Subversion Repositories Games.Chess Giants

Rev

Rev 96 | Rev 169 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed

Rev Author Line No. Line
96 pmbaty 1
/*
2
  Stockfish, a UCI chess playing engine derived from Glaurung 2.1
3
  Copyright (C) 2004-2008 Tord Romstad (Glaurung author)
4
  Copyright (C) 2008-2015 Marco Costalba, Joona Kiiski, Tord Romstad
5
  Copyright (C) 2015-2016 Marco Costalba, Joona Kiiski, Gary Linscott, Tord Romstad
6
 
7
  Stockfish is free software: you can redistribute it and/or modify
8
  it under the terms of the GNU General Public License as published by
9
  the Free Software Foundation, either version 3 of the License, or
10
  (at your option) any later version.
11
 
12
  Stockfish is distributed in the hope that it will be useful,
13
  but WITHOUT ANY WARRANTY; without even the implied warranty of
14
  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15
  GNU General Public License for more details.
16
 
17
  You should have received a copy of the GNU General Public License
18
  along with this program.  If not, see <http://www.gnu.org/licenses/>.
19
*/
20
 
21
#ifndef BITBOARD_H_INCLUDED
22
#define BITBOARD_H_INCLUDED
23
 
24
#include <string>
25
 
26
#include "types.h"
27
 
28
namespace Bitbases {
29
 
30
void init();
31
bool probe(Square wksq, Square wpsq, Square bksq, Color us);
32
 
33
}
34
 
35
namespace Bitboards {
36
 
37
void init();
38
const std::string pretty(Bitboard b);
39
 
40
}
41
 
42
const Bitboard DarkSquares = 0xAA55AA55AA55AA55ULL;
43
 
44
const Bitboard FileABB = 0x0101010101010101ULL;
45
const Bitboard FileBBB = FileABB << 1;
46
const Bitboard FileCBB = FileABB << 2;
47
const Bitboard FileDBB = FileABB << 3;
48
const Bitboard FileEBB = FileABB << 4;
49
const Bitboard FileFBB = FileABB << 5;
50
const Bitboard FileGBB = FileABB << 6;
51
const Bitboard FileHBB = FileABB << 7;
52
 
53
const Bitboard Rank1BB = 0xFF;
54
const Bitboard Rank2BB = Rank1BB << (8 * 1);
55
const Bitboard Rank3BB = Rank1BB << (8 * 2);
56
const Bitboard Rank4BB = Rank1BB << (8 * 3);
57
const Bitboard Rank5BB = Rank1BB << (8 * 4);
58
const Bitboard Rank6BB = Rank1BB << (8 * 5);
59
const Bitboard Rank7BB = Rank1BB << (8 * 6);
60
const Bitboard Rank8BB = Rank1BB << (8 * 7);
61
 
62
extern int SquareDistance[SQUARE_NB][SQUARE_NB];
63
 
64
extern Bitboard SquareBB[SQUARE_NB];
65
extern Bitboard FileBB[FILE_NB];
66
extern Bitboard RankBB[RANK_NB];
67
extern Bitboard AdjacentFilesBB[FILE_NB];
68
extern Bitboard InFrontBB[COLOR_NB][RANK_NB];
69
extern Bitboard StepAttacksBB[PIECE_NB][SQUARE_NB];
70
extern Bitboard BetweenBB[SQUARE_NB][SQUARE_NB];
71
extern Bitboard LineBB[SQUARE_NB][SQUARE_NB];
72
extern Bitboard DistanceRingBB[SQUARE_NB][8];
73
extern Bitboard ForwardBB[COLOR_NB][SQUARE_NB];
74
extern Bitboard PassedPawnMask[COLOR_NB][SQUARE_NB];
75
extern Bitboard PawnAttackSpan[COLOR_NB][SQUARE_NB];
76
extern Bitboard PseudoAttacks[PIECE_TYPE_NB][SQUARE_NB];
77
 
78
 
79
/// Overloads of bitwise operators between a Bitboard and a Square for testing
80
/// whether a given bit is set in a bitboard, and for setting and clearing bits.
81
 
82
inline Bitboard operator&(Bitboard b, Square s) {
83
  return b & SquareBB[s];
84
}
85
 
86
inline Bitboard operator|(Bitboard b, Square s) {
87
  return b | SquareBB[s];
88
}
89
 
90
inline Bitboard operator^(Bitboard b, Square s) {
91
  return b ^ SquareBB[s];
92
}
93
 
94
inline Bitboard& operator|=(Bitboard& b, Square s) {
95
  return b |= SquareBB[s];
96
}
97
 
98
inline Bitboard& operator^=(Bitboard& b, Square s) {
99
  return b ^= SquareBB[s];
100
}
101
 
102
inline bool more_than_one(Bitboard b) {
103
  return b & (b - 1);
104
}
105
 
106
 
107
/// rank_bb() and file_bb() return a bitboard representing all the squares on
108
/// the given file or rank.
109
 
