Rev 108 | Go to most recent revision | Details | Last modification | View Log | RSS feed
Rev | Author | Line No. | Line |
---|---|---|---|
33 | pmbaty | 1 | #include <stdarg.h> |
2 | #include <errno.h> |
||
3 | #include <ctype.h> |
||
4 | #include "chess.h" |
||
5 | #include "data.h" |
||
6 | #if defined(UNIX) |
||
7 | # include <unistd.h> |
||
8 | # include <sys/types.h> |
||
9 | # include <signal.h> |
||
10 | # include <sys/wait.h> |
||
11 | # include <sys/times.h> |
||
12 | # include <sys/time.h> |
||
13 | #else |
||
14 | # include <windows.h> |
||
15 | # include <winbase.h> |
||
16 | # include <wincon.h> |
||
17 | # include <io.h> |
||
18 | # include <time.h> |
||
19 | #endif |
||
20 | |||
21 | /* |
||
22 | ******************************************************************************* |
||
23 | * * |
||
24 | * AlignedMalloc() is used to allocate memory on a precise boundary, * |
||
25 | * primarily to optimize cache performance by forcing the start of the * |
||
26 | * memory region being allocated to match up so that a structure will lie * |
||
27 | * on a single cache line rather than being split across two, assuming the * |
||
28 | * structure is 64 bytes or less of course. * |
||
29 | * * |
||
30 | ******************************************************************************* |
||
31 | */ |
||
32 | |||
33 | void AlignedMalloc(void **pointer, int alignment, size_t size) { |
||
34 | segments[nsegments][0] = malloc(size + alignment - 1); |
||
35 | segments[nsegments][1] = |
||
36 | (void *) (((uintptr_t) segments[nsegments][0] + alignment - |
||
37 | 1) & ~(alignment - 1)); |
||
38 | *pointer = segments[nsegments][1]; |
||
39 | nsegments++; |
||
40 | } |
||
41 | |||
42 | /* |
||
43 | ******************************************************************************* |
||
44 | * * |
||
45 | * atoiKM() is used to read in an integer value that can have a "K" or "M" * |
||
46 | * appended to it to multiply by 1024 or 1024*1024. It returns a 64 bit * |
||
47 | * value since memory sizes can exceed 4gb on modern hardware. * |
||
48 | * * |
||
49 | ******************************************************************************* |
||
50 | */ |
||
51 | |||
52 | uint64_t atoiKM(char *input) { |
||
53 | uint64_t size; |
||
54 | |||
55 | size = atoi(input); |
||
56 | if (strchr(input, 'K') || strchr(input, 'k')) |
||
57 | size *= 1 << 10; |
||
58 | if (strchr(input, 'M') || strchr(input, 'm')) |
||
59 | size *= 1 << 20; |
||
60 | return size; |
||
61 | } |
||
62 | |||
63 | /* |
||
64 | ******************************************************************************* |
||
65 | * * |
||
66 | * AlignedRemalloc() is used to change the size of a memory block that has * |
||
67 | * previously been allocated using AlignedMalloc(). * |
||
68 | * * |
||
69 | ******************************************************************************* |
||
70 | */ |
||
71 | |||
72 | void AlignedRemalloc(void **pointer, int alignment, size_t size) { |
||
73 | int i; |
||
74 | for (i = 0; i < nsegments; i++) |
||
75 | if (segments[i][1] == *pointer) |
||
76 | break; |
||
77 | if (i == nsegments) { |
||
78 | Print(4095, "ERROR AlignedRemalloc() given an invalid pointer\n"); |
||
79 | exit(1); |
||
80 | } |
||
81 | free(segments[i][0]); |
||
82 | segments[i][0] = malloc(size + alignment - 1); |
||
83 | segments[i][1] = |
||
84 | (void *) (((uintptr_t) segments[i][0] + alignment - 1) & ~(alignment - |
||
85 | 1)); |
||
86 | *pointer = segments[i][1]; |
||
87 | } |
||
88 | |||
89 | /* |
||
90 | ******************************************************************************* |
||
91 | * * |
||
92 | * BookClusterIn() is used to read a cluster in as characters, then stuff * |
||
93 | * the data into a normal array of structures that can be used within Crafty * |
||
94 | * without any endian issues. * |
||
95 | * * |
||
96 | ******************************************************************************* |
||
97 | */ |
||
98 | void BookClusterIn(FILE * file, int positions, BOOK_POSITION * buffer) { |
||
99 | char file_buffer[BOOK_CLUSTER_SIZE * BOOK_POSITION_SIZE]; |
||
100 | int i; |
||
101 | |||
102 | fread(file_buffer, positions, BOOK_POSITION_SIZE, file); |
||
103 | for (i = 0; i < positions; i++) { |
||
104 | buffer[i].position = |
||
105 | BookIn64((unsigned char *) (file_buffer + i * BOOK_POSITION_SIZE)); |
||
106 | buffer[i].status_played = |
||
107 | BookIn32((unsigned char *) (file_buffer + i * BOOK_POSITION_SIZE + |
||
108 | 8)); |
||
109 | buffer[i].learn = |
||
110 | BookIn32f((unsigned char *) (file_buffer + i * BOOK_POSITION_SIZE + |
||
111 | 12)); |
||
112 | } |
||
113 | } |
||
114 | |||
115 | /* |
||
116 | ******************************************************************************* |
||
117 | * * |
||
118 | * BookClusterOut() is used to write a cluster out as characters, after * |
||
119 | * converting the normal array of structures into character data that is * |
||
120 | * Endian-independent. * |
||
121 | * * |
||
122 | ******************************************************************************* |
||
123 | */ |
||
124 | void BookClusterOut(FILE * file, int positions, BOOK_POSITION * buffer) { |
||
125 | char file_buffer[BOOK_CLUSTER_SIZE * BOOK_POSITION_SIZE]; |
||
126 | int i; |
||
127 | |||
128 | for (i = 0; i < positions; i++) { |
||
129 | memcpy(file_buffer + i * BOOK_POSITION_SIZE, |
||
130 | BookOut64(buffer[i].position), 8); |
||
131 | memcpy(file_buffer + i * BOOK_POSITION_SIZE + 8, |
||
132 | BookOut32(buffer[i].status_played), 4); |
||
133 | memcpy(file_buffer + i * BOOK_POSITION_SIZE + 12, |
||
134 | BookOut32f(buffer[i].learn), 4); |
||
135 | } |
||
136 | fwrite(file_buffer, positions, BOOK_POSITION_SIZE, file); |
||
137 | } |
||
138 | |||
139 | /* |
||
140 | ******************************************************************************* |
||
141 | * * |
||
142 | * BookIn32f() is used to convert 4 bytes from the book file into a valid 32 * |
||
143 | * bit binary value. this eliminates endian worries that make the binary * |
||
144 | * book non-portable across many architectures. * |
||
145 | * * |
||
146 | ******************************************************************************* |
||
147 | */ |
||
148 | float BookIn32f(unsigned char *ch) { |
||
149 | union { |
||
150 | float fv; |
||
151 | int iv; |
||
152 | } temp; |
||
153 | |||
154 | temp.iv = ch[3] << 24 | ch[2] << 16 | ch[1] << 8 | ch[0]; |
||
155 | return temp.fv; |
||
156 | } |
||
157 | |||
158 | /* |
||
159 | ******************************************************************************* |
||
160 | * * |
||
161 | * BookIn32() is used to convert 4 bytes from the book file into a valid 32 * |
||
162 | * bit binary value. this eliminates endian worries that make the binary * |
||
163 | * book non-portable across many architectures. * |
||
164 | * * |
||
165 | ******************************************************************************* |
||
166 | */ |
||
167 | int BookIn32(unsigned char *ch) { |
||
168 | return ch[3] << 24 | ch[2] << 16 | ch[1] << 8 | ch[0]; |
||
169 | } |
||
170 | |||
171 | /* |
||
172 | ******************************************************************************* |
||
173 | * * |
||
174 | * BookIn64() is used to convert 8 bytes from the book file into a valid 64 * |
||
175 | * bit binary value. this eliminates endian worries that make the binary * |
||
176 | * book non-portable across many architectures. * |
||
177 | * * |
||
178 | ******************************************************************************* |
||
179 | */ |
||
180 | uint64_t BookIn64(unsigned char *ch) { |
||
181 | return (uint64_t) ch[7] << 56 | (uint64_t) ch[6] << 48 | (uint64_t) |
||
182 | ch[5] << 40 | (uint64_t) ch[4] << 32 | (uint64_t) ch[3] |
||
183 | << 24 | (uint64_t) ch[2] << 16 | (uint64_t) ch[1] << 8 | (uint64_t) |
||
184 | ch[0]; |
||
185 | } |
||
186 | |||
187 | /* |
||
188 | ******************************************************************************* |
||
189 | * * |
||
190 | * BookOut32() is used to convert 4 bytes from a valid 32 bit binary value * |
||
191 | * to a book value. this eliminates endian worries that make the binary * |
||
192 | * book non-portable across many architectures. * |
||
193 | * * |
||
194 | ******************************************************************************* |
||
195 | */ |
||
196 | unsigned char *BookOut32(int val) { |
||
197 | convert_buff[3] = val >> 24 & 0xff; |
||
198 | convert_buff[2] = val >> 16 & 0xff; |
||
199 | convert_buff[1] = val >> 8 & 0xff; |
||
200 | convert_buff[0] = val & 0xff; |
||
201 | return convert_buff; |
||
202 | } |
||
203 | |||
204 | /* |
||
205 | ******************************************************************************* |
||
206 | * * |
||
207 | * BookOut32f() is used to convert 4 bytes from a valid 32 bit binary value * |
||
208 | * to a book value. this eliminates endian worries that make the binary * |
||
209 | * book non-portable across many architectures. * |
||
210 | * * |
||
211 | ******************************************************************************* |
||
212 | */ |
||
213 | unsigned char *BookOut32f(float val) { |
||
214 | union { |
||
215 | float fv; |
||
216 | int iv; |
||
217 | } temp; |
||
218 | |||
219 | temp.fv = val; |
||
220 | convert_buff[3] = temp.iv >> 24 & 0xff; |
||
221 | convert_buff[2] = temp.iv >> 16 & 0xff; |
||
222 | convert_buff[1] = temp.iv >> 8 & 0xff; |
||
223 | convert_buff[0] = temp.iv & 0xff; |
||
224 | return convert_buff; |
||
225 | } |
||
226 | |||
227 | /* |
||
228 | ******************************************************************************* |
||
229 | * * |
||
230 | * BookOut64() is used to convert 8 bytes from a valid 64 bit binary value * |
||
231 | * to a book value. this eliminates endian worries that make the binary * |
||
232 | * book non-portable across many architectures. * |
||
233 | * * |
||
234 | ******************************************************************************* |
||
235 | */ |
||
236 | unsigned char *BookOut64(uint64_t val) { |
||
237 | convert_buff[7] = val >> 56 & 0xff; |
||
238 | convert_buff[6] = val >> 48 & 0xff; |
||
239 | convert_buff[5] = val >> 40 & 0xff; |
||
240 | convert_buff[4] = val >> 32 & 0xff; |
||
241 | convert_buff[3] = val >> 24 & 0xff; |
||
242 | convert_buff[2] = val >> 16 & 0xff; |
||
243 | convert_buff[1] = val >> 8 & 0xff; |
||
244 | convert_buff[0] = val & 0xff; |
||
245 | return convert_buff; |
||
246 | } |
||
247 | |||
248 | /* |
||
249 | ******************************************************************************* |
||
250 | * * |
||
251 | * the following functions are used to determine if keyboard input is * |
||
252 | * present. there are several ways this is done depending on which * |
||
253 | * operating system is used. The primary function name is CheckInput() but * |
||
254 | * for simplicity there are several O/S-specific versions. * |
||
255 | * * |
||
256 | ******************************************************************************* |
||
257 | */ |
||
258 | #if !defined(UNIX) |
||
259 | # include <windows.h> |
||
260 | # include <conio.h> |
||
261 | /* Windows NT using PeekNamedPipe() function */ |
||
262 | int CheckInput(void) { |
||
263 | int i; |
||
264 | static int init = 0, pipe; |
||
265 | static HANDLE inh; |
||
266 | DWORD dw; |
||
267 | |||
268 | if (!xboard && !_isatty(_fileno(stdin))) // Pierre-Marie Baty -- use ISO C++ conformant names |
||
269 | return 0; |
||
270 | if (batch_mode) |
||
271 | return 0; |
||
272 | if (strchr(cmd_buffer, '\n')) |
||
273 | return 1; |
||
274 | if (xboard) { |
||
275 | # if defined(FILE_CNT) |
||
276 | if (stdin->_cnt > 0) |
||
277 | return stdin->_cnt; |
||
278 | # endif |
||
279 | if (!init) { |
||
280 | init = 1; |
||
281 | inh = GetStdHandle(STD_INPUT_HANDLE); |
||
282 | pipe = !GetConsoleMode(inh, &dw); |
||
283 | if (!pipe) { |
||
284 | SetConsoleMode(inh, dw & ~(ENABLE_MOUSE_INPUT | ENABLE_WINDOW_INPUT)); |
||
285 | FlushConsoleInputBuffer(inh); |
||
286 | } |
||
287 | } |
||
288 | if (pipe) { |
||
289 | if (!PeekNamedPipe(inh, NULL, 0, NULL, &dw, NULL)) { |
||
290 | return 1; |
||
291 | } |
||
292 | return dw; |
||
293 | } else { |
||
294 | GetNumberOfConsoleInputEvents(inh, &dw); |
||
295 | return dw <= 1 ? 0 : dw; |
||
296 | } |
||
297 | } else { |
||
298 | i = _kbhit(); |
||
299 | } |
||
300 | return i; |
||
301 | } |
||
302 | #endif |
||
303 | #if defined(UNIX) |
||
304 | /* Simple UNIX approach using select with a zero timeout value */ |
||
305 | int CheckInput(void) { |
||
306 | fd_set readfds; |
||
307 | struct timeval tv; |
||
308 | int data; |
||
309 | |||
310 | if (!xboard && !isatty(fileno(stdin))) |
||
311 | return 0; |
||
312 | if (batch_mode) |
||
313 | return 0; |
||
314 | if (strchr(cmd_buffer, '\n')) |
||
315 | return 1; |
||
316 | FD_ZERO(&readfds); |
||
317 | FD_SET(fileno(stdin), &readfds); |
||
318 | tv.tv_sec = 0; |
||
319 | tv.tv_usec = 0; |
||
320 | select(16, &readfds, 0, 0, &tv); |
||
321 | data = FD_ISSET(fileno(stdin), &readfds); |
||
322 | return data; |
||
323 | } |
||
324 | #endif |
||
325 | |||
326 | /* |
||
327 | ******************************************************************************* |
||
328 | * * |
||
329 | * ClearHashTableScores() is used to clear hash table scores without * |
||
330 | * clearing the best move, so that move ordering information is preserved. * |
||
331 | * We clear the scorew as we approach a 50 move rule so that hash scores * |
||
332 | * won't give us false scores since the hash signature does not include any * |
||
333 | * search path information in it. * |
||
334 | * * |
||
335 | ******************************************************************************* |
||
336 | */ |
||
337 | void ClearHashTableScores(void) { |
||
338 | size_t i; // Pierre-Marie Baty -- fixed type |
||
339 | |||
340 | if (trans_ref) |
||
341 | for (i = 0; i < hash_table_size; i++) { |
||
342 | (trans_ref + i)->word2 ^= (trans_ref + i)->word1; |
||
343 | (trans_ref + i)->word1 = |
||
344 | ((trans_ref + i)->word1 & mask_clear_entry) | (uint64_t) 65536; |
||
345 | (trans_ref + i)->word2 ^= (trans_ref + i)->word1; |
||
346 | } |
||
347 | } |
||
348 | |||
349 | /* last modified 02/28/14 */ |
||
350 | /* |
||
351 | ******************************************************************************* |
||
352 | * * |
||
353 | * ComputeDifficulty() is used to compute the difficulty rating for the * |
||
354 | * current position, which really is based on nothing more than how many * |
||
355 | * times we changed our mind in an iteration. No changes caused the * |
||
356 | * difficulty to drop (easier, use less time), while more changes ramps the * |
||
357 | * difficulty up (harder, use more time). It is called at the end of an * |
||
358 | * iteration as well as when displaying fail-high/fail-low moves, in an * |
||
359 | * effort to give the operator a heads-up on how long we are going to be * |
||
360 | * stuck in an active search. * |
||
361 | * * |
||
362 | ******************************************************************************* |
||
363 | */ |
||
