Subversion Repositories Games.Chess Giants

Rev

Rev 169 | Details | Compare with Previous | Last modification | View Log | RSS feed

Rev Author Line No. Line
96 pmbaty 1
/*
2
  Stockfish, a UCI chess playing engine derived from Glaurung 2.1
3
  Copyright (C) 2004-2008 Tord Romstad (Glaurung author)
4
  Copyright (C) 2008-2015 Marco Costalba, Joona Kiiski, Tord Romstad
185 pmbaty 5
  Copyright (C) 2015-2019 Marco Costalba, Joona Kiiski, Gary Linscott, Tord Romstad
96 pmbaty 6
 
7
  Stockfish is free software: you can redistribute it and/or modify
8
  it under the terms of the GNU General Public License as published by
9
  the Free Software Foundation, either version 3 of the License, or
10
  (at your option) any later version.
11
 
12
  Stockfish is distributed in the hope that it will be useful,
13
  but WITHOUT ANY WARRANTY; without even the implied warranty of
14
  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15
  GNU General Public License for more details.
16
 
17
  You should have received a copy of the GNU General Public License
18
  along with this program.  If not, see <http://www.gnu.org/licenses/>.
19
*/
20
 
21
#ifndef BITBOARD_H_INCLUDED
22
#define BITBOARD_H_INCLUDED
23
 
24
#include <string>
25
 
26
#include "types.h"
27
 
28
namespace Bitbases {
29
 
30
void init();
31
bool probe(Square wksq, Square wpsq, Square bksq, Color us);
32
 
33
}
34
 
35
namespace Bitboards {
36
 
37
void init();
38
const std::string pretty(Bitboard b);
39
 
40
}
41
 
185 pmbaty 42
constexpr Bitboard AllSquares = ~Bitboard(0);
43
constexpr Bitboard DarkSquares = 0xAA55AA55AA55AA55ULL;
96 pmbaty 44
 
185 pmbaty 45
constexpr Bitboard FileABB = 0x0101010101010101ULL;
46
constexpr Bitboard FileBBB = FileABB << 1;
47
constexpr Bitboard FileCBB = FileABB << 2;
48
constexpr Bitboard FileDBB = FileABB << 3;
49
constexpr Bitboard FileEBB = FileABB << 4;
50
constexpr Bitboard FileFBB = FileABB << 5;
51
constexpr Bitboard FileGBB = FileABB << 6;
52
constexpr Bitboard FileHBB = FileABB << 7;
96 pmbaty 53
 
185 pmbaty 54
constexpr Bitboard Rank1BB = 0xFF;
55
constexpr Bitboard Rank2BB = Rank1BB << (8 * 1);
56
constexpr Bitboard Rank3BB = Rank1BB << (8 * 2);
57
constexpr Bitboard Rank4BB = Rank1BB << (8 * 3);
58
constexpr Bitboard Rank5BB = Rank1BB << (8 * 4);
59
constexpr Bitboard Rank6BB = Rank1BB << (8 * 5);
60
constexpr Bitboard Rank7BB = Rank1BB << (8 * 6);
61
constexpr Bitboard Rank8BB = Rank1BB << (8 * 7);
96 pmbaty 62
 
63
extern int SquareDistance[SQUARE_NB][SQUARE_NB];
64
 
65
extern Bitboard SquareBB[SQUARE_NB];
66
extern Bitboard FileBB[FILE_NB];
67
extern Bitboard RankBB[RANK_NB];
68
extern Bitboard AdjacentFilesBB[FILE_NB];
169 pmbaty 69
extern Bitboard ForwardRanksBB[COLOR_NB][RANK_NB];
96 pmbaty 70
extern Bitboard BetweenBB[SQUARE_NB][SQUARE_NB];
71
extern Bitboard LineBB[SQUARE_NB][SQUARE_NB];
72
extern Bitboard DistanceRingBB[SQUARE_NB][8];
169 pmbaty 73
extern Bitboard ForwardFileBB[COLOR_NB][SQUARE_NB];
96 pmbaty 74
extern Bitboard PassedPawnMask[COLOR_NB][SQUARE_NB];
75
extern Bitboard PawnAttackSpan[COLOR_NB][SQUARE_NB];
76
extern Bitboard PseudoAttacks[PIECE_TYPE_NB][SQUARE_NB];
169 pmbaty 77
extern Bitboard PawnAttacks[COLOR_NB][SQUARE_NB];
96 pmbaty 78
 
