Rev 108 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed
Rev | Author | Line No. | Line |
---|---|---|---|
33 | pmbaty | 1 | #include <stdarg.h> |
2 | #include <errno.h> |
||
3 | #include <ctype.h> |
||
4 | #include "chess.h" |
||
5 | #include "data.h" |
||
6 | #if defined(UNIX) |
||
7 | # include <unistd.h> |
||
8 | # include <sys/types.h> |
||
9 | # include <signal.h> |
||
10 | # include <sys/wait.h> |
||
11 | # include <sys/times.h> |
||
12 | # include <sys/time.h> |
||
13 | #else |
||
14 | # include <windows.h> |
||
15 | # include <winbase.h> |
||
16 | # include <wincon.h> |
||
17 | # include <io.h> |
||
18 | # include <time.h> |
||
19 | #endif |
||
20 | |||
21 | /* |
||
22 | ******************************************************************************* |
||
23 | * * |
||
24 | * AlignedMalloc() is used to allocate memory on a precise boundary, * |
||
25 | * primarily to optimize cache performance by forcing the start of the * |
||
26 | * memory region being allocated to match up so that a structure will lie * |
||
27 | * on a single cache line rather than being split across two, assuming the * |
||
28 | * structure is 64 bytes or less of course. * |
||
29 | * * |
||
30 | ******************************************************************************* |
||
31 | */ |
||
154 | pmbaty | 32 | void AlignedMalloc(void **pointer, uint64_t alignment, size_t size) { |
33 | uint64_t temp; |
||
34 | |||
33 | pmbaty | 35 | segments[nsegments][0] = malloc(size + alignment - 1); |
154 | pmbaty | 36 | segments[nsegments][1] = segments[nsegments][0]; |
37 | temp = (uint64_t) segments[nsegments][0]; |
||
38 | temp = (temp + alignment - 1) & ~(alignment - 1); |
||
39 | segments[nsegments][1] = (void *) temp; |
||
33 | pmbaty | 40 | *pointer = segments[nsegments][1]; |
41 | nsegments++; |
||
42 | } |
||
43 | |||
44 | /* |
||
45 | ******************************************************************************* |
||
46 | * * |
||
108 | pmbaty | 47 | * atoiKMB() is used to read in an integer value that can have a "K" or "M" * |
33 | pmbaty | 48 | * appended to it to multiply by 1024 or 1024*1024. It returns a 64 bit * |
49 | * value since memory sizes can exceed 4gb on modern hardware. * |
||
50 | * * |
||
51 | ******************************************************************************* |
||
52 | */ |
||
108 | pmbaty | 53 | uint64_t atoiKMB(char *input) { |
33 | pmbaty | 54 | uint64_t size; |
55 | |||
56 | size = atoi(input); |
||
57 | if (strchr(input, 'K') || strchr(input, 'k')) |
||
58 | size *= 1 << 10; |
||
59 | if (strchr(input, 'M') || strchr(input, 'm')) |
||
60 | size *= 1 << 20; |
||
108 | pmbaty | 61 | if (strchr(input, 'B') || strchr(input, 'b') || strchr(input, 'G') || |
62 | strchr(input, 'g')) |
||
63 | size *= 1 << 30; |
||
33 | pmbaty | 64 | return size; |
65 | } |
||
66 | |||
67 | /* |
||
68 | ******************************************************************************* |
||
69 | * * |
||
70 | * AlignedRemalloc() is used to change the size of a memory block that has * |
||
71 | * previously been allocated using AlignedMalloc(). * |
||
72 | * * |
||
73 | ******************************************************************************* |
||
74 | */ |
||
154 | pmbaty | 75 | void AlignedRemalloc(void **pointer, uint64_t alignment, size_t size) { |
76 | uint64_t temp; |
||
33 | pmbaty | 77 | int i; |
108 | pmbaty | 78 | |
33 | pmbaty | 79 | for (i = 0; i < nsegments; i++) |
80 | if (segments[i][1] == *pointer) |
||
81 | break; |
||
82 | if (i == nsegments) { |
||
83 | Print(4095, "ERROR AlignedRemalloc() given an invalid pointer\n"); |
||
84 | exit(1); |
||
85 | } |
||
86 | free(segments[i][0]); |
||
87 | segments[i][0] = malloc(size + alignment - 1); |
||
154 | pmbaty | 88 | temp = (uint64_t) segments[i][0]; |
89 | temp = (temp + alignment - 1) & ~(alignment - 1); |
||
90 | segments[i][1] = (void *) temp; |
||
33 | pmbaty | 91 | *pointer = segments[i][1]; |
92 | } |
||
93 | |||
94 | /* |
||
95 | ******************************************************************************* |
||
96 | * * |
||
97 | * BookClusterIn() is used to read a cluster in as characters, then stuff * |
||
98 | * the data into a normal array of structures that can be used within Crafty * |
||
99 | * without any endian issues. * |
||
100 | * * |
||
101 | ******************************************************************************* |
||
102 | */ |
||
103 | void BookClusterIn(FILE * file, int positions, BOOK_POSITION * buffer) { |
||
104 | int i; |
||
108 | pmbaty | 105 | char file_buffer[BOOK_CLUSTER_SIZE * sizeof(BOOK_POSITION)]; |
33 | pmbaty | 106 | |
108 | pmbaty | 107 | i = fread(file_buffer, positions, sizeof(BOOK_POSITION), file); |
108 | if (i <= 0) |
||
109 | perror("BookClusterIn fread error: "); |
||
33 | pmbaty | 110 | for (i = 0; i < positions; i++) { |
111 | buffer[i].position = |
||
108 | pmbaty | 112 | BookIn64((unsigned char *) (file_buffer + i * sizeof(BOOK_POSITION))); |
33 | pmbaty | 113 | buffer[i].status_played = |
108 | pmbaty | 114 | BookIn32((unsigned char *) (file_buffer + i * sizeof(BOOK_POSITION) + |
33 | pmbaty | 115 | 8)); |
116 | buffer[i].learn = |
||
108 | pmbaty | 117 | BookIn32f((unsigned char *) (file_buffer + i * sizeof(BOOK_POSITION) + |
33 | pmbaty | 118 | 12)); |
119 | } |
||
120 | } |
||
121 | |||
122 | /* |
||
123 | ******************************************************************************* |
||
124 | * * |
||
125 | * BookClusterOut() is used to write a cluster out as characters, after * |
||
126 | * converting the normal array of structures into character data that is * |
||
127 | * Endian-independent. * |
||
128 | * * |
||
129 | ******************************************************************************* |
||
130 | */ |
||
131 | void BookClusterOut(FILE * file, int positions, BOOK_POSITION * buffer) { |
||
132 | int i; |
||
108 | pmbaty | 133 | char file_buffer[BOOK_CLUSTER_SIZE * sizeof(BOOK_POSITION)]; |
33 | pmbaty | 134 | |
135 | for (i = 0; i < positions; i++) { |
||
108 | pmbaty | 136 | memcpy(file_buffer + i * sizeof(BOOK_POSITION), |
33 | pmbaty | 137 | BookOut64(buffer[i].position), 8); |
108 | pmbaty | 138 | memcpy(file_buffer + i * sizeof(BOOK_POSITION) + 8, |
33 | pmbaty | 139 | BookOut32(buffer[i].status_played), 4); |
108 | pmbaty | 140 | memcpy(file_buffer + i * sizeof(BOOK_POSITION) + 12, |
33 | pmbaty | 141 | BookOut32f(buffer[i].learn), 4); |
142 | } |
||
108 | pmbaty | 143 | fwrite(file_buffer, positions, sizeof(BOOK_POSITION), file); |
33 | pmbaty | 144 | } |
145 | |||
146 | /* |
||
147 | ******************************************************************************* |
||
148 | * * |
||
149 | * BookIn32f() is used to convert 4 bytes from the book file into a valid 32 * |
||
108 | pmbaty | 150 | * bit binary value. This eliminates endian worries that make the binary * |
33 | pmbaty | 151 | * book non-portable across many architectures. * |
152 | * * |
||
153 | ******************************************************************************* |
||
154 | */ |
||
155 | float BookIn32f(unsigned char *ch) { |
||
156 | union { |
||
157 | float fv; |
||
158 | int iv; |
||
159 | } temp; |
||
160 | |||
161 | temp.iv = ch[3] << 24 | ch[2] << 16 | ch[1] << 8 | ch[0]; |
||
162 | return temp.fv; |
||
163 | } |
||
164 | |||
165 | /* |
||
166 | ******************************************************************************* |
||
167 | * * |
||
168 | * BookIn32() is used to convert 4 bytes from the book file into a valid 32 * |
||
169 | * bit binary value. this eliminates endian worries that make the binary * |
||
170 | * book non-portable across many architectures. * |
||
171 | * * |
||
