Subversion Repositories Games.Chess Giants

Rev

Rev 154 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed

Rev Author Line No. Line
96 pmbaty 1
/*
2
  Stockfish, a UCI chess playing engine derived from Glaurung 2.1
3
  Copyright (C) 2004-2008 Tord Romstad (Glaurung author)
4
  Copyright (C) 2008-2015 Marco Costalba, Joona Kiiski, Tord Romstad
169 pmbaty 5
  Copyright (C) 2015-2018 Marco Costalba, Joona Kiiski, Gary Linscott, Tord Romstad
96 pmbaty 6
 
7
  Stockfish is free software: you can redistribute it and/or modify
8
  it under the terms of the GNU General Public License as published by
9
  the Free Software Foundation, either version 3 of the License, or
10
  (at your option) any later version.
11
 
12
  Stockfish is distributed in the hope that it will be useful,
13
  but WITHOUT ANY WARRANTY; without even the implied warranty of
14
  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15
  GNU General Public License for more details.
16
 
17
  You should have received a copy of the GNU General Public License
18
  along with this program.  If not, see <http://www.gnu.org/licenses/>.
19
*/
20
 
21
#include <algorithm>
22
 
23
#include "bitboard.h"
24
#include "misc.h"
25
 
154 pmbaty 26
uint8_t PopCnt16[1 << 16];
96 pmbaty 27
int SquareDistance[SQUARE_NB][SQUARE_NB];
28
 
29
Bitboard SquareBB[SQUARE_NB];
30
Bitboard FileBB[FILE_NB];
31
Bitboard RankBB[RANK_NB];
32
Bitboard AdjacentFilesBB[FILE_NB];
169 pmbaty 33
Bitboard ForwardRanksBB[COLOR_NB][RANK_NB];
96 pmbaty 34
Bitboard BetweenBB[SQUARE_NB][SQUARE_NB];
35
Bitboard LineBB[SQUARE_NB][SQUARE_NB];
36
Bitboard DistanceRingBB[SQUARE_NB][8];
169 pmbaty 37
Bitboard ForwardFileBB[COLOR_NB][SQUARE_NB];
96 pmbaty 38
Bitboard PassedPawnMask[COLOR_NB][SQUARE_NB];
39
Bitboard PawnAttackSpan[COLOR_NB][SQUARE_NB];
40
Bitboard PseudoAttacks[PIECE_TYPE_NB][SQUARE_NB];
169 pmbaty 41
Bitboard PawnAttacks[COLOR_NB][SQUARE_NB];
96 pmbaty 42
 
169 pmbaty 43
Magic RookMagics[SQUARE_NB];
44
Magic BishopMagics[SQUARE_NB];
45
 
96 pmbaty 46
namespace {
47
 
48
  // De Bruijn sequences. See chessprogramming.wikispaces.com/BitScan
49
  const uint64_t DeBruijn64 = 0x3F79D71B4CB0A89ULL;
50
  const uint32_t DeBruijn32 = 0x783A9B23;
51
 
52
  int MSBTable[256];            // To implement software msb()
53
  Square BSFTable[SQUARE_NB];   // To implement software bitscan
54
  Bitboard RookTable[0x19000];  // To store rook attacks
55
  Bitboard BishopTable[0x1480]; // To store bishop attacks
56
 
169 pmbaty 57
  void init_magics(Bitboard table[], Magic magics[], Direction directions[]);
96 pmbaty 58
 
59
  // bsf_index() returns the index into BSFTable[] to look up the bitscan. Uses
60
  // Matt Taylor's folding for 32 bit case, extended to 64 bit by Kim Walisch.
61
 
62
  unsigned bsf_index(Bitboard b) {
63
    b ^= b - 1;
64
    return Is64Bit ? (b * DeBruijn64) >> 58
65
                   : ((unsigned(b) ^ unsigned(b >> 32)) * DeBruijn32) >> 26;
66
  }
154 pmbaty 67
 
