Rev 154 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed
| Rev | Author | Line No. | Line | 
|---|---|---|---|
| 96 | pmbaty | 1 | /* | 
| 2 |   Stockfish, a UCI chess playing engine derived from Glaurung 2.1 | ||
| 3 |   Copyright (C) 2004-2008 Tord Romstad (Glaurung author) | ||
| 4 |   Copyright (C) 2008-2015 Marco Costalba, Joona Kiiski, Tord Romstad | ||
| 169 | pmbaty | 5 |   Copyright (C) 2015-2018 Marco Costalba, Joona Kiiski, Gary Linscott, Tord Romstad | 
| 96 | pmbaty | 6 | |
| 7 |   Stockfish is free software: you can redistribute it and/or modify | ||
| 8 |   it under the terms of the GNU General Public License as published by | ||
| 9 |   the Free Software Foundation, either version 3 of the License, or | ||
| 10 |   (at your option) any later version. | ||
| 11 | |||
| 12 |   Stockfish is distributed in the hope that it will be useful, | ||
| 13 |   but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
| 14 |   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||
| 15 |   GNU General Public License for more details. | ||
| 16 | |||
| 17 |   You should have received a copy of the GNU General Public License | ||
| 18 |   along with this program.  If not, see <http://www.gnu.org/licenses/>. | ||
| 19 | */ | ||
| 20 | |||
| 21 | #include <algorithm> | ||
| 22 | |||
| 23 | #include "bitboard.h" | ||
| 24 | #include "misc.h" | ||
| 25 | |||
| 154 | pmbaty | 26 | uint8_t PopCnt16[1 << 16]; | 
| 96 | pmbaty | 27 | int SquareDistance[SQUARE_NB][SQUARE_NB]; | 
| 28 | |||
| 29 | Bitboard SquareBB[SQUARE_NB]; | ||
| 30 | Bitboard FileBB[FILE_NB]; | ||
| 31 | Bitboard RankBB[RANK_NB]; | ||
| 32 | Bitboard AdjacentFilesBB[FILE_NB]; | ||
| 169 | pmbaty | 33 | Bitboard ForwardRanksBB[COLOR_NB][RANK_NB]; | 
| 96 | pmbaty | 34 | Bitboard BetweenBB[SQUARE_NB][SQUARE_NB]; | 
| 35 | Bitboard LineBB[SQUARE_NB][SQUARE_NB]; | ||
| 36 | Bitboard DistanceRingBB[SQUARE_NB][8]; | ||
| 169 | pmbaty | 37 | Bitboard ForwardFileBB[COLOR_NB][SQUARE_NB]; | 
| 96 | pmbaty | 38 | Bitboard PassedPawnMask[COLOR_NB][SQUARE_NB]; | 
| 39 | Bitboard PawnAttackSpan[COLOR_NB][SQUARE_NB]; | ||
| 40 | Bitboard PseudoAttacks[PIECE_TYPE_NB][SQUARE_NB]; | ||
| 169 | pmbaty | 41 | Bitboard PawnAttacks[COLOR_NB][SQUARE_NB]; | 
| 96 | pmbaty | 42 | |
| 169 | pmbaty | 43 | Magic RookMagics[SQUARE_NB]; | 
| 44 | Magic BishopMagics[SQUARE_NB]; | ||
| 45 | |||
| 96 | pmbaty | 46 | namespace { | 
| 47 | |||
| 48 |   // De Bruijn sequences. See chessprogramming.wikispaces.com/BitScan | ||
| 49 | const uint64_t DeBruijn64 = 0x3F79D71B4CB0A89ULL; | ||
| 50 | const uint32_t DeBruijn32 = 0x783A9B23; | ||
| 51 | |||
| 52 | int MSBTable[256]; // To implement software msb() | ||
| 53 | Square BSFTable[SQUARE_NB]; // To implement software bitscan | ||
| 54 | Bitboard RookTable[0x19000]; // To store rook attacks | ||
| 55 | Bitboard BishopTable[0x1480]; // To store bishop attacks | ||
| 56 | |||
| 169 | pmbaty | 57 | void init_magics(Bitboard table[], Magic magics[], Direction directions[]); | 
