Rev 169 | Details | Compare with Previous | Last modification | View Log | RSS feed
| Rev | Author | Line No. | Line | 
|---|---|---|---|
| 96 | pmbaty | 1 | /* | 
| 2 |   Stockfish, a UCI chess playing engine derived from Glaurung 2.1 | ||
| 3 |   Copyright (C) 2004-2008 Tord Romstad (Glaurung author) | ||
| 4 |   Copyright (C) 2008-2015 Marco Costalba, Joona Kiiski, Tord Romstad | ||
| 185 | pmbaty | 5 |   Copyright (C) 2015-2019 Marco Costalba, Joona Kiiski, Gary Linscott, Tord Romstad | 
| 96 | pmbaty | 6 | |
| 7 |   Stockfish is free software: you can redistribute it and/or modify | ||
| 8 |   it under the terms of the GNU General Public License as published by | ||
| 9 |   the Free Software Foundation, either version 3 of the License, or | ||
| 10 |   (at your option) any later version. | ||
| 11 | |||
| 12 |   Stockfish is distributed in the hope that it will be useful, | ||
| 13 |   but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
| 14 |   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||
| 15 |   GNU General Public License for more details. | ||
| 16 | |||
| 17 |   You should have received a copy of the GNU General Public License | ||
| 18 |   along with this program.  If not, see <http://www.gnu.org/licenses/>. | ||
| 19 | */ | ||
| 20 | |||
| 21 | #ifndef BITBOARD_H_INCLUDED | ||
| 22 | #define BITBOARD_H_INCLUDED | ||
| 23 | |||
| 24 | #include <string> | ||
| 25 | |||
| 26 | #include "types.h" | ||
| 27 | |||
| 28 | namespace Bitbases { | ||
| 29 | |||
| 30 | void init(); | ||
| 31 | bool probe(Square wksq, Square wpsq, Square bksq, Color us); | ||
| 32 | |||
| 33 | } | ||
| 34 | |||
| 35 | namespace Bitboards { | ||
| 36 | |||
| 37 | void init(); | ||
| 38 | const std::string pretty(Bitboard b); | ||
| 39 | |||
| 40 | } | ||
| 41 | |||
| 185 | pmbaty | 42 | constexpr Bitboard AllSquares = ~Bitboard(0); | 
| 43 | constexpr Bitboard DarkSquares = 0xAA55AA55AA55AA55ULL; | ||
| 96 | pmbaty | 44 | |
| 185 | pmbaty | 45 | constexpr Bitboard FileABB = 0x0101010101010101ULL; | 
| 46 | constexpr Bitboard FileBBB = FileABB << 1; | ||
| 47 | constexpr Bitboard FileCBB = FileABB << 2; | ||
| 48 | constexpr Bitboard FileDBB = FileABB << 3; | ||
| 49 | constexpr Bitboard FileEBB = FileABB << 4; | ||
| 50 | constexpr Bitboard FileFBB = FileABB << 5; | ||
| 51 | constexpr Bitboard FileGBB = FileABB << 6; | ||
| 52 | constexpr Bitboard FileHBB = FileABB << 7; | ||
| 96 | pmbaty | 53 | |
| 185 | pmbaty | 54 | constexpr Bitboard Rank1BB = 0xFF; | 
| 55 | constexpr Bitboard Rank2BB = Rank1BB << (8 * 1); | ||
| 56 | constexpr Bitboard Rank3BB = Rank1BB << (8 * 2); | ||
| 57 | constexpr Bitboard Rank4BB = Rank1BB << (8 * 3); | ||
| 58 | constexpr Bitboard Rank5BB = Rank1BB << (8 * 4); | ||
| 59 | constexpr Bitboard Rank6BB = Rank1BB << (8 * 5); | ||