364 | int ComputeDifficulty(int difficulty, int direction) { |
||
365 | int searched = 0, i; |
||
366 | |||
367 | /* |
||
368 | ************************************************************ |
||
369 | * * |
||
370 | * Step 1. Handle fail-high-fail low conditions, which * |
||
371 | * occur in the middle of an iteration. The actions taken * |
||
372 | * are as follows: * |
||
373 | * * |
||
374 | * (1) Determine how many moves we have searched first, as * |
||
375 | * this is important. If we have not searched anything * |
||
376 | * (which means we failed high on the first move at the * |
||
377 | * root, at the beginning of a new iteration), a fail low * |
||
378 | * will immediately set difficult back to 100% (if it is * |
||
379 | * currently below 100%). A fail high on the first move * |
||
380 | * will not change difficulty at all. Successive fail * |
||
381 | * highs or fail lows will not change difficulty, we will * |
||
382 | * not even get into this code on the repeats. * |
||
383 | * * |
||
384 | * (2) If we are beyond the first move, then this must be * |
||
385 | * a fail high condition. Since we are changing our mind, * |
||
386 | * we need to increase the difficulty level to expend more * |
||
387 | * time on this iteration. If difficulty is currently * |
||
388 | * less than 100%, we set it to 120%. If it is currently * |
||
389 | * at 100% or more, we simply add 20% to the value and * |
||
390 | * continue searching, but with a longer time constraint. * |
||
391 | * Each time we fail high, we are changing our mind, and * |
||
392 | * we will increase difficulty by another 20%. * |
||
393 | * * |
||
394 | * (3) Direction = 0 means we are at the end of an the * |
||
395 | * iteration. Here we simply note if we changed our mind * |
||
396 | * during this iteration. If not, we reduce difficulty * |
||
397 | * to 90% of its previous value. * |
||
398 | * * |
||
399 | * After any of these changes, we enforce a lower bound of * |
||
400 | * 60% and an upperbound of 200% before we return. * |
||
401 | * * |
||
402 | * Note: direction = +1 means we failed high on the move, * |
||
403 | * direction = -1 means we failed low on the move, and * |
||
404 | * direction = 0 means we have completed the iteration and * |
||
405 | * all moves were searched successfully. * |
||
406 | * * |
||
407 | ************************************************************ |
||
408 | */ |
||
409 | if (direction) { |
||
410 | for (i = 0; i < n_root_moves; i++) |
||
411 | if (root_moves[i].status & 8) |
||
412 | searched++; |
||
413 | if (searched == 0) { |
||
414 | if (direction > 0) |
||
415 | return difficulty; |
||
416 | if (direction < 0) |
||
417 | difficulty = Max(100, difficulty); |
||
418 | } else { |
||
419 | if (difficulty < 100) |
||
420 | difficulty = 120; |
||
421 | else |
||
422 | difficulty = difficulty + 20; |
||
423 | } |
||
424 | } |
||
425 | /* |
||
426 | ************************************************************ |
||
427 | * * |
||
428 | * Step 2. We are at the end of an iteration. If we did * |
||
429 | * not change our mind and stuck with one move, we reduce * |
||
430 | * difficulty by 10% since the move looks to be a little * |
||
431 | * "easier" when we don't change our mind. * |
||
432 | * * |
||
433 | ************************************************************ |
||
434 | */ |
||
435 | else { |
||
436 | searched = 0; |
||
437 | for (i = 0; i < n_root_moves; i++) |
||
438 | if (root_moves[i].bm_age == 3) |
||
439 | searched++; |
||
440 | if (searched <= 1) |
||
441 | difficulty = 90 * difficulty / 100; |
||
442 | } |
||
443 | /* |
||
444 | ************************************************************ |
||
445 | * * |
||
446 | * Step 4. Apply limits. We don't let difficulty go * |
||
447 | * above 200% (take 2x the target time) nor do we let it * |
||
448 | * drop below 60 (take .6x target time) to avoid moving * |
||
449 | * too quickly and missing something tactically where the * |
||
450 | * move initially looks obvious but really is not. * |
||
451 | * * |
||
452 | ************************************************************ |
||
453 | */ |
||
454 | difficulty = Max(60, Min(difficulty, 200)); |
||
455 | return difficulty; |
||
456 | } |
||
457 | |||
458 | /* |
||
459 | ******************************************************************************* |
||
460 | * * |
||
461 | * CraftyExit() is used to terminate the program. the main functionality * |
||
462 | * is to make sure the "quit" flag is set so that any spinning threads will * |
||
463 | * also exit() rather than spinning forever which can cause GUIs to hang * |
||
464 | * since all processes have not terminated. * |
||
465 | * * |
||
466 | ******************************************************************************* |
||
467 | */ |
||
468 | void CraftyExit(int exit_type) { |
||
469 | int proc; |
||
470 | |||
471 | for (proc = 1; proc < CPUS; proc++) |
||
472 | thread[proc].tree = (TREE *) - 1; |
||
473 | while (smp_threads); |
||
474 | exit(exit_type); |
||
475 | } |
||
476 | |||
477 | /* |
||
478 | ******************************************************************************* |
||
479 | * * |
||
480 | * DisplayArray() prints array data either 8 or 16 values per line, and also * |
||
481 | * reverses the output for arrays that overlay the chess board so that the * |
||
482 | * 'white side" is at the bottom rather than the top. this is mainly used * |
||
483 | * from inside Option() to display the many evaluation terms. * |
||
484 | * * |
||
485 | ******************************************************************************* |
||
486 | */ |
||
487 | void DisplayArray(int *array, int size) { |
||
488 | int i, j, len = 16; |
||
489 | |||
490 | if (Abs(size) % 10 == 0) |
||
491 | len = 10; |
||
492 | else if (Abs(size) % 8 == 0) |
||
493 | len = 8; |
||
494 | if (size > 0 && size % 16 == 0 && len == 8) |
||
495 | len = 16; |
||
496 | if (size > 0) { |
||
497 | printf(" "); |
||
498 | for (i = 0; i < size; i++) { |
||
499 | printf("%3d ", array[i]); |
||
500 | if ((i + 1) % len == 0) { |
||
501 | printf("\n"); |
||
502 | if (i < size - 1) |
||
503 | printf(" "); |
||
504 | } |
||
505 | } |
||
506 | if (i % len != 0) |
||
507 | printf("\n"); |
||
508 | } |
||
509 | if (size < 0) { |
||
510 | for (i = 0; i < 8; i++) { |
||
511 | printf(" "); |
||
512 | for (j = 0; j < 8; j++) { |
||
513 | printf("%3d ", array[(7 - i) * 8 + j]); |
||
514 | } |
||
515 | printf(" | %d\n", 8 - i); |
||
516 | } |
||
517 | printf(" ---------------------------------\n"); |
||
518 | printf(" a b c d e f g h\n"); |
||
519 | } |
||
520 | } |
||
521 | |||
522 | /* |
||
523 | ******************************************************************************* |
||
524 | * * |
||
525 | * DisplayArray() prints array data either 8 or 16 values per line, and also * |
||
526 | * reverses the output for arrays that overlay the chess board so that the * |
||
527 | * 'white side" is at the bottom rather than the top. this is mainly used * |
||
528 | * from inside Option() to display the many evaluation terms. * |
||
529 | * * |
||
530 | ******************************************************************************* |
||
531 | */ |
||
532 | void DisplayArrayX2(int *array, int *array2, int size) { |
||
533 | int i, j; |
||
534 | |||
535 | if (size == 256) { |
||
536 | printf(" ----------- Middlegame ----------- "); |
||
537 | printf(" ------------- Endgame -----------\n"); |
||
538 | for (i = 0; i < 8; i++) { |
||
539 | printf(" "); |
||
540 | for (j = 0; j < 8; j++) |
||
541 | printf("%3d ", array[(7 - i) * 8 + j]); |
||
542 | printf(" | %d |", 8 - i); |
||
543 | printf(" "); |
||
544 | for (j = 0; j < 8; j++) |
||
545 | printf("%3d ", array2[(7 - i) * 8 + j]); |
||
546 | printf("\n"); |
||
547 | } |
||
548 | printf |
||
549 | (" ---------------------------------- ---------------------------------\n"); |
||
550 | printf(" a b c d e f g h "); |
||
551 | printf(" a b c d e f g h\n"); |
||
552 | } else if (size == 32) { |
||
553 | printf(" ----------- Middlegame ----------- "); |
||
554 | printf(" ------------- Endgame -----------\n"); |
||
555 | printf(" "); |
||
556 | for (i = 0; i < 8; i++) |
||
557 | printf("%3d ", array[i]); |
||
558 | printf(" | |"); |
||
559 | printf(" "); |
||
560 | for (i = 0; i < 8; i++) |
||
561 | printf("%3d ", array2[i]); |
||
562 | printf("\n"); |
||
563 | } else if (size <= 20) { |
||
564 | size = size / 2; |
||
565 | printf(" "); |
||
566 | for (i = 0; i < size; i++) |
||
567 | printf("%3d ", array[i]); |
||
568 | printf(" |<mg eg>|"); |
||
569 | printf(" "); |
||
570 | for (i = 0; i < size; i++) |
||
571 | printf("%3d ", array2[i]); |
||
572 | printf("\n"); |
||
573 | } else if (size > 128) { |
||
574 | printf(" ----------- Middlegame ----------- "); |
||
575 | printf(" ------------- Endgame -----------\n"); |
||
576 | for (i = 0; i < size / 32; i++) { |
||
577 | printf(" "); |
||
578 | for (j = 0; j < 8; j++) |
||
579 | printf("%3d ", array[(7 - i) * 8 + j]); |
||
580 | printf(" | %d |", 8 - i); |
||
581 | printf(" "); |
||
582 | for (j = 0; j < 8; j++) |
||
583 | printf("%3d ", array2[(7 - i) * 8 + j]); |
||
584 | printf("\n"); |
||
585 | } |
||
586 | } else |
||
587 | Print(4095, "ERROR, invalid size = -%d in packet\n", size); |
||
588 | } |
||
589 | |||
590 | /* |
||
591 | ******************************************************************************* |
||
592 | * * |
||
593 | * DisplayBitBoard() is a debugging function used to display bitboards in a * |
||
594 | * more visual way. they are displayed as an 8x8 matrix oriented as the * |
||
595 | * normal chess board is, with a1 at the lower left corner. * |
||
596 | * * |
||
597 | ******************************************************************************* |
||
598 | */ |
||
599 | void DisplayBitBoard(uint64_t board) { |
||
600 | int i, j, x; |
||
601 | |||
602 | for (i = 56; i >= 0; i -= 8) { |
||
603 | x = (board >> i) & 255; |
||
604 | for (j = 1; j < 256; j = j << 1) |
||
605 | if (x & j) |
||
606 | printf("X "); |
||
607 | else |
||
608 | printf("- "); |
||
609 | printf("\n"); |
||
610 | } |
||
611 | } |
||
612 | |||
613 | /* |
||
614 | ******************************************************************************* |
||
615 | * * |
||
616 | * Display2BitBoards() is a debugging function used to display bitboards in * |
||
617 | * a more visual way. they are displayed as an 8x8 matrix oriented as the * |
||
618 | * normal chess board is, with a1 at the lower left corner. this function * |
||
619 | * displays 2 boards side by side for comparison. * |
||
620 | * * |
||
621 | ******************************************************************************* |
||
622 | */ |
||
623 | void Display2BitBoards(uint64_t board1, uint64_t board2) { |
||
624 | int i, j, x, y; |
||
625 | |||
626 | for (i = 56; i >= 0; i -= 8) { |
||
627 | x = (board1 >> i) & 255; |
||
628 | for (j = 1; j < 256; j = j << 1) |
||
629 | if (x & j) |
||
630 | printf("X "); |
||
631 | else |
||
632 | printf("- "); |
||
633 | printf(" "); |
||
634 | y = (board2 >> i) & 255; |
||
635 | for (j = 1; j < 256; j = j << 1) |
||
636 | if (y & j) |
||
637 | printf("X "); |
||
638 | else |
||
639 | printf("- "); |
||
640 | printf("\n"); |
||
641 | } |
||
642 | } |
||
643 | |||
644 | /* |
||
645 | ******************************************************************************* |
||
646 | * * |
||
647 | * DisplayChessBoard() is used to display the board since it is kept in * |
||
648 | * both the bit-board and array formats, here we use the array format which * |
||
649 | * is nearly ready for display as is. * |
||
650 | * * |
||
651 | ******************************************************************************* |
||
652 | */ |
||
653 | void DisplayChessBoard(FILE * display_file, POSITION pos) { |
||
654 | int display_board[64]; |
||
655 | static const char display_string[16][4] = |
||
656 | { "<K>", "<Q>", "<R>", "<B>", "<N>", "<P>", " ", |
||
657 | "-P-", "-N-", "-B-", "-R-", "-Q-", "-K-", " . " |
||
658 | }; |
||
659 | int i, j; |
||
660 | |||
661 | /* |
||
662 | ************************************************************ |
||
663 | * * |
||
664 | * First, convert square values to indices to the proper * |
||
665 | * text string. * |
||
666 | * * |
||
667 | ************************************************************ |
||
668 | */ |
||
669 | for (i = 0; i < 64; i++) { |
||
670 | display_board[i] = pos.board[i] + 6; |
||
671 | if (pos.board[i] == 0) { |
||
672 | if (((i / 8) & 1) == ((i % 8) & 1)) |
||
673 | display_board[i] = 13; |
||
674 | } |
||
675 | } |
||
676 | /* |
||
677 | ************************************************************ |
||
678 | * * |
||
679 | * Now that that's done, simply display using 8 squares * |
||
680 | * per line. * |
||
681 | * * |
||
682 | ************************************************************ |
||
683 | */ |
||
684 | fprintf(display_file, "\n +---+---+---+---+---+---+---+---+\n"); |
||
685 | for (i = 7; i >= 0; i--) { |
||
686 | fprintf(display_file, " %2d ", i + 1); |
||
687 | for (j = 0; j < 8; j++) |
||
688 | fprintf(display_file, "|%s", display_string[display_board[i * 8 + j]]); |
||
689 | fprintf(display_file, "|\n"); |
||
690 | fprintf(display_file, " +---+---+---+---+---+---+---+---+\n"); |
||
691 | } |
||
692 | fprintf(display_file, " a b c d e f g h\n\n"); |
||
693 | } |
||
694 | |||
695 | /* |
||
696 | ******************************************************************************* |
||
697 | * * |
||
698 | * DisplayEvaluation() is used to convert the evaluation to a string that * |
||
699 | * can be displayed. The length is fixed so that screen formatting will * |
||
700 | * look nice and aligned. * |
||
701 | * * |
||
702 | ******************************************************************************* |
||
703 | */ |
||
704 | char *DisplayEvaluation(int value, int wtm) { |
||
705 | static char out[10]; |
||
706 | int tvalue; |
||
707 | |||
708 | tvalue = (wtm) ? value : -value; |
||
709 | if (!MateScore(value)) |
||
710 | sprintf_s(out, sizeof (out), "%7.2f", ((float) tvalue) / 100.0); // Pierre-Marie Baty -- use safe version |
||
711 | else if (Abs(value) > MATE) { |
||
712 | if (tvalue < 0) |
||
713 | sprintf_s(out, sizeof (out), " -infnty"); // Pierre-Marie Baty -- use safe version |
||
714 | else |
||
715 | sprintf_s(out, sizeof (out), " +infnty"); // Pierre-Marie Baty -- use safe version |
||
716 | } else if (value == MATE - 2 && wtm) |
||
717 | sprintf_s(out, sizeof (out), " Mate"); // Pierre-Marie Baty -- use safe version |
||
718 | else if (value == MATE - 2 && !wtm) |
||
719 | sprintf_s(out, sizeof (out), " -Mate"); // Pierre-Marie Baty -- use safe version |
||
720 | else if (value == -(MATE - 1) && wtm) |
||
721 | sprintf_s(out, sizeof (out), " -Mate"); // Pierre-Marie Baty -- use safe version |
||
722 | else if (value == -(MATE - 1) && !wtm) |
||
723 | sprintf_s(out, sizeof (out), " Mate"); // Pierre-Marie Baty -- use safe version |
||
724 | else if (value > 0 && wtm) |
||
725 | sprintf_s(out, sizeof (out), " Mat%.2d", (MATE - value) / 2); // Pierre-Marie Baty -- use safe version |
||
726 | else if (value > 0 && !wtm) |
