Subversion Repositories Games.Chess Giants

Rev

Rev 154 | Go to most recent revision | Details | Last modification | View Log | RSS feed

Rev Author Line No. Line
96 pmbaty 1
/*
2
  Stockfish, a UCI chess playing engine derived from Glaurung 2.1
3
  Copyright (C) 2004-2008 Tord Romstad (Glaurung author)
4
  Copyright (C) 2008-2015 Marco Costalba, Joona Kiiski, Tord Romstad
5
  Copyright (C) 2015-2016 Marco Costalba, Joona Kiiski, Gary Linscott, Tord Romstad
6
 
7
  Stockfish is free software: you can redistribute it and/or modify
8
  it under the terms of the GNU General Public License as published by
9
  the Free Software Foundation, either version 3 of the License, or
10
  (at your option) any later version.
11
 
12
  Stockfish is distributed in the hope that it will be useful,
13
  but WITHOUT ANY WARRANTY; without even the implied warranty of
14
  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15
  GNU General Public License for more details.
16
 
17
  You should have received a copy of the GNU General Public License
18
  along with this program.  If not, see <http://www.gnu.org/licenses/>.
19
*/
20
 
21
#include <algorithm>
22
 
23
#include "bitboard.h"
24
#include "bitcount.h"
25
#include "misc.h"
26
 
27
int SquareDistance[SQUARE_NB][SQUARE_NB];
28
 
29
Bitboard  RookMasks  [SQUARE_NB];
30
Bitboard  RookMagics [SQUARE_NB];
31
Bitboard* RookAttacks[SQUARE_NB];
32
unsigned  RookShifts [SQUARE_NB];
33
 
34
Bitboard  BishopMasks  [SQUARE_NB];
35
Bitboard  BishopMagics [SQUARE_NB];
36
Bitboard* BishopAttacks[SQUARE_NB];
37
unsigned  BishopShifts [SQUARE_NB];
38
 
39
Bitboard SquareBB[SQUARE_NB];
40
Bitboard FileBB[FILE_NB];
41
Bitboard RankBB[RANK_NB];
42
Bitboard AdjacentFilesBB[FILE_NB];
43
Bitboard InFrontBB[COLOR_NB][RANK_NB];
44
Bitboard StepAttacksBB[PIECE_NB][SQUARE_NB];
45
Bitboard BetweenBB[SQUARE_NB][SQUARE_NB];
46
Bitboard LineBB[SQUARE_NB][SQUARE_NB];
47
Bitboard DistanceRingBB[SQUARE_NB][8];
48
Bitboard ForwardBB[COLOR_NB][SQUARE_NB];
49
Bitboard PassedPawnMask[COLOR_NB][SQUARE_NB];
50
Bitboard PawnAttackSpan[COLOR_NB][SQUARE_NB];
51
Bitboard PseudoAttacks[PIECE_TYPE_NB][SQUARE_NB];
52
 
53
namespace {
54
 
55
  // De Bruijn sequences. See chessprogramming.wikispaces.com/BitScan
56
  const uint64_t DeBruijn64 = 0x3F79D71B4CB0A89ULL;
57
  const uint32_t DeBruijn32 = 0x783A9B23;
58
 
59
  int MSBTable[256];            // To implement software msb()
60
  Square BSFTable[SQUARE_NB];   // To implement software bitscan
61
  Bitboard RookTable[0x19000];  // To store rook attacks
62
  Bitboard BishopTable[0x1480]; // To store bishop attacks
63
 
64
  typedef unsigned (Fn)(Square, Bitboard);
65
 
66
  void init_magics(Bitboard table[], Bitboard* attacks[], Bitboard magics[],
67
                   Bitboard masks[], unsigned shifts[], Square deltas[], Fn index);
68
 
69
  // bsf_index() returns the index into BSFTable[] to look up the bitscan. Uses
70
  // Matt Taylor's folding for 32 bit case, extended to 64 bit by Kim Walisch.
71
 
72
  unsigned bsf_index(Bitboard b) {
73
    b ^= b - 1;
74
    return Is64Bit ? (b * DeBruijn64) >> 58
75
                   : ((unsigned(b) ^ unsigned(b >> 32)) * DeBruijn32) >> 26;
76
  }
77
}
78
 
79
#ifndef USE_BSFQ
80
 
81
/// Software fall-back of lsb() and msb() for CPU lacking hardware support
82
 
83
Square lsb(Bitboard b) {
84
  return BSFTable[bsf_index(b)];
85
}
86
 
87
Square msb(Bitboard b) {
88
 
89
  unsigned b32;
90
  int result = 0;
91
 
92
  if (b > 0xFFFFFFFF)
93
  {
94
      b >>= 32;
95
      result = 32;
96
  }
97
 
98
  b32 = unsigned(b);
99
 
100
  if (b32 > 0xFFFF)
101
  {
102
      b32 >>= 16;
103
      result += 16;
104
  }
105
 
106
  if (b32 > 0xFF)
107
  {
108
      b32 >>= 8;
109
      result += 8;
110
  }
111
 