| 96 | pmbaty | 58 | |
| 59 |   // bsf_index() returns the index into BSFTable[] to look up the bitscan. Uses | ||
| 60 |   // Matt Taylor's folding for 32 bit case, extended to 64 bit by Kim Walisch. | ||
| 61 | |||
| 62 | unsigned bsf_index(Bitboard b) { | ||
| 63 | b ^= b - 1; | ||
| 64 | return Is64Bit ? (b * DeBruijn64) >> 58 | ||
| 65 | : ((unsigned(b) ^ unsigned(b >> 32)) * DeBruijn32) >> 26; | ||
| 66 |   } | ||
| 154 | pmbaty | 67 | |
| 68 | |||
| 69 |   // popcount16() counts the non-zero bits using SWAR-Popcount algorithm | ||
| 70 | |||
| 71 | unsigned popcount16(unsigned u) { | ||
| 72 | u -= (u >> 1) & 0x5555U; | ||
| 73 | u = ((u >> 2) & 0x3333U) + (u & 0x3333U); | ||
| 74 | u = ((u >> 4) + u) & 0x0F0FU; | ||
| 75 | return (u * 0x0101U) >> 8; | ||
| 76 |   } | ||
| 96 | pmbaty | 77 | } | 
| 78 | |||
| 154 | pmbaty | 79 | #ifdef NO_BSF | 
| 96 | pmbaty | 80 | |
| 81 | /// Software fall-back of lsb() and msb() for CPU lacking hardware support | ||
| 82 | |||
| 83 | Square lsb(Bitboard b) { | ||
| 154 | pmbaty | 84 | assert(b); | 
| 96 | pmbaty | 85 | return BSFTable[bsf_index(b)]; | 
| 86 | } | ||
| 87 | |||
| 88 | Square msb(Bitboard b) { | ||
| 89 | |||
| 154 | pmbaty | 90 | assert(b); | 
| 96 | pmbaty | 91 | unsigned b32; | 
| 92 | int result = 0; | ||
| 93 | |||
| 94 | if (b > 0xFFFFFFFF) | ||
| 95 |   { | ||
| 96 | b >>= 32; | ||
| 97 | result = 32; | ||
| 98 |   } | ||
| 99 | |||
| 100 | b32 = unsigned(b); | ||
| 101 | |||
| 102 | if (b32 > 0xFFFF) | ||
| 103 |   { | ||
| 104 | b32 >>= 16; | ||
| 105 | result += 16; | ||
| 106 |   } | ||
| 107 | |||
| 108 | if (b32 > 0xFF) | ||
| 109 |   { | ||
| 110 | b32 >>= 8; | ||
| 111 | result += 8; | ||
| 112 |   } | ||
| 113 | |||
| 114 | return Square(result + MSBTable[b32]); | ||
| 115 | } | ||
| 116 | |||
| 154 | pmbaty | 117 | #endif // ifdef NO_BSF | 
| 96 | pmbaty | 118 | |
| 119 | |||
| 120 | /// Bitboards::pretty() returns an ASCII representation of a bitboard suitable | ||
| 121 | /// to be printed to standard output. Useful for debugging. | ||
| 122 | |||
| 123 | const std::string Bitboards::pretty(Bitboard b) { | ||
| 124 | |||
| 125 | std::string s = "+---+---+---+---+---+---+---+---+\n"; | ||
| 126 | |||
| 127 | for (Rank r = RANK_8; r >= RANK_1; --r) | ||
| 128 |   { | ||
| 129 | for (File f = FILE_A; f <= FILE_H; ++f) | ||
| 130 | s += b & make_square(f, r) ? "| X " : "| "; | ||
| 131 | |||
| 132 | s += "|\n+---+---+---+---+---+---+---+---+\n"; | ||
| 133 |   } | ||
| 134 | |||
| 135 | return s; | ||
| 136 | } | ||
| 137 | |||
| 138 | |||
| 139 | /// Bitboards::init() initializes various bitboard tables. It is called at | ||
| 140 | /// startup and relies on global objects to be already zero-initialized. | ||
| 141 | |||
| 142 | void Bitboards::init() { | ||
| 143 | |||
| 154 | pmbaty | 144 | for (unsigned i = 0; i < (1 << 16); ++i) | 
| 145 | PopCnt16[i] = (uint8_t) popcount16(i); | ||
