Rev 154 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed
Rev | Author | Line No. | Line |
---|---|---|---|
96 | pmbaty | 1 | /* |
2 | Stockfish, a UCI chess playing engine derived from Glaurung 2.1 |
||
3 | Copyright (C) 2004-2008 Tord Romstad (Glaurung author) |
||
4 | Copyright (C) 2008-2015 Marco Costalba, Joona Kiiski, Tord Romstad |
||
169 | pmbaty | 5 | Copyright (C) 2015-2018 Marco Costalba, Joona Kiiski, Gary Linscott, Tord Romstad |
96 | pmbaty | 6 | |
7 | Stockfish is free software: you can redistribute it and/or modify |
||
8 | it under the terms of the GNU General Public License as published by |
||
9 | the Free Software Foundation, either version 3 of the License, or |
||
10 | (at your option) any later version. |
||
11 | |||
12 | Stockfish is distributed in the hope that it will be useful, |
||
13 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
||
14 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
||
15 | GNU General Public License for more details. |
||
16 | |||
17 | You should have received a copy of the GNU General Public License |
||
18 | along with this program. If not, see <http://www.gnu.org/licenses/>. |
||
19 | */ |
||
20 | |||
21 | #include <algorithm> |
||
22 | |||
23 | #include "bitboard.h" |
||
24 | #include "misc.h" |
||
25 | |||
154 | pmbaty | 26 | uint8_t PopCnt16[1 << 16]; |
96 | pmbaty | 27 | int SquareDistance[SQUARE_NB][SQUARE_NB]; |
28 | |||
29 | Bitboard SquareBB[SQUARE_NB]; |
||
30 | Bitboard FileBB[FILE_NB]; |
||
31 | Bitboard RankBB[RANK_NB]; |
||
32 | Bitboard AdjacentFilesBB[FILE_NB]; |
||
169 | pmbaty | 33 | Bitboard ForwardRanksBB[COLOR_NB][RANK_NB]; |
96 | pmbaty | 34 | Bitboard BetweenBB[SQUARE_NB][SQUARE_NB]; |
35 | Bitboard LineBB[SQUARE_NB][SQUARE_NB]; |
||
36 | Bitboard DistanceRingBB[SQUARE_NB][8]; |
||
169 | pmbaty | 37 | Bitboard ForwardFileBB[COLOR_NB][SQUARE_NB]; |
96 | pmbaty | 38 | Bitboard PassedPawnMask[COLOR_NB][SQUARE_NB]; |
39 | Bitboard PawnAttackSpan[COLOR_NB][SQUARE_NB]; |
||
40 | Bitboard PseudoAttacks[PIECE_TYPE_NB][SQUARE_NB]; |
||
169 | pmbaty | 41 | Bitboard PawnAttacks[COLOR_NB][SQUARE_NB]; |
96 | pmbaty | 42 | |
169 | pmbaty | 43 | Magic RookMagics[SQUARE_NB]; |
44 | Magic BishopMagics[SQUARE_NB]; |
||
45 | |||
96 | pmbaty | 46 | namespace { |
47 | |||
48 | // De Bruijn sequences. See chessprogramming.wikispaces.com/BitScan |
||
49 | const uint64_t DeBruijn64 = 0x3F79D71B4CB0A89ULL; |
||
50 | const uint32_t DeBruijn32 = 0x783A9B23; |
||
51 | |||
52 | int MSBTable[256]; // To implement software msb() |
||
53 | Square BSFTable[SQUARE_NB]; // To implement software bitscan |
||
54 | Bitboard RookTable[0x19000]; // To store rook attacks |
||
55 | Bitboard BishopTable[0x1480]; // To store bishop attacks |
||
56 | |||
169 | pmbaty | 57 | void init_magics(Bitboard table[], Magic magics[], Direction directions[]); |
96 | pmbaty | 58 | |
59 | // bsf_index() returns the index into BSFTable[] to look up the bitscan. Uses |
||
60 | // Matt Taylor's folding for 32 bit case, extended to 64 bit by Kim Walisch. |
||
61 | |||
62 | unsigned bsf_index(Bitboard b) { |
||
63 | b ^= b - 1; |
||
64 | return Is64Bit ? (b * DeBruijn64) >> 58 |
||
65 | : ((unsigned(b) ^ unsigned(b >> 32)) * DeBruijn32) >> 26; |
||
66 | } |
||
154 | pmbaty | 67 | |
68 | |||
69 | // popcount16() counts the non-zero bits using SWAR-Popcount algorithm |
||
70 | |||
71 | unsigned popcount16(unsigned u) { |