79
 
169 pmbaty 80
/// Magic holds all magic bitboards relevant data for a single square
81
struct Magic {
82
  Bitboard  mask;
83
  Bitboard  magic;
84
  Bitboard* attacks;
85
  unsigned  shift;
86
 
87
  // Compute the attack's index using the 'magic bitboards' approach
88
  unsigned index(Bitboard occupied) const {
89
 
90
    if (HasPext)
91
        return unsigned(pext(occupied, mask));
92
 
93
    if (Is64Bit)
94
        return unsigned(((occupied & mask) * magic) >> shift);
95
 
96
    unsigned lo = unsigned(occupied) & unsigned(mask);
97
    unsigned hi = unsigned(occupied >> 32) & unsigned(mask >> 32);
98
    return (lo * unsigned(magic) ^ hi * unsigned(magic >> 32)) >> shift;
99
  }
100
};
101
 
102
extern Magic RookMagics[SQUARE_NB];
103
extern Magic BishopMagics[SQUARE_NB];
104
 
105
 
96 pmbaty 106
/// Overloads of bitwise operators between a Bitboard and a Square for testing
107
/// whether a given bit is set in a bitboard, and for setting and clearing bits.
108
 
109
inline Bitboard operator&(Bitboard b, Square s) {
185 pmbaty 110
  assert(s >= SQ_A1 && s <= SQ_H8);
96 pmbaty 111
  return b & SquareBB[s];
112
}
113
 
114
inline Bitboard operator|(Bitboard b, Square s) {
185 pmbaty 115
  assert(s >= SQ_A1 && s <= SQ_H8);
96 pmbaty 116
  return b | SquareBB[s];
117
}
118
 
119
inline Bitboard operator^(Bitboard b, Square s) {
185 pmbaty 120
  assert(s >= SQ_A1 && s <= SQ_H8);
96 pmbaty 121
  return b ^ SquareBB[s];
122
}
123
 
124
inline Bitboard& operator|=(Bitboard& b, Square s) {
185 pmbaty 125
  assert(s >= SQ_A1 && s <= SQ_H8);
96 pmbaty 126
  return b |= SquareBB[s];
127
}
128
 
129
inline Bitboard& operator^=(Bitboard& b, Square s) {
185 pmbaty 130
  assert(s >= SQ_A1 && s <= SQ_H8);
96 pmbaty 131
  return b ^= SquareBB[s];
132
}
133
 
169 pmbaty 134
constexpr bool more_than_one(Bitboard b) {
96 pmbaty 135
  return b & (b - 1);
136
}
137
 
138
/// rank_bb() and file_bb() return a bitboard representing all the squares on
139
/// the given file or rank.
140
 
141
inline Bitboard rank_bb(Rank r) {
142
  return RankBB[r];
143
}
144
 
145
inline Bitboard rank_bb(Square s) {
146
  return RankBB[rank_of(s)];
147
}
148
 
149
inline Bitboard file_bb(File f) {
150
  return FileBB[f];
151
}
152
 
153
inline Bitboard file_bb(Square s) {
154
  return FileBB[file_of(s)];
155
}
156
 
157
 
185 pmbaty 158
/// shift() moves a bitboard one step along direction D (mainly for pawns)
96 pmbaty 159
 
169 pmbaty 160
template<Direction D>
161
constexpr Bitboard shift(Bitboard b) {
154 pmbaty 162
  return  D == NORTH      ?  b             << 8 : D == SOUTH      ?  b             >> 8
185 pmbaty 163
        : D == EAST       ? (b & ~FileHBB) << 1 : D == WEST       ? (b & ~FileABB) >> 1
164
        : D == NORTH_EAST ? (b & ~FileHBB) << 9 : D == NORTH_WEST ? (b & ~FileABB) << 7
165
        : D == SOUTH_EAST ? (b & ~FileHBB) >> 7 : D == SOUTH_WEST ? (b & ~FileABB) >> 9
96 pmbaty 166
        : 0;
167
}
168
 
169
 
185 pmbaty 170
/// pawn_attacks_bb() returns the pawn attacks for the given color from the
171
/// squares in the given bitboard.
172
 
173
template<Color C>
174
constexpr Bitboard pawn_attacks_bb(Bitboard b) {
175
  return C == WHITE ? shift<NORTH_WEST>(b) | shift<NORTH_EAST>(b)
176
                    : shift<SOUTH_WEST>(b) | shift<SOUTH_EAST>(b);
177
}
178
 
179
 
96 pmbaty 180
/// adjacent_files_bb() returns a bitboard representing all the squares on the
181
/// adjacent files of the given one.
182
 