||
727 | sprintf_s(out, sizeof (out), " -Mat%.2d", (MATE - value) / 2); // Pierre-Marie Baty -- use safe version |
||
728 | else if (wtm) |
||
729 | sprintf_s(out, sizeof (out), " -Mat%.2d", (MATE - Abs(value)) / 2); // Pierre-Marie Baty -- use safe version |
||
730 | else |
||
731 | sprintf_s(out, sizeof (out), " Mat%.2d", (MATE - Abs(value)) / 2); // Pierre-Marie Baty -- use safe version |
||
732 | return out; |
||
733 | } |
||
734 | |||
735 | /* |
||
736 | ******************************************************************************* |
||
737 | * * |
||
738 | * DisplayEvaluationKibitz() is used to convert the evaluation to a string * |
||
739 | * that can be displayed. The length is variable so that ICC kibitzes and * |
||
740 | * whispers will look nicer. * |
||
741 | * * |
||
742 | ******************************************************************************* |
||
743 | */ |
||
744 | char *DisplayEvaluationKibitz(int value, int wtm) { |
||
745 | static char out[10]; |
||
746 | int tvalue; |
||
747 | |||
748 | tvalue = (wtm) ? value : -value; |
||
749 | if (!MateScore(value)) |
||
750 | sprintf_s(out, sizeof (out), "%+.2f", ((float) tvalue) / 100.0); // Pierre-Marie Baty -- use safe version |
||
751 | else if (Abs(value) > MATE) { |
||
752 | if (tvalue < 0) |
||
753 | sprintf_s(out, sizeof (out), "-infnty"); // Pierre-Marie Baty -- use safe version |
||
754 | else |
||
755 | sprintf_s(out, sizeof (out), "+infnty"); // Pierre-Marie Baty -- use safe version |
||
756 | } else if (value == MATE - 2 && wtm) |
||
757 | sprintf_s(out, sizeof (out), "Mate"); // Pierre-Marie Baty -- use safe version |
||
758 | else if (value == MATE - 2 && !wtm) |
||
759 | sprintf_s(out, sizeof (out), "-Mate"); // Pierre-Marie Baty -- use safe version |
||
760 | else if (value == -(MATE - 1) && wtm) |
||
761 | sprintf_s(out, sizeof (out), "-Mate"); // Pierre-Marie Baty -- use safe version |
||
762 | else if (value == -(MATE - 1) && !wtm) |
||
763 | sprintf_s(out, sizeof (out), "Mate"); // Pierre-Marie Baty -- use safe version |
||
764 | else if (value > 0 && wtm) |
||
765 | sprintf_s(out, sizeof (out), "Mat%.2d", (MATE - value) / 2); // Pierre-Marie Baty -- use safe version |
||
766 | else if (value > 0 && !wtm) |
||
767 | sprintf_s(out, sizeof (out), "-Mat%.2d", (MATE - value) / 2); // Pierre-Marie Baty -- use safe version |
||
768 | else if (wtm) |
||
769 | sprintf_s(out, sizeof (out), "-Mat%.2d", (MATE - Abs(value)) / 2); // Pierre-Marie Baty -- use safe version |
||
770 | else |
||
771 | sprintf_s(out, sizeof (out), "Mat%.2d", (MATE - Abs(value)) / 2); // Pierre-Marie Baty -- use safe version |
||
772 | return out; |
||
773 | } |
||
774 | |||
775 | /* |
||
776 | ******************************************************************************* |
||
777 | * * |
||
778 | * DisplayPV() is used to display a PV during the search. * |
||
779 | * * |
||
780 | ******************************************************************************* |
||
781 | */ |
||
782 | void DisplayPV(TREE * RESTRICT tree, int level, int wtm, int time, PATH * pv) { |
||
783 | char buffer[4096], *buffp, *bufftemp; |
||
784 | int /*i, */t_move_number, type; |
||
785 | unsigned int i, buflen; // Pierre-Marie Baty -- fixed type |
||
786 | int nskip = 0, twtm = wtm, pv_depth = pv->pathd;; |
||
787 | |||
788 | /* |
||
789 | ************************************************************ |
||
790 | * * |
||
791 | * Initialize. * |
||
792 | * * |
||
793 | ************************************************************ |
||
794 | */ |
||
795 | for (i = 0; i < (unsigned int) n_root_moves; i++) // Pierre-Marie Baty -- part of type fix |
||
796 | if (!(root_moves[i].status & 8) && !(root_moves[i].status & 4)) |
||
797 | nskip++; |
||
798 | if (level == 5) |
||
799 | type = 4; |
||
800 | else |
||
801 | type = 2; |
||
802 | t_move_number = move_number; |
||
803 | if (display_options & 64) |
||
804 | sprintf_s(buffer, sizeof (buffer), " %d.", move_number); // Pierre-Marie Baty -- use safe version |
||
805 | else |
||
806 | buffer[0] = 0; |
||
807 | if ((display_options & 64) && !wtm) |
||
808 | strcat_s(buffer, sizeof (buffer), " ..."); // Pierre-Marie Baty -- use safe version |
||
809 | for (i = 1; i < (unsigned int) pv->pathl; i++) { // Pierre-Marie Baty -- part of type fix |
||
810 | if ((display_options & 64) && i > 1 && wtm) { |
||
811 | buflen = strlen (buffer); |
||
812 | sprintf_s(buffer + buflen, sizeof (buffer) - buflen, " %d.", t_move_number); // Pierre-Marie Baty -- use safe version |
||
813 | } |
||
814 | buflen = strlen (buffer); |
||
815 | sprintf_s(buffer + buflen, sizeof (buffer) - buflen, " %s", OutputMove(tree, pv->path[i], i, // Pierre-Marie Baty -- use safe version |
||
816 | wtm)); |
||
817 | MakeMove(tree, i, pv->path[i], wtm); |
||
818 | wtm = Flip(wtm); |
||
819 | if (wtm) |
||
820 | t_move_number++; |
||
821 | } |
||
822 | if (pv->pathh == 1) |
||
823 | strcat_s(buffer, sizeof (buffer), " <HT> "); // Pierre-Marie Baty -- use safe version |
||
824 | else if (pv->pathh == 2) |
||
825 | strcat_s(buffer, sizeof (buffer), " <EGTB> "); // Pierre-Marie Baty -- use safe version |
||
826 | if (strlen(buffer) < 30) |
||
827 | for (i = 0; i < 30 - strlen(buffer); i++) |
||
828 | strcat_s(buffer, sizeof (buffer), " "); // Pierre-Marie Baty -- use safe version |
||
829 | strcpy_s(kibitz_text, sizeof (kibitz_text), buffer); // Pierre-Marie Baty -- use safe version |
||
830 | if (nskip > 1 && smp_max_threads > 1) { |
||
831 | buflen = strlen (buffer); |
||
832 | sprintf_s(buffer + buflen, sizeof (buffer) - buflen, " (s=%d)", nskip); // Pierre-Marie Baty -- use safe version |
||
833 | } |
||
834 | if (tree->nodes_searched > noise_level) { |
||
835 | noise_block = 0; |
||
836 | Lock(lock_io); |
||
837 | Print(type, " "); |
||
838 | if (level == 6) |
||
839 | Print(type, "%2i %s%s ", pv_depth, Display2Times(time), |
||
840 | DisplayEvaluation(pv->pathv, twtm)); |
||
841 | else |
||
842 | Print(type, "%2i-> %s%s ", pv_depth, Display2Times(time) |
||
843 | , DisplayEvaluation(pv->pathv, twtm)); |
||
844 | buffp = buffer + 1; |
||
845 | do { |
||
846 | if ((int) strlen(buffp) > line_length - 42) |
||
847 | bufftemp = strchr(buffp + line_length - 42, ' '); |
||
848 | else |
||
849 | bufftemp = 0; |
||
850 | if (bufftemp) |
||
851 | *bufftemp = 0; |
||
852 | Print(type, "%s\n", buffp); |
||
853 | buffp = bufftemp + 1; |
||
854 | if (bufftemp) |
||
855 | Print(type, " "); |
||
856 | } while (bufftemp); |
||
857 | idle_percent = |
||
858 | 100 - Min(100, |
||
859 | 100 * idle_time / (smp_max_threads * (end_time - start_time) + 1)); |
||
860 | Kibitz(level, twtm, pv_depth, end_time - start_time, pv->pathv, |
||
861 | tree->nodes_searched, idle_percent, tree->egtb_probes_successful, |
||
862 | kibitz_text); |
||
863 | Unlock(lock_io); |
||
864 | } |
||
865 | for (i = pv->pathl - 1; i > 0; i--) { |
||
866 | wtm = Flip(wtm); |
||
867 | UnmakeMove(tree, i, pv->path[i], wtm); |
||
868 | } |
||
869 | } |
||
870 | |||
871 | /* |
||
872 | ******************************************************************************* |
||
873 | * * |
||
874 | * DisplayHHMMSS is used to convert integer time values in 1/100th second * |
||
875 | * units into a traditional output format for time, hh:mm:ss rather than * |
||
876 | * just nnn.n seconds. * |
||
877 | * * |
||
878 | ******************************************************************************* |
||
879 | */ |
||
880 | char *DisplayHHMMSS(unsigned int time) { |
||
881 | static char out[10]; |
||
882 | |||
883 | time = time / 100; |
||
884 | sprintf_s(out, sizeof (out), "%3u:%02u:%02u", time / 3600, time / 60, time % 60); // Pierre-Marie Baty -- use safe version |
||
885 | return out; |
||
886 | } |
||
887 | |||
888 | /* |
||
889 | ******************************************************************************* |
||
890 | * * |
||
891 | * DisplayHHMM is used to convert integer time values in 1/100th second * |
||
892 | * units into a traditional output format for time, mm:ss rather than just * |
||
893 | * nnn.n seconds. * |
||
894 | * * |
||
895 | ******************************************************************************* |
||
896 | */ |
||
897 | char *DisplayHHMM(unsigned int time) { |
||
898 | static char out[10]; |
||
899 | |||
900 | time = time / 6000; |
||
901 | sprintf_s(out, sizeof (out), "%3u:%02u", time / 60, time % 60); // Pierre-Marie Baty -- use safe version |
||
902 | return out; |
||
903 | } |
||
904 | |||
905 | /* |
||
906 | ******************************************************************************* |
||
907 | * * |
||
908 | * DisplayKMB() takes an integer value that represents nodes per second, or * |
||
909 | * just total nodes, and converts it into a more compact form, so that * |
||
910 | * instead of nps=57200931, we get nps=57M. * |
||
911 | * * |
||
912 | ******************************************************************************* |
||
913 | */ |
||
914 | char *DisplayKMB(uint64_t val) { |
||
915 | static char out[10]; |
||
916 | |||
917 | if (val < 1000) |
||
918 | sprintf_s(out, sizeof (out), "%" PRIu64, val); // Pierre-Marie Baty -- use safe version |
||
919 | else if (val < 1000000) |
||
920 | sprintf_s(out, sizeof (out), "%.1fK", (double) (val + 500) / 1000); // Pierre-Marie Baty -- use safe version |
||
921 | else if (val < 1000000000) |
||
922 | sprintf_s(out, sizeof (out), "%.1fM", (double) (val + 500000) / 1000000); // Pierre-Marie Baty -- use safe version |
||
923 | else |
||
924 | sprintf_s(out, sizeof (out), "%.1fB", (double) (val + 500000000) / 1000000000); // Pierre-Marie Baty -- use safe version |
||
925 | return out; |
||
926 | } |
||
927 | |||
928 | /* |
||
929 | ******************************************************************************* |
||
930 | * * |
||
931 | * DisplayTime() is used to display search times, and shows times in one of * |
||
932 | * two ways depending on the value passed in. If less than 60 seconds is to * |
||
933 | * be displayed, it is displayed as a decimal fraction like 32.7, while if * |
||
934 | * more than 60 seconds is to be displayed, it is converted to the more * |
||
935 | * traditional mm:ss form. The string it produces is of fixed length to * |
||
936 | * provide neater screen formatting. * |
||
937 | * * |
||
938 | ******************************************************************************* |
||
939 | */ |
||
940 | char *DisplayTime(unsigned int time) { |
||
941 | static char out[10]; |
||
942 | |||
943 | if (time < 6000) |
||
944 | sprintf_s(out, sizeof (out), "%6.2f", (float) time / 100.0); // Pierre-Marie Baty -- use safe version |
||
945 | else { |
||
946 | time = time / 100; |
||
947 | sprintf_s(out, sizeof (out), "%3u:%02u", time / 60, time % 60); // Pierre-Marie Baty -- use safe version |
||
948 | } |
||
949 | return out; |
||
950 | } |
||
951 | |||
952 | /* |
||
953 | ******************************************************************************* |
||
954 | * * |
||
955 | * Display2Times() is used to display search times, and shows times in one * |
||
956 | * of two ways depending on the value passed in. If less than 60 seconds is * |
||
957 | * to be displayed, it is displayed as a decimal fraction like 32.7, while * |
||
958 | * if more than 60 seconds is to be displayed, it is converted to the more * |
||
959 | * traditional mm:ss form. The string it produces is of fixed length to * |
||
960 | * provide neater screen formatting. * |
||
961 | * * |
||
962 | * The second argument is the "difficulty" value which lets us display the * |
||
963 | * target time (as modified by difficulty) so that it is possible to know * |
||
964 | * roughly when the move will be announced. * |
||
965 | * * |
||
966 | ******************************************************************************* |
||
967 | */ |
||
968 | char *Display2Times(unsigned int time) { |
||
969 | static char out[20], tout[10]; |
||
970 | int ttime; |
||
971 | int c, spaces; |
||
972 | |||
973 | if (time < 6000) |
||
974 | sprintf_s(out, sizeof (out), "%6.2f", (float) time / 100.0); // Pierre-Marie Baty -- use safe version |
||
975 | else { |
||
976 | time = time / 100; |
||
977 | sprintf_s(out, sizeof (out), "%3u:%02u", time / 60, time % 60); // Pierre-Marie Baty -- use safe version |
||
978 | } |
||
979 | if (search_time_limit) |
||
980 | ttime = search_time_limit; |
||
981 | else |
||
982 | ttime = difficulty * time_limit / 100; |
||
983 | if (ttime < 360000) { |
||
984 | if (ttime < 6000) |
||
985 | sprintf_s(tout, sizeof (tout), "%6.2f", (float) ttime / 100.0); // Pierre-Marie Baty -- use safe version |
||
986 | else { |
||
987 | ttime = ttime / 100; |
||
988 | sprintf_s(tout, sizeof (tout), "%3u:%02u", ttime / 60, ttime % 60); // Pierre-Marie Baty -- use safe version |
||
989 | } |
||
990 | c = strspn(tout, " "); |
||
991 | strcat_s(out, sizeof (out), "/"); // Pierre-Marie Baty -- use safe version |
||
992 | strcat_s(out, sizeof (out), tout + c); // Pierre-Marie Baty -- use safe version |
||
993 | } |
||
994 | spaces = 13 - strlen(out); |
||
995 | for (c = 0; c < spaces; c++) |
||
996 | strcat_s(out, sizeof (out), " "); // Pierre-Marie Baty -- use safe version |
||
997 | return out; |
||
998 | } |
||
999 | |||
1000 | /* |
||
1001 | ******************************************************************************* |
||
1002 | * * |
||
1003 | * DisplayTimeKibitz() behaves just like DisplayTime() except that the * |
||
1004 | * string it produces is a variable-length string that is as short as * |
||
1005 | * possible to make ICC kibitzes/whispers look neater. * |
||
1006 | * * |
||
1007 | ******************************************************************************* |
||
1008 | */ |
||
1009 | char *DisplayTimeKibitz(unsigned int time) { |
||
1010 | static char out[10]; |
||
1011 | |||
1012 | if (time < 6000) |
||
1013 | sprintf_s(out, sizeof (out), "%.2f", (float) time / 100.0); // Pierre-Marie Baty -- use safe version |
||
1014 | else { |
||
1015 | time = time / 100; |
||
1016 | sprintf_s(out, sizeof (out), "%u:%02u", time / 60, time % 60); // Pierre-Marie Baty -- use safe version |
||
1017 | } |
||
1018 | return out; |
||
1019 | } |
||
1020 | |||
1021 | /* |
||
1022 | ******************************************************************************* |
||
1023 | * * |
||
1024 | * DisplayTreeState() is a debugging procedure used to provide some basic * |
||
1025 | * information about how the parallel search is progressing. It is invoked * |
||
1026 | * by typing a "." (no quotes) while in console mode. * |
||
1027 | * * |
||
1028 | ******************************************************************************* |
||
1029 | */ |
||
1030 | void DisplayTreeState(TREE * RESTRICT tree, int sply, int spos, int maxply) { |
||
1031 | int left, i, *mvp, parallel = 0; |
||
1032 | char buf[1024]; |
||
1033 | |||
1034 | buf[0] = 0; |
||
1035 | if (sply == 1) { |
||
1036 | left = 0; |
||
1037 | for (i = 0; i < n_root_moves; i++) |
||
1038 | if (!(root_moves[i].status & 8)) |
||
1039 | left++; |
||
1040 | sprintf_s(buf, sizeof (buf), "%d:%d/%d ", 1, left, n_root_moves); // Pierre-Marie Baty -- use safe version |