||
72 | u -= (u >> 1) & 0x5555U; |
||
73 | u = ((u >> 2) & 0x3333U) + (u & 0x3333U); |
||
74 | u = ((u >> 4) + u) & 0x0F0FU; |
||
75 | return (u * 0x0101U) >> 8; |
||
76 | } |
||
96 | pmbaty | 77 | } |
78 | |||
154 | pmbaty | 79 | #ifdef NO_BSF |
96 | pmbaty | 80 | |
81 | /// Software fall-back of lsb() and msb() for CPU lacking hardware support |
||
82 | |||
83 | Square lsb(Bitboard b) { |
||
154 | pmbaty | 84 | assert(b); |
96 | pmbaty | 85 | return BSFTable[bsf_index(b)]; |
86 | } |
||
87 | |||
88 | Square msb(Bitboard b) { |
||
89 | |||
154 | pmbaty | 90 | assert(b); |
96 | pmbaty | 91 | unsigned b32; |
92 | int result = 0; |
||
93 | |||
94 | if (b > 0xFFFFFFFF) |
||
95 | { |
||
96 | b >>= 32; |
||
97 | result = 32; |
||
98 | } |
||
99 | |||
100 | b32 = unsigned(b); |
||
101 | |||
102 | if (b32 > 0xFFFF) |
||
103 | { |
||
104 | b32 >>= 16; |
||
105 | result += 16; |
||
106 | } |
||
107 | |||
108 | if (b32 > 0xFF) |
||
109 | { |
||
110 | b32 >>= 8; |
||
111 | result += 8; |
||
112 | } |
||
113 | |||
114 | return Square(result + MSBTable[b32]); |
||
115 | } |
||
116 | |||
154 | pmbaty | 117 | #endif // ifdef NO_BSF |
96 | pmbaty | 118 | |
119 | |||
120 | /// Bitboards::pretty() returns an ASCII representation of a bitboard suitable |
||
121 | /// to be printed to standard output. Useful for debugging. |
||
122 | |||
123 | const std::string Bitboards::pretty(Bitboard b) { |
||
124 | |||
125 | std::string s = "+---+---+---+---+---+---+---+---+\n"; |
||
126 | |||
127 | for (Rank r = RANK_8; r >= RANK_1; --r) |
||
128 | { |
||
129 | for (File f = FILE_A; f <= FILE_H; ++f) |
||
130 | s += b & make_square(f, r) ? "| X " : "| "; |
||
131 | |||
132 | s += "|\n+---+---+---+---+---+---+---+---+\n"; |
||
133 | } |
||
134 | |||
135 | return s; |
||
136 | } |
||
137 | |||
138 | |||
139 | /// Bitboards::init() initializes various bitboard tables. It is called at |
||
140 | /// startup and relies on global objects to be already zero-initialized. |
||
141 | |||
142 | void Bitboards::init() { |
||
143 | |||
154 | pmbaty | 144 | for (unsigned i = 0; i < (1 << 16); ++i) |
145 | PopCnt16[i] = (uint8_t) popcount16(i); |
||
146 | |||
96 | pmbaty | 147 | for (Square s = SQ_A1; s <= SQ_H8; ++s) |
148 | { |
||
149 | SquareBB[s] = 1ULL << s; |
||
150 | BSFTable[bsf_index(SquareBB[s])] = s; |
||
151 | } |
||
152 | |||
153 | for (Bitboard b = 2; b < 256; ++b) |
||
154 | MSBTable[b] = MSBTable[b - 1] + !more_than_one(b); |
||
155 | |||
156 | for (File f = FILE_A; f <= FILE_H; ++f) |
||
157 | FileBB[f] = f > FILE_A ? FileBB[f - 1] << 1 : FileABB; |
||
158 | |||
159 | for (Rank r = RANK_1; r <= RANK_8; ++r) |
||
160 | RankBB[r] = r > RANK_1 ? RankBB[r - 1] << 8 : Rank1BB; |
||
161 | |||
162 | for (File f = FILE_A; f <= FILE_H; ++f) |
||
163 | AdjacentFilesBB[f] = (f > FILE_A ? FileBB[f - 1] : 0) | (f < FILE_H ? FileBB[f + 1] : 0); |
||
164 | |||
165 | for (Rank r = RANK_1; r < RANK_8; ++r) |
||
169 | pmbaty | 166 | ForwardRanksBB[WHITE][r] = ~(ForwardRanksBB[BLACK][r + 1] = ForwardRanksBB[BLACK][r] | RankBB[r]); |
96 | pmbaty | 167 | |
168 | for (Color c = WHITE; c <= BLACK; ++c) |
||
169 | for (Square s = SQ_A1; s <= SQ_H8; ++s) |
||
170 | { |
||
169 | pmbaty | 171 | ForwardFileBB [c][s] = ForwardRanksBB[c][rank_of(s)] & FileBB[file_of(s)]; |
172 | PawnAttackSpan[c][s] = ForwardRanksBB[c][rank_of(s)] & AdjacentFilesBB[file_of(s)]; |
||