| 146 | |||
| 96 | pmbaty | 147 | for (Square s = SQ_A1; s <= SQ_H8; ++s) | 
| 148 |   { | ||
| 149 | SquareBB[s] = 1ULL << s; | ||
| 150 | BSFTable[bsf_index(SquareBB[s])] = s; | ||
| 151 |   } | ||
| 152 | |||
| 153 | for (Bitboard b = 2; b < 256; ++b) | ||
| 154 | MSBTable[b] = MSBTable[b - 1] + !more_than_one(b); | ||
| 155 | |||
| 156 | for (File f = FILE_A; f <= FILE_H; ++f) | ||
| 157 | FileBB[f] = f > FILE_A ? FileBB[f - 1] << 1 : FileABB; | ||
| 158 | |||
| 159 | for (Rank r = RANK_1; r <= RANK_8; ++r) | ||
| 160 | RankBB[r] = r > RANK_1 ? RankBB[r - 1] << 8 : Rank1BB; | ||
| 161 | |||
| 162 | for (File f = FILE_A; f <= FILE_H; ++f) | ||
| 163 | AdjacentFilesBB[f] = (f > FILE_A ? FileBB[f - 1] : 0) | (f < FILE_H ? FileBB[f + 1] : 0); | ||
| 164 | |||
| 165 | for (Rank r = RANK_1; r < RANK_8; ++r) | ||
| 169 | pmbaty | 166 | ForwardRanksBB[WHITE][r] = ~(ForwardRanksBB[BLACK][r + 1] = ForwardRanksBB[BLACK][r] | RankBB[r]); | 
| 96 | pmbaty | 167 | |
| 168 | for (Color c = WHITE; c <= BLACK; ++c) | ||
| 169 | for (Square s = SQ_A1; s <= SQ_H8; ++s) | ||
| 170 |       { | ||
| 169 | pmbaty | 171 | ForwardFileBB [c][s] = ForwardRanksBB[c][rank_of(s)] & FileBB[file_of(s)]; | 
| 172 | PawnAttackSpan[c][s] = ForwardRanksBB[c][rank_of(s)] & AdjacentFilesBB[file_of(s)]; | ||
| 173 | PassedPawnMask[c][s] = ForwardFileBB [c][s] | PawnAttackSpan[c][s]; | ||
| 96 | pmbaty | 174 |       } | 
| 175 | |||
| 176 | for (Square s1 = SQ_A1; s1 <= SQ_H8; ++s1) | ||
| 177 | for (Square s2 = SQ_A1; s2 <= SQ_H8; ++s2) | ||
| 178 | if (s1 != s2) | ||
| 179 |           { | ||
| 180 | SquareDistance[s1][s2] = std::max(distance<File>(s1, s2), distance<Rank>(s1, s2)); | ||
| 181 | DistanceRingBB[s1][SquareDistance[s1][s2] - 1] |= s2; | ||
| 182 |           } | ||
| 183 | |||
| 169 | pmbaty | 184 | int steps[][5] = { {}, { 7, 9 }, { 6, 10, 15, 17 }, {}, {}, {}, { 1, 7, 8, 9 } }; | 
| 96 | pmbaty | 185 | |
| 186 | for (Color c = WHITE; c <= BLACK; ++c) | ||
| 169 | pmbaty | 187 | for (PieceType pt : { PAWN, KNIGHT, KING }) | 
| 96 | pmbaty | 188 | for (Square s = SQ_A1; s <= SQ_H8; ++s) | 
| 189 | for (int i = 0; steps[pt][i]; ++i) | ||
| 190 |               { | ||
| 169 | pmbaty | 191 | Square to = s + Direction(c == WHITE ? steps[pt][i] : -steps[pt][i]); | 
| 96 | pmbaty | 192 | |
| 193 | if (is_ok(to) && distance(s, to) < 3) | ||
| 169 | pmbaty | 194 |                   { | 
| 195 | if (pt == PAWN) | ||
| 196 | PawnAttacks[c][s] |= to; | ||
| 197 |                       else | ||
| 198 | PseudoAttacks[pt][s] |= to; | ||
| 199 |                   } | ||
| 96 | pmbaty | 200 |               } | 
| 201 | |||
| 169 | pmbaty | 202 | Direction RookDirections[] = { NORTH, EAST, SOUTH, WEST }; | 
| 203 | Direction BishopDirections[] = { NORTH_EAST, SOUTH_EAST, SOUTH_WEST, NORTH_WEST }; | ||
| 96 | pmbaty | 204 | |
| 169 | pmbaty | 205 | init_magics(RookTable, RookMagics, RookDirections); | 
| 206 | init_magics(BishopTable, BishopMagics, BishopDirections); | ||