68
 
69
  // popcount16() counts the non-zero bits using SWAR-Popcount algorithm
70
 
71
  unsigned popcount16(unsigned u) {
72
    u -= (u >> 1) & 0x5555U;
73
    u = ((u >> 2) & 0x3333U) + (u & 0x3333U);
74
    u = ((u >> 4) + u) & 0x0F0FU;
75
    return (u * 0x0101U) >> 8;
76
  }
96 pmbaty 77
}
78
 
154 pmbaty 79
#ifdef NO_BSF
96 pmbaty 80
 
81
/// Software fall-back of lsb() and msb() for CPU lacking hardware support
82
 
83
Square lsb(Bitboard b) {
154 pmbaty 84
  assert(b);
96 pmbaty 85
  return BSFTable[bsf_index(b)];
86
}
87
 
88
Square msb(Bitboard b) {
89
 
154 pmbaty 90
  assert(b);
96 pmbaty 91
  unsigned b32;
92
  int result = 0;
93
 
94
  if (b > 0xFFFFFFFF)
95
  {
96
      b >>= 32;
97
      result = 32;
98
  }
99
 
100
  b32 = unsigned(b);
101
 
102
  if (b32 > 0xFFFF)
103
  {
104
      b32 >>= 16;
105
      result += 16;
106
  }
107
 
108
  if (b32 > 0xFF)
109
  {
110
      b32 >>= 8;
111
      result += 8;
112
  }
113
 
114
  return Square(result + MSBTable[b32]);
115
}
116
 
154 pmbaty 117
#endif // ifdef NO_BSF
96 pmbaty 118
 
119
 
120
/// Bitboards::pretty() returns an ASCII representation of a bitboard suitable
121
/// to be printed to standard output. Useful for debugging.
122
 
123
const std::string Bitboards::pretty(Bitboard b) {
124
 
125
  std::string s = "+---+---+---+---+---+---+---+---+\n";
126
 
127
  for (Rank r = RANK_8; r >= RANK_1; --r)
128
  {
129
      for (File f = FILE_A; f <= FILE_H; ++f)
130
          s += b & make_square(f, r) ? "| X " : "|   ";
131
 
132
      s += "|\n+---+---+---+---+---+---+---+---+\n";
133
  }
134
 
135
  return s;
136
}
137
 
138
 
139
/// Bitboards::init() initializes various bitboard tables. It is called at
140
/// startup and relies on global objects to be already zero-initialized.
141
 
142
void Bitboards::init() {
143
 
154 pmbaty 144
  for (unsigned i = 0; i < (1 << 16); ++i)
145
      PopCnt16[i] = (uint8_t) popcount16(i);
146
 
96 pmbaty 147
  for (Square s = SQ_A1; s <= SQ_H8; ++s)
148
  {
149
      SquareBB[s] = 1ULL << s;
150
      BSFTable[bsf_index(SquareBB[s])] = s;
151
  }
152
 
153
  for (Bitboard b = 2; b < 256; ++b)
154
      MSBTable[b] = MSBTable[b - 1] + !more_than_one(b);
155
 
156
  for (File f = FILE_A; f <= FILE_H; ++f)
157
      FileBB[f] = f > FILE_A ? FileBB[f - 1] << 1 : FileABB;
158
 
159
  for (Rank r = RANK_1; r <= RANK_8; ++r)
160
      RankBB[r] = r > RANK_1 ? RankBB[r - 1] << 8 : Rank1BB;
161
 
162
  for (File f = FILE_A; f <= FILE_H; ++f)
163
      AdjacentFilesBB[f] = (f > FILE_A ? FileBB[f - 1] : 0) | (f < FILE_H ? FileBB[f + 1] : 0);
164
 
165
  for (Rank r = RANK_1; r < RANK_8; ++r)
169 pmbaty 166
      ForwardRanksBB[WHITE][r] = ~(ForwardRanksBB[BLACK][r + 1] = ForwardRanksBB[BLACK][r] | RankBB[r]);
96 pmbaty 167
 
168
  for (Color c = WHITE; c <= BLACK; ++c)
169
      for (Square s = SQ_A1; s <= SQ_H8; ++s)
170
      {
169 pmbaty 171
          ForwardFileBB [c][s] = ForwardRanksBB[c][rank_of(s)] & FileBB[file_of(s)];
172
          PawnAttackSpan[c][s] = ForwardRanksBB[c][rank_of(s)] & AdjacentFilesBB[file_of(s)];
173
          PassedPawnMask[c][s] = ForwardFileBB [c][s] | PawnAttackSpan[c][s];
96 pmbaty 174
      }
175
 