172 | ******************************************************************************* |
||
173 | */ |
||
174 | int BookIn32(unsigned char *ch) { |
||
175 | return ch[3] << 24 | ch[2] << 16 | ch[1] << 8 | ch[0]; |
||
176 | } |
||
177 | |||
178 | /* |
||
179 | ******************************************************************************* |
||
180 | * * |
||
181 | * BookIn64() is used to convert 8 bytes from the book file into a valid 64 * |
||
182 | * bit binary value. this eliminates endian worries that make the binary * |
||
183 | * book non-portable across many architectures. * |
||
184 | * * |
||
185 | ******************************************************************************* |
||
186 | */ |
||
187 | uint64_t BookIn64(unsigned char *ch) { |
||
188 | return (uint64_t) ch[7] << 56 | (uint64_t) ch[6] << 48 | (uint64_t) |
||
189 | ch[5] << 40 | (uint64_t) ch[4] << 32 | (uint64_t) ch[3] |
||
190 | << 24 | (uint64_t) ch[2] << 16 | (uint64_t) ch[1] << 8 | (uint64_t) |
||
191 | ch[0]; |
||
192 | } |
||
193 | |||
194 | /* |
||
195 | ******************************************************************************* |
||
196 | * * |
||
197 | * BookOut32() is used to convert 4 bytes from a valid 32 bit binary value * |
||
198 | * to a book value. this eliminates endian worries that make the binary * |
||
199 | * book non-portable across many architectures. * |
||
200 | * * |
||
201 | ******************************************************************************* |
||
202 | */ |
||
203 | unsigned char *BookOut32(int val) { |
||
204 | convert_buff[3] = val >> 24 & 0xff; |
||
205 | convert_buff[2] = val >> 16 & 0xff; |
||
206 | convert_buff[1] = val >> 8 & 0xff; |
||
207 | convert_buff[0] = val & 0xff; |
||
208 | return convert_buff; |
||
209 | } |
||
210 | |||
211 | /* |
||
212 | ******************************************************************************* |
||
213 | * * |
||
214 | * BookOut32f() is used to convert 4 bytes from a valid 32 bit binary value * |
||
215 | * to a book value. this eliminates endian worries that make the binary * |
||
216 | * book non-portable across many architectures. * |
||
217 | * * |
||
218 | ******************************************************************************* |
||
219 | */ |
||
220 | unsigned char *BookOut32f(float val) { |
||
221 | union { |
||
222 | float fv; |
||
223 | int iv; |
||
224 | } temp; |
||
225 | |||
226 | temp.fv = val; |
||
227 | convert_buff[3] = temp.iv >> 24 & 0xff; |
||
228 | convert_buff[2] = temp.iv >> 16 & 0xff; |
||
229 | convert_buff[1] = temp.iv >> 8 & 0xff; |
||
230 | convert_buff[0] = temp.iv & 0xff; |
||
231 | return convert_buff; |
||
232 | } |
||
233 | |||
234 | /* |
||
235 | ******************************************************************************* |
||
236 | * * |
||
237 | * BookOut64() is used to convert 8 bytes from a valid 64 bit binary value * |
||
238 | * to a book value. this eliminates endian worries that make the binary * |
||
239 | * book non-portable across many architectures. * |
||
240 | * * |
||
241 | ******************************************************************************* |
||
242 | */ |
||
243 | unsigned char *BookOut64(uint64_t val) { |
||
244 | convert_buff[7] = val >> 56 & 0xff; |
||
245 | convert_buff[6] = val >> 48 & 0xff; |
||
246 | convert_buff[5] = val >> 40 & 0xff; |
||
247 | convert_buff[4] = val >> 32 & 0xff; |
||
248 | convert_buff[3] = val >> 24 & 0xff; |
||
249 | convert_buff[2] = val >> 16 & 0xff; |
||
250 | convert_buff[1] = val >> 8 & 0xff; |
||
251 | convert_buff[0] = val & 0xff; |
||
252 | return convert_buff; |
||
253 | } |
||
254 | |||
255 | /* |
||
256 | ******************************************************************************* |
||
257 | * * |
||
258 | * the following functions are used to determine if keyboard input is * |
||
259 | * present. there are several ways this is done depending on which * |
||
260 | * operating system is used. The primary function name is CheckInput() but * |
||
261 | * for simplicity there are several O/S-specific versions. * |
||
262 | * * |
||
263 | ******************************************************************************* |
||
264 | */ |
||
265 | #if !defined(UNIX) |
||
266 | # include <windows.h> |
||
267 | # include <conio.h> |
||
268 | /* Windows NT using PeekNamedPipe() function */ |
||
269 | int CheckInput(void) { |
||
270 | int i; |
||
271 | static int init = 0, pipe; |
||
272 | static HANDLE inh; |
||
273 | DWORD dw; |
||
274 | |||
154 | pmbaty | 275 | if (!xboard && !isatty(fileno(stdin))) |
33 | pmbaty | 276 | return 0; |
277 | if (batch_mode) |
||
278 | return 0; |
||
279 | if (strchr(cmd_buffer, '\n')) |
||
280 | return 1; |
||
281 | if (xboard) { |
||
282 | # if defined(FILE_CNT) |
||
283 | if (stdin->_cnt > 0) |
||
284 | return stdin->_cnt; |
||
285 | # endif |
||
286 | if (!init) { |
||
287 | init = 1; |
||
288 | inh = GetStdHandle(STD_INPUT_HANDLE); |
||
289 | pipe = !GetConsoleMode(inh, &dw); |
||
290 | if (!pipe) { |
||
291 | SetConsoleMode(inh, dw & ~(ENABLE_MOUSE_INPUT | ENABLE_WINDOW_INPUT)); |
||
292 | FlushConsoleInputBuffer(inh); |
||
293 | } |
||
294 | } |
||
295 | if (pipe) { |
||
296 | if (!PeekNamedPipe(inh, NULL, 0, NULL, &dw, NULL)) { |
||
297 | return 1; |
||
298 | } |
||
299 | return dw; |
||
300 | } else { |
||
301 | GetNumberOfConsoleInputEvents(inh, &dw); |
||
302 | return dw <= 1 ? 0 : dw; |
||
303 | } |
||
304 | } else { |
||
305 | i = _kbhit(); |
||
306 | } |
||
307 | return i; |
||
308 | } |
||
309 | #endif |
||
310 | #if defined(UNIX) |
||
311 | /* Simple UNIX approach using select with a zero timeout value */ |
||
312 | int CheckInput(void) { |
||
313 | fd_set readfds; |
||
314 | struct timeval tv; |
||
315 | int data; |
||
316 | |||
317 | if (!xboard && !isatty(fileno(stdin))) |
||
318 | return 0; |
||
319 | if (batch_mode) |
||
320 | return 0; |
||
321 | if (strchr(cmd_buffer, '\n')) |
||
322 | return 1; |
||
323 | FD_ZERO(&readfds); |
||
324 | FD_SET(fileno(stdin), &readfds); |
||
325 | tv.tv_sec = 0; |
||
326 | tv.tv_usec = 0; |
||
327 | select(16, &readfds, 0, 0, &tv); |
||
328 | data = FD_ISSET(fileno(stdin), &readfds); |
||
329 | return data; |
||
330 | } |
||
331 | #endif |
||
332 | |||
333 | /* |
||
334 | ******************************************************************************* |
||
335 | * * |
||
336 | * ClearHashTableScores() is used to clear hash table scores without * |
||
337 | * clearing the best move, so that move ordering information is preserved. * |
||
338 | * We clear the scorew as we approach a 50 move rule so that hash scores * |
||
339 | * won't give us false scores since the hash signature does not include any * |
||
340 | * search path information in it. * |
||
341 | * * |
||
342 | ******************************************************************************* |
||
343 | */ |
||
344 | void ClearHashTableScores(void) { |
||
108 | pmbaty | 345 | int i; |
33 | pmbaty | 346 | |
108 | pmbaty | 347 | if (hash_table) |
154 | pmbaty | 348 | for (i = 0; i < hash_table_size; i++) { |
108 | pmbaty | 349 | (hash_table + i)->word2 ^= (hash_table + i)->word1; |
350 | (hash_table + i)->word1 = |
||
351 | ((hash_table + i)->word1 & mask_clear_entry) | (uint64_t) 65536; |
||
352 | (hash_table + i)->word2 ^= (hash_table + i)->word1; |
||
33 | pmbaty | 353 | } |
354 | } |
||
355 | |||
356 | /* last modified 02/28/14 */ |
||
357 | /* |
||
358 | ******************************************************************************* |
||
359 | * * |
||
360 | * ComputeDifficulty() is used to compute the difficulty rating for the * |
||
361 | * current position, which really is based on nothing more than how many * |
||
362 | * times we changed our mind in an iteration. No changes caused the * |
||
