Subversion Repositories Games.Chess Giants

Rev

Rev 154 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed

Rev Author Line No. Line
96 pmbaty 1
/*
2
  Stockfish, a UCI chess playing engine derived from Glaurung 2.1
3
  Copyright (C) 2004-2008 Tord Romstad (Glaurung author)
4
  Copyright (C) 2008-2015 Marco Costalba, Joona Kiiski, Tord Romstad
169 pmbaty 5
  Copyright (C) 2015-2018 Marco Costalba, Joona Kiiski, Gary Linscott, Tord Romstad
96 pmbaty 6
 
7
  Stockfish is free software: you can redistribute it and/or modify
8
  it under the terms of the GNU General Public License as published by
9
  the Free Software Foundation, either version 3 of the License, or
10
  (at your option) any later version.
11
 
12
  Stockfish is distributed in the hope that it will be useful,
13
  but WITHOUT ANY WARRANTY; without even the implied warranty of
14
  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15
  GNU General Public License for more details.
16
 
17
  You should have received a copy of the GNU General Public License
18
  along with this program.  If not, see <http://www.gnu.org/licenses/>.
19
*/
20
 
21
#ifndef BITBOARD_H_INCLUDED
22
#define BITBOARD_H_INCLUDED
23
 
24
#include <string>
25
 
26
#include "types.h"
27
 
28
namespace Bitbases {
29
 
30
void init();
31
bool probe(Square wksq, Square wpsq, Square bksq, Color us);
32
 
33
}
34
 
35
namespace Bitboards {
36
 
37
void init();
38
const std::string pretty(Bitboard b);
39
 
40
}
41
 
169 pmbaty 42
const Bitboard AllSquares = ~Bitboard(0);
96 pmbaty 43
const Bitboard DarkSquares = 0xAA55AA55AA55AA55ULL;
44
 
45
const Bitboard FileABB = 0x0101010101010101ULL;
46
const Bitboard FileBBB = FileABB << 1;
47
const Bitboard FileCBB = FileABB << 2;
48
const Bitboard FileDBB = FileABB << 3;
49
const Bitboard FileEBB = FileABB << 4;
50
const Bitboard FileFBB = FileABB << 5;
51
const Bitboard FileGBB = FileABB << 6;
52
const Bitboard FileHBB = FileABB << 7;
53
 
54
const Bitboard Rank1BB = 0xFF;
55
const Bitboard Rank2BB = Rank1BB << (8 * 1);
56
const Bitboard Rank3BB = Rank1BB << (8 * 2);
57
const Bitboard Rank4BB = Rank1BB << (8 * 3);
58
const Bitboard Rank5BB = Rank1BB << (8 * 4);
59
const Bitboard Rank6BB = Rank1BB << (8 * 5);
60
const Bitboard Rank7BB = Rank1BB << (8 * 6);
61
const Bitboard Rank8BB = Rank1BB << (8 * 7);
62
 
63
extern int SquareDistance[SQUARE_NB][SQUARE_NB];
64
 
65
extern Bitboard SquareBB[SQUARE_NB];
66
extern Bitboard FileBB[FILE_NB];
67
extern Bitboard RankBB[RANK_NB];
68
extern Bitboard AdjacentFilesBB[FILE_NB];
169 pmbaty 69
extern Bitboard ForwardRanksBB[COLOR_NB][RANK_NB];
96 pmbaty 70
extern Bitboard BetweenBB[SQUARE_NB][SQUARE_NB];
71
extern Bitboard LineBB[SQUARE_NB][SQUARE_NB];
72
extern Bitboard DistanceRingBB[SQUARE_NB][8];
169 pmbaty 73
extern Bitboard ForwardFileBB[COLOR_NB][SQUARE_NB];
96 pmbaty 74
extern Bitboard PassedPawnMask[COLOR_NB][SQUARE_NB];
75
extern Bitboard PawnAttackSpan[COLOR_NB][SQUARE_NB];
76
extern Bitboard PseudoAttacks[PIECE_TYPE_NB][SQUARE_NB];
169 pmbaty 77
extern Bitboard PawnAttacks[COLOR_NB][SQUARE_NB];
96 pmbaty 78
 