176
  for (Square s1 = SQ_A1; s1 <= SQ_H8; ++s1)
177
      for (Square s2 = SQ_A1; s2 <= SQ_H8; ++s2)
178
          if (s1 != s2)
179
          {
180
              SquareDistance[s1][s2] = std::max(distance<File>(s1, s2), distance<Rank>(s1, s2));
181
              DistanceRingBB[s1][SquareDistance[s1][s2] - 1] |= s2;
182
          }
183
 
169 pmbaty 184
  int steps[][5] = { {}, { 7, 9 }, { 6, 10, 15, 17 }, {}, {}, {}, { 1, 7, 8, 9 } };
96 pmbaty 185
 
186
  for (Color c = WHITE; c <= BLACK; ++c)
169 pmbaty 187
      for (PieceType pt : { PAWN, KNIGHT, KING })
96 pmbaty 188
          for (Square s = SQ_A1; s <= SQ_H8; ++s)
189
              for (int i = 0; steps[pt][i]; ++i)
190
              {
169 pmbaty 191
                  Square to = s + Direction(c == WHITE ? steps[pt][i] : -steps[pt][i]);
96 pmbaty 192
 
193
                  if (is_ok(to) && distance(s, to) < 3)
169 pmbaty 194
                  {
195
                      if (pt == PAWN)
196
                          PawnAttacks[c][s] |= to;
197
                      else
198
                          PseudoAttacks[pt][s] |= to;
199
                  }
96 pmbaty 200
              }
201
 
169 pmbaty 202
  Direction RookDirections[] = { NORTH,  EAST,  SOUTH,  WEST };
203
  Direction BishopDirections[] = { NORTH_EAST, SOUTH_EAST, SOUTH_WEST, NORTH_WEST };
96 pmbaty 204
 
169 pmbaty 205
  init_magics(RookTable, RookMagics, RookDirections);
206
  init_magics(BishopTable, BishopMagics, BishopDirections);
96 pmbaty 207
 
208
  for (Square s1 = SQ_A1; s1 <= SQ_H8; ++s1)
209
  {
210
      PseudoAttacks[QUEEN][s1]  = PseudoAttacks[BISHOP][s1] = attacks_bb<BISHOP>(s1, 0);
211
      PseudoAttacks[QUEEN][s1] |= PseudoAttacks[  ROOK][s1] = attacks_bb<  ROOK>(s1, 0);
212
 
169 pmbaty 213
      for (PieceType pt : { BISHOP, ROOK })
96 pmbaty 214
          for (Square s2 = SQ_A1; s2 <= SQ_H8; ++s2)
215
          {
169 pmbaty 216
              if (!(PseudoAttacks[pt][s1] & s2))
96 pmbaty 217
                  continue;
218
 
169 pmbaty 219
              LineBB[s1][s2] = (attacks_bb(pt, s1, 0) & attacks_bb(pt, s2, 0)) | s1 | s2;
220
              BetweenBB[s1][s2] = attacks_bb(pt, s1, SquareBB[s2]) & attacks_bb(pt, s2, SquareBB[s1]);
96 pmbaty 221
          }
222
  }
223
}
224
 
225
 
226
namespace {
227
 
169 pmbaty 228
  Bitboard sliding_attack(Direction directions[], Square sq, Bitboard occupied) {
96 pmbaty 229
 
230
    Bitboard attack = 0;
231
 
232
    for (int i = 0; i < 4; ++i)
169 pmbaty 233
        for (Square s = sq + directions[i];
234
             is_ok(s) && distance(s, s - directions[i]) == 1;
235
             s += directions[i])
96 pmbaty 236
        {
237
            attack |= s;
238
 
239
            if (occupied & s)
240
                break;
241
        }
242
 
243
    return attack;
244
  }
245
 
246
 
247
  // init_magics() computes all rook and bishop attacks at startup. Magic
248
  // bitboards are used to look up attacks of sliding pieces. As a reference see
249
  // chessprogramming.wikispaces.com/Magic+Bitboards. In particular, here we
250
  // use the so called "fancy" approach.
251
 