||
1041 | } else { |
||
1042 | for (i = 0; i < spos - 6; i++) |
||
1043 | strcat_s(buf, sizeof (buf), " "); // Pierre-Marie Baty -- use safe version |
||
1044 | sprintf(buf + strlen(buf), "[p%2d] ", tree->thread_id); |
||
1045 | } |
||
1046 | for (i = Max(sply, 2); i <= maxply; i++) { |
||
1047 | left = 0; |
||
1048 | for (mvp = tree->last[i - 1]; mvp < tree->last[i]; mvp++) |
||
1049 | if (*mvp) |
||
1050 | left++; |
||
1051 | sprintf(buf + strlen(buf), "%d:%d/%d ", i, left, |
||
1052 | (int) (tree->last[i] - tree->last[i - 1])); |
||
1053 | if (!(i % 8)) |
||
1054 | strcat_s(buf, sizeof (buf), "\n"); // Pierre-Marie Baty -- use safe version |
||
1055 | if (tree->nprocs > 1 && tree->ply == i) { |
||
1056 | parallel = strlen(buf); |
||
1057 | break; |
||
1058 | } |
||
1059 | if (sply > 1) |
||
1060 | break; |
||
1061 | } |
||
1062 | printf("%s\n", buf); |
||
1063 | if (sply == 1 && tree->nprocs) { |
||
1064 | for (i = 0; i < smp_max_threads; i++) |
||
1065 | if (tree->siblings[i]) |
||
1066 | DisplayTreeState(tree->siblings[i], tree->ply + 1, parallel, maxply); |
||
1067 | } |
||
1068 | } |
||
1069 | |||
1070 | /* |
||
1071 | ******************************************************************************* |
||
1072 | * * |
||
1073 | * DisplayType3() prints personality parameters that use an 8x8 board for * |
||
1074 | * their base values. This prints them side by side with rank/file labels * |
||
1075 | * to make it easier to read. * |
||
1076 | * * |
||
1077 | ******************************************************************************* |
||
1078 | */ |
||
1079 | void DisplayType3(int *array, int *array2) { |
||
1080 | int i, j; |
||
1081 | |||
1082 | printf(" ----------- Middlegame ----------- "); |
||
1083 | printf(" ------------- Endgame -----------\n"); |
||
1084 | for (i = 0; i < 8; i++) { |
||
1085 | printf(" "); |
||
1086 | for (j = 0; j < 8; j++) |
||
1087 | printf("%3d ", array[64 + (7 - i) * 8 + j]); |
||
1088 | printf(" | %d |", 8 - i); |
||
1089 | printf(" "); |
||
1090 | for (j = 0; j < 8; j++) |
||
1091 | printf("%3d ", array2[64 + (7 - i) * 8 + j]); |
||
1092 | printf("\n"); |
||
1093 | } |
||
1094 | printf |
||
1095 | (" ---------------------------------- ---------------------------------\n"); |
||
1096 | printf(" a b c d e f g h "); |
||
1097 | printf(" a b c d e f g h\n"); |
||
1098 | } |
||
1099 | |||
1100 | /* |
||
1101 | ******************************************************************************* |
||
1102 | * * |
||
1103 | * DisplayType4() prints personality parameters that use an 8x8 board for * |
||
1104 | * their base values. This prints them side by side with rank/file labels * |
||
1105 | * to make it easier to read. * |
||
1106 | * * |
||
1107 | ******************************************************************************* |
||
1108 | */ |
||
1109 | void DisplayType4(int *array, int *array2) { |
||
1110 | int i, j; |
||
1111 | |||
1112 | printf(" ----------- Middlegame ----------- "); |
||
1113 | printf(" ------------- Endgame -----------\n"); |
||
1114 | for (i = 0; i < 8; i++) { |
||
1115 | printf(" "); |
||
1116 | for (j = 0; j < 8; j++) |
||
1117 | printf("%3d ", array[(7 - i) * 8 + j]); |
||
1118 | printf(" | %d |", 8 - i); |
||
1119 | printf(" "); |
||
1120 | for (j = 0; j < 8; j++) |
||
1121 | printf("%3d ", array2[(7 - i) * 8 + j]); |
||
1122 | printf("\n"); |
||
1123 | } |
||
1124 | printf |
||
1125 | (" ---------------------------------- ---------------------------------\n"); |
||
1126 | printf(" a b c d e f g h "); |
||
1127 | printf(" a b c d e f g h\n"); |
||
1128 | } |
||
1129 | |||
1130 | /* |
||
1131 | ******************************************************************************* |
||
1132 | * * |
||
1133 | * DisplayType5() prints personality parameters that use an array[size]. * |
||
1134 | * * |
||
1135 | ******************************************************************************* |
||
1136 | */ |
||
1137 | void DisplayType5(int *array, int size) { |
||
1138 | int i; |
||
1139 | |||
1140 | printf(" "); |
||
1141 | for (i = 0; i < size; i++) |
||
1142 | printf("%4d ", array[i]); |
||
1143 | printf("\n"); |
||
1144 | } |
||
1145 | |||
1146 | /* |
||
1147 | ******************************************************************************* |
||
1148 | * * |
||
1149 | * DisplayType6() prints personality parameters that use an array[mg][8] * |
||
1150 | * format. * |
||
1151 | * * |
||
1152 | ******************************************************************************* |
||
1153 | */ |
||
1154 | void DisplayType6(int *array) { |
||
1155 | int i; |
||
1156 | |||
1157 | printf(" ----------- Middlegame ------------ "); |
||
1158 | printf(" ------------- Endgame ------------\n"); |
||
1159 | printf(" "); |
||
1160 | for (i = 0; i < 8; i++) |
||
1161 | printf("%3d ", array[i]); |
||
1162 | printf(" | |"); |
||
1163 | printf(" "); |
||
1164 | for (i = 8; i < 16; i++) |
||
1165 | printf("%3d ", array[i]); |
||
1166 | printf("\n"); |
||
1167 | } |
||
1168 | |||
1169 | /* |
||
1170 | ******************************************************************************* |
||
1171 | * * |
||
1172 | * EGTBPV() is used to display the PV for a known EGTB position. It simply * |
||
1173 | * makes moves, looks up the position to find the shortest mate, then it * |
||
1174 | * follows that PV. It appends a "!" to a move that is the only move to * |
||
1175 | * preserve the shortest path to mate (all other moves lead to longer mates * |
||
1176 | * or even draws.) * |
||
1177 | * * |
||
1178 | ******************************************************************************* |
||
1179 | */ |
||
1180 | #if !defined(NOEGTB) |
||
1181 | void EGTBPV(TREE * RESTRICT tree, int wtm) { |
||
1182 | int moves[1024], current[256]; |
||
1183 | uint64_t hk[1024], phk[1024]; |
||
1184 | char buffer[16384], *next; |
||
1185 | uint64_t pos[1024]; |
||
1186 | int value; |
||
1187 | int ply, i, j, nmoves, *last, t_move_number; |
||
1188 | int best = 0, bestmv = 0, optimal_mv = 0; |
||
1189 | int legal; |
||
1190 | |||
1191 | /* |
||
1192 | ************************************************************ |
||
1193 | * * |
||
1194 | * First, see if this is a known EGTB position. If not, * |
||
1195 | * we can bug out right now. * |
||
1196 | * * |
||
1197 | ************************************************************ |
||
1198 | */ |
||
1199 | if (!EGTB_setup) |
||
1200 | return; |
||
1201 | tree->status[1] = tree->status[0]; |
||
1202 | if (Castle(1, white) + Castle(1, white)) |
||
1203 | return; |
||
1204 | if (!EGTBProbe(tree, 1, wtm, &value)) |
||
1205 | return; |
||
1206 | t_move_number = move_number; |
||
1207 | if (display_options & 64) |
||
1208 | sprintf_s(buffer, sizeof (buffer), "%d.", move_number); // Pierre-Marie Baty -- use safe version |
||
1209 | else |
||
1210 | buffer[0] = 0; |
||
1211 | if ((display_options & 64) && !wtm) |
||
1212 | strcat_s(buffer, sizeof (buffer), " ..."); // Pierre-Marie Baty -- use safe version |
||
1213 | /* |
||
1214 | ************************************************************ |
||
1215 | * * |
||
1216 | * The rest is simple, but messy. Generate all moves, * |
||
1217 | * then find the move with the best egtb score and make it * |
||
1218 | * (note that if there is only one that is optimal, it is * |
||
1219 | * flagged as such). We then repeat this over and over * |
||
1220 | * until we reach the end, or until we repeat a move and * |
||
1221 | * can call it a repetition. * |
||
1222 | * * |
||
1223 | ************************************************************ |
||
1224 | */ |
||
1225 | for (ply = 1; ply < 1024; ply++) { |
||
1226 | pos[ply] = HashKey; |
||
1227 | last = GenerateCaptures(tree, 1, wtm, current); |
||
1228 | last = GenerateNoncaptures(tree, 1, wtm, last); |
||
1229 | nmoves = last - current; |
||
1230 | best = -MATE - 1; |
||
1231 | legal = 0; |
||
1232 | for (i = 0; i < nmoves; i++) { |
||
1233 | MakeMove(tree, 1, current[i], wtm); |
||
1234 | if (!Check(wtm)) { |
||
1235 | legal++; |
||
1236 | if (TotalAllPieces == 2 || EGTBProbe(tree, 2, Flip(wtm), &value)) { |
||
1237 | if (TotalAllPieces > 2) |
||
1238 | value = -value; |
||
1239 | else |
||
1240 | value = DrawScore(wtm); |
||
1241 | if (value > best) { |
||
1242 | best = value; |
||
1243 | bestmv = current[i]; |
||
1244 | optimal_mv = 1; |
||
1245 | } else if (value == best) |
||
1246 | optimal_mv = 0; |
||
1247 | } |
||
1248 | } |
||
1249 | UnmakeMove(tree, 1, current[i], wtm); |
||
1250 | } |
||
1251 | if (best > -MATE - 1) { |
||
1252 | moves[ply] = bestmv; |
||
1253 | if ((display_options & 64) && ply > 1 && wtm) |
||
1254 | sprintf(buffer + strlen(buffer), " %d.", t_move_number); |
||
1255 | sprintf(buffer + strlen(buffer), " %s", OutputMove(tree, bestmv, 1, |
||
1256 | wtm)); |
||
1257 | if (!strchr(buffer, '#') && legal > 1 && optimal_mv) |
||
1258 | strcat_s(buffer, sizeof (buffer), "!"); // Pierre-Marie Baty -- use safe version |
||
1259 | hk[ply] = HashKey; |
||
1260 | phk[ply] = PawnHashKey; |
||
1261 | MakeMove(tree, 1, bestmv, wtm); |
||
1262 | tree->status[1] = tree->status[2]; |
||
1263 | wtm = Flip(wtm); |
||
1264 | for (j = 2 - (ply & 1); j < ply; j += 2) |
||
1265 | if (pos[ply] == pos[j]) |
||
1266 | break; |
||
1267 | if (j < ply) |
||
1268 | break; |
||
1269 | if (wtm) |
||
1270 | t_move_number++; |
||
1271 | if (strchr(buffer, '#')) |
||
1272 | break; |
||
1273 | } else { |
||
1274 | ply--; |
||
1275 | break; |
||
1276 | } |
||
1277 | } |
||
1278 | nmoves = ply; |
||
1279 | for (; ply > 0; ply--) { |
||
1280 | wtm = Flip(wtm); |
||
1281 | tree->save_hash_key[1] = hk[ply]; |
||
1282 | tree->save_pawn_hash_key[1] = phk[ply]; |
||
1283 | UnmakeMove(tree, 1, moves[ply], wtm); |
||
1284 | tree->status[2] = tree->status[1]; |
||
1285 | } |
||
1286 | next = buffer; |
||
1287 | while (nmoves) { |
||
1288 | if ((int) strlen(next) > line_length) { // Pierre-Marie Baty -- added type cast |
||
1289 | int i; |
||
1290 | |||
1291 | for (i = 0; i < 16; i++) |
||
1292 | if (*(next + 64 + i) == ' ') |
||
1293 | break; |
||
1294 | *(next + 64 + i) = 0; |
||
1295 | printf("%s\n", next); |
||
1296 | next += 64 + i + 1; |
||
1297 | } else { |
||
1298 | printf("%s\n", next); |
||
1299 | break; |
||
1300 | } |
||
1301 | } |
||
1302 | } |
||
1303 | #endif |
||
1304 | /* |
||
1305 | ******************************************************************************* |
||
1306 | * * |
||
1307 | * DisplayChessMove() is a debugging function that displays a chess move in * |
||
1308 | * a very simple (non-algebraic) form. * |
||
1309 | * * |
||
1310 | ******************************************************************************* |
||
1311 | */ |
||
1312 | void DisplayChessMove(char *title, int move) { |
||
1313 | Print(4095, "%s piece=%d, from=%d, to=%d, captured=%d, promote=%d\n", |
||
1314 | title, Piece(move), From(move), To(move), Captured(move), |
||
1315 | Promote(move)); |
||
1316 | } |
||
1317 | |||
1318 | /* |
||
1319 | ******************************************************************************* |
||
1320 | * * |
||
1321 | * FormatPV() is used to display a PV during the search. It will also note * |
||
1322 | * when the PV was terminated by a hash table hit. * |
||
1323 | * * |
||
1324 | ******************************************************************************* |
||
1325 | */ |
||
1326 | char *FormatPV(TREE * RESTRICT tree, int wtm, PATH pv) { |
||
1327 | static char buffer[4096]; |
||
1328 | int i, t_move_number; |
||
1329 | |||
1330 | /* |
||
1331 | ************************************************************ |
||
1332 | * * |
||
1333 | * Initialize. * |
||
1334 | * * |
||
1335 | ************************************************************ |
||
1336 | */ |
||
1337 | t_move_number = move_number; |
||
1338 | if (display_options & 64) |
||
1339 | sprintf_s(buffer, sizeof (buffer), " %d.", move_number); // Pierre-Marie Baty -- use safe version |
||
1340 | else |
||
1341 | buffer[0] = 0; |
||
1342 | if ((display_options & 64) && !wtm) |
||
1343 | strcat_s(buffer, sizeof (buffer), " ..."); // Pierre-Marie Baty -- use safe version |
||
1344 | for (i = 1; i < (int) pv.pathl; i++) { |
||
1345 | if ((display_options & 64) && i > 1 && wtm) |
||
1346 | sprintf(buffer + strlen(buffer), " %d.", t_move_number); |
||
1347 | sprintf(buffer + strlen(buffer), " %s", OutputMove(tree, pv.path[i], i, |
||
1348 | wtm)); |
||
1349 | MakeMove(tree, i, pv.path[i], wtm); |
||
1350 | wtm = Flip(wtm); |
||
1351 | if (wtm) |
||
1352 | t_move_number++; |
||
1353 | } |
||
1354 | for (i = pv.pathl - 1; i > 0; i--) { |
||
1355 | wtm = Flip(wtm); |
||
1356 | UnmakeMove(tree, i, pv.path[i], wtm); |
||
1357 | } |
||
1358 | return buffer; |
||
1359 | } |
||
1360 | |||
1361 | /* last modified 02/26/14 */ |
||
1362 | /* |
||
1363 | ******************************************************************************* |
||
1364 | * * |
||
1365 | * GameOver() is used to determine if the game is over by rule. More * |
||
1366 | * specifically, after our move, the opponent has no legal move to play. He * |
||
1367 | * is either checkmated or stalemated, either of which is sufficient reason * |
||
1368 | * to terminate the game. * |
||
1369 | * * |
||
1370 | ******************************************************************************* |
||
1371 | */ |
||
1372 | int GameOver(int wtm) { |
||
1373 | int *mvp, *lastm, rmoves[256]; |
||
1374 | TREE *const tree = block[0]; |
||
1375 | int over = 1; |
||
1376 | |||
1377 | /* |
||
1378 | ************************************************************ |
||
1379 | * * |
||
1380 | * First, use GenerateMoves() to generate the set of * |
||
1381 | * legal moves from the root position. * |
||
1382 | * * |
||
1383 | ************************************************************ |
||
1384 | */ |
||
1385 | lastm = GenerateCaptures(tree, 1, wtm, rmoves); |
||
1386 | lastm = GenerateNoncaptures(tree, 1, wtm, lastm); |
||
1387 | /* |
||
1388 | ************************************************************ |
||
1389 | * * |
||
1390 | * Now make each move and determine if we are in check * |
||
1391 | * after each one. Any move that does not leave us in * |
||
1392 | * check is good enough to prove that the game is not yet * |
||
1393 | * officially over. * |
||
1394 | * * |
||
1395 | ************************************************************ |
||
1396 | */ |
||
1397 | for (mvp = rmoves; mvp < lastm; mvp++) { |
||
1398 | MakeMove(tree, 1, *mvp, wtm); |
||
1399 | if (!Check(wtm)) |
||
1400 | over = 0; |
||
1401 | UnmakeMove(tree, 1, *mvp, wtm); |
||
1402 | } |
||
1403 | /* |
||
1404 | ************************************************************ |
||
1405 | * * |
||
1406 | * If we did not make it thru the complete move list, we * |
||
1407 | * must have at least one legal move so the game is not * |
||
1408 | * over. return 0. Otherwise, we have no move and the * |
||
1409 | * game is over. We return 1 if this side is stalmated or * |
||
1410 | * we return 2 if this side is mated. * |
||
1411 | * * |
||
1412 | ************************************************************ |
||
1413 | */ |
||
1414 | if (!over) |