79
 
169 pmbaty 80
/// Magic holds all magic bitboards relevant data for a single square
81
struct Magic {
82
  Bitboard  mask;
83
  Bitboard  magic;
84
  Bitboard* attacks;
85
  unsigned  shift;
86
 
87
  // Compute the attack's index using the 'magic bitboards' approach
88
  unsigned index(Bitboard occupied) const {
89
 
90
    if (HasPext)
91
        return unsigned(pext(occupied, mask));
92
 
93
    if (Is64Bit)
94
        return unsigned(((occupied & mask) * magic) >> shift);
95
 
96
    unsigned lo = unsigned(occupied) & unsigned(mask);
97
    unsigned hi = unsigned(occupied >> 32) & unsigned(mask >> 32);
98
    return (lo * unsigned(magic) ^ hi * unsigned(magic >> 32)) >> shift;
99
  }
100
};
101
 
102
extern Magic RookMagics[SQUARE_NB];
103
extern Magic BishopMagics[SQUARE_NB];
104
 
105
 
96 pmbaty 106
/// Overloads of bitwise operators between a Bitboard and a Square for testing
107
/// whether a given bit is set in a bitboard, and for setting and clearing bits.
108
 
109
inline Bitboard operator&(Bitboard b, Square s) {
110
  return b & SquareBB[s];
111
}
112
 
113
inline Bitboard operator|(Bitboard b, Square s) {
114
  return b | SquareBB[s];
115
}
116
 
117
inline Bitboard operator^(Bitboard b, Square s) {
118
  return b ^ SquareBB[s];
119
}
120
 
121
inline Bitboard& operator|=(Bitboard& b, Square s) {
122
  return b |= SquareBB[s];
123
}
124
 
125
inline Bitboard& operator^=(Bitboard& b, Square s) {
126
  return b ^= SquareBB[s];
127
}
128
 
169 pmbaty 129
constexpr bool more_than_one(Bitboard b) {
96 pmbaty 130
  return b & (b - 1);
131
}
132
 
133
/// rank_bb() and file_bb() return a bitboard representing all the squares on
134
/// the given file or rank.
135
 
136
inline Bitboard rank_bb(Rank r) {
137
  return RankBB[r];
138
}
139
 
140
inline Bitboard rank_bb(Square s) {
141
  return RankBB[rank_of(s)];
142
}
143
 
144
inline Bitboard file_bb(File f) {
145
  return FileBB[f];
146
}
147
 
148
inline Bitboard file_bb(Square s) {
149
  return FileBB[file_of(s)];
150
}
151
 
152
 
154 pmbaty 153
/// shift() moves a bitboard one step along direction D. Mainly for pawns
96 pmbaty 154
 
169 pmbaty 155
template<Direction D>
156
constexpr Bitboard shift(Bitboard b) {
154 pmbaty 157
  return  D == NORTH      ?  b             << 8 : D == SOUTH      ?  b             >> 8
158
        : D == NORTH_EAST ? (b & ~FileHBB) << 9 : D == SOUTH_EAST ? (b & ~FileHBB) >> 7
159
        : D == NORTH_WEST ? (b & ~FileABB) << 7 : D == SOUTH_WEST ? (b & ~FileABB) >> 9
96 pmbaty 160
        : 0;
161
}
162
 
163
 
164
/// adjacent_files_bb() returns a bitboard representing all the squares on the
165
/// adjacent files of the given one.
166
 
167
inline Bitboard adjacent_files_bb(File f) {
168
  return AdjacentFilesBB[f];
169
}
170
 
