32_t v) {
281
  __asm__("rbit %0, %1" : "=r"(v) : "r"(v));
282
  return __builtin_clz(v);
283
}
284
 
285
inline Square msb(Bitboard b) {
286
  return (Square) (63 - __builtin_clzll(b));
287
}
288
 
289
inline Square lsb(Bitboard b) {
290
  return (Square) (uint32_t(b) ? lsb32(uint32_t(b)) : 32 + lsb32(uint32_t(b >> 32)));
291
}
292
 
293
#  else // Assumed gcc or compatible compiler
294
 
295
inline Square lsb(Bitboard b) { // Assembly code by Heinz van Saanen
296
  Bitboard idx;
297
  __asm__("bsfq %1, %0": "=r"(idx): "rm"(b) );
298
  return (Square) idx;
299
}
300
 
301
inline Square msb(Bitboard b) {
302
  Bitboard idx;
303
  __asm__("bsrq %1, %0": "=r"(idx): "rm"(b) );
304
  return (Square) idx;
305
}
306
 
307
#  endif
308
 
309
#else // ifdef(USE_BSFQ)
310
 
311
Square lsb(Bitboard b);
312
Square msb(Bitboard b);
313
 
314
#endif
315
 
316
 
317
/// pop_lsb() finds and clears the least significant bit in a non-zero bitboard
318
 
319
inline Square pop_lsb(Bitboard* b) {
320
  const Square s = lsb(*b);
321
  *b &= *b - 1;
322
  return s;
323
}
324
 
325
 
326
/// frontmost_sq() and backmost_sq() return the square corresponding to the
327
/// most/least advanced bit relative to the given color.
328
 
329
inline Square frontmost_sq(Color c, Bitboard b) { return c == WHITE ? msb(b) : lsb(b); }
330
inline Square  backmost_sq(Color c, Bitboard b) { return c == WHITE ? lsb(b) : msb(b); }
331
 
332
#endif // #ifndef BITBOARD_H_INCLUDED