183
inline Bitboard adjacent_files_bb(File f) {
184
  return AdjacentFilesBB[f];
185
}
186
 
187
 
188
/// between_bb() returns a bitboard representing all the squares between the two
189
/// given ones. For instance, between_bb(SQ_C4, SQ_F7) returns a bitboard with
190
/// the bits for square d5 and e6 set. If s1 and s2 are not on the same rank, file
191
/// or diagonal, 0 is returned.
192
 
193
inline Bitboard between_bb(Square s1, Square s2) {
194
  return BetweenBB[s1][s2];
195
}
196
 
197
 
185 pmbaty 198
/// forward_ranks_bb() returns a bitboard representing the squares on all the ranks
199
/// in front of the given one, from the point of view of the given color. For instance,
200
/// forward_ranks_bb(BLACK, SQ_D3) will return the 16 squares on ranks 1 and 2.
96 pmbaty 201
 
169 pmbaty 202
inline Bitboard forward_ranks_bb(Color c, Square s) {
203
  return ForwardRanksBB[c][rank_of(s)];
96 pmbaty 204
}
205
 
206
 
169 pmbaty 207
/// forward_file_bb() returns a bitboard representing all the squares along the line
96 pmbaty 208
/// in front of the given one, from the point of view of the given color:
169 pmbaty 209
///      ForwardFileBB[c][s] = forward_ranks_bb(c, s) & file_bb(s)
96 pmbaty 210
 
169 pmbaty 211
inline Bitboard forward_file_bb(Color c, Square s) {
212
  return ForwardFileBB[c][s];
96 pmbaty 213
}
214
 
215
 
216
/// pawn_attack_span() returns a bitboard representing all the squares that can be
217
/// attacked by a pawn of the given color when it moves along its file, starting
218
/// from the given square:
169 pmbaty 219
///      PawnAttackSpan[c][s] = forward_ranks_bb(c, s) & adjacent_files_bb(file_of(s));
96 pmbaty 220
 
221
inline Bitboard pawn_attack_span(Color c, Square s) {
222
  return PawnAttackSpan[c][s];
223
}
224
 
225
 
226
/// passed_pawn_mask() returns a bitboard mask which can be used to test if a
227
/// pawn of the given color and on the given square is a passed pawn:
169 pmbaty 228
///      PassedPawnMask[c][s] = pawn_attack_span(c, s) | forward_file_bb(c, s)
96 pmbaty 229
 
230
inline Bitboard passed_pawn_mask(Color c, Square s) {
231
  return PassedPawnMask[c][s];
232
}
233
 
234
 
235
/// aligned() returns true if the squares s1, s2 and s3 are aligned either on a
236
/// straight or on a diagonal line.
237
 
238
inline bool aligned(Square s1, Square s2, Square s3) {
239
  return LineBB[s1][s2] & s3;
240
}
241
 
242
 
243
/// distance() functions return the distance between x and y, defined as the
244
/// number of steps for a king in x to reach y. Works with squares, ranks, files.
245
 
246
template<typename T> inline int distance(T x, T y) { return x < y ? y - x : x - y; }
247
template<> inline int distance<Square>(Square x, Square y) { return SquareDistance[x][y]; }
248
 
249
template<typename T1, typename T2> inline int distance(T2 x, T2 y);
250
template<> inline int distance<File>(Square x, Square y) { return distance(file_of(x), file_of(y)); }
251
template<> inline int distance<Rank>(Square x, Square y) { return distance(rank_of(x), rank_of(y)); }
252
 
253
 
254
/// attacks_bb() returns a bitboard representing all the squares attacked by a
169 pmbaty 255
/// piece of type Pt (bishop or rook) placed on 's'.
96 pmbaty 256
 
257
template<PieceType Pt>
258
inline Bitboard attacks_bb(Square s, Bitboard occupied) {
154 pmbaty 259
 
169 pmbaty 260
  const Magic& m = Pt == ROOK ? RookMagics[s] : BishopMagics[s];
261
  return m.attacks[m.index(occupied)];
96 pmbaty 262
}
263
 
169 pmbaty 264
inline Bitboard attacks_bb(PieceType pt, Square s, Bitboard occupied) {
96 pmbaty 265
 
169 pmbaty 266
  assert(pt != PAWN);
267
 
268
  switch (pt)
96 pmbaty 269
  {
270
  case BISHOP: return attacks_bb<BISHOP>(s, occupied);
169 pmbaty 271
  case ROOK  : return attacks_bb<  ROOK>(s, occupied);
96 pmbaty 272
  case QUEEN : return attacks_bb<BISHOP>(s, occupied) | attacks_bb<ROOK>(s, occupied);
169 pmbaty 273
  default    : return PseudoAttacks[pt][s];
96 pmbaty 274
  }
275
}
276
 