| 60 | constexpr Bitboard Rank7BB = Rank1BB << (8 * 6); | ||
| 61 | constexpr Bitboard Rank8BB = Rank1BB << (8 * 7); | ||
| 96 | pmbaty | 62 | |
| 63 | extern int SquareDistance[SQUARE_NB][SQUARE_NB]; | ||
| 64 | |||
| 65 | extern Bitboard SquareBB[SQUARE_NB]; | ||
| 66 | extern Bitboard FileBB[FILE_NB]; | ||
| 67 | extern Bitboard RankBB[RANK_NB]; | ||
| 68 | extern Bitboard AdjacentFilesBB[FILE_NB]; | ||
| 169 | pmbaty | 69 | extern Bitboard ForwardRanksBB[COLOR_NB][RANK_NB]; | 
| 96 | pmbaty | 70 | extern Bitboard BetweenBB[SQUARE_NB][SQUARE_NB]; | 
| 71 | extern Bitboard LineBB[SQUARE_NB][SQUARE_NB]; | ||
| 72 | extern Bitboard DistanceRingBB[SQUARE_NB][8]; | ||
| 169 | pmbaty | 73 | extern Bitboard ForwardFileBB[COLOR_NB][SQUARE_NB]; | 
| 96 | pmbaty | 74 | extern Bitboard PassedPawnMask[COLOR_NB][SQUARE_NB]; | 
| 75 | extern Bitboard PawnAttackSpan[COLOR_NB][SQUARE_NB]; | ||
| 76 | extern Bitboard PseudoAttacks[PIECE_TYPE_NB][SQUARE_NB]; | ||
| 169 | pmbaty | 77 | extern Bitboard PawnAttacks[COLOR_NB][SQUARE_NB]; | 
| 96 | pmbaty | 78 | |
| 79 | |||
| 169 | pmbaty | 80 | /// Magic holds all magic bitboards relevant data for a single square | 
| 81 | struct Magic { | ||
| 82 |   Bitboard  mask; | ||
| 83 |   Bitboard  magic; | ||
| 84 | Bitboard* attacks; | ||
| 85 | unsigned shift; | ||
| 86 | |||
| 87 |   // Compute the attack's index using the 'magic bitboards' approach | ||
| 88 | unsigned index(Bitboard occupied) const { | ||
| 89 | |||
| 90 | if (HasPext) | ||
| 91 | return unsigned(pext(occupied, mask)); | ||
| 92 | |||
| 93 | if (Is64Bit) | ||
| 94 | return unsigned(((occupied & mask) * magic) >> shift); | ||
| 95 | |||
| 96 | unsigned lo = unsigned(occupied) & unsigned(mask); | ||
| 97 | unsigned hi = unsigned(occupied >> 32) & unsigned(mask >> 32); | ||
| 98 | return (lo * unsigned(magic) ^ hi * unsigned(magic >> 32)) >> shift; | ||
| 99 |   } | ||
| 100 | }; | ||
| 101 | |||
| 102 | extern Magic RookMagics[SQUARE_NB]; | ||
| 103 | extern Magic BishopMagics[SQUARE_NB]; | ||
| 104 | |||
| 105 | |||
| 96 | pmbaty | 106 | /// Overloads of bitwise operators between a Bitboard and a Square for testing | 
| 107 | /// whether a given bit is set in a bitboard, and for setting and clearing bits. | ||
| 108 | |||
| 109 | inline Bitboard operator&(Bitboard b, Square s) { | ||
| 185 | pmbaty | 110 | assert(s >= SQ_A1 && s <= SQ_H8); | 
| 96 | pmbaty | 111 | return b & SquareBB[s]; | 
| 112 | } | ||
| 113 | |||
| 114 | inline Bitboard operator|(Bitboard b, Square s) { | ||
| 185 | pmbaty | 115 | assert(s >= SQ_A1 && s <= SQ_H8); | 
| 96 | pmbaty | 116 | return b | SquareBB[s]; | 
| 117 | } | ||
| 118 | |||
| 119 | inline Bitboard operator^(Bitboard b, Square s) { | ||
| 185 | pmbaty | 120 | assert(s >= SQ_A1 && s <= SQ_H8); | 