169 pmbaty 252
  void init_magics(Bitboard table[], Magic magics[], Direction directions[]) {
96 pmbaty 253
 
169 pmbaty 254
    // Optimal PRNG seeds to pick the correct magics in the shortest time
96 pmbaty 255
    int seeds[][RANK_NB] = { { 8977, 44560, 54343, 38998,  5731, 95205, 104912, 17020 },
256
                             {  728, 10316, 55013, 32803, 12281, 15100,  16645,   255 } };
257
 
258
    Bitboard occupancy[4096], reference[4096], edges, b;
169 pmbaty 259
    int epoch[4096] = {}, cnt = 0, size = 0;
96 pmbaty 260
 
261
    for (Square s = SQ_A1; s <= SQ_H8; ++s)
262
    {
263
        // Board edges are not considered in the relevant occupancies
264
        edges = ((Rank1BB | Rank8BB) & ~rank_bb(s)) | ((FileABB | FileHBB) & ~file_bb(s));
265
 
266
        // Given a square 's', the mask is the bitboard of sliding attacks from
267
        // 's' computed on an empty board. The index must be big enough to contain
268
        // all the attacks for each possible subset of the mask and so is 2 power
269
        // the number of 1s of the mask. Hence we deduce the size of the shift to
270
        // apply to the 64 or 32 bits word to get the index.
169 pmbaty 271
        Magic& m = magics[s];
272
        m.mask  = sliding_attack(directions, s, 0) & ~edges;
273
        m.shift = (Is64Bit ? 64 : 32) - popcount(m.mask);
96 pmbaty 274
 
169 pmbaty 275
        // Set the offset for the attacks table of the square. We have individual
276
        // table sizes for each square with "Fancy Magic Bitboards".
277
        m.attacks = s == SQ_A1 ? table : magics[s - 1].attacks + size;
278
 
96 pmbaty 279
        // Use Carry-Rippler trick to enumerate all subsets of masks[s] and
280
        // store the corresponding sliding attack bitboard in reference[].
281
        b = size = 0;
282
        do {
283
            occupancy[size] = b;
169 pmbaty 284
            reference[size] = sliding_attack(directions, s, b);
96 pmbaty 285
 
286
            if (HasPext)
169 pmbaty 287
                m.attacks[pext(b, m.mask)] = reference[size];
96 pmbaty 288
 
289
            size++;
169 pmbaty 290
            b = (b - m.mask) & m.mask;
96 pmbaty 291
        } while (b);
292
 
293
        if (HasPext)
294
            continue;
295
 
296
        PRNG rng(seeds[Is64Bit][rank_of(s)]);
297
 
298
        // Find a magic for square 's' picking up an (almost) random number
299
        // until we find the one that passes the verification test.
169 pmbaty 300
        for (int i = 0; i < size; )
301
        {
302
            for (m.magic = 0; popcount((m.magic * m.mask) >> 56) < 6; )
303
                m.magic = rng.sparse_rand<Bitboard>();
96 pmbaty 304
 
305
            // A good magic must map every possible occupancy to an index that
306
            // looks up the correct sliding attack in the attacks[s] database.
307
            // Note that we build up the database for square 's' as a side
169 pmbaty 308
            // effect of verifying the magic. Keep track of the attempt count
309
            // and save it in epoch[], little speed-up trick to avoid resetting
310
            // m.attacks[] after every failed attempt.
311
            for (++cnt, i = 0; i < size; ++i)
96 pmbaty 312
            {
169 pmbaty 313
                unsigned idx = m.index(occupancy[i]);
96 pmbaty 314
 
169 pmbaty 315
                if (epoch[idx] < cnt)
96 pmbaty 316
                {
169 pmbaty 317
                    epoch[idx] = cnt;
318
                    m.attacks[idx] = reference[i];
96 pmbaty 319
                }
169 pmbaty 320
                else if (m.attacks[idx] != reference[i])
96 pmbaty 321
                    break;
322
            }
169 pmbaty 323
        }
96 pmbaty 324
    }
325
  }
326
}