112
  return Square(result + MSBTable[b32]);
113
}
114
 
115
#endif // ifndef USE_BSFQ
116
 
117
 
118
/// Bitboards::pretty() returns an ASCII representation of a bitboard suitable
119
/// to be printed to standard output. Useful for debugging.
120
 
121
const std::string Bitboards::pretty(Bitboard b) {
122
 
123
  std::string s = "+---+---+---+---+---+---+---+---+\n";
124
 
125
  for (Rank r = RANK_8; r >= RANK_1; --r)
126
  {
127
      for (File f = FILE_A; f <= FILE_H; ++f)
128
          s += b & make_square(f, r) ? "| X " : "|   ";
129
 
130
      s += "|\n+---+---+---+---+---+---+---+---+\n";
131
  }
132
 
133
  return s;
134
}
135
 
136
 
137
/// Bitboards::init() initializes various bitboard tables. It is called at
138
/// startup and relies on global objects to be already zero-initialized.
139
 
140
void Bitboards::init() {
141
 
142
  for (Square s = SQ_A1; s <= SQ_H8; ++s)
143
  {
144
      SquareBB[s] = 1ULL << s;
145
      BSFTable[bsf_index(SquareBB[s])] = s;
146
  }
147
 
148
  for (Bitboard b = 2; b < 256; ++b)
149
      MSBTable[b] = MSBTable[b - 1] + !more_than_one(b);
150
 
151
  for (File f = FILE_A; f <= FILE_H; ++f)
152
      FileBB[f] = f > FILE_A ? FileBB[f - 1] << 1 : FileABB;
153
 
154
  for (Rank r = RANK_1; r <= RANK_8; ++r)
155
      RankBB[r] = r > RANK_1 ? RankBB[r - 1] << 8 : Rank1BB;
156
 
157
  for (File f = FILE_A; f <= FILE_H; ++f)
158
      AdjacentFilesBB[f] = (f > FILE_A ? FileBB[f - 1] : 0) | (f < FILE_H ? FileBB[f + 1] : 0);
159
 
160
  for (Rank r = RANK_1; r < RANK_8; ++r)
161
      InFrontBB[WHITE][r] = ~(InFrontBB[BLACK][r + 1] = InFrontBB[BLACK][r] | RankBB[r]);
162
 
163
  for (Color c = WHITE; c <= BLACK; ++c)
164
      for (Square s = SQ_A1; s <= SQ_H8; ++s)
165
      {
166
          ForwardBB[c][s]      = InFrontBB[c][rank_of(s)] & FileBB[file_of(s)];
167
          PawnAttackSpan[c][s] = InFrontBB[c][rank_of(s)] & AdjacentFilesBB[file_of(s)];
168
          PassedPawnMask[c][s] = ForwardBB[c][s] | PawnAttackSpan[c][s];
169
      }
170
 
171
  for (Square s1 = SQ_A1; s1 <= SQ_H8; ++s1)
172
      for (Square s2 = SQ_A1; s2 <= SQ_H8; ++s2)
173
          if (s1 != s2)
174
          {
175
              SquareDistance[s1][s2] = std::max(distance<File>(s1, s2), distance<Rank>(s1, s2));
176
              DistanceRingBB[s1][SquareDistance[s1][s2] - 1] |= s2;
177
          }
178
 
179
  int steps[][9] = { {}, { 7, 9 }, { 17, 15, 10, 6, -6, -10, -15, -17 },
180
                     {}, {}, {}, { 9, 7, -7, -9, 8, 1, -1, -8 } };
181
 
182
  for (Color c = WHITE; c <= BLACK; ++c)
183
      for (PieceType pt = PAWN; pt <= KING; ++pt)
184
          for (Square s = SQ_A1; s <= SQ_H8; ++s)
185
              for (int i = 0; steps[pt][i]; ++i)
186
              {
187
                  Square to = s + Square(c == WHITE ? steps[pt][i] : -steps[pt][i]);
188
 
189
                  if (is_ok(to) && distance(s, to) < 3)
190
                      StepAttacksBB[make_piece(c, pt)][s] |= to;
191
              }
192
 
193
  Square RookDeltas[] = { DELTA_N,  DELTA_E,  DELTA_S,  DELTA_W  };
194
  Square BishopDeltas[] = { DELTA_NE, DELTA_SE, DELTA_SW, DELTA_NW };
195
 
196
  init_magics(RookTable, RookAttacks, RookMagics, RookMasks, RookShifts, RookDeltas, magic_index<ROOK>);
197
  init_magics(BishopTable, BishopAttacks, BishopMagics, BishopMasks, BishopShifts, BishopDeltas, magic_index<BISHOP>);
198
 
199
  for (Square s1 = SQ_A1; s1 <= SQ_H8; ++s1)
200
  {
201
      PseudoAttacks[QUEEN][s1]  = PseudoAttacks[BISHOP][s1] = attacks_bb<BISHOP>(s1, 0);
202
      PseudoAttacks[QUEEN][s1] |= PseudoAttacks[  ROOK][s1] = attacks_bb<  ROOK>(s1, 0);
203
 