| 96 | pmbaty | 121 | return b ^ SquareBB[s]; | 
| 122 | } | ||
| 123 | |||
| 124 | inline Bitboard& operator|=(Bitboard& b, Square s) { | ||
| 185 | pmbaty | 125 | assert(s >= SQ_A1 && s <= SQ_H8); | 
| 96 | pmbaty | 126 | return b |= SquareBB[s]; | 
| 127 | } | ||
| 128 | |||
| 129 | inline Bitboard& operator^=(Bitboard& b, Square s) { | ||
| 185 | pmbaty | 130 | assert(s >= SQ_A1 && s <= SQ_H8); | 
| 96 | pmbaty | 131 | return b ^= SquareBB[s]; | 
| 132 | } | ||
| 133 | |||
| 169 | pmbaty | 134 | constexpr bool more_than_one(Bitboard b) { | 
| 96 | pmbaty | 135 | return b & (b - 1); | 
| 136 | } | ||
| 137 | |||
| 138 | /// rank_bb() and file_bb() return a bitboard representing all the squares on | ||
| 139 | /// the given file or rank. | ||
| 140 | |||
| 141 | inline Bitboard rank_bb(Rank r) { | ||
| 142 | return RankBB[r]; | ||
| 143 | } | ||
| 144 | |||
| 145 | inline Bitboard rank_bb(Square s) { | ||
| 146 | return RankBB[rank_of(s)]; | ||
| 147 | } | ||
| 148 | |||
| 149 | inline Bitboard file_bb(File f) { | ||
| 150 | return FileBB[f]; | ||
| 151 | } | ||
| 152 | |||
| 153 | inline Bitboard file_bb(Square s) { | ||
| 154 | return FileBB[file_of(s)]; | ||
| 155 | } | ||
| 156 | |||
| 157 | |||
| 185 | pmbaty | 158 | /// shift() moves a bitboard one step along direction D (mainly for pawns) | 
| 96 | pmbaty | 159 | |
| 169 | pmbaty | 160 | template<Direction D> | 
| 161 | constexpr Bitboard shift(Bitboard b) { | ||
| 154 | pmbaty | 162 | return D == NORTH ? b << 8 : D == SOUTH ? b >> 8 | 
| 185 | pmbaty | 163 | : D == EAST ? (b & ~FileHBB) << 1 : D == WEST ? (b & ~FileABB) >> 1 | 
| 164 | : D == NORTH_EAST ? (b & ~FileHBB) << 9 : D == NORTH_WEST ? (b & ~FileABB) << 7 | ||
| 165 | : D == SOUTH_EAST ? (b & ~FileHBB) >> 7 : D == SOUTH_WEST ? (b & ~FileABB) >> 9 | ||
| 96 | pmbaty | 166 | : 0; | 
| 167 | } | ||
| 168 | |||
| 169 | |||
| 185 | pmbaty | 170 | /// pawn_attacks_bb() returns the pawn attacks for the given color from the | 
| 171 | /// squares in the given bitboard. | ||
| 172 | |||
| 173 | template<Color C> | ||
| 174 | constexpr Bitboard pawn_attacks_bb(Bitboard b) { | ||
| 175 | return C == WHITE ? shift<NORTH_WEST>(b) | shift<NORTH_EAST>(b) | ||
| 176 | : shift<SOUTH_WEST>(b) | shift<SOUTH_EAST>(b); | ||
| 177 | } | ||
| 178 | |||
| 179 | |||
| 96 | pmbaty | 180 | /// adjacent_files_bb() returns a bitboard representing all the squares on the | 
| 181 | /// adjacent files of the given one. | ||
| 182 | |||
| 183 | inline Bitboard adjacent_files_bb(File f) { | ||
| 184 | return AdjacentFilesBB[f]; | ||
| 185 | } | ||
| 186 | |||
| 187 | |||
| 188 | /// between_bb() returns a bitboard representing all the squares between the two | ||
| 189 | /// given ones. For instance, between_bb(SQ_C4, SQ_F7) returns a bitboard with | ||