173 | PassedPawnMask[c][s] = ForwardFileBB [c][s] | PawnAttackSpan[c][s]; |
||
96 | pmbaty | 174 | } |
175 | |||
176 | for (Square s1 = SQ_A1; s1 <= SQ_H8; ++s1) |
||
177 | for (Square s2 = SQ_A1; s2 <= SQ_H8; ++s2) |
||
178 | if (s1 != s2) |
||
179 | { |
||
180 | SquareDistance[s1][s2] = std::max(distance<File>(s1, s2), distance<Rank>(s1, s2)); |
||
181 | DistanceRingBB[s1][SquareDistance[s1][s2] - 1] |= s2; |
||
182 | } |
||
183 | |||
169 | pmbaty | 184 | int steps[][5] = { {}, { 7, 9 }, { 6, 10, 15, 17 }, {}, {}, {}, { 1, 7, 8, 9 } }; |
96 | pmbaty | 185 | |
186 | for (Color c = WHITE; c <= BLACK; ++c) |
||
169 | pmbaty | 187 | for (PieceType pt : { PAWN, KNIGHT, KING }) |
96 | pmbaty | 188 | for (Square s = SQ_A1; s <= SQ_H8; ++s) |
189 | for (int i = 0; steps[pt][i]; ++i) |
||
190 | { |
||
169 | pmbaty | 191 | Square to = s + Direction(c == WHITE ? steps[pt][i] : -steps[pt][i]); |
96 | pmbaty | 192 | |
193 | if (is_ok(to) && distance(s, to) < 3) |
||
169 | pmbaty | 194 | { |
195 | if (pt == PAWN) |
||
196 | PawnAttacks[c][s] |= to; |
||
197 | else |
||
198 | PseudoAttacks[pt][s] |= to; |
||
199 | } |
||
96 | pmbaty | 200 | } |
201 | |||
169 | pmbaty | 202 | Direction RookDirections[] = { NORTH, EAST, SOUTH, WEST }; |
203 | Direction BishopDirections[] = { NORTH_EAST, SOUTH_EAST, SOUTH_WEST, NORTH_WEST }; |
||
96 | pmbaty | 204 | |
169 | pmbaty | 205 | init_magics(RookTable, RookMagics, RookDirections); |
206 | init_magics(BishopTable, BishopMagics, BishopDirections); |
||
96 | pmbaty | 207 | |
208 | for (Square s1 = SQ_A1; s1 <= SQ_H8; ++s1) |
||
209 | { |
||
210 | PseudoAttacks[QUEEN][s1] = PseudoAttacks[BISHOP][s1] = attacks_bb<BISHOP>(s1, 0); |
||
211 | PseudoAttacks[QUEEN][s1] |= PseudoAttacks[ ROOK][s1] = attacks_bb< ROOK>(s1, 0); |
||
212 | |||
169 | pmbaty | 213 | for (PieceType pt : { BISHOP, ROOK }) |
96 | pmbaty | 214 | for (Square s2 = SQ_A1; s2 <= SQ_H8; ++s2) |
215 | { |
||
169 | pmbaty | 216 | if (!(PseudoAttacks[pt][s1] & s2)) |
96 | pmbaty | 217 | continue; |
218 | |||
169 | pmbaty | 219 | LineBB[s1][s2] = (attacks_bb(pt, s1, 0) & attacks_bb(pt, s2, 0)) | s1 | s2; |
220 | BetweenBB[s1][s2] = attacks_bb(pt, s1, SquareBB[s2]) & attacks_bb(pt, s2, SquareBB[s1]); |
||
96 | pmbaty | 221 | } |
222 | } |
||
223 | } |
||
224 | |||
225 | |||
226 | namespace { |
||
227 | |||
169 | pmbaty | 228 | Bitboard sliding_attack(Direction directions[], Square sq, Bitboard occupied) { |
96 | pmbaty | 229 | |
230 | Bitboard attack = 0; |
||
231 | |||
232 | for (int i = 0; i < 4; ++i) |
||
169 | pmbaty | 233 | for (Square s = sq + directions[i]; |
234 | is_ok(s) && distance(s, s - directions[i]) == 1; |
||
235 | s += directions[i]) |
||
96 | pmbaty | 236 | { |
237 | attack |= s; |
||
238 | |||
239 | if (occupied & s) |
||
240 | break; |
||
241 | } |
||
242 | |||
243 | return attack; |
||
244 | } |
||
245 | |||
246 | |||
247 | // init_magics() computes all rook and bishop attacks at startup. Magic |
||
248 | // bitboards are used to look up attacks of sliding pieces. As a reference see |
||
249 | // chessprogramming.wikispaces.com/Magic+Bitboards. In particular, here we |
||
250 | // use the so called "fancy" approach. |
||
251 | |||
169 | pmbaty | 252 | void init_magics(Bitboard table[], Magic magics[], Direction directions[]) { |
96 | pmbaty | 253 | |
169 | pmbaty | 254 | // Optimal PRNG seeds to pick the correct magics in the shortest time |
