Subversion Repositories Games.Chess Giants

Rev

Rev 169 | Details | Compare with Previous | Last modification | View Log | RSS feed

Rev Author Line No. Line
96 pmbaty 1
/*
2
  Stockfish, a UCI chess playing engine derived from Glaurung 2.1
3
  Copyright (C) 2004-2008 Tord Romstad (Glaurung author)
4
  Copyright (C) 2008-2015 Marco Costalba, Joona Kiiski, Tord Romstad
185 pmbaty 5
  Copyright (C) 2015-2019 Marco Costalba, Joona Kiiski, Gary Linscott, Tord Romstad
96 pmbaty 6
 
7
  Stockfish is free software: you can redistribute it and/or modify
8
  it under the terms of the GNU General Public License as published by
9
  the Free Software Foundation, either version 3 of the License, or
10
  (at your option) any later version.
11
 
12
  Stockfish is distributed in the hope that it will be useful,
13
  but WITHOUT ANY WARRANTY; without even the implied warranty of
14
  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15
  GNU General Public License for more details.
16
 
17
  You should have received a copy of the GNU General Public License
18
  along with this program.  If not, see <http://www.gnu.org/licenses/>.
19
*/
20
 
21
#include <algorithm>
22
 
23
#include "bitboard.h"
24
#include "misc.h"
25
 
154 pmbaty 26
uint8_t PopCnt16[1 << 16];
96 pmbaty 27
int SquareDistance[SQUARE_NB][SQUARE_NB];
28
 
29
Bitboard SquareBB[SQUARE_NB];
30
Bitboard FileBB[FILE_NB];
31
Bitboard RankBB[RANK_NB];
32
Bitboard AdjacentFilesBB[FILE_NB];
169 pmbaty 33
Bitboard ForwardRanksBB[COLOR_NB][RANK_NB];
96 pmbaty 34
Bitboard BetweenBB[SQUARE_NB][SQUARE_NB];
35
Bitboard LineBB[SQUARE_NB][SQUARE_NB];
36
Bitboard DistanceRingBB[SQUARE_NB][8];
169 pmbaty 37
Bitboard ForwardFileBB[COLOR_NB][SQUARE_NB];
96 pmbaty 38
Bitboard PassedPawnMask[COLOR_NB][SQUARE_NB];
39
Bitboard PawnAttackSpan[COLOR_NB][SQUARE_NB];
40
Bitboard PseudoAttacks[PIECE_TYPE_NB][SQUARE_NB];
169 pmbaty 41
Bitboard PawnAttacks[COLOR_NB][SQUARE_NB];
96 pmbaty 42
 
169 pmbaty 43
Magic RookMagics[SQUARE_NB];
44
Magic BishopMagics[SQUARE_NB];
45
 
96 pmbaty 46
namespace {
47
 
48
  Bitboard RookTable[0x19000];  // To store rook attacks
49
  Bitboard BishopTable[0x1480]; // To store bishop attacks
50
 
169 pmbaty 51
  void init_magics(Bitboard table[], Magic magics[], Direction directions[]);
96 pmbaty 52
 
154 pmbaty 53
  // popcount16() counts the non-zero bits using SWAR-Popcount algorithm
54
 
55
  unsigned popcount16(unsigned u) {
56
    u -= (u >> 1) & 0x5555U;
57
    u = ((u >> 2) & 0x3333U) + (u & 0x3333U);
58
    u = ((u >> 4) + u) & 0x0F0FU;
59
    return (u * 0x0101U) >> 8;
60
  }
96 pmbaty 61
}
62
 
63
 
64
/// Bitboards::pretty() returns an ASCII representation of a bitboard suitable
65
/// to be printed to standard output. Useful for debugging.
66
 
67
const std::string Bitboards::pretty(Bitboard b) {
68
 
69
  std::string s = "+---+---+---+---+---+---+---+---+\n";
70
 
71
  for (Rank r = RANK_8; r >= RANK_1; --r)
72
  {
73
      for (File f = FILE_A; f <= FILE_H; ++f)
74
          s += b & make_square(f, r) ? "| X " : "|   ";
75
 
76
      s += "|\n+---+---+---+---+---+---+---+---+\n";
77
  }
78
 
79
  return s;
80
}
81
 
82
 
83
/// Bitboards::init() initializes various bitboard tables. It is called at
84
/// startup and relies on global objects to be already zero-initialized.
85
 
86
void Bitboards::init() {
87
 
154 pmbaty 88
  for (unsigned i = 0; i < (1 << 16); ++i)
89
      PopCnt16[i] = (uint8_t) popcount16(i);
90
 
96 pmbaty 91
  for (Square s = SQ_A1; s <= SQ_H8; ++s)
185 pmbaty 92
      SquareBB[s] = (1ULL << s);
96 pmbaty 93
 