363 | * difficulty to drop (easier, use less time), while more changes ramps the * |
||
364 | * difficulty up (harder, use more time). It is called at the end of an * |
||
365 | * iteration as well as when displaying fail-high/fail-low moves, in an * |
||
366 | * effort to give the operator a heads-up on how long we are going to be * |
||
367 | * stuck in an active search. * |
||
368 | * * |
||
369 | ******************************************************************************* |
||
370 | */ |
||
371 | int ComputeDifficulty(int difficulty, int direction) { |
||
372 | int searched = 0, i; |
||
373 | |||
374 | /* |
||
375 | ************************************************************ |
||
376 | * * |
||
377 | * Step 1. Handle fail-high-fail low conditions, which * |
||
378 | * occur in the middle of an iteration. The actions taken * |
||
379 | * are as follows: * |
||
380 | * * |
||
381 | * (1) Determine how many moves we have searched first, as * |
||
382 | * this is important. If we have not searched anything * |
||
383 | * (which means we failed high on the first move at the * |
||
384 | * root, at the beginning of a new iteration), a fail low * |
||
385 | * will immediately set difficult back to 100% (if it is * |
||
386 | * currently below 100%). A fail high on the first move * |
||
387 | * will not change difficulty at all. Successive fail * |
||
388 | * highs or fail lows will not change difficulty, we will * |
||
389 | * not even get into this code on the repeats. * |
||
390 | * * |
||
391 | * (2) If we are beyond the first move, then this must be * |
||
392 | * a fail high condition. Since we are changing our mind, * |
||
393 | * we need to increase the difficulty level to expend more * |
||
394 | * time on this iteration. If difficulty is currently * |
||
395 | * less than 100%, we set it to 120%. If it is currently * |
||
396 | * at 100% or more, we simply add 20% to the value and * |
||
397 | * continue searching, but with a longer time constraint. * |
||
398 | * Each time we fail high, we are changing our mind, and * |
||
399 | * we will increase difficulty by another 20%. * |
||
400 | * * |
||
401 | * (3) Direction = 0 means we are at the end of an the * |
||
402 | * iteration. Here we simply note if we changed our mind * |
||
403 | * during this iteration. If not, we reduce difficulty * |
||
404 | * to 90% of its previous value. * |
||
405 | * * |
||
406 | * After any of these changes, we enforce a lower bound of * |
||
407 | * 60% and an upperbound of 200% before we return. * |
||
408 | * * |
||
409 | * Note: direction = +1 means we failed high on the move, * |
||
410 | * direction = -1 means we failed low on the move, and * |
||
411 | * direction = 0 means we have completed the iteration and * |
||
412 | * all moves were searched successfully. * |
||
413 | * * |
||
414 | ************************************************************ |
||
415 | */ |
||
416 | if (direction) { |
||
417 | for (i = 0; i < n_root_moves; i++) |
||
418 | if (root_moves[i].status & 8) |
||
419 | searched++; |
||
420 | if (searched == 0) { |
||
421 | if (direction > 0) |
||
422 | return difficulty; |
||
423 | if (direction < 0) |
||
424 | difficulty = Max(100, difficulty); |
||
425 | } else { |
||
426 | if (difficulty < 100) |
||
427 | difficulty = 120; |
||
428 | else |
||
429 | difficulty = difficulty + 20; |
||
430 | } |
||
431 | } |
||
432 | /* |
||
433 | ************************************************************ |
||
434 | * * |
||
435 | * Step 2. We are at the end of an iteration. If we did * |
||
436 | * not change our mind and stuck with one move, we reduce * |
||
437 | * difficulty by 10% since the move looks to be a little * |
||
438 | * "easier" when we don't change our mind. * |
||
439 | * * |
||
440 | ************************************************************ |
||
441 | */ |
||
442 | else { |
||
443 | searched = 0; |
||
444 | for (i = 0; i < n_root_moves; i++) |
||
445 | if (root_moves[i].bm_age == 3) |
||
446 | searched++; |
||
447 | if (searched <= 1) |
||
448 | difficulty = 90 * difficulty / 100; |
||
449 | } |
||
450 | /* |
||
451 | ************************************************************ |
||
452 | * * |
||
453 | * Step 4. Apply limits. We don't let difficulty go * |
||
454 | * above 200% (take 2x the target time) nor do we let it * |
||
455 | * drop below 60 (take .6x target time) to avoid moving * |
||
456 | * too quickly and missing something tactically where the * |
||
457 | * move initially looks obvious but really is not. * |
||
458 | * * |
||
459 | ************************************************************ |
||
460 | */ |
||
461 | difficulty = Max(60, Min(difficulty, 200)); |
||
462 | return difficulty; |
||
463 | } |
||
464 | |||
465 | /* |
||
466 | ******************************************************************************* |
||
467 | * * |
||
468 | * CraftyExit() is used to terminate the program. the main functionality * |
||
469 | * is to make sure the "quit" flag is set so that any spinning threads will * |
||
470 | * also exit() rather than spinning forever which can cause GUIs to hang * |
||
471 | * since all processes have not terminated. * |
||
472 | * * |
||
473 | ******************************************************************************* |
||
474 | */ |
||
475 | void CraftyExit(int exit_type) { |
||
476 | int proc; |
||
477 | |||
478 | for (proc = 1; proc < CPUS; proc++) |
||
108 | pmbaty | 479 | thread[proc].terminate = 1; |
33 | pmbaty | 480 | while (smp_threads); |
481 | exit(exit_type); |
||
482 | } |
||
483 | |||
484 | /* |
||
485 | ******************************************************************************* |
||
486 | * * |
||
487 | * DisplayArray() prints array data either 8 or 16 values per line, and also * |
||
488 | * reverses the output for arrays that overlay the chess board so that the * |
||
489 | * 'white side" is at the bottom rather than the top. this is mainly used * |
||
490 | * from inside Option() to display the many evaluation terms. * |
||
491 | * * |
||
492 | ******************************************************************************* |
||
493 | */ |
||
494 | void DisplayArray(int *array, int size) { |
||
495 | int i, j, len = 16; |
||
496 | |||
497 | if (Abs(size) % 10 == 0) |
||
498 | len = 10; |
||
499 | else if (Abs(size) % 8 == 0) |
||
500 | len = 8; |
||
501 | if (size > 0 && size % 16 == 0 && len == 8) |
||
502 | len = 16; |
||
503 | if (size > 0) { |
||
504 | printf(" "); |
||
505 | for (i = 0; i < size; i++) { |
||
506 | printf("%3d ", array[i]); |
||
507 | if ((i + 1) % len == 0) { |
||
508 | printf("\n"); |
||
509 | if (i < size - 1) |
||
510 | printf(" "); |
||
511 | } |
||
512 | } |
||
513 | if (i % len != 0) |
||
514 | printf("\n"); |
||
515 | } |
||
516 | if (size < 0) { |
||
517 | for (i = 0; i < 8; i++) { |
||
518 | printf(" "); |
||
519 | for (j = 0; j < 8; j++) { |
||
520 | printf("%3d ", array[(7 - i) * 8 + j]); |
||
521 | } |
||
522 | printf(" | %d\n", 8 - i); |
||
523 | } |
||
524 | printf(" ---------------------------------\n"); |
||
525 | printf(" a b c d e f g h\n"); |
||
526 | } |
||
527 | } |
||
528 | |||
529 | /* |
||
530 | ******************************************************************************* |
||
531 | * * |
||
532 | * DisplayArray() prints array data either 8 or 16 values per line, and also * |
||
533 | * reverses the output for arrays that overlay the chess board so that the * |
||
534 | * 'white side" is at the bottom rather than the top. this is mainly used * |
||
535 | * from inside Option() to display the many evaluation terms. * |
||
536 | * * |
||
537 | ******************************************************************************* |
||