| 96 | pmbaty | 207 | |
| 208 | for (Square s1 = SQ_A1; s1 <= SQ_H8; ++s1) | ||
| 209 |   { | ||
| 210 | PseudoAttacks[QUEEN][s1] = PseudoAttacks[BISHOP][s1] = attacks_bb<BISHOP>(s1, 0); | ||
| 211 | PseudoAttacks[QUEEN][s1] |= PseudoAttacks[ ROOK][s1] = attacks_bb< ROOK>(s1, 0); | ||
| 212 | |||
| 169 | pmbaty | 213 | for (PieceType pt : { BISHOP, ROOK }) | 
| 96 | pmbaty | 214 | for (Square s2 = SQ_A1; s2 <= SQ_H8; ++s2) | 
| 215 |           { | ||
| 169 | pmbaty | 216 | if (!(PseudoAttacks[pt][s1] & s2)) | 
| 96 | pmbaty | 217 | continue; | 
| 218 | |||
| 169 | pmbaty | 219 | LineBB[s1][s2] = (attacks_bb(pt, s1, 0) & attacks_bb(pt, s2, 0)) | s1 | s2; | 
| 220 | BetweenBB[s1][s2] = attacks_bb(pt, s1, SquareBB[s2]) & attacks_bb(pt, s2, SquareBB[s1]); | ||
| 96 | pmbaty | 221 |           } | 
| 222 |   } | ||
| 223 | } | ||
| 224 | |||
| 225 | |||
| 226 | namespace { | ||
| 227 | |||
| 169 | pmbaty | 228 | Bitboard sliding_attack(Direction directions[], Square sq, Bitboard occupied) { | 
| 96 | pmbaty | 229 | |
| 230 | Bitboard attack = 0; | ||
| 231 | |||
| 232 | for (int i = 0; i < 4; ++i) | ||
| 169 | pmbaty | 233 | for (Square s = sq + directions[i]; | 
| 234 | is_ok(s) && distance(s, s - directions[i]) == 1; | ||
| 235 | s += directions[i]) | ||
| 96 | pmbaty | 236 |         { | 
| 237 | attack |= s; | ||
| 238 | |||
| 239 | if (occupied & s) | ||
| 240 | break; | ||
| 241 |         } | ||
| 242 | |||
| 243 | return attack; | ||
| 244 |   } | ||
| 245 | |||
| 246 | |||
| 247 |   // init_magics() computes all rook and bishop attacks at startup. Magic | ||
| 248 |   // bitboards are used to look up attacks of sliding pieces. As a reference see | ||
| 249 |   // chessprogramming.wikispaces.com/Magic+Bitboards. In particular, here we | ||
| 250 |   // use the so called "fancy" approach. | ||
| 251 | |||
| 169 | pmbaty | 252 | void init_magics(Bitboard table[], Magic magics[], Direction directions[]) { | 
| 96 | pmbaty | 253 | |
| 169 | pmbaty | 254 |     // Optimal PRNG seeds to pick the correct magics in the shortest time | 
| 96 | pmbaty | 255 | int seeds[][RANK_NB] = { { 8977, 44560, 54343, 38998, 5731, 95205, 104912, 17020 }, | 
| 256 | { 728, 10316, 55013, 32803, 12281, 15100, 16645, 255 } }; | ||
| 257 | |||
| 258 | Bitboard occupancy[4096], reference[4096], edges, b; | ||
| 169 | pmbaty | 259 | int epoch[4096] = {}, cnt = 0, size = 0; | 
| 96 | pmbaty | 260 | |
| 261 | for (Square s = SQ_A1; s <= SQ_H8; ++s) | ||
| 262 |     { | ||
| 263 |         // Board edges are not considered in the relevant occupancies | ||
| 264 | edges = ((Rank1BB | Rank8BB) & ~rank_bb(s)) | ((FileABB | FileHBB) & ~file_bb(s)); | ||
| 265 | |||
| 266 |         // Given a square 's', the mask is the bitboard of sliding attacks from | ||
| 267 |         // 's' computed on an empty board. The index must be big enough to contain | ||
| 268 |         // all the attacks for each possible subset of the mask and so is 2 power | ||