94
  for (File f = FILE_A; f <= FILE_H; ++f)
95
      FileBB[f] = f > FILE_A ? FileBB[f - 1] << 1 : FileABB;
96
 
97
  for (Rank r = RANK_1; r <= RANK_8; ++r)
98
      RankBB[r] = r > RANK_1 ? RankBB[r - 1] << 8 : Rank1BB;
99
 
100
  for (File f = FILE_A; f <= FILE_H; ++f)
101
      AdjacentFilesBB[f] = (f > FILE_A ? FileBB[f - 1] : 0) | (f < FILE_H ? FileBB[f + 1] : 0);
102
 
103
  for (Rank r = RANK_1; r < RANK_8; ++r)
169 pmbaty 104
      ForwardRanksBB[WHITE][r] = ~(ForwardRanksBB[BLACK][r + 1] = ForwardRanksBB[BLACK][r] | RankBB[r]);
96 pmbaty 105
 
106
  for (Color c = WHITE; c <= BLACK; ++c)
107
      for (Square s = SQ_A1; s <= SQ_H8; ++s)
108
      {
169 pmbaty 109
          ForwardFileBB [c][s] = ForwardRanksBB[c][rank_of(s)] & FileBB[file_of(s)];
110
          PawnAttackSpan[c][s] = ForwardRanksBB[c][rank_of(s)] & AdjacentFilesBB[file_of(s)];
111
          PassedPawnMask[c][s] = ForwardFileBB [c][s] | PawnAttackSpan[c][s];
96 pmbaty 112
      }
113
 
114
  for (Square s1 = SQ_A1; s1 <= SQ_H8; ++s1)
115
      for (Square s2 = SQ_A1; s2 <= SQ_H8; ++s2)
116
          if (s1 != s2)
117
          {
118
              SquareDistance[s1][s2] = std::max(distance<File>(s1, s2), distance<Rank>(s1, s2));
185 pmbaty 119
              DistanceRingBB[s1][SquareDistance[s1][s2]] |= s2;
96 pmbaty 120
          }
121
 
169 pmbaty 122
  int steps[][5] = { {}, { 7, 9 }, { 6, 10, 15, 17 }, {}, {}, {}, { 1, 7, 8, 9 } };
96 pmbaty 123
 
124
  for (Color c = WHITE; c <= BLACK; ++c)
169 pmbaty 125
      for (PieceType pt : { PAWN, KNIGHT, KING })
96 pmbaty 126
          for (Square s = SQ_A1; s <= SQ_H8; ++s)
127
              for (int i = 0; steps[pt][i]; ++i)
128
              {
169 pmbaty 129
                  Square to = s + Direction(c == WHITE ? steps[pt][i] : -steps[pt][i]);
96 pmbaty 130
 
131
                  if (is_ok(to) && distance(s, to) < 3)
169 pmbaty 132
                  {
133
                      if (pt == PAWN)
134
                          PawnAttacks[c][s] |= to;
135
                      else
136
                          PseudoAttacks[pt][s] |= to;
137
                  }
96 pmbaty 138
              }
139
 
185 pmbaty 140
  Direction RookDirections[] = { NORTH, EAST, SOUTH, WEST };
169 pmbaty 141
  Direction BishopDirections[] = { NORTH_EAST, SOUTH_EAST, SOUTH_WEST, NORTH_WEST };
96 pmbaty 142
 
169 pmbaty 143
  init_magics(RookTable, RookMagics, RookDirections);
144
  init_magics(BishopTable, BishopMagics, BishopDirections);
96 pmbaty 145
 
146
  for (Square s1 = SQ_A1; s1 <= SQ_H8; ++s1)
147
  {
148
      PseudoAttacks[QUEEN][s1]  = PseudoAttacks[BISHOP][s1] = attacks_bb<BISHOP>(s1, 0);
149
      PseudoAttacks[QUEEN][s1] |= PseudoAttacks[  ROOK][s1] = attacks_bb<  ROOK>(s1, 0);
150
 
169 pmbaty 151
      for (PieceType pt : { BISHOP, ROOK })
96 pmbaty 152
          for (Square s2 = SQ_A1; s2 <= SQ_H8; ++s2)
153
          {
169 pmbaty 154
              if (!(PseudoAttacks[pt][s1] & s2))
96 pmbaty 155
                  continue;
156
 
169 pmbaty 157
              LineBB[s1][s2] = (attacks_bb(pt, s1, 0) & attacks_bb(pt, s2, 0)) | s1 | s2;
158
              BetweenBB[s1][s2] = attacks_bb(pt, s1, SquareBB[s2]) & attacks_bb(pt, s2, SquareBB[s1]);
96 pmbaty 159
          }
160
  }
161
}
162
 
163
 
164
namespace {
165
 
169 pmbaty 166
  Bitboard sliding_attack(Direction directions[], Square sq, Bitboard occupied) {
96 pmbaty 167
 