171
 
172
/// between_bb() returns a bitboard representing all the squares between the two
173
/// given ones. For instance, between_bb(SQ_C4, SQ_F7) returns a bitboard with
174
/// the bits for square d5 and e6 set. If s1 and s2 are not on the same rank, file
175
/// or diagonal, 0 is returned.
176
 
177
inline Bitboard between_bb(Square s1, Square s2) {
178
  return BetweenBB[s1][s2];
179
}
180
 
181
 
169 pmbaty 182
/// forward_ranks_bb() returns a bitboard representing all the squares on all the ranks
96 pmbaty 183
/// in front of the given one, from the point of view of the given color. For
169 pmbaty 184
/// instance, forward_ranks_bb(BLACK, SQ_D3) will return the 16 squares on ranks 1 and 2.
96 pmbaty 185
 
169 pmbaty 186
inline Bitboard forward_ranks_bb(Color c, Square s) {
187
  return ForwardRanksBB[c][rank_of(s)];
96 pmbaty 188
}
189
 
190
 
169 pmbaty 191
/// forward_file_bb() returns a bitboard representing all the squares along the line
96 pmbaty 192
/// in front of the given one, from the point of view of the given color:
169 pmbaty 193
///      ForwardFileBB[c][s] = forward_ranks_bb(c, s) & file_bb(s)
96 pmbaty 194
 
169 pmbaty 195
inline Bitboard forward_file_bb(Color c, Square s) {
196
  return ForwardFileBB[c][s];
96 pmbaty 197
}
198
 
199
 
200
/// pawn_attack_span() returns a bitboard representing all the squares that can be
201
/// attacked by a pawn of the given color when it moves along its file, starting
202
/// from the given square:
169 pmbaty 203
///      PawnAttackSpan[c][s] = forward_ranks_bb(c, s) & adjacent_files_bb(file_of(s));
96 pmbaty 204
 
205
inline Bitboard pawn_attack_span(Color c, Square s) {
206
  return PawnAttackSpan[c][s];
207
}
208
 
209
 
210
/// passed_pawn_mask() returns a bitboard mask which can be used to test if a
211
/// pawn of the given color and on the given square is a passed pawn:
169 pmbaty 212
///      PassedPawnMask[c][s] = pawn_attack_span(c, s) | forward_file_bb(c, s)
96 pmbaty 213
 
214
inline Bitboard passed_pawn_mask(Color c, Square s) {
215
  return PassedPawnMask[c][s];
216
}
217
 
218
 
219
/// aligned() returns true if the squares s1, s2 and s3 are aligned either on a
220
/// straight or on a diagonal line.
221
 
222
inline bool aligned(Square s1, Square s2, Square s3) {
223
  return LineBB[s1][s2] & s3;
224
}
225
 
226
 
227
/// distance() functions return the distance between x and y, defined as the
228
/// number of steps for a king in x to reach y. Works with squares, ranks, files.
229
 
230
template<typename T> inline int distance(T x, T y) { return x < y ? y - x : x - y; }
231
template<> inline int distance<Square>(Square x, Square y) { return SquareDistance[x][y]; }
232
 
233
template<typename T1, typename T2> inline int distance(T2 x, T2 y);
234
template<> inline int distance<File>(Square x, Square y) { return distance(file_of(x), file_of(y)); }
235
template<> inline int distance<Rank>(Square x, Square y) { return distance(rank_of(x), rank_of(y)); }
236
 
237
 
238
/// attacks_bb() returns a bitboard representing all the squares attacked by a
169 pmbaty 239
/// piece of type Pt (bishop or rook) placed on 's'.
96 pmbaty 240
 
241
template<PieceType Pt>
242
inline Bitboard attacks_bb(Square s, Bitboard occupied) {
154 pmbaty 243
 
169 pmbaty 244
  const Magic& m = Pt == ROOK ? RookMagics[s] : BishopMagics[s];
245
  return m.attacks[m.index(occupied)];
96 pmbaty 246
}
247
 