||
1415 | return 0; |
||
1416 | else if (!Check(wtm)) |
||
1417 | return 1; |
||
1418 | else |
||
1419 | return 2; |
||
1420 | } |
||
1421 | |||
1422 | /* |
||
1423 | ******************************************************************************* |
||
1424 | * * |
||
1425 | * ReadClock() is a procedure used to read the elapsed time. Since this * |
||
1426 | * varies from system to system, this procedure has several flavors to * |
||
1427 | * provide portability. * |
||
1428 | * * |
||
1429 | ******************************************************************************* |
||
1430 | */ |
||
1431 | unsigned int ReadClock(void) { |
||
1432 | #if defined(UNIX) |
||
1433 | struct timeval timeval; |
||
1434 | struct timezone timezone; |
||
1435 | #else |
||
1436 | // HANDLE hThread; |
||
1437 | // FILETIME ftCreate, ftExit, ftKernel, ftUser; // Pierre-Marie Baty -- unused variables |
||
1438 | // uint64_t tUser64; |
||
1439 | #endif |
||
1440 | #if defined(UNIX) |
||
1441 | gettimeofday(&timeval, &timezone); |
||
1442 | return timeval.tv_sec * 100 + (timeval.tv_usec / 10000); |
||
1443 | #else |
||
1444 | return (unsigned int) GetTickCount() / 10; |
||
1445 | #endif |
||
1446 | } |
||
1447 | |||
1448 | /* |
||
1449 | ******************************************************************************* |
||
1450 | * * |
||
1451 | * FindBlockID() converts a thread block pointer into an ID that is easier to* |
||
1452 | * understand when debugging. * |
||
1453 | * * |
||
1454 | ******************************************************************************* |
||
1455 | */ |
||
1456 | int FindBlockID(TREE * RESTRICT which) { |
||
1457 | int i; |
||
1458 | |||
1459 | for (i = 0; i < MAX_BLOCKS + 1; i++) |
||
1460 | if (which == block[i]) |
||
1461 | return i; |
||
1462 | return -1; |
||
1463 | } |
||
1464 | |||
1465 | /* |
||
1466 | ******************************************************************************* |
||
1467 | * * |
||
1468 | * InvalidPosition() is used to determine if the position just entered via a * |
||
1469 | * FEN-string or the "edit" command is legal. This includes the expected * |
||
1470 | * tests for too many pawns or pieces for one side, pawns on impossible * |
||
1471 | * squares, and the like. * |
||
1472 | * * |
||
1473 | ******************************************************************************* |
||
1474 | */ |
||
1475 | int InvalidPosition(TREE * RESTRICT tree) { |
||
1476 | int error = 0; |
||
1477 | int wp, wn, wb, wr, wq, bp, bn, bb, br, bq; |
||
1478 | |||
1479 | wp = PopCnt(Pawns(white)); |
||
1480 | wn = PopCnt(Knights(white)); |
||
1481 | wb = PopCnt(Bishops(white)); |
||
1482 | wr = PopCnt(Rooks(white)); |
||
1483 | wq = PopCnt(Queens(white)); |
||
1484 | bp = PopCnt(Pawns(black)); |
||
1485 | bn = PopCnt(Knights(black)); |
||
1486 | bb = PopCnt(Bishops(black)); |
||
1487 | br = PopCnt(Rooks(black)); |
||
1488 | bq = PopCnt(Queens(black)); |
||
1489 | if (wp > 8) { |
||
1490 | Print(4095, "illegal position, too many white pawns\n"); |
||
1491 | error = 1; |
||
1492 | } |
||
1493 | if (wp + wn > 10) { |
||
1494 | Print(4095, "illegal position, too many white knights\n"); |
||
1495 | error = 1; |
||
1496 | } |
||
1497 | if (wp + wb > 10) { |
||
1498 | Print(4095, "illegal position, too many white bishops\n"); |
||
1499 | error = 1; |
||
1500 | } |
||
1501 | if (wp + wr > 10) { |
||
1502 | Print(4095, "illegal position, too many white rooks\n"); |
||
1503 | error = 1; |
||
1504 | } |
||
1505 | if (wp + wq > 10) { |
||
1506 | Print(4095, "illegal position, too many white queens\n"); |
||
1507 | error = 1; |
||
1508 | } |
||
1509 | if (KingSQ(white) > 63) { |
||
1510 | Print(4095, "illegal position, no white king\n"); |
||
1511 | error = 1; |
||
1512 | } |
||
1513 | if (wp + wn + wb + wr + wq > 15) { |
||
1514 | Print(4095, "illegal position, too many white pieces\n"); |
||
1515 | error = 1; |
||
1516 | } |
||
1517 | if (Pawns(white) & (rank_mask[RANK1] | rank_mask[RANK8])) { |
||
1518 | Print(4095, "illegal position, white pawns on first/eighth rank(s)\n"); |
||
1519 | error = 1; |
||
1520 | } |
||
1521 | if (bp > 8) { |
||
1522 | Print(4095, "illegal position, too many black pawns\n"); |
||
1523 | error = 1; |
||
1524 | } |
||
1525 | if (bp + bn > 10) { |
||
1526 | Print(4095, "illegal position, too many black knights\n"); |
||
1527 | error = 1; |
||
1528 | } |
||
1529 | if (bp + bb > 10) { |
||
1530 | Print(4095, "illegal position, too many black bishops\n"); |
||
1531 | error = 1; |
||
1532 | } |
||
1533 | if (bp + br > 10) { |
||
1534 | Print(4095, "illegal position, too many black rooks\n"); |
||
1535 | error = 1; |
||
1536 | } |
||
1537 | if (bp + bq > 10) { |
||
1538 | Print(4095, "illegal position, too many black queens\n"); |
||
1539 | error = 1; |
||
1540 | } |
||
1541 | if (KingSQ(black) > 63) { |
||
1542 | Print(4095, "illegal position, no black king\n"); |
||
1543 | error = 1; |
||
1544 | } |
||
1545 | if (bp + bn + bb + br + bq > 15) { |
||
1546 | Print(4095, "illegal position, too many black pieces\n"); |
||
1547 | error = 1; |
||
1548 | } |
||
1549 | if (Pawns(black) & (rank_mask[RANK1] | rank_mask[RANK8])) { |
||
1550 | Print(4095, "illegal position, black pawns on first/eighth rank(s)\n"); |
||
1551 | error = 1; |
||
1552 | } |
||
1553 | if (error == 0 && Check(!game_wtm)) { |
||
1554 | Print(4095, "ERROR side not on move is in check!\n"); |
||
1555 | error = 1; |
||
1556 | } |
||
1557 | return error; |
||
1558 | } |
||
1559 | |||
1560 | /* |
||
1561 | ******************************************************************************* |
||
1562 | * * |
||
1563 | * KingPawnSquare() is used to initialize some of the passed pawn race * |
||
1564 | * tables used by Evaluate(). It simply answers the question "is the king * |
||
1565 | * in the square of the pawn so the pawn can't outrun it and promote?" * |
||
1566 | * * |
||
1567 | ******************************************************************************* |
||
1568 | */ |
||
1569 | int KingPawnSquare(int pawn, int king, int queen, int ptm) { |
||
1570 | int pdist, kdist; |
||
1571 | |||
1572 | pdist = Abs(Rank(pawn) - Rank(queen)) + !ptm; |
||
1573 | kdist = Distance(king, queen); |
||
1574 | return pdist >= kdist; |
||
1575 | } |
||
1576 | |||
1577 | /* last modified 02/26/14 */ |
||
1578 | /* |
||
1579 | ******************************************************************************* |
||
1580 | * * |
||
1581 | * NewGame() is used to initialize the chess position and timing controls to * |
||
1582 | * the setup needed to start a new game. * |
||
1583 | * * |
||
1584 | ******************************************************************************* |
||
1585 | */ |
||
1586 | void NewGame(int save) { |
||
1587 | static int save_book_selection_width = 5; |
||
1588 | static int save_kibitz = 0; |
||
1589 | static int save_resign = 0, save_resign_count = 0, save_draw_count = 0; |
||
1590 | static int save_learning = 0; |
||
1591 | static int save_learn = 0; |
||
1592 | static int save_accept_draws = 0; |
||
1593 | int id; |
||
1594 | TREE *const tree = block[0]; |
||
1595 | |||
1596 | new_game = 0; |
||
1597 | if (save) { |
||
1598 | save_book_selection_width = book_selection_width; |
||
1599 | save_kibitz = kibitz; |
||
1600 | save_resign = resign; |
||
1601 | save_resign_count = resign_count; |
||
1602 | save_draw_count = draw_count; |
||
1603 | save_learning = learning; |
||
1604 | save_learn = learn; |
||
1605 | save_accept_draws = accept_draws; |
||
1606 | } else { |
||
1607 | if (learn && moves_out_of_book) { |
||
1608 | learn_value = |
||
1609 | (crafty_is_white) ? last_search_value : -last_search_value; |
||
1610 | LearnBook(); |
||
1611 | } |
||
1612 | if (xboard) { |
||
1613 | printf("tellicsnoalias set 1 Crafty v%s (%d cpus)\n", version, Max(1, |
||
1614 | smp_max_threads)); |
||
1615 | } |
||
1616 | over = 0; |
||
1617 | moves_out_of_book = 0; |
||
1618 | learn_positions_count = 0; |
||
1619 | learn_value = 0; |
||
1620 | ponder_move = 0; |
||
1621 | last_search_value = 0; |
||
1622 | last_pv.pathd = 0; |
||
1623 | last_pv.pathl = 0; |
||
1624 | initial_position[0] = 0; // Pierre-Marie Baty -- use safe version |
||
1625 | InitializeChessBoard(tree); |
||
1626 | InitializeHashTables(); |
||
1627 | force = 0; |
||
1628 | books_file = normal_bs_file; |
||
1629 | draw_score[0] = 0; |
||
1630 | draw_score[1] = 0; |
||
1631 | game_wtm = 1; |
||
1632 | move_number = 1; |
||
1633 | tc_time_remaining[white] = tc_time; |
||
1634 | tc_time_remaining[black] = tc_time; |
||
1635 | tc_moves_remaining[white] = tc_moves; |
||
1636 | tc_moves_remaining[black] = tc_moves; |
||
1637 | if (move_actually_played) { |
||
1638 | if (log_file) { |
||
1639 | fclose(log_file); |
||
1640 | fclose(history_file); |
||
1641 | id = InitializeGetLogID(); |
||
1642 | sprintf_s(log_filename, sizeof (log_filename), "%s/log.%03d", log_path, id); // Pierre-Marie Baty -- use safe version |
||
1643 | sprintf_s(history_filename, sizeof (history_filename), "%s/game.%03d", log_path, id); // Pierre-Marie Baty -- use safe version |
||
1644 | fopen_s (&log_file, log_filename, "w"); // Pierre-Marie Baty -- use safe version |
||
1645 | fopen_s (&history_file, history_filename, "w+"); // Pierre-Marie Baty -- use safe version |
||
1646 | if (!history_file) { |
||
1647 | printf("ERROR, unable to open game history file, exiting\n"); |
||
1648 | CraftyExit(1); |
||
1649 | } |
||
1650 | } |
||
1651 | } |
||
1652 | move_actually_played = 0; |
||
1653 | book_selection_width = save_book_selection_width; |
||
1654 | kibitz = save_kibitz; |
||
1655 | resign = save_resign; |
||
1656 | resign_count = save_resign_count; |
||
1657 | resign_counter = 0; |
||
1658 | draw_count = save_draw_count; |
||
1659 | accept_draws = save_accept_draws; |
||
1660 | draw_counter = 0; |
||
1661 | usage_level = 0; |
||
1662 | learning = save_learning; |
||
1663 | learn = save_learn; |
||
1664 | predicted = 0; |
||
1665 | kibitz_depth = 0; |
||
1666 | tree->nodes_searched = 0; |
||
1667 | kibitz_text[0] = 0; |
||
1668 | } |
||
1669 | } |
||
1670 | |||
1671 | /* |
||
1672 | ******************************************************************************* |
||
1673 | * * |
||
1674 | * ParseTime() is used to parse a time value that could be entered as s.ss, * |
||
1675 | * mm:ss, or hh:mm:ss. It is converted to Crafty's internal 1/100th second * |
||
1676 | * time resolution. * |
||
1677 | * * |
||
1678 | ******************************************************************************* |
||
1679 | */ |
||
1680 | int ParseTime(char *string) { |
||
1681 | int time = 0; |
||
1682 | int minutes = 0; |
||
1683 | |||
1684 | while (*string) { |
||
1685 | switch (*string) { |
||
1686 | case '0': |
||
1687 | case '1': |
||
1688 | case '2': |
||
1689 | case '3': |
||
1690 | case '4': |
||
1691 | case '5': |
||
1692 | case '6': |
||
1693 | case '7': |
||
1694 | case '8': |
||
1695 | case '9': |
||
1696 | minutes = minutes * 10 + (*string) - '0'; |
||
1697 | break; |
||
1698 | case ':': |
||
1699 | time = time * 60 + minutes; |
||
1700 | minutes = 0; |
||
1701 | break; |
||
1702 | default: |
||
1703 | Print(4095, "illegal character in time, please re-enter\n"); |
||
1704 | break; |
||
1705 | } |
||
1706 | string++; |
||
1707 | } |
||
1708 | return time * 60 + minutes; |
||
1709 | } |
||
1710 | |||
1711 | /* |
||
1712 | ******************************************************************************* |
||
1713 | * * |
||
1714 | * Pass() was written by Tim Mann to handle the case where a position is set * |
||
1715 | * using a FEN string, and then black moves first. The game.nnn file was * |
||
1716 | * designed to start with a white move, so "pass" is now a "no-op" move for * |
||
1717 | * the side whose turn it is to move. * |
||
1718 | * * |
||
1719 | ******************************************************************************* |
||
1720 | */ |
||
1721 | void Pass(void) { |
||
1722 | char buffer[128]; |
||
1723 | const int halfmoves_done = 2 * (move_number - 1) + (1 - game_wtm); |
||
1724 | int prev_pass = 0; |
||
1725 | |||
1726 | /* Was previous move a pass? */ |
||
1727 | if (halfmoves_done > 0) { |
||
1728 | if (history_file) { |
||
1729 | fseek(history_file, (halfmoves_done - 1) * 10, SEEK_SET); |
||
1730 | if (fscanf_s(history_file, "%s", buffer, sizeof (buffer)) == 0 || |
||
1731 | strcmp(buffer, "pass") == 0) |
||
1732 | prev_pass = 1; |
||
1733 | } |
||
1734 | } |
||
1735 | if (prev_pass) { |
||
1736 | if (game_wtm) |
||
1737 | move_number--; |
||
1738 | } else { |
||
1739 | if (history_file) { |
||
1740 | fseek(history_file, halfmoves_done * 10, SEEK_SET); |
||
1741 | fprintf(history_file, "%9s\n", "pass"); |
||
1742 | } |
||
1743 | if (!game_wtm) |
||
1744 | move_number++; |
||
1745 | } |
||
1746 | game_wtm = Flip(game_wtm); |
||
1747 | } |
||
1748 | |||
1749 | /* |
||
1750 | ******************************************************************************* |
||
1751 | * * |
||
1752 | * Print() is the main output procedure. The first argument is a bitmask * |
||
1753 | * that identifies the type of output. If this argument is anded with the * |
||
1754 | * "display" control variable, and a non-zero result is produced, then the * |
||
1755 | * print is done, otherwise the print is skipped and we return (more details * |
||
1756 | * can be found in the display command comments in option.c). This also * |
||
1757 | * uses the "variable number of arguments" facility in ANSI C since the * |
||
1758 | * normal printf() function accepts a variable number of arguments. * |
||
1759 | * * |
||
1760 | * Print() also sends output to the log.nnn file automatically, so that it * |
||
1761 | * is recorded even if the above display control variable says "do not send * |
||
1762 | * this to stdout" * |
||
1763 | * * |
||
1764 | ******************************************************************************* |
||
1765 | */ |
||
1766 | void Print(int vb, char *fmt, ...) { |
||
1767 | va_list ap; |
||
1768 | |||
1769 | va_start(ap, fmt); |
||
1770 | if (vb & display_options) |
||
1771 | vprintf(fmt, ap); |
||
1772 | fflush(stdout); |
||
1773 | if (time_limit > -99 || tc_time_remaining[root_wtm] > 6000 || vb == 4095) { |
||
1774 | va_start(ap, fmt); |
||
1775 | if (log_file) |
||
1776 | vfprintf(log_file, fmt, ap); |
||
1777 | if (log_file) |
||
1778 | fflush(log_file); |
||
1779 | } |
||
1780 | va_end(ap); |
||
1781 | } |
||
1782 | |||
1783 | /* |
||
1784 | ******************************************************************************* |
||
1785 | * * |
||
1786 | * PrintKM() converts a binary value to a real K/M type value, rather than * |
||
1787 | * the more common K=1000, M=1000000 type output. This is used for info * |
||
1788 | * about the hash table sizes for one thing. * |
||
1789 | * * |
||
1790 | ******************************************************************************* |
||
1791 | */ |
||
1792 | char *PrintKM(size_t val, int realK) { |
||
1793 | static char buf[32]; |
||
1794 | |||
1795 | if (realK) { |
||
1796 | if (val >= 1 << 20 && !(val & ((1 << 20) - 1))) |
||