168
    Bitboard attack = 0;
169
 
170
    for (int i = 0; i < 4; ++i)
169 pmbaty 171
        for (Square s = sq + directions[i];
172
             is_ok(s) && distance(s, s - directions[i]) == 1;
173
             s += directions[i])
96 pmbaty 174
        {
175
            attack |= s;
176
 
177
            if (occupied & s)
178
                break;
179
        }
180
 
181
    return attack;
182
  }
183
 
184
 
185
  // init_magics() computes all rook and bishop attacks at startup. Magic
186
  // bitboards are used to look up attacks of sliding pieces. As a reference see
187
  // chessprogramming.wikispaces.com/Magic+Bitboards. In particular, here we
188
  // use the so called "fancy" approach.
189
 
169 pmbaty 190
  void init_magics(Bitboard table[], Magic magics[], Direction directions[]) {
96 pmbaty 191
 
169 pmbaty 192
    // Optimal PRNG seeds to pick the correct magics in the shortest time
96 pmbaty 193
    int seeds[][RANK_NB] = { { 8977, 44560, 54343, 38998,  5731, 95205, 104912, 17020 },
194
                             {  728, 10316, 55013, 32803, 12281, 15100,  16645,   255 } };
195
 
196
    Bitboard occupancy[4096], reference[4096], edges, b;
169 pmbaty 197
    int epoch[4096] = {}, cnt = 0, size = 0;
96 pmbaty 198
 
199
    for (Square s = SQ_A1; s <= SQ_H8; ++s)
200
    {
201
        // Board edges are not considered in the relevant occupancies
202
        edges = ((Rank1BB | Rank8BB) & ~rank_bb(s)) | ((FileABB | FileHBB) & ~file_bb(s));
203
 
204
        // Given a square 's', the mask is the bitboard of sliding attacks from
205
        // 's' computed on an empty board. The index must be big enough to contain
206
        // all the attacks for each possible subset of the mask and so is 2 power
207
        // the number of 1s of the mask. Hence we deduce the size of the shift to
208
        // apply to the 64 or 32 bits word to get the index.
169 pmbaty 209
        Magic& m = magics[s];
210
        m.mask  = sliding_attack(directions, s, 0) & ~edges;
211
        m.shift = (Is64Bit ? 64 : 32) - popcount(m.mask);
96 pmbaty 212
 
169 pmbaty 213
        // Set the offset for the attacks table of the square. We have individual
214
        // table sizes for each square with "Fancy Magic Bitboards".
215
        m.attacks = s == SQ_A1 ? table : magics[s - 1].attacks + size;
216
 
96 pmbaty 217
        // Use Carry-Rippler trick to enumerate all subsets of masks[s] and
218
        // store the corresponding sliding attack bitboard in reference[].
219
        b = size = 0;
220
        do {
221
            occupancy[size] = b;
169 pmbaty 222
            reference[size] = sliding_attack(directions, s, b);
96 pmbaty 223
 
224
            if (HasPext)
169 pmbaty 225
                m.attacks[pext(b, m.mask)] = reference[size];
96 pmbaty 226
 
227
            size++;
169 pmbaty 228
            b = (b - m.mask) & m.mask;
96 pmbaty 229
        } while (b);
230
 
231
        if (HasPext)
232
            continue;
233
 
234
        PRNG rng(seeds[Is64Bit][rank_of(s)]);
235
 
236
        // Find a magic for square 's' picking up an (almost) random number
237
        // until we find the one that passes the verification test.
169 pmbaty 238
        for (int i = 0; i < size; )
239
        {
240
            for (m.magic = 0; popcount((m.magic * m.mask) >> 56) < 6; )
241
                m.magic = rng.sparse_rand<Bitboard>();
96 pmbaty 242
 
243
            // A good magic must map every possible occupancy to an index that
244
            // looks up the correct sliding attack in the attacks[s] database.
245
            // Note that we build up the database for square 's' as a side
169 pmbaty 246
            // effect of verifying the magic. Keep track of the attempt count
247
            // and save it in epoch[], little speed-up trick to avoid resetting
248
            // m.attacks[] after every failed attempt.
249
            for (++cnt, i = 0; i < size; ++i)
96 pmbaty 250
            {
169 pmbaty 251
                unsigned idx = m.index(occupancy[i]);
96 pmbaty 252
 
169 pmbaty 253
                if (epoch[idx] < cnt)
96 pmbaty 254
                {
169 pmbaty 255
                    epoch[idx] = cnt;
256
                    m.attacks[idx] = reference[i];
96 pmbaty 257
                }
169 pmbaty 258
                else if (m.attacks[idx] != reference[i])
96 pmbaty 259
                    break;
260
            }
169 pmbaty 261
        }
96 pmbaty 262
    }
263
  }
264
}