538 | */ |
||
539 | void DisplayArrayX2(int *array, int *array2, int size) { |
||
540 | int i, j; |
||
541 | |||
542 | if (size == 256) { |
||
543 | printf(" ----------- Middlegame ----------- "); |
||
544 | printf(" ------------- Endgame -----------\n"); |
||
545 | for (i = 0; i < 8; i++) { |
||
546 | printf(" "); |
||
547 | for (j = 0; j < 8; j++) |
||
548 | printf("%3d ", array[(7 - i) * 8 + j]); |
||
549 | printf(" | %d |", 8 - i); |
||
550 | printf(" "); |
||
551 | for (j = 0; j < 8; j++) |
||
552 | printf("%3d ", array2[(7 - i) * 8 + j]); |
||
553 | printf("\n"); |
||
554 | } |
||
555 | printf |
||
556 | (" ---------------------------------- ---------------------------------\n"); |
||
557 | printf(" a b c d e f g h "); |
||
558 | printf(" a b c d e f g h\n"); |
||
559 | } else if (size == 32) { |
||
560 | printf(" ----------- Middlegame ----------- "); |
||
561 | printf(" ------------- Endgame -----------\n"); |
||
562 | printf(" "); |
||
563 | for (i = 0; i < 8; i++) |
||
564 | printf("%3d ", array[i]); |
||
565 | printf(" | |"); |
||
566 | printf(" "); |
||
567 | for (i = 0; i < 8; i++) |
||
568 | printf("%3d ", array2[i]); |
||
569 | printf("\n"); |
||
570 | } else if (size <= 20) { |
||
571 | size = size / 2; |
||
572 | printf(" "); |
||
573 | for (i = 0; i < size; i++) |
||
574 | printf("%3d ", array[i]); |
||
575 | printf(" |<mg eg>|"); |
||
576 | printf(" "); |
||
577 | for (i = 0; i < size; i++) |
||
578 | printf("%3d ", array2[i]); |
||
579 | printf("\n"); |
||
580 | } else if (size > 128) { |
||
581 | printf(" ----------- Middlegame ----------- "); |
||
582 | printf(" ------------- Endgame -----------\n"); |
||
583 | for (i = 0; i < size / 32; i++) { |
||
584 | printf(" "); |
||
585 | for (j = 0; j < 8; j++) |
||
586 | printf("%3d ", array[(7 - i) * 8 + j]); |
||
587 | printf(" | %d |", 8 - i); |
||
588 | printf(" "); |
||
589 | for (j = 0; j < 8; j++) |
||
590 | printf("%3d ", array2[(7 - i) * 8 + j]); |
||
591 | printf("\n"); |
||
592 | } |
||
593 | } else |
||
594 | Print(4095, "ERROR, invalid size = -%d in packet\n", size); |
||
595 | } |
||
596 | |||
597 | /* |
||
598 | ******************************************************************************* |
||
599 | * * |
||
600 | * DisplayBitBoard() is a debugging function used to display bitboards in a * |
||
601 | * more visual way. they are displayed as an 8x8 matrix oriented as the * |
||
602 | * normal chess board is, with a1 at the lower left corner. * |
||
603 | * * |
||
604 | ******************************************************************************* |
||
605 | */ |
||
606 | void DisplayBitBoard(uint64_t board) { |
||
607 | int i, j, x; |
||
608 | |||
609 | for (i = 56; i >= 0; i -= 8) { |
||
610 | x = (board >> i) & 255; |
||
611 | for (j = 1; j < 256; j = j << 1) |
||
612 | if (x & j) |
||
108 | pmbaty | 613 | Print(4095, "X "); |
33 | pmbaty | 614 | else |
108 | pmbaty | 615 | Print(4095, "- "); |
616 | Print(4095, "\n"); |
||
33 | pmbaty | 617 | } |
618 | } |
||
619 | |||
620 | /* |
||
621 | ******************************************************************************* |
||
622 | * * |
||
623 | * Display2BitBoards() is a debugging function used to display bitboards in * |
||
624 | * a more visual way. they are displayed as an 8x8 matrix oriented as the * |
||
625 | * normal chess board is, with a1 at the lower left corner. this function * |
||
626 | * displays 2 boards side by side for comparison. * |
||
627 | * * |
||
628 | ******************************************************************************* |
||
629 | */ |
||
630 | void Display2BitBoards(uint64_t board1, uint64_t board2) { |
||
631 | int i, j, x, y; |
||
632 | |||
633 | for (i = 56; i >= 0; i -= 8) { |
||
634 | x = (board1 >> i) & 255; |
||
635 | for (j = 1; j < 256; j = j << 1) |
||
636 | if (x & j) |
||
637 | printf("X "); |
||
638 | else |
||
639 | printf("- "); |
||
640 | printf(" "); |
||
641 | y = (board2 >> i) & 255; |
||
642 | for (j = 1; j < 256; j = j << 1) |
||
643 | if (y & j) |
||
644 | printf("X "); |
||
645 | else |
||
646 | printf("- "); |
||
647 | printf("\n"); |
||
648 | } |
||
649 | } |
||
650 | |||
651 | /* |
||
652 | ******************************************************************************* |
||
653 | * * |
||
654 | * DisplayChessBoard() is used to display the board since it is kept in * |
||
655 | * both the bit-board and array formats, here we use the array format which * |
||
656 | * is nearly ready for display as is. * |
||
657 | * * |
||
658 | ******************************************************************************* |
||
659 | */ |
||
660 | void DisplayChessBoard(FILE * display_file, POSITION pos) { |
||
108 | pmbaty | 661 | int display_board[64], i, j; |
33 | pmbaty | 662 | static const char display_string[16][4] = |
663 | { "<K>", "<Q>", "<R>", "<B>", "<N>", "<P>", " ", |
||
664 | "-P-", "-N-", "-B-", "-R-", "-Q-", "-K-", " . " |
||
665 | }; |
||
666 | |||
667 | /* |
||
668 | ************************************************************ |
||
669 | * * |
||
670 | * First, convert square values to indices to the proper * |
||
671 | * text string. * |
||
672 | * * |
||
673 | ************************************************************ |
||
674 | */ |
||
675 | for (i = 0; i < 64; i++) { |
||
676 | display_board[i] = pos.board[i] + 6; |
||
677 | if (pos.board[i] == 0) { |
||
678 | if (((i / 8) & 1) == ((i % 8) & 1)) |
||
679 | display_board[i] = 13; |
||
680 | } |
||
681 | } |
||
682 | /* |
||
683 | ************************************************************ |
||
684 | * * |
||
685 | * Now that that's done, simply display using 8 squares * |
||
686 | * per line. * |
||
687 | * * |
||
688 | ************************************************************ |
||
689 | */ |
||
690 | fprintf(display_file, "\n +---+---+---+---+---+---+---+---+\n"); |
||
691 | for (i = 7; i >= 0; i--) { |
||
692 | fprintf(display_file, " %2d ", i + 1); |
||
693 | for (j = 0; j < 8; j++) |
||
694 | fprintf(display_file, "|%s", display_string[display_board[i * 8 + j]]); |
||
695 | fprintf(display_file, "|\n"); |
||
696 | fprintf(display_file, " +---+---+---+---+---+---+---+---+\n"); |
||
697 | } |
||
698 | fprintf(display_file, " a b c d e f g h\n\n"); |
||
699 | } |
||
700 | |||
701 | /* |
||
702 | ******************************************************************************* |
||
703 | * * |
||
108 | pmbaty | 704 | * DisplayChessMove() is a debugging function that displays a chess move in * |
705 | * a very simple (non-algebraic) form. * |
||
706 | * * |
||
707 | ******************************************************************************* |
||
708 | */ |
||
709 | void DisplayChessMove(char *title, int move) { |
||
710 | Print(4095, "%s piece=%d, from=%d, to=%d, captured=%d, promote=%d\n", |
||
711 | title, Piece(move), From(move), To(move), Captured(move), |
||
712 | Promote(move)); |
||
713 | } |
||
714 | |||
715 | /* |
||
716 | ******************************************************************************* |
||
717 | * * |
||
33 | pmbaty | 718 | * DisplayEvaluation() is used to convert the evaluation to a string that * |
719 | * can be displayed. The length is fixed so that screen formatting will * |
||
720 | * look nice and aligned. * |
||
721 | * * |
||
722 | ******************************************************************************* |
||
723 | */ |
||
724 | char *DisplayEvaluation(int value, int wtm) { |
||
108 | pmbaty | 725 | int tvalue; |
154 | pmbaty | 726 | static char out[20]; |
33 | pmbaty | 727 | |
728 | tvalue = (wtm) ? value : -value; |
||
154 | pmbaty | 729 | if (!MateScore(value) && !EGTBScore(value)) |
108 | pmbaty | 730 | sprintf(out, "%7.2f", ((float) tvalue) / 100.0); |