| 269 |         // the number of 1s of the mask. Hence we deduce the size of the shift to | ||
| 270 |         // apply to the 64 or 32 bits word to get the index. | ||
| 169 | pmbaty | 271 | Magic& m = magics[s]; | 
| 272 | m.mask = sliding_attack(directions, s, 0) & ~edges; | ||
| 273 | m.shift = (Is64Bit ? 64 : 32) - popcount(m.mask); | ||
| 96 | pmbaty | 274 | |
| 169 | pmbaty | 275 |         // Set the offset for the attacks table of the square. We have individual | 
| 276 |         // table sizes for each square with "Fancy Magic Bitboards". | ||
| 277 | m.attacks = s == SQ_A1 ? table : magics[s - 1].attacks + size; | ||
| 278 | |||
| 96 | pmbaty | 279 |         // Use Carry-Rippler trick to enumerate all subsets of masks[s] and | 
| 280 |         // store the corresponding sliding attack bitboard in reference[]. | ||
| 281 | b = size = 0; | ||
| 282 | do { | ||
| 283 | occupancy[size] = b; | ||
| 169 | pmbaty | 284 | reference[size] = sliding_attack(directions, s, b); | 
| 96 | pmbaty | 285 | |
| 286 | if (HasPext) | ||
| 169 | pmbaty | 287 | m.attacks[pext(b, m.mask)] = reference[size]; | 
| 96 | pmbaty | 288 | |
| 289 | size++; | ||
| 169 | pmbaty | 290 | b = (b - m.mask) & m.mask; | 
| 96 | pmbaty | 291 | } while (b); | 
| 292 | |||
| 293 | if (HasPext) | ||
| 294 | continue; | ||
| 295 | |||
| 296 | PRNG rng(seeds[Is64Bit][rank_of(s)]); | ||
| 297 | |||
| 298 |         // Find a magic for square 's' picking up an (almost) random number | ||
| 299 |         // until we find the one that passes the verification test. | ||
| 169 | pmbaty | 300 | for (int i = 0; i < size; ) | 
| 301 |         { | ||
| 302 | for (m.magic = 0; popcount((m.magic * m.mask) >> 56) < 6; ) | ||
| 303 | m.magic = rng.sparse_rand<Bitboard>(); | ||
| 96 | pmbaty | 304 | |
| 305 |             // A good magic must map every possible occupancy to an index that | ||
| 306 |             // looks up the correct sliding attack in the attacks[s] database. | ||
| 307 |             // Note that we build up the database for square 's' as a side | ||
| 169 | pmbaty | 308 |             // effect of verifying the magic. Keep track of the attempt count | 
| 309 |             // and save it in epoch[], little speed-up trick to avoid resetting | ||
| 310 |             // m.attacks[] after every failed attempt. | ||
| 311 | for (++cnt, i = 0; i < size; ++i) | ||
| 96 | pmbaty | 312 |             { | 
| 169 | pmbaty | 313 | unsigned idx = m.index(occupancy[i]); | 
| 96 | pmbaty | 314 | |
| 169 | pmbaty | 315 | if (epoch[idx] < cnt) | 
| 96 | pmbaty | 316 |                 { | 
| 169 | pmbaty | 317 | epoch[idx] = cnt; | 
| 318 | m.attacks[idx] = reference[i]; | ||
| 96 | pmbaty | 319 |                 } | 
| 169 | pmbaty | 320 | else if (m.attacks[idx] != reference[i]) | 
| 96 | pmbaty | 321 | break; | 
| 322 |             } | ||
| 169 | pmbaty | 323 |         } | 
| 96 | pmbaty | 324 |     } | 
| 325 |   } | ||
| 326 | } |