277
 
154 pmbaty 278
/// popcount() counts the number of non-zero bits in a bitboard
96 pmbaty 279
 
154 pmbaty 280
inline int popcount(Bitboard b) {
96 pmbaty 281
 
154 pmbaty 282
#ifndef USE_POPCNT
96 pmbaty 283
 
154 pmbaty 284
  extern uint8_t PopCnt16[1 << 16];
285
  union { Bitboard bb; uint16_t u[4]; } v = { b };
286
  return PopCnt16[v.u[0]] + PopCnt16[v.u[1]] + PopCnt16[v.u[2]] + PopCnt16[v.u[3]];
96 pmbaty 287
 
154 pmbaty 288
#elif defined(_MSC_VER) || defined(__INTEL_COMPILER)
289
 
290
  return (int)_mm_popcnt_u64(b);
291
 
292
#else // Assumed gcc or compatible compiler
293
 
294
  return __builtin_popcountll(b);
295
 
296
#endif
96 pmbaty 297
}
298
 
299
 
154 pmbaty 300
/// lsb() and msb() return the least/most significant bit in a non-zero bitboard
301
 
185 pmbaty 302
#if defined(__GNUC__)  // GCC, Clang, ICC
154 pmbaty 303
 
304
inline Square lsb(Bitboard b) {
305
  assert(b);
306
  return Square(__builtin_ctzll(b));
96 pmbaty 307
}
308
 
309
inline Square msb(Bitboard b) {
154 pmbaty 310
  assert(b);
169 pmbaty 311
  return Square(63 ^ __builtin_clzll(b));
96 pmbaty 312
}
313
 
185 pmbaty 314
#elif defined(_MSC_VER)  // MSVC
154 pmbaty 315
 
185 pmbaty 316
#ifdef _WIN64  // MSVC, WIN64
317
 
96 pmbaty 318
inline Square lsb(Bitboard b) {
154 pmbaty 319
  assert(b);
320
  unsigned long idx;
321
  _BitScanForward64(&idx, b);
96 pmbaty 322
  return (Square) idx;
323
}
324
 
325
inline Square msb(Bitboard b) {
154 pmbaty 326
  assert(b);
327
  unsigned long idx;
328
  _BitScanReverse64(&idx, b);
96 pmbaty 329
  return (Square) idx;
330
}
331
 
185 pmbaty 332
#else  // MSVC, WIN32
96 pmbaty 333
 
185 pmbaty 334
inline Square lsb(Bitboard b) {
335
  assert(b);
336
  unsigned long idx;
96 pmbaty 337
 
185 pmbaty 338
  if (b & 0xffffffff) {
339
      _BitScanForward(&idx, int32_t(b));
340
      return Square(idx);
341
  } else {
342
      _BitScanForward(&idx, int32_t(b >> 32));
343
      return Square(idx + 32);
344
  }
345
}
96 pmbaty 346
 
185 pmbaty 347
inline Square msb(Bitboard b) {
348
  assert(b);
349
  unsigned long idx;
350
 
351
  if (b >> 32) {
352
      _BitScanReverse(&idx, int32_t(b >> 32));
353
      return Square(idx + 32);
354
  } else {
355
      _BitScanReverse(&idx, int32_t(b));
356
      return Square(idx);
357
  }
358
}
359
 
96 pmbaty 360
#endif
361
 
185 pmbaty 362
#else  // Compiler is neither GCC nor MSVC compatible
96 pmbaty 363
 
185 pmbaty 364
#error "Compiler not supported."
365
 
366
#endif
367
 
368
 
96 pmbaty 369
/// pop_lsb() finds and clears the least significant bit in a non-zero bitboard
370
 
371
inline Square pop_lsb(Bitboard* b) {
372
  const Square s = lsb(*b);
373
  *b &= *b - 1;
374
  return s;
375
}
376
 
377
 
378
/// frontmost_sq() and backmost_sq() return the square corresponding to the
379
/// most/least advanced bit relative to the given color.
380
 
381
inline Square frontmost_sq(Color c, Bitboard b) { return c == WHITE ? msb(b) : lsb(b); }
382
inline Square  backmost_sq(Color c, Bitboard b) { return c == WHITE ? lsb(b) : msb(b); }
383
 
384
#endif // #ifndef BITBOARD_H_INCLUDED