1797 | sprintf_s(buf, sizeof (buf), "%dM", (int) (val / (1 << 20))); // Pierre-Marie Baty -- use safe version |
||
1798 | else if (val >= 1 << 10) |
||
1799 | sprintf_s(buf, sizeof (buf), "%dK", (int) (val / (1 << 10))); // Pierre-Marie Baty -- use safe version |
||
1800 | else |
||
1801 | sprintf_s(buf, sizeof (buf), "%d", (int) val); // Pierre-Marie Baty -- use safe version |
||
1802 | return buf; |
||
1803 | } else { |
||
1804 | if (val >= 1000000 && !(val % 1000000)) |
||
1805 | sprintf_s(buf, sizeof (buf), "%dM", (int) (val / 1000000)); // Pierre-Marie Baty -- use safe version |
||
1806 | else if (val >= 1000) |
||
1807 | sprintf_s(buf, sizeof (buf), "%dK", (int) (val / 1000)); // Pierre-Marie Baty -- use safe version |
||
1808 | else |
||
1809 | sprintf_s(buf, sizeof (buf), "%d", (int) val); // Pierre-Marie Baty -- use safe version |
||
1810 | return buf; |
||
1811 | } |
||
1812 | } |
||
1813 | |||
1814 | /* |
||
1815 | ******************************************************************************* |
||
1816 | * * |
||
1817 | * A 32 bit random number generator. An implementation in C of the algorithm * |
||
1818 | * given by Knuth, the art of computer programming, vol. 2, pp. 26-27. We use * |
||
1819 | * e=32, so we have to evaluate y(n) = y(n - 24) + y(n - 55) mod 2^32, which * |
||
1820 | * is implicitly done by unsigned arithmetic. * |
||
1821 | * * |
||
1822 | ******************************************************************************* |
||
1823 | */ |
||
1824 | unsigned int Random32(void) { |
||
1825 | /* |
||
1826 | random numbers from Mathematica 2.0. |
||
1827 | SeedRandom = 1; |
||
1828 | Table[Random[Integer, {0, 2^32 - 1}] |
||
1829 | */ |
||
1830 | static const uint64_t x[55] = { |
||
1831 | 1410651636UL, 3012776752UL, 3497475623UL, 2892145026UL, 1571949714UL, |
||
1832 | 3253082284UL, 3489895018UL, 387949491UL, 2597396737UL, 1981903553UL, |
||
1833 | 3160251843UL, 129444464UL, 1851443344UL, 4156445905UL, 224604922UL, |
||
1834 | 1455067070UL, 3953493484UL, 1460937157UL, 2528362617UL, 317430674UL, |
||
1835 | 3229354360UL, 117491133UL, 832845075UL, 1961600170UL, 1321557429UL, |
||
1836 | 747750121UL, 545747446UL, 810476036UL, 503334515UL, 4088144633UL, |
||
1837 | 2824216555UL, 3738252341UL, 3493754131UL, 3672533954UL, 29494241UL, |
||
1838 | 1180928407UL, 4213624418UL, 33062851UL, 3221315737UL, 1145213552UL, |
||
1839 | 2957984897UL, 4078668503UL, 2262661702UL, 65478801UL, 2527208841UL, |
||
1840 | 1960622036UL, 315685891UL, 1196037864UL, 804614524UL, 1421733266UL, |
||
1841 | 2017105031UL, 3882325900UL, 810735053UL, 384606609UL, 2393861397UL |
||
1842 | }; |
||
1843 | static int init = 1; |
||
1844 | static uint64_t y[55]; |
||
1845 | static int j, k; |
||
1846 | uint64_t ul; |
||
1847 | |||
1848 | if (init) { |
||
1849 | int i; |
||
1850 | |||
1851 | init = 0; |
||
1852 | for (i = 0; i < 55; i++) |
||
1853 | y[i] = x[i]; |
||
1854 | j = 24 - 1; |
||
1855 | k = 55 - 1; |
||
1856 | } |
||
1857 | ul = (y[k] += y[j]); |
||
1858 | if (--j < 0) |
||
1859 | j = 55 - 1; |
||
1860 | if (--k < 0) |
||
1861 | k = 55 - 1; |
||
1862 | return (unsigned int) ul; |
||
1863 | } |
||
1864 | |||
1865 | /* |
||
1866 | ******************************************************************************* |
||
1867 | * * |
||
1868 | * Random64() uses two calls to Random32() and then concatenates the two * |
||
1869 | * values into one 64 bit random number, used for hash signature updates on * |
||
1870 | * the Zobrist hash signatures. * |
||
1871 | * * |
||
1872 | ******************************************************************************* |
||
1873 | */ |
||
1874 | uint64_t Random64(void) { |
||
1875 | uint64_t result; |
||
1876 | unsigned int r1, r2; |
||
1877 | |||
1878 | r1 = Random32(); |
||
1879 | r2 = Random32(); |
||
1880 | result = r1 | (uint64_t) r2 << 32; |
||
1881 | return result; |
||
1882 | } |
||
1883 | |||
1884 | /* |
||
1885 | ******************************************************************************* |
||
1886 | * * |
||
1887 | * Read() copies data from the command_buffer into a local buffer, and then * |
||
1888 | * uses ReadParse to break this command up into tokens for processing. * |
||
1889 | * * |
||
1890 | ******************************************************************************* |
||
1891 | */ |
||
1892 | int Read(int wait, char *buffer, size_t buffer_size) { |
||
1893 | char *eol, *ret, readdata; |
||
1894 | |||
1895 | *buffer = 0; |
||
1896 | /* |
||
1897 | case 1: We have a complete command line, with terminating |
||
1898 | N/L character in the buffer. We can simply extract it from |
||
1899 | the I/O buffer, parse it and return. |
||
1900 | */ |
||
1901 | if (strchr(cmd_buffer, '\n')); |
||
1902 | /* |
||
1903 | case 2: The buffer does not contain a complete line. If we |
||
1904 | were asked to not wait for a complete command, then we first |
||
1905 | see if I/O is possible, and if so, read in what is available. |
||
1906 | If that includes a N/L, then we are ready to parse and return. |
||
1907 | If not, we return indicating no input available just yet. |
||
1908 | */ |
||
1909 | else if (!wait) { |
||
1910 | if (CheckInput()) { |
||
1911 | readdata = ReadInput(); |
||
1912 | if (!strchr(cmd_buffer, '\n')) |
||
1913 | return 0; |
||
1914 | if (!readdata) |
||
1915 | return -1; |
||
1916 | } else |
||
1917 | return 0; |
||
1918 | } |
||
1919 | /* |
||
1920 | case 3: The buffer does not contain a complete line, but we |
||
1921 | were asked to wait until a complete command is entered. So we |
||
1922 | hang by doing a ReadInput() and continue doing so until we get |
||
1923 | a N/L character in the buffer. Then we parse and return. |
||
1924 | */ |
||
1925 | else |
||
1926 | while (!strchr(cmd_buffer, '\n')) { |
||
1927 | readdata = ReadInput(); |
||
1928 | if (!readdata) |
||
1929 | return -1; |
||
1930 | } |
||
1931 | eol = strchr(cmd_buffer, '\n'); |
||
1932 | *eol = 0; |
||
1933 | ret = strchr(cmd_buffer, '\r'); |
||
1934 | if (ret) |
||
1935 | *ret = ' '; |
||
1936 | strcpy_s(buffer, buffer_size, cmd_buffer); // Pierre-Marie Baty -- use safe version |
||
1937 | memmove(cmd_buffer, eol + 1, strlen(eol + 1) + 1); |
||
1938 | return 1; |
||
1939 | } |
||
1940 | |||
1941 | /* |
||
1942 | ******************************************************************************* |
||
1943 | * * |
||
1944 | * ReadClear() clears the input buffer when input_stream is being switched to* |
||
1945 | * a file, since we have info buffered up from a different input stream. * |
||
1946 | * * |
||
1947 | ******************************************************************************* |
||
1948 | */ |
||
1949 | void ReadClear() { |
||
1950 | cmd_buffer[0] = 0; |
||
1951 | } |
||
1952 | |||
1953 | /* |
||
1954 | ******************************************************************************* |
||
1955 | * * |
||
1956 | * ReadParse() takes one complete command-line, and breaks it up into tokens.* |
||
1957 | * common delimiters are used, such as " ", ",", "/" and ";", any of which * |
||
1958 | * delimit fields. * |
||
1959 | * * |
||
1960 | ******************************************************************************* |
||
1961 | */ |
||
1962 | int ReadParse(char *buffer, char *args[], char *delims) { |
||
1963 | char *next, tbuffer[4096]; |
||
1964 | int nargs; |
||
1965 | |||
1966 | strcpy_s(tbuffer, sizeof (tbuffer), buffer); // Pierre-Marie Baty -- use safe version |
||
1967 | for (nargs = 0; nargs < 512; nargs++) |
||
1968 | *(args[nargs]) = 0; |
||
1969 | next = strtok(tbuffer, delims); |
||
1970 | if (!next) |
||
1971 | return 0; |
||
1972 | if (strlen(next) > 255) |
||
1973 | Print(4095, "ERROR, ignoring token %s, max allowable len = 255\n", next); |
||
1974 | else |
||
1975 | strcpy(args[0], next); |
||
1976 | for (nargs = 1; nargs < 512; nargs++) { |
||
1977 | next = strtok(0, delims); |
||
1978 | if (!next) |
||
1979 | break; |
||
1980 | if (strlen(next) > 255) |
||
1981 | Print(4095, "ERROR, ignoring token %s, max allowable len = 255\n", |
||
1982 | next); |
||
1983 | else |
||
1984 | strcpy(args[nargs], next); |
||
1985 | } |
||
1986 | return nargs; |
||
1987 | } |
||
1988 | |||
1989 | /* |
||
1990 | ******************************************************************************* |
||
1991 | * * |
||
1992 | * ReadInput() reads data from the input_stream, and buffers this into the * |
||
1993 | * command_buffer for later processing. * |
||
1994 | * * |
||
1995 | ******************************************************************************* |
||
1996 | */ |
||
1997 | int ReadInput(void) { |
||
1998 | char buffer[4096], *end; |
||
1999 | int bytes; |
||
2000 | |||
2001 | do |
||
2002 | bytes = _read(_fileno(input_stream), buffer, 2048); // Pierre-Marie Baty -- use ISO C++ conformant names |
||
2003 | while (bytes < 0 && errno == EINTR); |
||
2004 | if (bytes == 0) { |
||
2005 | if (input_stream != stdin) |
||
2006 | fclose(input_stream); |
||
2007 | input_stream = stdin; |
||
2008 | return 0; |
||
2009 | } else if (bytes < 0) { |
||
2010 | Print(4095, "ERROR! input I/O stream is unreadable, exiting.\n"); |
||
2011 | CraftyExit(1); |
||
2012 | } |
||
2013 | end = cmd_buffer + strlen(cmd_buffer); |
||
2014 | memcpy(end, buffer, bytes); |
||
2015 | *(end + bytes) = 0; |
||
2016 | return 1; |
||
2017 | } |
||
2018 | |||
2019 | /* |
||
2020 | ******************************************************************************* |
||
2021 | * * |
||
2022 | * ReadChessMove() is used to read a move from an input file. The main issue* |
||
2023 | * is to skip over "trash" like move numbers, times, comments, and so forth, * |
||
2024 | * and find the next actual move. * |
||
2025 | * * |
||
2026 | ******************************************************************************* |
||
2027 | */ |
||
2028 | int ReadChessMove(TREE * RESTRICT tree, FILE * input, int wtm, int one_move) { |
||
2029 | static char text[128]; |
||
2030 | char *tmove; |
||
2031 | int move = 0, status; |
||
2032 | |||
2033 | while (move == 0) { |
||
2034 | status = fscanf(input, "%s", text); |
||
2035 | if (status <= 0) |
||
2036 | return -1; |
||
2037 | if (strcmp(text, "0-0") && strcmp(text, "0-0-0")) |
||
2038 | tmove = text + strspn(text, "0123456789."); |
||
2039 | else |
||
2040 | tmove = text; |
||
2041 | if (((tmove[0] >= 'a' && tmove[0] <= 'z') || (tmove[0] >= 'A' && |
||
2042 | tmove[0] <= 'Z')) || !strcmp(tmove, "0-0") |
||
2043 | || !strcmp(tmove, "0-0-0")) { |
||
2044 | if (!strcmp(tmove, "exit")) |
||
2045 | return -1; |
||
2046 | move = InputMove(tree, tmove, 0, wtm, 1, 0); |
||
2047 | } |
||
2048 | if (one_move) |
||
2049 | break; |
||
2050 | } |
||
2051 | return move; |
||
2052 | } |
||
2053 | |||
2054 | /* |
||
2055 | ******************************************************************************* |
||
2056 | * * |
||
2057 | * ReadNextMove() is used to take a text chess move from a file, and see if * |
||
2058 | * if is legal, skipping a sometimes embedded move number (1.e4 for example) * |
||
2059 | * to make PGN import easier. * |
||
2060 | * * |
||
2061 | ******************************************************************************* |
||
2062 | */ |
||
2063 | int ReadNextMove(TREE * RESTRICT tree, char *text, int ply, int wtm) { |
||
2064 | char *tmove; |
||
2065 | int move = 0; |
||
2066 | |||
2067 | if (strcmp(text, "0-0") && strcmp(text, "0-0-0")) |
||
2068 | tmove = text + strspn(text, "0123456789./-"); |
||
2069 | else |
||
2070 | tmove = text; |
||
2071 | if (((tmove[0] >= 'a' && tmove[0] <= 'z') || (tmove[0] >= 'A' && |
||
2072 | tmove[0] <= 'Z')) || !strcmp(tmove, "0-0") |
||
2073 | || !strcmp(tmove, "0-0-0")) { |
||
2074 | if (!strcmp(tmove, "exit")) |
||
2075 | return -1; |
||
2076 | move = InputMove(tree, tmove, ply, wtm, 1, 0); |
||
2077 | } |
||
2078 | return move; |
||
2079 | } |
||
2080 | |||
2081 | /* |
||
2082 | ******************************************************************************* |
||
2083 | * * |
||
2084 | * This routine reads a move from a PGN file to build an opening book or for * |
||
2085 | * annotating. It returns a 1 if a header is read, it returns a 0 if a move * |
||
2086 | * is read, and returns a -1 on end of file. It counts lines and this * |
||
2087 | * counter can be accessed by calling this function with a non-zero second * |
||
2088 | * formal parameter. * |
||
2089 | * * |
||
2090 | ******************************************************************************* |
||
2091 | */ |
||
2092 | int ReadPGN(FILE * input, int option) { |
||
2093 | static int data = 0, lines_read = 0; |
||
2094 | static char input_buffer[4096]; |
||
2095 | char *eof, analysis_move[64]; |
||
2096 | int braces = 0, parens = 0, brackets = 0, analysis = 0, last_good_line; |
||
2097 | |||
2098 | /* |
||
2099 | ************************************************************ |
||
2100 | * * |
||
2101 | * If the line counter is being requested, return it with * |
||
2102 | * no other changes being made. If "purge" is true, clear * |
||
2103 | * the current input buffer. * |
||
2104 | * * |
||
2105 | ************************************************************ |
||
2106 | */ |
||
2107 | pgn_suggested_percent = 0; |
||
2108 | if (!input) { |
||
2109 | lines_read = 0; |
||
2110 | data = 0; |
||
2111 | return 0; |
||
2112 | } |
||
2113 | if (option == -1) |
||
2114 | data = 0; |
||
2115 | if (option == -2) |
||
2116 | return lines_read; |
||
2117 | /* |
||
2118 | ************************************************************ |
||
2119 | * * |
||
2120 | * If we don't have any data in the buffer, the first step * |
||
2121 | * is to read the next line. * |
||
2122 | * * |
||
2123 | ************************************************************ |
||
2124 | */ |
||
2125 | while (1) { |
||
2126 | if (!data) { |
||
2127 | eof = fgets(input_buffer, 4096, input); |
||
2128 | if (!eof) |
||
2129 | return -1; |
||
2130 | if (strchr(input_buffer, '\n')) |
||
2131 | *strchr(input_buffer, '\n') = 0; |
||
2132 | if (strchr(input_buffer, '\r')) |
||
2133 | *strchr(input_buffer, '\r') = ' '; |
||
2134 | lines_read++; |
||
2135 | buffer[0] = 0; |
||
2136 | sscanf(input_buffer, "%s", buffer); |
||
2137 | if (buffer[0] == '[') |
||
2138 | do { |
||
2139 | char *bracket1, *bracket2, value[128]; |
||
2140 | |||
2141 | strcpy(buffer, input_buffer); |
||
2142 | bracket1 = strchr(input_buffer, '\"'); |
||
2143 | if (bracket1 == 0) |
||
2144 | return 1; |
||
2145 | bracket2 = strchr(bracket1 + 1, '\"'); |
||
2146 | if (bracket2 == 0) |
||
2147 | return 1; |
||
2148 | *bracket1 = 0; |
||
2149 | *bracket2 = 0; |
||
2150 | strcpy(value, bracket1 + 1); |
||
2151 | if (strstr(input_buffer, "Event")) |
||
2152 | strcpy(pgn_event, value); |
||
2153 | else if (strstr(input_buffer, "Site")) |
||
2154 | strcpy(pgn_site, value); |
||
2155 | else if (strstr(input_buffer, "Round")) |
||
2156 | strcpy(pgn_round, value); |
||
2157 | else if (strstr(input_buffer, "Date")) |
||
2158 | strcpy(pgn_date, value); |
||
2159 | else if (strstr(input_buffer, "WhiteElo")) |
||
2160 | strcpy(pgn_white_elo, value); |
||
2161 | else if (strstr(input_buffer, "White")) |
||
2162 | strcpy(pgn_white, value); |
||