33 | pmbaty | 731 | else if (Abs(value) > MATE) { |
732 | if (tvalue < 0) |
||
108 | pmbaty | 733 | sprintf(out, " -infnty"); |
33 | pmbaty | 734 | else |
108 | pmbaty | 735 | sprintf(out, " +infnty"); |
154 | pmbaty | 736 | } else { |
737 | if (EGTBScore(value)) { |
||
738 | if (wtm) { |
||
739 | if (value == TBWIN) |
||
740 | sprintf(out, " Won "); |
||
741 | else if (value == -TBWIN) |
||
742 | sprintf(out, " Lost "); |
||
743 | } else { |
||
744 | if (value == TBWIN) |
||
745 | sprintf(out, " -Won "); |
||
746 | else if (value == -TBWIN) |
||
747 | sprintf(out, " -Lost "); |
||
748 | } |
||
749 | } |
||
750 | if (MateScore(value)) { |
||
751 | if (value == MATE - 2 && wtm) |
||
752 | sprintf(out, " Mate"); |
||
753 | else if (value == MATE - 2 && !wtm) |
||
754 | sprintf(out, " -Mate"); |
||
755 | else if (value == -(MATE - 1) && wtm) |
||
756 | sprintf(out, " -Mate"); |
||
757 | else if (value == -(MATE - 1) && !wtm) |
||
758 | sprintf(out, " Mate"); |
||
759 | else if (value > 0 && wtm) |
||
760 | sprintf(out, " Mat%.2d", (MATE - value) / 2); |
||
761 | else if (value > 0 && !wtm) |
||
762 | sprintf(out, " -Mat%.2d", (MATE - value) / 2); |
||
763 | else if (wtm) |
||
764 | sprintf(out, " -Mat%.2d", (MATE - Abs(value)) / 2); |
||
765 | else |
||
766 | sprintf(out, " Mat%.2d", (MATE - Abs(value)) / 2); |
||
767 | } |
||
768 | } |
||
33 | pmbaty | 769 | return out; |
770 | } |
||
771 | |||
772 | /* |
||
773 | ******************************************************************************* |
||
774 | * * |
||
775 | * DisplayEvaluationKibitz() is used to convert the evaluation to a string * |
||
776 | * that can be displayed. The length is variable so that ICC kibitzes and * |
||
777 | * whispers will look nicer. * |
||
778 | * * |
||
779 | ******************************************************************************* |
||
780 | */ |
||
781 | char *DisplayEvaluationKibitz(int value, int wtm) { |
||
108 | pmbaty | 782 | int tvalue; |
33 | pmbaty | 783 | static char out[10]; |
784 | |||
785 | tvalue = (wtm) ? value : -value; |
||
786 | if (!MateScore(value)) |
||
108 | pmbaty | 787 | sprintf(out, "%+.2f", ((float) tvalue) / 100.0); |
33 | pmbaty | 788 | else if (Abs(value) > MATE) { |
789 | if (tvalue < 0) |
||
108 | pmbaty | 790 | sprintf(out, "-infnty"); |
33 | pmbaty | 791 | else |
108 | pmbaty | 792 | sprintf(out, "+infnty"); |
33 | pmbaty | 793 | } else if (value == MATE - 2 && wtm) |
108 | pmbaty | 794 | sprintf(out, "Mate"); |
33 | pmbaty | 795 | else if (value == MATE - 2 && !wtm) |
108 | pmbaty | 796 | sprintf(out, "-Mate"); |
33 | pmbaty | 797 | else if (value == -(MATE - 1) && wtm) |
108 | pmbaty | 798 | sprintf(out, "-Mate"); |
33 | pmbaty | 799 | else if (value == -(MATE - 1) && !wtm) |
108 | pmbaty | 800 | sprintf(out, "Mate"); |
33 | pmbaty | 801 | else if (value > 0 && wtm) |
108 | pmbaty | 802 | sprintf(out, "Mat%.2d", (MATE - value) / 2); |
33 | pmbaty | 803 | else if (value > 0 && !wtm) |
108 | pmbaty | 804 | sprintf(out, "-Mat%.2d", (MATE - value) / 2); |
33 | pmbaty | 805 | else if (wtm) |
108 | pmbaty | 806 | sprintf(out, "-Mat%.2d", (MATE - Abs(value)) / 2); |
33 | pmbaty | 807 | else |
108 | pmbaty | 808 | sprintf(out, "Mat%.2d", (MATE - Abs(value)) / 2); |
33 | pmbaty | 809 | return out; |
810 | } |
||
811 | |||
812 | /* |
||
813 | ******************************************************************************* |
||
814 | * * |
||
108 | pmbaty | 815 | * DisplayPath() is used to display a PV during the root move search. * |
816 | * * |
||
817 | ******************************************************************************* |
||
818 | */ |
||
819 | char *DisplayPath(TREE * RESTRICT tree, int wtm, PATH * pv) { |
||
820 | static char buffer[4096]; |
||
821 | int i, t_move_number; |
||
822 | |||
823 | /* |
||
824 | ************************************************************ |
||
825 | * * |
||
826 | * Initialize. * |
||
827 | * * |
||
828 | ************************************************************ |
||
829 | */ |
||
830 | t_move_number = move_number; |
||
831 | sprintf(buffer, " %d.", move_number); |
||
832 | if (!wtm) |
||
833 | sprintf(buffer + strlen(buffer), " ..."); |
||
834 | for (i = 1; i < (int) pv->pathl; i++) { |
||
835 | if (i > 1 && wtm) |
||
836 | sprintf(buffer + strlen(buffer), " %d.", t_move_number); |
||
837 | sprintf(buffer + strlen(buffer), " %s", OutputMove(tree, i, wtm, |
||
838 | pv->path[i])); |
||
839 | MakeMove(tree, i, wtm, pv->path[i]); |
||
840 | wtm = Flip(wtm); |
||
841 | if (wtm) |
||
842 | t_move_number++; |
||
843 | } |
||
844 | if (pv->pathh == 1) |
||
154 | pmbaty | 845 | sprintf(buffer + strlen(buffer), " <HT>"); |
108 | pmbaty | 846 | else if (pv->pathh == 2) |
154 | pmbaty | 847 | sprintf(buffer + strlen(buffer), " <3-fold>"); |
108 | pmbaty | 848 | else if (pv->pathh == 3) |
154 | pmbaty | 849 | sprintf(buffer + strlen(buffer), " <50-move>"); |
108 | pmbaty | 850 | else if (pv->pathh == 4) |
154 | pmbaty | 851 | sprintf(buffer + strlen(buffer), " <EGTB>"); |
108 | pmbaty | 852 | if (strlen(buffer) < 30) |
154 | pmbaty | 853 | for (i = 0; i < 30 - strlen(buffer); i++) |
108 | pmbaty | 854 | strcat(buffer, " "); |
855 | strcpy(kibitz_text, buffer); |
||
856 | for (i = pv->pathl - 1; i > 0; i--) { |
||
857 | wtm = Flip(wtm); |
||
858 | UnmakeMove(tree, i, wtm, pv->path[i]); |
||
859 | } |
||
860 | return buffer; |
||
861 | } |
||
862 | |||
863 | /* |
||
864 | ******************************************************************************* |
||
865 | * * |
||
154 | pmbaty | 866 | * DisplayFail() is used to display a move that fails high or low during * |
867 | * the search. Normally disabled. * |
||
108 | pmbaty | 868 | * * |
869 | ******************************************************************************* |
||
870 | */ |
||
871 | void DisplayFail(TREE * RESTRICT tree, int type, int level, int wtm, int time, |
||
872 | int move, int value, int force) { |
||
873 | char buffer[4096], *fh_indicator; |
||
874 | |||
875 | /* |
||
876 | ************************************************************ |
||
877 | * * |
||
878 | * If we have not used "noise_level" units of time, we * |
||
879 | * return immediately. Otherwise we add the fail high/low * |
||
880 | * indicator (++/--) and then display the times. * |
||
881 | * * |
||
882 | ************************************************************ |
||
883 | */ |
||
154 | pmbaty | 884 | if (time < noise_level) |
108 | pmbaty | 885 | return; |
886 | if (type == 1) |
||
887 | fh_indicator = (wtm) ? "++" : "--"; |
||
888 | else |
||
889 | fh_indicator = (wtm) ? "--" : "++"; |
||
890 | Print(4, " %2i %s %2s ", iteration, |
||
891 | Display2Times(end_time - start_time), fh_indicator); |
||
892 | /* |
||
893 | ************************************************************ |
||
894 | * * |
||
895 | * If we are pondering, we need to add the (ponder-move) * |
||
896 | * to the front of the buffer, correcting the move number * |
||
897 | * if necessary. Then fill in the move number and the * |
||
898 | * fail high/low bound. * |
||
899 | * * |
||
900 | ************************************************************ |
||
901 | */ |
||
902 | if (!pondering) { |
||
903 | sprintf(buffer, "%d.", move_number); |
||
904 | if (!wtm) |
||
905 | sprintf(buffer + strlen(buffer), " ..."); |
||
906 | } else { |
||
907 | if (wtm) |
||
908 | sprintf(buffer, "%d. ... (%s) %d.", move_number - 1, ponder_text, |
||
909 | move_number); |
||
910 | else |
||
911 | sprintf(buffer, "%d. (%s)", move_number, ponder_text); |
||
912 | } |
||
913 | sprintf(buffer + strlen(buffer), " %s%c", OutputMove(tree, 1, wtm, move), |
||
914 | (type == 1) ? '!' : '?'); |
||
915 | strcpy(kibitz_text, buffer); |
||