96 | pmbaty | 255 | int seeds[][RANK_NB] = { { 8977, 44560, 54343, 38998, 5731, 95205, 104912, 17020 }, |
256 | { 728, 10316, 55013, 32803, 12281, 15100, 16645, 255 } }; |
||
257 | |||
258 | Bitboard occupancy[4096], reference[4096], edges, b; |
||
169 | pmbaty | 259 | int epoch[4096] = {}, cnt = 0, size = 0; |
96 | pmbaty | 260 | |
261 | for (Square s = SQ_A1; s <= SQ_H8; ++s) |
||
262 | { |
||
263 | // Board edges are not considered in the relevant occupancies |
||
264 | edges = ((Rank1BB | Rank8BB) & ~rank_bb(s)) | ((FileABB | FileHBB) & ~file_bb(s)); |
||
265 | |||
266 | // Given a square 's', the mask is the bitboard of sliding attacks from |
||
267 | // 's' computed on an empty board. The index must be big enough to contain |
||
268 | // all the attacks for each possible subset of the mask and so is 2 power |
||
269 | // the number of 1s of the mask. Hence we deduce the size of the shift to |
||
270 | // apply to the 64 or 32 bits word to get the index. |
||
169 | pmbaty | 271 | Magic& m = magics[s]; |
272 | m.mask = sliding_attack(directions, s, 0) & ~edges; |
||
273 | m.shift = (Is64Bit ? 64 : 32) - popcount(m.mask); |
||
96 | pmbaty | 274 | |
169 | pmbaty | 275 | // Set the offset for the attacks table of the square. We have individual |
276 | // table sizes for each square with "Fancy Magic Bitboards". |
||
277 | m.attacks = s == SQ_A1 ? table : magics[s - 1].attacks + size; |
||
278 | |||
96 | pmbaty | 279 | // Use Carry-Rippler trick to enumerate all subsets of masks[s] and |
280 | // store the corresponding sliding attack bitboard in reference[]. |
||
281 | b = size = 0; |
||
282 | do { |
||
283 | occupancy[size] = b; |
||
169 | pmbaty | 284 | reference[size] = sliding_attack(directions, s, b); |
96 | pmbaty | 285 | |
286 | if (HasPext) |
||
169 | pmbaty | 287 | m.attacks[pext(b, m.mask)] = reference[size]; |
96 | pmbaty | 288 | |
289 | size++; |
||
169 | pmbaty | 290 | b = (b - m.mask) & m.mask; |
96 | pmbaty | 291 | } while (b); |
292 | |||
293 | if (HasPext) |
||
294 | continue; |
||
295 | |||
296 | PRNG rng(seeds[Is64Bit][rank_of(s)]); |
||
297 | |||
298 | // Find a magic for square 's' picking up an (almost) random number |
||
299 | // until we find the one that passes the verification test. |
||
169 | pmbaty | 300 | for (int i = 0; i < size; ) |
301 | { |
||
302 | for (m.magic = 0; popcount((m.magic * m.mask) >> 56) < 6; ) |
||
303 | m.magic = rng.sparse_rand<Bitboard>(); |
||
96 | pmbaty | 304 | |
305 | // A good magic must map every possible occupancy to an index that |
||
306 | // looks up the correct sliding attack in the attacks[s] database. |
||
307 | // Note that we build up the database for square 's' as a side |
||
169 | pmbaty | 308 | // effect of verifying the magic. Keep track of the attempt count |
309 | // and save it in epoch[], little speed-up trick to avoid resetting |
||
310 | // m.attacks[] after every failed attempt. |
||
311 | for (++cnt, i = 0; i < size; ++i) |
||
96 | pmbaty | 312 | { |
169 | pmbaty | 313 | unsigned idx = m.index(occupancy[i]); |
96 | pmbaty | 314 | |
169 | pmbaty | 315 | if (epoch[idx] < cnt) |
96 | pmbaty | 316 | { |
169 | pmbaty | 317 | epoch[idx] = cnt; |
318 | m.attacks[idx] = reference[i]; |
||
96 | pmbaty | 319 | } |
169 | pmbaty | 320 | else if (m.attacks[idx] != reference[i]) |
96 | pmbaty | 321 | break; |
322 | } |
||
169 | pmbaty | 323 | } |
96 | pmbaty | 324 | } |
325 | } |
||
326 | } |