2163 | else if (strstr(input_buffer, "BlackElo")) |
||
2164 | strcpy(pgn_black_elo, value); |
||
2165 | else if (strstr(input_buffer, "Black")) |
||
2166 | strcpy(pgn_black, value); |
||
2167 | else if (strstr(input_buffer, "Result")) |
||
2168 | strcpy(pgn_result, value); |
||
2169 | else if (strstr(input_buffer, "FEN")) { |
||
2170 | sprintf_s(buffer, sizeof (buffer), "setboard %s", value); // Pierre-Marie Baty -- use safe version |
||
2171 | (void) Option(block[0]); |
||
2172 | continue; |
||
2173 | } |
||
2174 | return 1; |
||
2175 | } while (0); |
||
2176 | data = 1; |
||
2177 | } |
||
2178 | /* |
||
2179 | ************************************************************ |
||
2180 | * * |
||
2181 | * If we already have data in the buffer, it is just a * |
||
2182 | * matter of extracting the next move and returning it to * |
||
2183 | * the caller. If the buffer is empty, another line has * |
||
2184 | * to be read in. * |
||
2185 | * * |
||
2186 | ************************************************************ |
||
2187 | */ |
||
2188 | else { |
||
2189 | buffer[0] = 0; |
||
2190 | sscanf(input_buffer, "%s", buffer); |
||
2191 | if (strlen(buffer) == 0) { |
||
2192 | data = 0; |
||
2193 | continue; |
||
2194 | } else { |
||
2195 | char *skip; |
||
2196 | |||
2197 | skip = strstr(input_buffer, buffer) + strlen(buffer); |
||
2198 | if (skip) |
||
2199 | memmove(input_buffer, skip, strlen(skip) + 1); |
||
2200 | } |
||
2201 | /* |
||
2202 | ************************************************************ |
||
2203 | * * |
||
2204 | * This skips over nested {} or () characters and finds the* |
||
2205 | * 'mate', before returning any more moves. It also stops * |
||
2206 | * if a PGN header is encountered, probably due to an * |
||
2207 | * incorrectly bracketed analysis variation. * |
||
2208 | * * |
||
2209 | ************************************************************ |
||
2210 | */ |
||
2211 | last_good_line = lines_read; |
||
2212 | analysis_move[0] = 0; |
||
2213 | if (strchr(buffer, '{') || strchr(buffer, '(')) |
||
2214 | while (1) { |
||
2215 | char *skip, *ch; |
||
2216 | |||
2217 | analysis = 1; |
||
2218 | while ((ch = strpbrk(buffer, "(){}[]"))) { |
||
2219 | if (*ch == '(') { |
||
2220 | *strchr(buffer, '(') = ' '; |
||
2221 | if (!braces) |
||
2222 | parens++; |
||
2223 | } |
||
2224 | if (*ch == ')') { |
||
2225 | *strchr(buffer, ')') = ' '; |
||
2226 | if (!braces) |
||
2227 | parens--; |
||
2228 | } |
||
2229 | if (*ch == '{') { |
||
2230 | *strchr(buffer, '{') = ' '; |
||
2231 | braces++; |
||
2232 | } |
||
2233 | if (*ch == '}') { |
||
2234 | *strchr(buffer, '}') = ' '; |
||
2235 | braces--; |
||
2236 | } |
||
2237 | if (*ch == '[') { |
||
2238 | *strchr(buffer, '[') = ' '; |
||
2239 | if (!braces) |
||
2240 | brackets++; |
||
2241 | } |
||
2242 | if (*ch == ']') { |
||
2243 | *strchr(buffer, ']') = ' '; |
||
2244 | if (!braces) |
||
2245 | brackets--; |
||
2246 | } |
||
2247 | } |
||
2248 | if (analysis && analysis_move[0] == 0) { |
||
2249 | if (strspn(buffer, " ") != strlen(buffer)) { |
||
2250 | char *tmove = analysis_move; |
||
2251 | |||
2252 | sscanf(buffer, "%64s", analysis_move); |
||
2253 | strcpy(buffer, analysis_move); |
||
2254 | if (strcmp(buffer, "0-0") && strcmp(buffer, "0-0-0")) |
||
2255 | tmove = buffer + strspn(buffer, "0123456789."); |
||
2256 | else |
||
2257 | tmove = buffer; |
||
2258 | if ((tmove[0] >= 'a' && tmove[0] <= 'z') || (tmove[0] >= 'A' && |
||
2259 | tmove[0] <= 'Z') || !strcmp(tmove, "0-0") |
||
2260 | || !strcmp(tmove, "0-0-0")) |
||
2261 | strcpy(analysis_move, buffer); |
||
2262 | else |
||
2263 | analysis_move[0] = 0; |
||
2264 | } |
||
2265 | } |
||
2266 | if (parens == 0 && braces == 0 && brackets == 0) |
||
2267 | break; |
||
2268 | buffer[0] = 0; |
||
2269 | sscanf(input_buffer, "%s", buffer); |
||
2270 | if (strlen(buffer) == 0) { |
||
2271 | eof = fgets(input_buffer, 4096, input); |
||
2272 | if (!eof) { |
||
2273 | parens = 0; |
||
2274 | braces = 0; |
||
2275 | brackets = 0; |
||
2276 | return -1; |
||
2277 | } |
||
2278 | if (strchr(input_buffer, '\n')) |
||
2279 | *strchr(input_buffer, '\n') = 0; |
||
2280 | if (strchr(input_buffer, '\r')) |
||
2281 | *strchr(input_buffer, '\r') = ' '; |
||
2282 | lines_read++; |
||
2283 | if (lines_read - last_good_line >= 100) { |
||
2284 | parens = 0; |
||
2285 | braces = 0; |
||
2286 | brackets = 0; |
||
2287 | Print(4095, |
||
2288 | "ERROR. comment spans over 100 lines, starting at line %d\n", |
||
2289 | last_good_line); |
||
2290 | break; |
||
2291 | } |
||
2292 | } |
||
2293 | skip = strstr(input_buffer, buffer) + strlen(buffer); |
||
2294 | memmove(input_buffer, skip, strlen(skip) + 1); |
||
2295 | } else { |
||
2296 | int skip; |
||
2297 | |||
2298 | if ((skip = strspn(buffer, "0123456789."))) { |
||
2299 | if (skip > 1) |
||
2300 | memmove(buffer, buffer + skip, strlen(buffer + skip) + 1); |
||
2301 | } |
||
2302 | if (isalpha(buffer[0]) || strchr(buffer, '-')) { |
||
2303 | char *first, *last, *percent; |
||
2304 | |||
2305 | first = input_buffer + strspn(input_buffer, " "); |
||
2306 | if (first == 0 || *first != '{') |
||
2307 | return 0; |
||
2308 | last = strchr(input_buffer, '}'); |
||
2309 | if (last == 0) |
||
2310 | return 0; |
||
2311 | percent = strstr(first, "play"); |
||
2312 | if (percent == 0) |
||
2313 | return 0; |
||
2314 | pgn_suggested_percent = |
||
2315 | atoi(percent + 4 + strspn(percent + 4, " ")); |
||
2316 | return 0; |
||
2317 | } |
||
2318 | } |
||
2319 | if (analysis_move[0] && option == 1) { |
||
2320 | strcpy(buffer, analysis_move); |
||
2321 | return 2; |
||
2322 | } |
||
2323 | } |
||
2324 | } |
||
2325 | } |
||
2326 | |||
2327 | /* |
||
2328 | ******************************************************************************* |
||
2329 | * * |
||
2330 | * RestoreGame() resets the position to the beginning of the game, and then * |
||
2331 | * reads in the game.nnn history file to set the position up so that the game* |
||
2332 | * position matches the position at the end of the history file. * |
||
2333 | * * |
||
2334 | ******************************************************************************* |
||
2335 | */ |
||
2336 | void RestoreGame(void) { |
||
2337 | int i, move; |
||
2338 | char cmd[16]; |
||
2339 | |||
2340 | if (!history_file) |
||
2341 | return; |
||
2342 | game_wtm = 1; |
||
2343 | InitializeChessBoard(block[0]); |
||
2344 | for (i = 0; i < 500; i++) { |
||
2345 | fseek(history_file, i * 10, SEEK_SET); |
||
2346 | strcpy(cmd, ""); |
||
2347 | fscanf(history_file, "%s", cmd); |
||
2348 | if (strcmp(cmd, "pass")) { |
||
2349 | move = InputMove(block[0], cmd, 0, game_wtm, 1, 0); |
||
2350 | if (move) |
||
2351 | MakeMoveRoot(block[0], move, game_wtm); |
||
2352 | else |
||
2353 | break; |
||
2354 | } |
||
2355 | game_wtm = Flip(game_wtm); |
||
2356 | } |
||
2357 | } |
||
2358 | |||
2359 | /* |
||
2360 | ******************************************************************************* |
||
2361 | * * |
||
2362 | * Kibitz() is used to whisper/kibitz information to a chess server. It has * |
||
2363 | * to handle the xboard whisper/kibitz interface. * |
||
2364 | * * |
||
2365 | ******************************************************************************* |
||
2366 | */ |
||
2367 | void Kibitz(int level, int wtm, int depth, int time, int value, |
||
2368 | uint64_t nodes, int ip, int tb_hits, char *pv) { |
||
2369 | int nps; |
||
2370 | |||
2371 | nps = (int) ((time) ? 100 * nodes / (uint64_t) time : nodes); |
||
2372 | if (!puzzling) { |
||
2373 | char prefix[128]; |
||
2374 | |||
2375 | if (!(kibitz & 16)) |
||
2376 | sprintf_s(prefix, sizeof (prefix), "kibitz"); // Pierre-Marie Baty -- use safe version |
||
2377 | else |
||
2378 | sprintf_s(prefix, sizeof (prefix), "whisper"); // Pierre-Marie Baty -- use safe version |
||
2379 | switch (level) { |
||
2380 | case 1: |
||
2381 | if ((kibitz & 15) >= 1) { |
||
2382 | if (value > 0) { |
||
2383 | printf("%s mate in %d moves.\n\n", prefix, value); |
||
2384 | } |
||
2385 | if (value < 0) { |
||
2386 | printf("%s mated in %d moves.\n\n", prefix, -value); |
||
2387 | } |
||
2388 | } |
||
2389 | break; |
||
2390 | case 2: |
||
2391 | if ((kibitz & 15) >= 2) { |
||
2392 | printf("%s ply=%d; eval=%s; nps=%s; time=%s(%d%%); egtb=%d\n", |
||
2393 | prefix, depth, DisplayEvaluationKibitz(value, wtm), |
||
2394 | DisplayKMB(nps), DisplayTimeKibitz(time), ip, tb_hits); |
||
2395 | } |
||
2396 | case 3: |
||
2397 | if ((kibitz & 15) >= 3 && (nodes > 5000 || level == 2)) { |
||
2398 | printf("%s %s\n", prefix, pv); |
||
2399 | } |
||
2400 | break; |
||
2401 | case 4: |
||
2402 | if ((kibitz & 15) >= 4) { |
||
2403 | printf("%s %s\n", prefix, pv); |
||
2404 | } |
||
2405 | break; |
||
2406 | case 5: |
||
2407 | if ((kibitz & 15) >= 5 && nodes > 5000) { |
||
2408 | printf("%s d%d-> %s/s %s(%d%%) %s %s ", prefix, depth, |
||
2409 | DisplayKMB(nps), DisplayTimeKibitz(time), ip, |
||
2410 | DisplayEvaluationKibitz(value, wtm), pv); |
||
2411 | if (tb_hits) |
||
2412 | printf("egtb=%d", tb_hits); |
||
2413 | printf("\n"); |
||
2414 | } |
||
2415 | break; |
||
2416 | case 6: |
||
2417 | if ((kibitz & 15) >= 6 && nodes > 5000) { |
||
2418 | if (wtm) |
||
2419 | printf("%s d%d+ %s/s %s(%d%%) >(%s) %s <re-searching>\n", prefix, |
||
2420 | depth, DisplayKMB(nps), DisplayTimeKibitz(time), ip, |
||
2421 | DisplayEvaluationKibitz(value, wtm), pv); |
||
2422 | else |
||
2423 | printf("%s d%d+ %s/s %s(%d%%) <(%s) %s <re-searching>\n", prefix, |
||
2424 | depth, DisplayKMB(nps), DisplayTimeKibitz(time), ip, |
||
2425 | DisplayEvaluationKibitz(value, wtm), pv); |
||
2426 | } |
||
2427 | break; |
||
2428 | } |
||
2429 | value = (wtm) ? value : -value; |
||
2430 | if (post && level > 1) { |
||
2431 | if (strstr(pv, "book")) |
||
2432 | printf(" %2d %5d %7d %" PRIu64 " %s\n", depth, value, time, |
||
2433 | nodes, pv + 10); |
||
2434 | else |
||
2435 | printf(" %2d %5d %7d %" PRIu64 " %s\n", depth, value, time, |
||
2436 | nodes, pv); |
||
2437 | } |
||
2438 | fflush(stdout); |
||
2439 | } |
||
2440 | } |
||
2441 | |||
2442 | /* |
||
2443 | ******************************************************************************* |
||
2444 | * * |
||
2445 | * Output() is used to print the principal variation whenever it changes. * |
||
2446 | * One additional feature is that Output() will try to do something about * |
||
2447 | * variations truncated by the transposition table. If the variation was * |
||
2448 | * cut short by a transposition table hit, then we can make the last move, * |
||
2449 | * add it to the end of the variation and extend the depth of the variation * |
||
2450 | * to cover it. * |
||
2451 | * * |
||
2452 | ******************************************************************************* |
||
2453 | */ |
||
2454 | void Output(TREE * RESTRICT tree, int bound) { |
||
2455 | int wtm; |
||
2456 | int i; |
||
2457 | ROOT_MOVE temp_rm; |
||
2458 | |||
2459 | /* |
||
2460 | ************************************************************ |
||
2461 | * * |
||
2462 | * First, move the best move to the top of the ply-1 move * |
||
2463 | * list if it's not already there, so that it will be the * |
||
2464 | * first move tried in the next iteration. * |
||
2465 | * * |
||
2466 | ************************************************************ |
||
2467 | */ |
||
2468 | wtm = root_wtm; |
||
2469 | if (!abort_search) { |
||
2470 | kibitz_depth = iteration_depth; |
||
2471 | for (i = 0; i < n_root_moves; i++) |
||
2472 | if (tree->curmv[1] == root_moves[i].move) |
||
2473 | break; |
||
2474 | if (i && i < n_root_moves) { |
||
2475 | temp_rm = root_moves[i]; |
||
2476 | for (; i > 0; i--) |
||
2477 | root_moves[i] = root_moves[i - 1]; |
||
2478 | root_moves[0] = temp_rm; |
||
2479 | } |
||
2480 | root_moves[0].bm_age = 4; |
||
2481 | end_time = ReadClock(); |
||
2482 | /* |
||
2483 | ************************************************************ |
||
2484 | * * |
||
2485 | * If this is not a fail-high move, then output the PV by * |
||
2486 | * walking down the path being backed up. * |
||
2487 | * * |
||
2488 | ************************************************************ |
||
2489 | */ |
||
2490 | if (tree->pv[1].pathv < bound) { |
||
2491 | UnmakeMove(tree, 1, tree->pv[1].path[1], root_wtm); |
||
2492 | DisplayPV(tree, 6, wtm, end_time - start_time, &tree->pv[1]); |
||
2493 | MakeMove(tree, 1, tree->pv[1].path[1], root_wtm); |
||
2494 | } else { |
||
2495 | if (tree->curmv[1] != tree->pv[1].path[1]) { |
||
2496 | tree->pv[1].path[1] = tree->curmv[1]; |
||
2497 | tree->pv[1].pathl = 2; |
||
2498 | tree->pv[1].pathh = 0; |
||
2499 | tree->pv[1].pathd = iteration_depth; |
||
2500 | } |
||
2501 | } |
||
2502 | } |
||
2503 | } |
||
2504 | |||
2505 | /* |
||
2506 | ******************************************************************************* |
||
2507 | * * |
||
2508 | * Trace() is used to print the search trace output each time a node is* |
||
2509 | * traversed in the tree. * |
||
2510 | * * |
||
2511 | ******************************************************************************* |
||
2512 | */ |
||
2513 | void Trace(TREE * RESTRICT tree, int ply, int depth, int wtm, int alpha, |
||
2514 | int beta, const char *name, int phase) { |
||
2515 | int i; |
||
2516 | |||
2517 | Lock(lock_io); |
||
2518 | for (i = 1; i < ply; i++) |
||
2519 | printf(" "); |
||
2520 | if (phase != EVALUATION) { |
||
2521 | printf("%d %s d:%2d [%s,", ply, OutputMove(tree, tree->curmv[ply], ply, |
||
2522 | wtm), depth, DisplayEvaluation(alpha, 1)); |
||
2523 | printf("%s] n:%" PRIu64 " %s(%d)", DisplayEvaluation(beta, 1), |
||
2524 | (tree->nodes_searched), name, phase); |
||
2525 | if (smp_max_threads > 1) |
||
2526 | printf(" (t=%d) ", tree->thread_id); |
||
2527 | printf("\n"); |
||
2528 | } else { |
||
2529 | printf("%d window/eval(%s) = {", ply, name); |
||
2530 | printf("%s, ", DisplayEvaluation(alpha, 1)); |
||
2531 | printf("%s, ", DisplayEvaluation(depth, 1)); |
||
2532 | printf("%s}\n", DisplayEvaluation(beta, 1)); |
||
2533 | } |
||
2534 | fflush(0); |
||
2535 | Unlock(lock_io); |
||
2536 | } |
||
2537 | |||
2538 | /* |
||
2539 | ******************************************************************************* |
||
2540 | * * |
||
2541 | * StrCnt() counts the number of times a character occurs in a string. * |
||
2542 | * * |
||
2543 | ******************************************************************************* |
||
2544 | */ |
||
2545 | int StrCnt(char *string, char testchar) { |
||
2546 | int count = 0; |
||
2547 | size_t i; // Pierre-Marie Baty -- fixed type |
||
2548 | |||
2549 | for (i = 0; i < strlen(string); i++) |
||
2550 | if (string[i] == testchar) |
||
2551 | count++; |
||
2552 | return count; |
||
2553 | } |
||
2554 | |||
2555 | /* |
||
2556 | ******************************************************************************* |
||
2557 | * * |
||
2558 | * ValidMove() is used to verify that a move is playable. It is mainly * |
||
2559 | * used to confirm that a move retrieved from the transposition/refutation * |
||
2560 | * and/or killer move is valid in the current position by checking the move * |