| 190 | /// the bits for square d5 and e6 set. If s1 and s2 are not on the same rank, file | ||
| 191 | /// or diagonal, 0 is returned. | ||
| 192 | |||
| 193 | inline Bitboard between_bb(Square s1, Square s2) { | ||
| 194 | return BetweenBB[s1][s2]; | ||
| 195 | } | ||
| 196 | |||
| 197 | |||
| 185 | pmbaty | 198 | /// forward_ranks_bb() returns a bitboard representing the squares on all the ranks | 
| 199 | /// in front of the given one, from the point of view of the given color. For instance, | ||
| 200 | /// forward_ranks_bb(BLACK, SQ_D3) will return the 16 squares on ranks 1 and 2. | ||
| 96 | pmbaty | 201 | |
| 169 | pmbaty | 202 | inline Bitboard forward_ranks_bb(Color c, Square s) { | 
| 203 | return ForwardRanksBB[c][rank_of(s)]; | ||
| 96 | pmbaty | 204 | } | 
| 205 | |||
| 206 | |||
| 169 | pmbaty | 207 | /// forward_file_bb() returns a bitboard representing all the squares along the line | 
| 96 | pmbaty | 208 | /// in front of the given one, from the point of view of the given color: | 
| 169 | pmbaty | 209 | ///      ForwardFileBB[c][s] = forward_ranks_bb(c, s) & file_bb(s) | 
| 96 | pmbaty | 210 | |
| 169 | pmbaty | 211 | inline Bitboard forward_file_bb(Color c, Square s) { | 
| 212 | return ForwardFileBB[c][s]; | ||
| 96 | pmbaty | 213 | } | 
| 214 | |||
| 215 | |||
| 216 | /// pawn_attack_span() returns a bitboard representing all the squares that can be | ||
| 217 | /// attacked by a pawn of the given color when it moves along its file, starting | ||
| 218 | /// from the given square: | ||
| 169 | pmbaty | 219 | ///      PawnAttackSpan[c][s] = forward_ranks_bb(c, s) & adjacent_files_bb(file_of(s)); | 
| 96 | pmbaty | 220 | |
| 221 | inline Bitboard pawn_attack_span(Color c, Square s) { | ||
| 222 | return PawnAttackSpan[c][s]; | ||
| 223 | } | ||
| 224 | |||
| 225 | |||
| 226 | /// passed_pawn_mask() returns a bitboard mask which can be used to test if a | ||
| 227 | /// pawn of the given color and on the given square is a passed pawn: | ||
| 169 | pmbaty | 228 | ///      PassedPawnMask[c][s] = pawn_attack_span(c, s) | forward_file_bb(c, s) | 
| 96 | pmbaty | 229 | |
| 230 | inline Bitboard passed_pawn_mask(Color c, Square s) { | ||
| 231 | return PassedPawnMask[c][s]; | ||
| 232 | } | ||
| 233 | |||
| 234 | |||
| 235 | /// aligned() returns true if the squares s1, s2 and s3 are aligned either on a | ||
| 236 | /// straight or on a diagonal line. | ||
| 237 | |||
| 238 | inline bool aligned(Square s1, Square s2, Square s3) { | ||
| 239 | return LineBB[s1][s2] & s3; | ||
| 240 | } | ||
| 241 | |||
| 242 | |||
| 243 | /// distance() functions return the distance between x and y, defined as the | ||
| 244 | /// number of steps for a king in x to reach y. Works with squares, ranks, files. | ||
| 245 | |||