154 | pmbaty | 916 | if (time >= noise_level || force) { |
108 | pmbaty | 917 | noise_block = 0; |
918 | Lock(lock_io); |
||
919 | Print(4, "%s", buffer); |
||
920 | Unlock(lock_io); |
||
921 | if (type == 1) |
||
922 | Print(4, " (%c%s) \n", (wtm) ? '>' : '<', |
||
923 | DisplayEvaluationKibitz(value, wtm)); |
||
924 | else |
||
925 | Print(4, " (%c%s) \n", (wtm) ? '<' : '>', |
||
926 | DisplayEvaluationKibitz(value, wtm)); |
||
927 | } |
||
928 | } |
||
929 | |||
930 | /* |
||
931 | ******************************************************************************* |
||
932 | * * |
||
33 | pmbaty | 933 | * DisplayPV() is used to display a PV during the search. * |
934 | * * |
||
935 | ******************************************************************************* |
||
936 | */ |
||
108 | pmbaty | 937 | void DisplayPV(TREE * RESTRICT tree, int level, int wtm, int time, PATH * pv, |
938 | int force) { |
||
33 | pmbaty | 939 | char buffer[4096], *buffp, *bufftemp; |
108 | pmbaty | 940 | char blanks[40] = { " " }; |
941 | int i, len, t_move_number, nskip = 0, twtm = wtm, pv_depth = pv->pathd;; |
||
942 | unsigned int idle_time; |
||
33 | pmbaty | 943 | |
944 | /* |
||
945 | ************************************************************ |
||
946 | * * |
||
947 | * Initialize. * |
||
948 | * * |
||
949 | ************************************************************ |
||
950 | */ |
||
108 | pmbaty | 951 | for (i = 0; i < n_root_moves; i++) |
952 | if (root_moves[i].status & 4) |
||
33 | pmbaty | 953 | nskip++; |
108 | pmbaty | 954 | for (i = 0; i < 4096; i++) |
955 | buffer[i] = ' '; |
||
33 | pmbaty | 956 | t_move_number = move_number; |
108 | pmbaty | 957 | if (!pondering || analyze_mode) { |
958 | sprintf(buffer, "%d.", move_number); |
||
959 | if (!wtm) |
||
960 | sprintf(buffer + strlen(buffer), " ..."); |
||
961 | } else { |
||
962 | if (wtm) |
||
963 | sprintf(buffer, "%d. ... (%s) %d.", move_number - 1, ponder_text, |
||
964 | move_number); |
||
965 | else |
||
966 | sprintf(buffer, "%d. (%s)", move_number, ponder_text); |
||
967 | } |
||
968 | for (i = 1; i < (int) pv->pathl; i++) { |
||
969 | if (i > 1 && wtm) |
||
970 | sprintf(buffer + strlen(buffer), " %d.", t_move_number); |
||
971 | sprintf(buffer + strlen(buffer), " %s", OutputMove(tree, i, wtm, |
||
972 | pv->path[i])); |
||
973 | MakeMove(tree, i, wtm, pv->path[i]); |
||
33 | pmbaty | 974 | wtm = Flip(wtm); |
975 | if (wtm) |
||
976 | t_move_number++; |
||
977 | } |
||
978 | if (pv->pathh == 1) |
||
108 | pmbaty | 979 | sprintf(buffer + strlen(buffer), " <HT>"); |
33 | pmbaty | 980 | else if (pv->pathh == 2) |
108 | pmbaty | 981 | sprintf(buffer + strlen(buffer), " <3-fold>"); |
982 | else if (pv->pathh == 3) |
||
983 | sprintf(buffer + strlen(buffer), " <50-move>"); |
||
154 | pmbaty | 984 | else if (pv->pathh == 4) |
985 | sprintf(buffer + strlen(buffer), " <EGTB>"); |
||
108 | pmbaty | 986 | if (nskip > 1 && smp_max_threads > 1) |
987 | sprintf(buffer + strlen(buffer), " (s=%d)", nskip); |
||
988 | if (strlen(buffer) < 30) { |
||
989 | len = 30 - strlen(buffer); |
||
990 | for (i = 0; i < len; i++) |
||
991 | strcat(buffer, " "); |
||
33 | pmbaty | 992 | } |
108 | pmbaty | 993 | strcpy(kibitz_text, buffer); |
154 | pmbaty | 994 | if (time >= noise_level || force) { |
33 | pmbaty | 995 | noise_block = 0; |
996 | Lock(lock_io); |
||
108 | pmbaty | 997 | Print(2, " "); |
33 | pmbaty | 998 | if (level == 6) |
108 | pmbaty | 999 | Print(2, "%2i %s%s ", pv_depth, Display2Times(time), |
33 | pmbaty | 1000 | DisplayEvaluation(pv->pathv, twtm)); |
1001 | else |
||
108 | pmbaty | 1002 | Print(2, "%2i-> %s%s ", pv_depth, Display2Times(time) |
33 | pmbaty | 1003 | , DisplayEvaluation(pv->pathv, twtm)); |
108 | pmbaty | 1004 | buffp = buffer; |
33 | pmbaty | 1005 | do { |
108 | pmbaty | 1006 | if ((int) strlen(buffp) > line_length - 38) { |
1007 | bufftemp = buffp + line_length - 38; |
||
1008 | while (*bufftemp != ' ') |
||
1009 | bufftemp--; |
||
1010 | if (*(bufftemp - 1) == '.') |
||
1011 | while (*(--bufftemp) != ' '); |
||
1012 | } else |
||
33 | pmbaty | 1013 | bufftemp = 0; |
1014 | if (bufftemp) |
||
1015 | *bufftemp = 0; |
||
108 | pmbaty | 1016 | Print(2, "%s\n", buffp); |
33 | pmbaty | 1017 | buffp = bufftemp + 1; |
1018 | if (bufftemp) |
||
108 | pmbaty | 1019 | if (!strncmp(buffp, blanks, strlen(buffp))) |
1020 | bufftemp = 0; |
||
1021 | if (bufftemp) |
||
1022 | Print(2, " "); |
||
33 | pmbaty | 1023 | } while (bufftemp); |
108 | pmbaty | 1024 | idle_time = 0; |
154 | pmbaty | 1025 | for (i = 0; i < smp_max_threads; i++) |
108 | pmbaty | 1026 | idle_time += thread[i].idle; |
1027 | busy_percent = |
||
33 | pmbaty | 1028 | 100 - Min(100, |
1029 | 100 * idle_time / (smp_max_threads * (end_time - start_time) + 1)); |
||
1030 | Kibitz(level, twtm, pv_depth, end_time - start_time, pv->pathv, |
||
154 | pmbaty | 1031 | tree->nodes_searched, busy_percent, tree->egtb_hits, kibitz_text); |
33 | pmbaty | 1032 | Unlock(lock_io); |
1033 | } |
||
1034 | for (i = pv->pathl - 1; i > 0; i--) { |
||
1035 | wtm = Flip(wtm); |
||
108 | pmbaty | 1036 | UnmakeMove(tree, i, wtm, pv->path[i]); |
33 | pmbaty | 1037 | } |
1038 | } |
||
1039 | |||
1040 | /* |
||
1041 | ******************************************************************************* |
||
1042 | * * |
||
1043 | * DisplayHHMMSS is used to convert integer time values in 1/100th second * |
||
1044 | * units into a traditional output format for time, hh:mm:ss rather than * |
||
1045 | * just nnn.n seconds. * |
||
1046 | * * |
||
1047 | ******************************************************************************* |
||
1048 | */ |
||
1049 | char *DisplayHHMMSS(unsigned int time) { |
||
108 | pmbaty | 1050 | static char out[32]; |
33 | pmbaty | 1051 | |
1052 | time = time / 100; |
||
108 | pmbaty | 1053 | sprintf(out, "%3u:%02u:%02u", time / 3600, (time % 3600) / 60, time % 60); |
33 | pmbaty | 1054 | return out; |
1055 | } |
||
1056 | |||
1057 | /* |
||
1058 | ******************************************************************************* |
||
1059 | * * |
||
1060 | * DisplayHHMM is used to convert integer time values in 1/100th second * |
||
1061 | * units into a traditional output format for time, mm:ss rather than just * |
||
1062 | * nnn.n seconds. * |
||
1063 | * * |
||
1064 | ******************************************************************************* |
||
1065 | */ |
||
1066 | char *DisplayHHMM(unsigned int time) { |
||
1067 | static char out[10]; |
||
1068 | |||
1069 | time = time / 6000; |
||
108 | pmbaty | 1070 | sprintf(out, "%3u:%02u", time / 60, time % 60); |
33 | pmbaty | 1071 | return out; |
1072 | } |
||
1073 | |||
1074 | /* |
||
1075 | ******************************************************************************* |
||
1076 | * * |
||
1077 | * DisplayKMB() takes an integer value that represents nodes per second, or * |
||
1078 | * just total nodes, and converts it into a more compact form, so that * |
||
108 | pmbaty | 1079 | * instead of nps=57200931, we get nps=57.2M. We use units of "K", "M", * |
1080 | * "B" and "T". If type==0, K=1000, etc. If type=1, K=1024, etc. * |
||
33 | pmbaty | 1081 | * * |
1082 | ******************************************************************************* |
||
1083 | */ |
||
108 | pmbaty | 1084 | char *DisplayKMB(uint64_t val, int type) { |
33 | pmbaty | 1085 | static char out[10]; |
1086 | |||
108 | pmbaty | 1087 | if (type == 0) { |
1088 | if (val < 1000) |
||
1089 | sprintf(out, "%" PRIu64, val); |
||
1090 | else if (val < 1000000) |
||
1091 | sprintf(out, "%.1fK", (double) val / 1000); |
||
1092 | else if (val < 1000000000) |
||
1093 | sprintf(out, "%.1fM", (double) val / 1000000); |
||
1094 | else |
||