110
inline Bitboard rank_bb(Rank r) {
111
  return RankBB[r];
112
}
113
 
114
inline Bitboard rank_bb(Square s) {
115
  return RankBB[rank_of(s)];
116
}
117
 
118
inline Bitboard file_bb(File f) {
119
  return FileBB[f];
120
}
121
 
122
inline Bitboard file_bb(Square s) {
123
  return FileBB[file_of(s)];
124
}
125
 
126
 
154 pmbaty 127
/// shift() moves a bitboard one step along direction D. Mainly for pawns
96 pmbaty 128
 
154 pmbaty 129
template<Square D>
130
inline Bitboard shift(Bitboard b) {
131
  return  D == NORTH      ?  b             << 8 : D == SOUTH      ?  b             >> 8
132
        : D == NORTH_EAST ? (b & ~FileHBB) << 9 : D == SOUTH_EAST ? (b & ~FileHBB) >> 7
133
        : D == NORTH_WEST ? (b & ~FileABB) << 7 : D == SOUTH_WEST ? (b & ~FileABB) >> 9
96 pmbaty 134
        : 0;
135
}
136
 
137
 
138
/// adjacent_files_bb() returns a bitboard representing all the squares on the
139
/// adjacent files of the given one.
140
 
141
inline Bitboard adjacent_files_bb(File f) {
142
  return AdjacentFilesBB[f];
143
}
144
 
145
 
146
/// between_bb() returns a bitboard representing all the squares between the two
147
/// given ones. For instance, between_bb(SQ_C4, SQ_F7) returns a bitboard with
148
/// the bits for square d5 and e6 set. If s1 and s2 are not on the same rank, file
149
/// or diagonal, 0 is returned.
150
 
151
inline Bitboard between_bb(Square s1, Square s2) {
152
  return BetweenBB[s1][s2];
153
}
154
 
155
 
156
/// in_front_bb() returns a bitboard representing all the squares on all the ranks
157
/// in front of the given one, from the point of view of the given color. For
158
/// instance, in_front_bb(BLACK, RANK_3) will return the squares on ranks 1 and 2.
159
 
160
inline Bitboard in_front_bb(Color c, Rank r) {
161
  return InFrontBB[c][r];
162
}
163
 
164
 
165
/// forward_bb() returns a bitboard representing all the squares along the line
166
/// in front of the given one, from the point of view of the given color:
167
///        ForwardBB[c][s] = in_front_bb(c, s) & file_bb(s)
168
 
169
inline Bitboard forward_bb(Color c, Square s) {
170
  return ForwardBB[c][s];
171
}
172
 
173
 
174
/// pawn_attack_span() returns a bitboard representing all the squares that can be
175
/// attacked by a pawn of the given color when it moves along its file, starting
176
/// from the given square:
177
///       PawnAttackSpan[c][s] = in_front_bb(c, s) & adjacent_files_bb(s);
178
 
179
inline Bitboard pawn_attack_span(Color c, Square s) {
180
  return PawnAttackSpan[c][s];
181
}
182
 
183
 
184
/// passed_pawn_mask() returns a bitboard mask which can be used to test if a
185
/// pawn of the given color and on the given square is a passed pawn:
186
///       PassedPawnMask[c][s] = pawn_attack_span(c, s) | forward_bb(c, s)
187
 
188
inline Bitboard passed_pawn_mask(Color c, Square s) {
189
  return PassedPawnMask[c][s];
190
}
191
 
192
 
193
/// aligned() returns true if the squares s1, s2 and s3 are aligned either on a
194
/// straight or on a diagonal line.
195
 
196
inline bool aligned(Square s1, Square s2, Square s3) {
197
  return LineBB[s1][s2] & s3;
198
}
199
 
200
 
201
/// distance() functions return the distance between x and y, defined as the
202
/// number of steps for a king in x to reach y. Works with squares, ranks, files.
203
 
204
template<typename T> inline int distance(T x, T y) { return x < y ? y - x : x - y; }
205
template<> inline int distance<Square>(Square x, Square y) { return SquareDistance[x][y]; }
206
 
207
template<typename T1, typename T2> inline int distance(T2 x, T2 y);
208
template<> inline int distance<File>(Square x, Square y) { return distance(file_of(x), file_of(y)); }
209
template<> inline int distance<Rank>(Square x, Square y) { return distance(rank_of(x), rank_of(y)); }
210
 
211
 
212
/// attacks_bb() returns a bitboard representing all the squares attacked by a
213
/// piece of type Pt (bishop or rook) placed on 's'. The helper magic_index()
214
/// looks up the index using the 'magic bitboards' approach.
215
template<PieceType Pt>
216
inline unsigned magic_index(Square s, Bitboard occupied) {
217
 
154 pmbaty 218
  extern Bitboard RookMasks[SQUARE_NB];
219
  extern Bitboard RookMagics[SQUARE_NB];
220
  extern unsigned RookShifts[SQUARE_NB];
221
  extern Bitboard BishopMasks[SQUARE_NB];
222
  extern Bitboard BishopMagics[SQUARE_NB];
223
  extern unsigned BishopShifts[SQUARE_NB];
224
 