| 246 | template<typename T> inline int distance(T x, T y) { return x < y ? y - x : x - y; } | ||
| 247 | template<> inline int distance<Square>(Square x, Square y) { return SquareDistance[x][y]; } | ||
| 248 | |||
| 249 | template<typename T1, typename T2> inline int distance(T2 x, T2 y); | ||
| 250 | template<> inline int distance<File>(Square x, Square y) { return distance(file_of(x), file_of(y)); } | ||
| 251 | template<> inline int distance<Rank>(Square x, Square y) { return distance(rank_of(x), rank_of(y)); } | ||
| 252 | |||
| 253 | |||
| 254 | /// attacks_bb() returns a bitboard representing all the squares attacked by a | ||
| 169 | pmbaty | 255 | /// piece of type Pt (bishop or rook) placed on 's'. | 
| 96 | pmbaty | 256 | |
| 257 | template<PieceType Pt> | ||
| 258 | inline Bitboard attacks_bb(Square s, Bitboard occupied) { | ||
| 154 | pmbaty | 259 | |
| 169 | pmbaty | 260 | const Magic& m = Pt == ROOK ? RookMagics[s] : BishopMagics[s]; | 
| 261 | return m.attacks[m.index(occupied)]; | ||
| 96 | pmbaty | 262 | } | 
| 263 | |||
| 169 | pmbaty | 264 | inline Bitboard attacks_bb(PieceType pt, Square s, Bitboard occupied) { | 
| 96 | pmbaty | 265 | |
| 169 | pmbaty | 266 | assert(pt != PAWN); | 
| 267 | |||
| 268 | switch (pt) | ||
| 96 | pmbaty | 269 |   { | 
| 270 | case BISHOP: return attacks_bb<BISHOP>(s, occupied); | ||
| 169 | pmbaty | 271 | case ROOK : return attacks_bb< ROOK>(s, occupied); | 
| 96 | pmbaty | 272 | case QUEEN : return attacks_bb<BISHOP>(s, occupied) | attacks_bb<ROOK>(s, occupied); | 
| 169 | pmbaty | 273 | default : return PseudoAttacks[pt][s]; | 
| 96 | pmbaty | 274 |   } | 
| 275 | } | ||
| 276 | |||
| 277 | |||
| 154 | pmbaty | 278 | /// popcount() counts the number of non-zero bits in a bitboard | 
| 96 | pmbaty | 279 | |
| 154 | pmbaty | 280 | inline int popcount(Bitboard b) { | 
| 96 | pmbaty | 281 | |
| 154 | pmbaty | 282 | #ifndef USE_POPCNT | 
| 96 | pmbaty | 283 | |
| 154 | pmbaty | 284 | extern uint8_t PopCnt16[1 << 16]; | 
| 285 | union { Bitboard bb; uint16_t u[4]; } v = { b }; | ||
| 286 | return PopCnt16[v.u[0]] + PopCnt16[v.u[1]] + PopCnt16[v.u[2]] + PopCnt16[v.u[3]]; | ||
| 96 | pmbaty | 287 | |
| 154 | pmbaty | 288 | #elif defined(_MSC_VER) || defined(__INTEL_COMPILER) | 
| 289 | |||
| 290 | return (int)_mm_popcnt_u64(b); | ||
| 291 | |||
| 292 | #else // Assumed gcc or compatible compiler | ||
| 293 | |||
| 294 | return __builtin_popcountll(b); | ||
| 295 | |||
| 296 | #endif | ||
| 96 | pmbaty | 297 | } | 
| 298 | |||
| 299 | |||
| 154 | pmbaty | 300 | /// lsb() and msb() return the least/most significant bit in a non-zero bitboard | 
| 301 | |||
| 185 | pmbaty | 302 | #if defined(__GNUC__)  // GCC, Clang, ICC | 
| 154 | pmbaty | 303 | |
| 304 | inline Square lsb(Bitboard b) { | ||
| 305 | assert(b); | ||