1095 | sprintf(out, "%.1fB", (double) val / 1000000000); |
||
1096 | } else { |
||
1097 | if (val > 0 && !(val & 0x000000003fffffffULL)) |
||
1098 | sprintf(out, "%dG", (int) (val / (1 << 30))); |
||
1099 | else if (val > 0 && !(val & 0x00000000000fffffULL)) |
||
1100 | sprintf(out, "%dM", (int) (val / (1 << 20))); |
||
1101 | else if (val > 0 && !(val & 0x00000000000003ffULL)) |
||
1102 | sprintf(out, "%dK", (int) (val / (1 << 10))); |
||
1103 | else |
||
1104 | sprintf(out, "%" PRIu64, val); |
||
1105 | } |
||
33 | pmbaty | 1106 | return out; |
1107 | } |
||
1108 | |||
1109 | /* |
||
1110 | ******************************************************************************* |
||
1111 | * * |
||
1112 | * DisplayTime() is used to display search times, and shows times in one of * |
||
1113 | * two ways depending on the value passed in. If less than 60 seconds is to * |
||
1114 | * be displayed, it is displayed as a decimal fraction like 32.7, while if * |
||
1115 | * more than 60 seconds is to be displayed, it is converted to the more * |
||
1116 | * traditional mm:ss form. The string it produces is of fixed length to * |
||
1117 | * provide neater screen formatting. * |
||
1118 | * * |
||
1119 | ******************************************************************************* |
||
1120 | */ |
||
1121 | char *DisplayTime(unsigned int time) { |
||
1122 | static char out[10]; |
||
1123 | |||
1124 | if (time < 6000) |
||
108 | pmbaty | 1125 | sprintf(out, "%6.2f", (float) time / 100.0); |
33 | pmbaty | 1126 | else { |
1127 | time = time / 100; |
||
108 | pmbaty | 1128 | sprintf(out, "%3u:%02u", time / 60, time % 60); |
33 | pmbaty | 1129 | } |
1130 | return out; |
||
1131 | } |
||
1132 | |||
1133 | /* |
||
1134 | ******************************************************************************* |
||
1135 | * * |
||
1136 | * Display2Times() is used to display search times, and shows times in one * |
||
1137 | * of two ways depending on the value passed in. If less than 60 seconds is * |
||
1138 | * to be displayed, it is displayed as a decimal fraction like 32.7, while * |
||
1139 | * if more than 60 seconds is to be displayed, it is converted to the more * |
||
1140 | * traditional mm:ss form. The string it produces is of fixed length to * |
||
1141 | * provide neater screen formatting. * |
||
1142 | * * |
||
1143 | * The second argument is the "difficulty" value which lets us display the * |
||
1144 | * target time (as modified by difficulty) so that it is possible to know * |
||
1145 | * roughly when the move will be announced. * |
||
1146 | * * |
||
1147 | ******************************************************************************* |
||
1148 | */ |
||
1149 | char *Display2Times(unsigned int time) { |
||
108 | pmbaty | 1150 | int ttime, c, spaces; |
33 | pmbaty | 1151 | static char out[20], tout[10]; |
1152 | |||
1153 | if (time < 6000) |
||
108 | pmbaty | 1154 | sprintf(out, "%6.2f", (float) time / 100.0); |
33 | pmbaty | 1155 | else { |
1156 | time = time / 100; |
||
108 | pmbaty | 1157 | sprintf(out, "%3u:%02u", time / 60, time % 60); |
33 | pmbaty | 1158 | } |
1159 | if (search_time_limit) |
||
1160 | ttime = search_time_limit; |
||
1161 | else |
||
1162 | ttime = difficulty * time_limit / 100; |
||
1163 | if (ttime < 360000) { |
||
1164 | if (ttime < 6000) |
||
108 | pmbaty | 1165 | sprintf(tout, "%6.2f", (float) ttime / 100.0); |
33 | pmbaty | 1166 | else { |
1167 | ttime = ttime / 100; |
||
108 | pmbaty | 1168 | sprintf(tout, "%3u:%02u", ttime / 60, ttime % 60); |
33 | pmbaty | 1169 | } |
1170 | c = strspn(tout, " "); |
||
108 | pmbaty | 1171 | strcat(out, "/"); |
1172 | strcat(out, tout + c); |
||
154 | pmbaty | 1173 | } else |
1174 | strcat(out, " "); |
||
33 | pmbaty | 1175 | spaces = 13 - strlen(out); |
1176 | for (c = 0; c < spaces; c++) |
||
108 | pmbaty | 1177 | strcat(out, " "); |
33 | pmbaty | 1178 | return out; |
1179 | } |
||
1180 | |||
1181 | /* |
||
1182 | ******************************************************************************* |
||
1183 | * * |
||
1184 | * DisplayTimeKibitz() behaves just like DisplayTime() except that the * |
||
1185 | * string it produces is a variable-length string that is as short as * |
||
1186 | * possible to make ICC kibitzes/whispers look neater. * |
||
1187 | * * |
||
1188 | ******************************************************************************* |
||
1189 | */ |
||
1190 | char *DisplayTimeKibitz(unsigned int time) { |
||
1191 | static char out[10]; |
||
1192 | |||
1193 | if (time < 6000) |
||
108 | pmbaty | 1194 | sprintf(out, "%.2f", (float) time / 100.0); |
33 | pmbaty | 1195 | else { |
1196 | time = time / 100; |
||
108 | pmbaty | 1197 | sprintf(out, "%u:%02u", time / 60, time % 60); |
33 | pmbaty | 1198 | } |
1199 | return out; |
||
1200 | } |
||
1201 | |||
1202 | /* |
||
1203 | ******************************************************************************* |
||
1204 | * * |
||
1205 | * FormatPV() is used to display a PV during the search. It will also note * |
||
1206 | * when the PV was terminated by a hash table hit. * |
||
1207 | * * |
||
1208 | ******************************************************************************* |
||
1209 | */ |
||
1210 | char *FormatPV(TREE * RESTRICT tree, int wtm, PATH pv) { |
||
108 | pmbaty | 1211 | int i, t_move_number; |
33 | pmbaty | 1212 | static char buffer[4096]; |
1213 | |||
1214 | /* |
||
1215 | ************************************************************ |
||
1216 | * * |
||
1217 | * Initialize. * |
||
1218 | * * |
||
1219 | ************************************************************ |
||
1220 | */ |
||
1221 | t_move_number = move_number; |
||
108 | pmbaty | 1222 | sprintf(buffer, " %d.", move_number); |
1223 | if (!wtm) |
||
1224 | sprintf(buffer + strlen(buffer), " ..."); |
||
33 | pmbaty | 1225 | for (i = 1; i < (int) pv.pathl; i++) { |
108 | pmbaty | 1226 | if (i > 1 && wtm) |
33 | pmbaty | 1227 | sprintf(buffer + strlen(buffer), " %d.", t_move_number); |
108 | pmbaty | 1228 | sprintf(buffer + strlen(buffer), " %s", OutputMove(tree, i, wtm, |
1229 | pv.path[i])); |
||
1230 | MakeMove(tree, i, wtm, pv.path[i]); |
||
33 | pmbaty | 1231 | wtm = Flip(wtm); |
1232 | if (wtm) |
||
1233 | t_move_number++; |
||
1234 | } |
||
1235 | for (i = pv.pathl - 1; i > 0; i--) { |
||
1236 | wtm = Flip(wtm); |
||
108 | pmbaty | 1237 | UnmakeMove(tree, i, wtm, pv.path[i]); |
33 | pmbaty | 1238 | } |
1239 | return buffer; |
||
1240 | } |
||
1241 | |||
1242 | /* last modified 02/26/14 */ |
||
1243 | /* |
||
1244 | ******************************************************************************* |
||
1245 | * * |
||
1246 | * GameOver() is used to determine if the game is over by rule. More * |
||
1247 | * specifically, after our move, the opponent has no legal move to play. He * |
||
1248 | * is either checkmated or stalemated, either of which is sufficient reason * |
||
1249 | * to terminate the game. * |
||
1250 | * * |
||
1251 | ******************************************************************************* |
||
1252 | */ |
||
1253 | int GameOver(int wtm) { |
||
1254 | TREE *const tree = block[0]; |
||
108 | pmbaty | 1255 | unsigned *mvp, *lastm, rmoves[256], over = 1; |
33 | pmbaty | 1256 | |
1257 | /* |
||
1258 | ************************************************************ |
||
1259 | * * |
||
1260 | * First, use GenerateMoves() to generate the set of * |
||
1261 | * legal moves from the root position. * |
||
1262 | * * |
||
1263 | ************************************************************ |
||
1264 | */ |
||
1265 | lastm = GenerateCaptures(tree, 1, wtm, rmoves); |
||
1266 | lastm = GenerateNoncaptures(tree, 1, wtm, lastm); |
||
1267 | /* |
||