204
      for (Piece pc = W_BISHOP; pc <= W_ROOK; ++pc)
205
          for (Square s2 = SQ_A1; s2 <= SQ_H8; ++s2)
206
          {
207
              if (!(PseudoAttacks[pc][s1] & s2))
208
                  continue;
209
 
210
              LineBB[s1][s2] = (attacks_bb(pc, s1, 0) & attacks_bb(pc, s2, 0)) | s1 | s2;
211
              BetweenBB[s1][s2] = attacks_bb(pc, s1, SquareBB[s2]) & attacks_bb(pc, s2, SquareBB[s1]);
212
          }
213
  }
214
}
215
 
216
 
217
namespace {
218
 
219
  Bitboard sliding_attack(Square deltas[], Square sq, Bitboard occupied) {
220
 
221
    Bitboard attack = 0;
222
 
223
    for (int i = 0; i < 4; ++i)
224
        for (Square s = sq + deltas[i];
225
             is_ok(s) && distance(s, s - deltas[i]) == 1;
226
             s += deltas[i])
227
        {
228
            attack |= s;
229
 
230
            if (occupied & s)
231
                break;
232
        }
233
 
234
    return attack;
235
  }
236
 
237
 
238
  // init_magics() computes all rook and bishop attacks at startup. Magic
239
  // bitboards are used to look up attacks of sliding pieces. As a reference see
240
  // chessprogramming.wikispaces.com/Magic+Bitboards. In particular, here we
241
  // use the so called "fancy" approach.
242
 
243
  void init_magics(Bitboard table[], Bitboard* attacks[], Bitboard magics[],
244
                   Bitboard masks[], unsigned shifts[], Square deltas[], Fn index) {
245
 
246
    int seeds[][RANK_NB] = { { 8977, 44560, 54343, 38998,  5731, 95205, 104912, 17020 },
247
                             {  728, 10316, 55013, 32803, 12281, 15100,  16645,   255 } };
248
 
249
    Bitboard occupancy[4096], reference[4096], edges, b;
250
    int age[4096] = {0}, current = 0, i, size;
251
 
252
    // attacks[s] is a pointer to the beginning of the attacks table for square 's'
253
    attacks[SQ_A1] = table;
254
 
255
    for (Square s = SQ_A1; s <= SQ_H8; ++s)
256
    {
257
        // Board edges are not considered in the relevant occupancies
258
        edges = ((Rank1BB | Rank8BB) & ~rank_bb(s)) | ((FileABB | FileHBB) & ~file_bb(s));
259
 
260
        // Given a square 's', the mask is the bitboard of sliding attacks from
261
        // 's' computed on an empty board. The index must be big enough to contain
262
        // all the attacks for each possible subset of the mask and so is 2 power
263
        // the number of 1s of the mask. Hence we deduce the size of the shift to
264
        // apply to the 64 or 32 bits word to get the index.
265
        masks[s]  = sliding_attack(deltas, s, 0) & ~edges;
266
        shifts[s] = (Is64Bit ? 64 : 32) - popcount<Max15>(masks[s]);
267
 
268
        // Use Carry-Rippler trick to enumerate all subsets of masks[s] and
269
        // store the corresponding sliding attack bitboard in reference[].
270
        b = size = 0;
271
        do {
272
            occupancy[size] = b;
273
            reference[size] = sliding_attack(deltas, s, b);
274
 
275
            if (HasPext)
276
                attacks[s][pext(b, masks[s])] = reference[size];
277
 
278
            size++;
279
            b = (b - masks[s]) & masks[s];
280
        } while (b);
281
 
282
        // Set the offset for the table of the next square. We have individual
283
        // table sizes for each square with "Fancy Magic Bitboards".
284
        if (s < SQ_H8)
285
            attacks[s + 1] = attacks[s] + size;
286
 
287
        if (HasPext)
288
            continue;
289
 
290
        PRNG rng(seeds[Is64Bit][rank_of(s)]);
291
 
292
        // Find a magic for square 's' picking up an (almost) random number
293
        // until we find the one that passes the verification test.
294
        do {
295
            do
296
                magics[s] = rng.sparse_rand<Bitboard>();
297
            while (popcount<Max15>((magics[s] * masks[s]) >> 56) < 6);
298
 
299
            // A good magic must map every possible occupancy to an index that
300
            // looks up the correct sliding attack in the attacks[s] database.
301
            // Note that we build up the database for square 's' as a side
302
            // effect of verifying the magic.
303
            for (++current, i = 0; i < size; ++i)
304
            {
305
                unsigned idx = index(s, occupancy[i]);
306
 
307
                if (age[idx] < current)
308
                {
309
                    age[idx] = current;
310
                    attacks[s][idx] = reference[i];
311
                }
312
                else if (attacks[s][idx] != reference[i])
313
                    break;
314
            }
315
        } while (i < size);
316
    }
317
  }
318
}