||
2561 | * against the current chess board, castling status, en passant status, etc. * |
||
2562 | * * |
||
2563 | ******************************************************************************* |
||
2564 | */ |
||
2565 | int ValidMove(TREE * RESTRICT tree, int ply, int wtm, int move) { |
||
2566 | static int epdir[2] = { 8, -8 }; |
||
2567 | static int csq[2] = { C8, C1 }; |
||
2568 | static int dsq[2] = { D8, D1 }; |
||
2569 | static int esq[2] = { E8, E1 }; |
||
2570 | static int fsq[2] = { F8, F1 }; |
||
2571 | static int gsq[2] = { G8, G1 }; |
||
2572 | int btm = Flip(wtm); |
||
2573 | |||
2574 | /* |
||
2575 | ************************************************************ |
||
2576 | * * |
||
2577 | * Make sure that the piece on <from> is the right color. * |
||
2578 | * * |
||
2579 | ************************************************************ |
||
2580 | */ |
||
2581 | if (PcOnSq(From(move)) != ((wtm) ? Piece(move) : -Piece(move))) |
||
2582 | return 0; |
||
2583 | switch (Piece(move)) { |
||
2584 | /* |
||
2585 | ************************************************************ |
||
2586 | * * |
||
2587 | * Null-moves are caught as it is possible for a killer * |
||
2588 | * move entry to be zero at certain times. * |
||
2589 | * * |
||
2590 | ************************************************************ |
||
2591 | */ |
||
2592 | case empty: |
||
2593 | return 0; |
||
2594 | /* |
||
2595 | ************************************************************ |
||
2596 | * * |
||
2597 | * King moves are validated here if the king is moving two * |
||
2598 | * squares at one time (castling moves). Otherwise fall * |
||
2599 | * into the normal piece validation routine below. For * |
||
2600 | * castling moves, we need to verify that the castling * |
||
2601 | * status is correct to avoid "creating" a new rook or * |
||
2602 | * king. * |
||
2603 | * * |
||
2604 | ************************************************************ |
||
2605 | */ |
||
2606 | case king: |
||
2607 | if (Abs(From(move) - To(move)) == 2) { |
||
2608 | if (Castle(ply, wtm) > 0) { |
||
2609 | if (To(move) == csq[wtm]) { |
||
2610 | if ((!(Castle(ply, wtm) & 2)) || (OccupiedSquares & OOO[wtm]) |
||
2611 | || (AttacksTo(tree, csq[wtm]) & Occupied(btm)) |
||
2612 | || (AttacksTo(tree, dsq[wtm]) & Occupied(btm)) |
||
2613 | || (AttacksTo(tree, esq[wtm]) & Occupied(btm))) |
||
2614 | return 0; |
||
2615 | } else if (To(move) == gsq[wtm]) { |
||
2616 | if ((!(Castle(ply, wtm) & 1)) || (OccupiedSquares & OO[wtm]) |
||
2617 | || (AttacksTo(tree, esq[wtm]) & Occupied(btm)) |
||
2618 | || (AttacksTo(tree, fsq[wtm]) & Occupied(btm)) |
||
2619 | || (AttacksTo(tree, gsq[wtm]) & Occupied(btm))) |
||
2620 | return 0; |
||
2621 | } |
||
2622 | } else |
||
2623 | return 0; |
||
2624 | return 1; |
||
2625 | } |
||
2626 | break; |
||
2627 | /* |
||
2628 | ************************************************************ |
||
2629 | * * |
||
2630 | * Check for a normal pawn advance. * |
||
2631 | * * |
||
2632 | ************************************************************ |
||
2633 | */ |
||
2634 | case pawn: |
||
2635 | if (((wtm) ? To(move) - From(move) : From(move) - To(move)) < 0) |
||
2636 | return 0; |
||
2637 | if (Abs(From(move) - To(move)) == 8) { |
||
2638 | if (!PcOnSq(To(move))) |
||
2639 | return 1; |
||
2640 | return 0; |
||
2641 | } |
||
2642 | if (Abs(From(move) - To(move)) == 16) { |
||
2643 | if (!PcOnSq(To(move)) && !PcOnSq(To(move) + epdir[wtm])) |
||
2644 | return 1; |
||
2645 | return 0; |
||
2646 | } |
||
2647 | if (!Captured(move)) |
||
2648 | return 0; |
||
2649 | /* |
||
2650 | ************************************************************ |
||
2651 | * * |
||
2652 | * Check for an en passant capture which is somewhat * |
||
2653 | * unusual in that the [to] square does not contain the * |
||
2654 | * pawn being captured. Make sure that the pawn being * |
||
2655 | * captured advanced two ranks the previous move. * |
||
2656 | * * |
||
2657 | ************************************************************ |
||
2658 | */ |
||
2659 | if ((PcOnSq(To(move)) == 0) |
||
2660 | && (PcOnSq(To(move) + epdir[wtm]) == ((wtm) ? -pawn : pawn)) |
||
2661 | && (EnPassantTarget(ply) & SetMask(To(move)))) |
||
2662 | return 1; |
||
2663 | break; |
||
2664 | /* |
||
2665 | ************************************************************ |
||
2666 | * * |
||
2667 | * Normal moves are all checked the same way. * |
||
2668 | * * |
||
2669 | ************************************************************ |
||
2670 | */ |
||
2671 | case queen: |
||
2672 | case rook: |
||
2673 | case bishop: |
||
2674 | if (Attack(From(move), To(move))) |
||
2675 | break; |
||
2676 | return 0; |
||
2677 | case knight: |
||
2678 | break; |
||
2679 | } |
||
2680 | /* |
||
2681 | ************************************************************ |
||
2682 | * * |
||
2683 | * All normal moves are validated in the same manner, by * |
||
2684 | * checking the from and to squares and also the attack * |
||
2685 | * status for completeness. * |
||
2686 | * * |
||
2687 | ************************************************************ |
||
2688 | */ |
||
2689 | if ((Captured(move) == ((wtm) ? -PcOnSq(To(move)) : PcOnSq(To(move)))) |
||
2690 | && Captured(move) != king) |
||
2691 | return 1; |
||
2692 | return 0; |
||
2693 | } |
||
2694 | |||
2695 | /* last modified 02/26/14 */ |
||
2696 | /* |
||
2697 | ******************************************************************************* |
||
2698 | * * |
||
2699 | * VerifyMove() tests a move to confirm it is absolutely legal. It shouldn't * |
||
2700 | * be used inside the search, but can be used to check a 21-bit (compressed) * |
||
2701 | * move to be sure it is safe to make it on the permanent game board. * |
||
2702 | * * |
||
2703 | ******************************************************************************* |
||
2704 | */ |
||
2705 | int VerifyMove(TREE * RESTRICT tree, int ply, int wtm, int move) { |
||
2706 | int moves[220], *mv, *mvp; |
||
2707 | |||
2708 | /* |
||
2709 | Generate moves, then eliminate any that are illegal. |
||
2710 | */ |
||
2711 | if (move == 0) |
||
2712 | return 0; |
||
2713 | tree->status[MAXPLY] = tree->status[ply]; |
||
2714 | mvp = GenerateCaptures(tree, MAXPLY, wtm, moves); |
||
2715 | mvp = GenerateNoncaptures(tree, MAXPLY, wtm, mvp); |
||
2716 | for (mv = &moves[0]; mv < mvp; mv++) { |
||
2717 | MakeMove(tree, MAXPLY, *mv, wtm); |
||
2718 | if (!Check(wtm) && move == *mv) { |
||
2719 | UnmakeMove(tree, MAXPLY, *mv, wtm); |
||
2720 | return 1; |
||
2721 | } |
||
2722 | UnmakeMove(tree, MAXPLY, *mv, wtm); |
||
2723 | } |
||
2724 | return 0; |
||
2725 | } |
||
2726 | |||
2727 | /* |
||
2728 | ******************************************************************************* |
||
2729 | * * |
||
2730 | * Windows NUMA support * |
||
2731 | * * |
||
2732 | ******************************************************************************* |
||
2733 | */ |
||
2734 | #if !defined(UNIX) |
||
2735 | lock_t ThreadsLock; |
||
2736 | static BOOL(WINAPI * pGetNumaHighestNodeNumber) (PULONG); |
||
2737 | static BOOL(WINAPI * pGetNumaNodeProcessorMask) (UCHAR, PULONGLONG); |
||
2738 | static DWORD(WINAPI * pSetThreadIdealProcessor) (HANDLE, DWORD); |
||
2739 | static volatile BOOL fThreadsInitialized = FALSE; |
||
2740 | static BOOL fSystemIsNUMA = FALSE; |
||
2741 | static ULONGLONG ullProcessorMask[256]; |
||
2742 | static ULONG ulNumaNodes; |
||
2743 | static ULONG ulNumaNode = 0; |
||
2744 | |||
2745 | // Get NUMA-related information from Windows |
||
2746 | static void WinNumaInit(void) { |
||
2747 | //DWORD_PTR dwMask; // Pierre-Marie Baty -- unused variable |
||
2748 | HMODULE hModule; |
||
2749 | ULONG ulCPU, ulNode; |
||
2750 | ULONGLONG ullMask; |
||
2751 | DWORD dwCPU; |
||
2752 | |||
2753 | if (!fThreadsInitialized) { |
||
2754 | Lock(ThreadsLock); |
||
2755 | if (!fThreadsInitialized) { |
||
2756 | printf("\nInitializing multiple threads.\n"); |
||
2757 | fThreadsInitialized = TRUE; |
||
2758 | hModule = GetModuleHandle("kernel32"); |
||
2759 | pGetNumaHighestNodeNumber = |
||
2760 | (void *) GetProcAddress(hModule, "GetNumaHighestNodeNumber"); |
||
2761 | pGetNumaNodeProcessorMask = |
||
2762 | (void *) GetProcAddress(hModule, "GetNumaNodeProcessorMask"); |
||
2763 | pSetThreadIdealProcessor = |
||
2764 | (void *) GetProcAddress(hModule, "SetThreadIdealProcessor"); |
||
2765 | if (pGetNumaHighestNodeNumber && pGetNumaNodeProcessorMask && |
||
2766 | pGetNumaHighestNodeNumber(&ulNumaNodes) && (ulNumaNodes > 0)) { |
||
2767 | fSystemIsNUMA = TRUE; |
||
2768 | if (ulNumaNodes > 255) |
||
2769 | ulNumaNodes = 255; |
||
2770 | printf("System is NUMA. %d nodes reported by Windows\n", |
||
2771 | ulNumaNodes + 1); |
||
2772 | for (ulNode = 0; ulNode <= ulNumaNodes; ulNode++) { |
||
2773 | pGetNumaNodeProcessorMask((UCHAR) ulNode, |
||
2774 | &ullProcessorMask[ulNode]); |
||
2775 | printf("Node %d CPUs: ", ulNode); |
||
2776 | ullMask = ullProcessorMask[ulNode]; |
||
2777 | if (0 == ullMask) |
||
2778 | fSystemIsNUMA = FALSE; |
||
2779 | else { |
||
2780 | ulCPU = 0; |
||
2781 | do { |
||
2782 | if (ullMask & 1) |
||
2783 | printf("%d ", ulCPU); |
||
2784 | ulCPU++; |
||
2785 | ullMask >>= 1; |
||
2786 | } while (ullMask); |
||
2787 | } |
||
2788 | printf("\n"); |
||
2789 | } |
||
2790 | // Thread 0 was already started on some CPU. To simplify things further, |
||
2791 | // exchange ullProcessorMask[0] and ullProcessorMask[node for that CPU], |
||
2792 | // so ullProcessorMask[0] would always be node for thread 0 |
||
2793 | dwCPU = |
||
2794 | pSetThreadIdealProcessor(GetCurrentThread(), MAXIMUM_PROCESSORS); |
||
2795 | printf("Current ideal CPU is %u\n", dwCPU); |
||
2796 | pSetThreadIdealProcessor(GetCurrentThread(), dwCPU); |
||
2797 | if ((((DWORD) - 1) != dwCPU) && (MAXIMUM_PROCESSORS != dwCPU) |
||
2798 | && !(ullProcessorMask[0] & (1ull << dwCPU))) { // Pierre-Marie Baty -- added "ll" prefix |
||
2799 | for (ulNode = 1; ulNode <= ulNumaNodes; ulNode++) { |
||
2800 | if (ullProcessorMask[ulNode] & (1ull << dwCPU)) { // Pierre-Marie Baty -- added "ll" prefix |
||
2801 | printf("Exchanging nodes 0 and %d\n", ulNode); |
||
2802 | ullMask = ullProcessorMask[ulNode]; |
||
2803 | ullProcessorMask[ulNode] = ullProcessorMask[0]; |
||
2804 | ullProcessorMask[0] = ullMask; |
||
2805 | break; |
||
2806 | } |
||
2807 | } |
||
2808 | } |
||
2809 | } else |
||
2810 | printf("System is SMP, not NUMA.\n"); |
||
2811 | } |
||
2812 | Unlock(ThreadsLock); |
||
2813 | } |
||
2814 | } |
||
2815 | |||
2816 | // Start thread. For NUMA system set its affinity. |
||
2817 | # if (CPUS > 1) |
||
2818 | pthread_t NumaStartThread(void *func, void *args) { |
||
2819 | HANDLE hThread; |
||
2820 | ULONGLONG ullMask; |
||
2821 | |||
2822 | WinNumaInit(); |
||
2823 | if (fSystemIsNUMA) { |
||
2824 | ulNumaNode++; |
||
2825 | if (ulNumaNode > ulNumaNodes) |
||
2826 | ulNumaNode = 0; |
||
2827 | ullMask = ullProcessorMask[ulNumaNode]; |
||
2828 | printf("Starting thread on node %d CPU mask %I64d\n", ulNumaNode, |
||
2829 | ullMask); |
||
2830 | SetThreadAffinityMask(GetCurrentThread(), (DWORD_PTR) ullMask); |
||
2831 | hThread = (HANDLE) _beginthreadex(0, 0, func, args, CREATE_SUSPENDED, 0); |
||
2832 | SetThreadAffinityMask(hThread, (DWORD_PTR) ullMask); |
||
2833 | ResumeThread(hThread); |
||
2834 | SetThreadAffinityMask(GetCurrentThread(), (DWORD_PTR) ullProcessorMask[0]); // Pierre-Marie Baty -- added type cast |
||
2835 | } else |
||
2836 | hThread = (HANDLE) _beginthreadex(0, 0, func, args, 0, 0); |
||
2837 | return hThread; |
||
2838 | } |
||
2839 | # endif |
||
2840 | |||
2841 | // Allocate memory for thread #N |
||
2842 | void *WinMalloc(size_t cbBytes, int iThread) { |
||
2843 | HANDLE hThread; |
||
2844 | DWORD_PTR dwAffinityMask; |
||
2845 | void *pBytes; |
||
2846 | ULONG ulNode; |
||
2847 | |||
2848 | WinNumaInit(); |
||
2849 | if (fSystemIsNUMA) { |
||
2850 | ulNode = iThread % (ulNumaNodes + 1); |
||
2851 | hThread = GetCurrentThread(); |
||
2852 | dwAffinityMask = SetThreadAffinityMask(hThread, (DWORD_PTR) ullProcessorMask[ulNode]); // Pierre-Marie Baty -- added type cast |
||
2853 | pBytes = VirtualAlloc(NULL, cbBytes, MEM_COMMIT, PAGE_READWRITE); |
||
2854 | if (pBytes == NULL) |
||
2855 | ExitProcess(GetLastError()); |
||
2856 | memset(pBytes, 0, cbBytes); |
||
2857 | SetThreadAffinityMask(hThread, dwAffinityMask); |
||
2858 | } else { |
||
2859 | pBytes = VirtualAlloc(NULL, cbBytes, MEM_COMMIT, PAGE_READWRITE); |
||
2860 | if (pBytes == NULL) |
||
2861 | ExitProcess(GetLastError()); |
||
2862 | memset(pBytes, 0, cbBytes); |
||
2863 | } |
||
2864 | return pBytes; |
||
2865 | } |
||
2866 | |||
2867 | // Allocate interleaved memory |
||
2868 | void *WinMallocInterleaved(size_t cbBytes, int cThreads) { |
||
2869 | char *pBase; |
||
2870 | char *pEnd; |
||
2871 | char *pch; |
||
2872 | HANDLE hThread; |
||
2873 | DWORD_PTR dwAffinityMask; |
||
2874 | ULONG ulNode; |
||
2875 | SYSTEM_INFO sSysInfo; |
||
2876 | size_t dwStep; |
||
2877 | int iThread; |
||
2878 | DWORD dwPageSize; // the page size on this computer |
||
2879 | LPVOID lpvResult; |
||
2880 | |||
2881 | WinNumaInit(); |
||
2882 | if (fSystemIsNUMA && (cThreads > 1)) { |
||
2883 | GetSystemInfo(&sSysInfo); // populate the system information structure |
||
2884 | dwPageSize = sSysInfo.dwPageSize; |
||
2885 | // Reserve pages in the process's virtual address space. |
||
2886 | pBase = (char *) VirtualAlloc(NULL, cbBytes, MEM_RESERVE, PAGE_NOACCESS); |
||
2887 | if (pBase == NULL) { |
||
2888 | printf("VirtualAlloc() reserve failed\n"); |
||
2889 | CraftyExit(0); |
||
2890 | } |
||
2891 | // Now walk through memory, committing each page |
||
2892 | hThread = GetCurrentThread(); |
||
2893 | dwStep = dwPageSize * cThreads; |
||
2894 | pEnd = pBase + cbBytes; |
||
2895 | for (iThread = 0; iThread < cThreads; iThread++) { |
||
2896 | ulNode = iThread % (ulNumaNodes + 1); |
||
2897 | dwAffinityMask = |
||
2898 | SetThreadAffinityMask(hThread, (DWORD_PTR) ullProcessorMask[ulNode]); // Pierre-Marie Baty -- added type cast |
||
2899 | for (pch = pBase + iThread * dwPageSize; pch < pEnd; pch += dwStep) { |
||
2900 | lpvResult = VirtualAlloc(pch, // next page to commit |
||
2901 | dwPageSize, // page size, in bytes |
||
2902 | MEM_COMMIT, // allocate a committed page |
||
2903 | PAGE_READWRITE); // read/write access |
||
2904 | if (lpvResult == NULL) |
||
2905 | ExitProcess(GetLastError()); |
||
2906 | memset(lpvResult, 0, dwPageSize); |
||
2907 | } |
||
2908 | SetThreadAffinityMask(hThread, dwAffinityMask); |
||
2909 | } |
||
2910 | } else { |
||
2911 | pBase = VirtualAlloc(NULL, cbBytes, MEM_COMMIT, PAGE_READWRITE); |
||
2912 | if (pBase == NULL) |
||
2913 | ExitProcess(GetLastError()); |
||
2914 | memset(pBase, 0, cbBytes); |
||
2915 | } |
||
2916 | return (void *) pBase; |
||
2917 | } |
||
2918 | |||
2919 | // Free interleaved memory |
||
2920 | void WinFreeInterleaved(void *pMemory, size_t cBytes) { |
||
2921 | VirtualFree(pMemory, 0, MEM_RELEASE); |
||
2922 | } |
||
2923 | #endif |