96 pmbaty 225
  Bitboard* const Masks  = Pt == ROOK ? RookMasks  : BishopMasks;
226
  Bitboard* const Magics = Pt == ROOK ? RookMagics : BishopMagics;
227
  unsigned* const Shifts = Pt == ROOK ? RookShifts : BishopShifts;
228
 
229
  if (HasPext)
230
      return unsigned(pext(occupied, Masks[s]));
231
 
232
  if (Is64Bit)
233
      return unsigned(((occupied & Masks[s]) * Magics[s]) >> Shifts[s]);
234
 
235
  unsigned lo = unsigned(occupied) & unsigned(Masks[s]);
236
  unsigned hi = unsigned(occupied >> 32) & unsigned(Masks[s] >> 32);
237
  return (lo * unsigned(Magics[s]) ^ hi * unsigned(Magics[s] >> 32)) >> Shifts[s];
238
}
239
 
240
template<PieceType Pt>
241
inline Bitboard attacks_bb(Square s, Bitboard occupied) {
154 pmbaty 242
 
243
  extern Bitboard* RookAttacks[SQUARE_NB];
244
  extern Bitboard* BishopAttacks[SQUARE_NB];
245
 
96 pmbaty 246
  return (Pt == ROOK ? RookAttacks : BishopAttacks)[s][magic_index<Pt>(s, occupied)];
247
}
248
 
249
inline Bitboard attacks_bb(Piece pc, Square s, Bitboard occupied) {
250
 
251
  switch (type_of(pc))
252
  {
253
  case BISHOP: return attacks_bb<BISHOP>(s, occupied);
254
  case ROOK  : return attacks_bb<ROOK>(s, occupied);
255
  case QUEEN : return attacks_bb<BISHOP>(s, occupied) | attacks_bb<ROOK>(s, occupied);
256
  default    : return StepAttacksBB[pc][s];
257
  }
258
}
259
 
260
 
154 pmbaty 261
/// popcount() counts the number of non-zero bits in a bitboard
96 pmbaty 262
 
154 pmbaty 263
inline int popcount(Bitboard b) {
96 pmbaty 264
 
154 pmbaty 265
#ifndef USE_POPCNT
96 pmbaty 266
 
154 pmbaty 267
  extern uint8_t PopCnt16[1 << 16];
268
  union { Bitboard bb; uint16_t u[4]; } v = { b };
269
  return PopCnt16[v.u[0]] + PopCnt16[v.u[1]] + PopCnt16[v.u[2]] + PopCnt16[v.u[3]];
96 pmbaty 270
 
154 pmbaty 271
#elif defined(_MSC_VER) || defined(__INTEL_COMPILER)
272
 
273
  return (int)_mm_popcnt_u64(b);
274
 
275
#else // Assumed gcc or compatible compiler
276
 
277
  return __builtin_popcountll(b);
278
 
279
#endif
96 pmbaty 280
}
281
 
282
 
154 pmbaty 283
/// lsb() and msb() return the least/most significant bit in a non-zero bitboard
284
 
285
#if defined(__GNUC__)
286
 
287
inline Square lsb(Bitboard b) {
288
  assert(b);
289
  return Square(__builtin_ctzll(b));
96 pmbaty 290
}
291
 
292
inline Square msb(Bitboard b) {
154 pmbaty 293
  assert(b);
294
  return Square(63 - __builtin_clzll(b));
96 pmbaty 295
}
296
 
154 pmbaty 297
#elif defined(_WIN64) && defined(_MSC_VER)
298
 
96 pmbaty 299
inline Square lsb(Bitboard b) {
154 pmbaty 300
  assert(b);
301
  unsigned long idx;
302
  _BitScanForward64(&idx, b);
96 pmbaty 303
  return (Square) idx;
304
}
305
 
306
inline Square msb(Bitboard b) {
154 pmbaty 307
  assert(b);
308
  unsigned long idx;
309
  _BitScanReverse64(&idx, b);
96 pmbaty 310
  return (Square) idx;
311
}
312
 
154 pmbaty 313
#else
96 pmbaty 314
 
154 pmbaty 315
#define NO_BSF // Fallback on software implementation for other cases
96 pmbaty 316
 
317
Square lsb(Bitboard b);
318
Square msb(Bitboard b);
319
 
320
#endif
321
 
322
 
323
/// pop_lsb() finds and clears the least significant bit in a non-zero bitboard
324
 
325
inline Square pop_lsb(Bitboard* b) {
326
  const Square s = lsb(*b);
327
  *b &= *b - 1;
328
  return s;
329
}
330
 
331
 
332
/// frontmost_sq() and backmost_sq() return the square corresponding to the
333
/// most/least advanced bit relative to the given color.
334
 
335
inline Square frontmost_sq(Color c, Bitboard b) { return c == WHITE ? msb(b) : lsb(b); }
336
inline Square  backmost_sq(Color c, Bitboard b) { return c == WHITE ? lsb(b) : msb(b); }
337
 
338
#endif // #ifndef BITBOARD_H_INCLUDED