169 pmbaty 248
inline Bitboard attacks_bb(PieceType pt, Square s, Bitboard occupied) {
96 pmbaty 249
 
169 pmbaty 250
  assert(pt != PAWN);
251
 
252
  switch (pt)
96 pmbaty 253
  {
254
  case BISHOP: return attacks_bb<BISHOP>(s, occupied);
169 pmbaty 255
  case ROOK  : return attacks_bb<  ROOK>(s, occupied);
96 pmbaty 256
  case QUEEN : return attacks_bb<BISHOP>(s, occupied) | attacks_bb<ROOK>(s, occupied);
169 pmbaty 257
  default    : return PseudoAttacks[pt][s];
96 pmbaty 258
  }
259
}
260
 
261
 
154 pmbaty 262
/// popcount() counts the number of non-zero bits in a bitboard
96 pmbaty 263
 
154 pmbaty 264
inline int popcount(Bitboard b) {
96 pmbaty 265
 
154 pmbaty 266
#ifndef USE_POPCNT
96 pmbaty 267
 
154 pmbaty 268
  extern uint8_t PopCnt16[1 << 16];
269
  union { Bitboard bb; uint16_t u[4]; } v = { b };
270
  return PopCnt16[v.u[0]] + PopCnt16[v.u[1]] + PopCnt16[v.u[2]] + PopCnt16[v.u[3]];
96 pmbaty 271
 
154 pmbaty 272
#elif defined(_MSC_VER) || defined(__INTEL_COMPILER)
273
 
274
  return (int)_mm_popcnt_u64(b);
275
 
276
#else // Assumed gcc or compatible compiler
277
 
278
  return __builtin_popcountll(b);
279
 
280
#endif
96 pmbaty 281
}
282
 
283
 
154 pmbaty 284
/// lsb() and msb() return the least/most significant bit in a non-zero bitboard
285
 
286
#if defined(__GNUC__)
287
 
288
inline Square lsb(Bitboard b) {
289
  assert(b);
290
  return Square(__builtin_ctzll(b));
96 pmbaty 291
}
292
 
293
inline Square msb(Bitboard b) {
154 pmbaty 294
  assert(b);
169 pmbaty 295
  return Square(63 ^ __builtin_clzll(b));
96 pmbaty 296
}
297
 
154 pmbaty 298
#elif defined(_WIN64) && defined(_MSC_VER)
299
 
96 pmbaty 300
inline Square lsb(Bitboard b) {
154 pmbaty 301
  assert(b);
302
  unsigned long idx;
303
  _BitScanForward64(&idx, b);
96 pmbaty 304
  return (Square) idx;
305
}
306
 
307
inline Square msb(Bitboard b) {
154 pmbaty 308
  assert(b);
309
  unsigned long idx;
310
  _BitScanReverse64(&idx, b);
96 pmbaty 311
  return (Square) idx;
312
}
313
 
154 pmbaty 314
#else
96 pmbaty 315
 
154 pmbaty 316
#define NO_BSF // Fallback on software implementation for other cases
96 pmbaty 317
 
318
Square lsb(Bitboard b);
319
Square msb(Bitboard b);
320
 
321
#endif
322
 
323
 
324
/// pop_lsb() finds and clears the least significant bit in a non-zero bitboard
325
 
326
inline Square pop_lsb(Bitboard* b) {
327
  const Square s = lsb(*b);
328
  *b &= *b - 1;
329
  return s;
330
}
331
 
332
 
333
/// frontmost_sq() and backmost_sq() return the square corresponding to the
334
/// most/least advanced bit relative to the given color.
335
 
336
inline Square frontmost_sq(Color c, Bitboard b) { return c == WHITE ? msb(b) : lsb(b); }
337
inline Square  backmost_sq(Color c, Bitboard b) { return c == WHITE ? lsb(b) : msb(b); }
338
 
339
#endif // #ifndef BITBOARD_H_INCLUDED