| 306 | return Square(__builtin_ctzll(b)); | ||
| 96 | pmbaty | 307 | } | 
| 308 | |||
| 309 | inline Square msb(Bitboard b) { | ||
| 154 | pmbaty | 310 | assert(b); | 
| 169 | pmbaty | 311 | return Square(63 ^ __builtin_clzll(b)); | 
| 96 | pmbaty | 312 | } | 
| 313 | |||
| 185 | pmbaty | 314 | #elif defined(_MSC_VER)  // MSVC | 
| 154 | pmbaty | 315 | |
| 185 | pmbaty | 316 | #ifdef _WIN64  // MSVC, WIN64 | 
| 317 | |||
| 96 | pmbaty | 318 | inline Square lsb(Bitboard b) { | 
| 154 | pmbaty | 319 | assert(b); | 
| 320 | unsigned long idx; | ||
| 321 | _BitScanForward64(&idx, b); | ||
| 96 | pmbaty | 322 | return (Square) idx; | 
| 323 | } | ||
| 324 | |||
| 325 | inline Square msb(Bitboard b) { | ||
| 154 | pmbaty | 326 | assert(b); | 
| 327 | unsigned long idx; | ||
| 328 | _BitScanReverse64(&idx, b); | ||
| 96 | pmbaty | 329 | return (Square) idx; | 
| 330 | } | ||
| 331 | |||
| 185 | pmbaty | 332 | #else  // MSVC, WIN32 | 
| 96 | pmbaty | 333 | |
| 185 | pmbaty | 334 | inline Square lsb(Bitboard b) { | 
| 335 | assert(b); | ||
| 336 | unsigned long idx; | ||
| 96 | pmbaty | 337 | |
| 185 | pmbaty | 338 | if (b & 0xffffffff) { | 
| 339 | _BitScanForward(&idx, int32_t(b)); | ||
| 340 | return Square(idx); | ||
| 341 | } else { | ||
| 342 | _BitScanForward(&idx, int32_t(b >> 32)); | ||
| 343 | return Square(idx + 32); | ||
| 344 |   } | ||
| 345 | } | ||
| 96 | pmbaty | 346 | |
| 185 | pmbaty | 347 | inline Square msb(Bitboard b) { | 
| 348 | assert(b); | ||
| 349 | unsigned long idx; | ||
| 350 | |||
| 351 | if (b >> 32) { | ||
| 352 | _BitScanReverse(&idx, int32_t(b >> 32)); | ||
| 353 | return Square(idx + 32); | ||
| 354 | } else { | ||
| 355 | _BitScanReverse(&idx, int32_t(b)); | ||
| 356 | return Square(idx); | ||
| 357 |   } | ||
| 358 | } | ||
| 359 | |||
| 96 | pmbaty | 360 | #endif | 
| 361 | |||
| 185 | pmbaty | 362 | #else  // Compiler is neither GCC nor MSVC compatible | 
| 96 | pmbaty | 363 | |
| 185 | pmbaty | 364 | #error "Compiler not supported." | 
| 365 | |||
| 366 | #endif | ||
| 367 | |||
| 368 | |||
| 96 | pmbaty | 369 | /// pop_lsb() finds and clears the least significant bit in a non-zero bitboard | 
| 370 | |||
| 371 | inline Square pop_lsb(Bitboard* b) { | ||
| 372 | const Square s = lsb(*b); | ||
| 373 | *b &= *b - 1; | ||
| 374 | return s; | ||
| 375 | } | ||
| 376 | |||
| 377 | |||
| 378 | /// frontmost_sq() and backmost_sq() return the square corresponding to the | ||
| 379 | /// most/least advanced bit relative to the given color. | ||
| 380 | |||
| 381 | inline Square frontmost_sq(Color c, Bitboard b) { return c == WHITE ? msb(b) : lsb(b); } | ||
| 382 | inline Square backmost_sq(Color c, Bitboard b) { return c == WHITE ? lsb(b) : msb(b); } | ||
| 383 | |||
| 384 | #endif // #ifndef BITBOARD_H_INCLUDED |