1268 | ************************************************************ |
||
1269 | * * |
||
1270 | * Now make each move and determine if we are in check * |
||
1271 | * after each one. Any move that does not leave us in * |
||
1272 | * check is good enough to prove that the game is not yet * |
||
1273 | * officially over. * |
||
1274 | * * |
||
1275 | ************************************************************ |
||
1276 | */ |
||
1277 | for (mvp = rmoves; mvp < lastm; mvp++) { |
||
108 | pmbaty | 1278 | MakeMove(tree, 1, wtm, *mvp); |
33 | pmbaty | 1279 | if (!Check(wtm)) |
1280 | over = 0; |
||
108 | pmbaty | 1281 | UnmakeMove(tree, 1, wtm, *mvp); |
33 | pmbaty | 1282 | } |
1283 | /* |
||
1284 | ************************************************************ |
||
1285 | * * |
||
1286 | * If we did not make it thru the complete move list, we * |
||
1287 | * must have at least one legal move so the game is not * |
||
1288 | * over. return 0. Otherwise, we have no move and the * |
||
1289 | * game is over. We return 1 if this side is stalmated or * |
||
1290 | * we return 2 if this side is mated. * |
||
1291 | * * |
||
1292 | ************************************************************ |
||
1293 | */ |
||
1294 | if (!over) |
||
1295 | return 0; |
||
1296 | else if (!Check(wtm)) |
||
1297 | return 1; |
||
1298 | else |
||
1299 | return 2; |
||
1300 | } |
||
1301 | |||
1302 | /* |
||
1303 | ******************************************************************************* |
||
1304 | * * |
||
1305 | * ReadClock() is a procedure used to read the elapsed time. Since this * |
||
1306 | * varies from system to system, this procedure has several flavors to * |
||
1307 | * provide portability. * |
||
1308 | * * |
||
1309 | ******************************************************************************* |
||
1310 | */ |
||
1311 | unsigned int ReadClock(void) { |
||
1312 | #if defined(UNIX) |
||
1313 | struct timeval timeval; |
||
1314 | struct timezone timezone; |
||
1315 | #endif |
||
1316 | #if defined(UNIX) |
||
1317 | gettimeofday(&timeval, &timezone); |
||
1318 | return timeval.tv_sec * 100 + (timeval.tv_usec / 10000); |
||
1319 | #else |
||
1320 | return (unsigned int) GetTickCount() / 10; |
||
1321 | #endif |
||
1322 | } |
||
1323 | |||
1324 | /* |
||
1325 | ******************************************************************************* |
||
1326 | * * |
||
108 | pmbaty | 1327 | * FindBlockID() converts a thread block pointer into an ID that is easier * |
1328 | * to understand when debugging. * |
||
33 | pmbaty | 1329 | * * |
1330 | ******************************************************************************* |
||
1331 | */ |
||
1332 | int FindBlockID(TREE * RESTRICT which) { |
||
1333 | int i; |
||
1334 | |||
154 | pmbaty | 1335 | for (i = 0; i <= smp_max_threads * 64; i++) |
33 | pmbaty | 1336 | if (which == block[i]) |
1337 | return i; |
||
1338 | return -1; |
||
1339 | } |
||
1340 | |||
1341 | /* |
||
1342 | ******************************************************************************* |
||
1343 | * * |
||
1344 | * InvalidPosition() is used to determine if the position just entered via a * |
||
1345 | * FEN-string or the "edit" command is legal. This includes the expected * |
||
1346 | * tests for too many pawns or pieces for one side, pawns on impossible * |
||
1347 | * squares, and the like. * |
||
1348 | * * |
||
1349 | ******************************************************************************* |
||
1350 | */ |
||
1351 | int InvalidPosition(TREE * RESTRICT tree) { |
||
108 | pmbaty | 1352 | int error = 0, wp, wn, wb, wr, wq, wk, bp, bn, bb, br, bq, bk; |
33 | pmbaty | 1353 | |
1354 | wp = PopCnt(Pawns(white)); |
||
1355 | wn = PopCnt(Knights(white)); |
||
1356 | wb = PopCnt(Bishops(white)); |
||
1357 | wr = PopCnt(Rooks(white)); |
||
1358 | wq = PopCnt(Queens(white)); |
||
108 | pmbaty | 1359 | wk = PopCnt(Kings(white)); |
33 | pmbaty | 1360 | bp = PopCnt(Pawns(black)); |
1361 | bn = PopCnt(Knights(black)); |
||
1362 | bb = PopCnt(Bishops(black)); |
||
1363 | br = PopCnt(Rooks(black)); |
||
1364 | bq = PopCnt(Queens(black)); |
||
108 | pmbaty | 1365 | bk = PopCnt(Kings(black)); |
33 | pmbaty | 1366 | if (wp > 8) { |
1367 | Print(4095, "illegal position, too many white pawns\n"); |
||
1368 | error = 1; |
||
1369 | } |
||
108 | pmbaty | 1370 | if (wn && wp + wn > 10) { |
33 | pmbaty | 1371 | Print(4095, "illegal position, too many white knights\n"); |
1372 | error = 1; |
||
1373 | } |
||
108 | pmbaty | 1374 | if (wb && wp + wb > 10) { |
33 | pmbaty | 1375 | Print(4095, "illegal position, too many white bishops\n"); |
1376 | error = 1; |
||
1377 | } |
||
108 | pmbaty | 1378 | if (wr && wp + wr > 10) { |
33 | pmbaty | 1379 | Print(4095, "illegal position, too many white rooks\n"); |
1380 | error = 1; |
||
1381 | } |
||
108 | pmbaty | 1382 | if (wq && wp + wq > 10) { |
33 | pmbaty | 1383 | Print(4095, "illegal position, too many white queens\n"); |
1384 | error = 1; |
||
1385 | } |
||
108 | pmbaty | 1386 | if (wk == 0) { |
33 | pmbaty | 1387 | Print(4095, "illegal position, no white king\n"); |
1388 | error = 1; |
||
1389 | } |
||
108 | pmbaty | 1390 | if (wk > 1) { |
1391 | Print(4095, "illegal position, multiple white kings\n"); |
||
1392 | error = 1; |
||
1393 | } |
||
1394 | if ((wn + wb + wr + wq) && wp + wn + wb + wr + wq > 15) { |
||
33 | pmbaty | 1395 | Print(4095, "illegal position, too many white pieces\n"); |
1396 | error = 1; |
||
1397 | } |
||
1398 | if (Pawns(white) & (rank_mask[RANK1] | rank_mask[RANK8])) { |
||
1399 | Print(4095, "illegal position, white pawns on first/eighth rank(s)\n"); |
||
1400 | error = 1; |
||
1401 | } |
||
1402 | if (bp > 8) { |
||
1403 | Print(4095, "illegal position, too many black pawns\n"); |
||
1404 | error = 1; |
||
1405 | } |
||
108 | pmbaty | 1406 | if (bn && bp + bn > 10) { |
33 | pmbaty | 1407 | Print(4095, "illegal position, too many black knights\n"); |
1408 | error = 1; |
||
1409 | } |
||
108 | pmbaty | 1410 | if (bb && bp + bb > 10) { |
33 | pmbaty | 1411 | Print(4095, "illegal position, too many black bishops\n"); |
1412 | error = 1; |
||
1413 | } |
||
108 | pmbaty | 1414 | if (br && bp + br > 10) { |
33 | pmbaty | 1415 | Print(4095, "illegal position, too many black rooks\n"); |
1416 | error = 1; |
||
1417 | } |
||
108 | pmbaty | 1418 | if (bq && bp + bq > 10) { |
33 | pmbaty | 1419 | Print(4095, "illegal position, too many black queens\n"); |
1420 | error = 1; |
||
1421 | } |
||
108 | pmbaty | 1422 | if (bk == 0) { |
33 | pmbaty | 1423 | Print(4095, "illegal position, no black king\n"); |
1424 | error = 1; |
||
1425 | } |
||
108 | pmbaty | 1426 | if (bk > 1) { |
1427 | Print(4095, "illegal position, multiple black kings\n"); |
||
1428 | error = 1; |
||
1429 | } |
||
1430 | if ((bn + bb + br + bq) && bp + bn + bb + br + bq > 15) { |
||
33 | pmbaty | 1431 | Print(4095, "illegal position, too many black pieces\n"); |
1432 | error = 1; |
||
1433 | } |
||
1434 | if (Pawns(black) & (rank_mask[RANK1] | rank_mask[RANK8])) { |
||
1435 | Print(4095, "illegal position, black pawns on first/eighth rank(s)\n"); |
||
1436 | error = 1; |
||
1437 | } |
||
1438 | if (error == 0 && Check(!game_wtm)) { |
||
1439 | Print(4095, "ERROR side not on move is in check!\n"); |
||
1440 | error = 1; |
||
1441 | } |
||
1442 | return error; |
||
1443 | } |
||
1444 | |||
1445 | /* |
||
1446 | ******************************************************************************* |
||
1447 | * * |
||
1448 | * KingPawnSquare() is used to initialize some of the passed pawn race * |
||
1449 | * tables used by Evaluate(). It simply answers the question "is the king * |
||
1450 | * in the square of the pawn so the pawn can't outrun it and promote?" * |
||
1451 | * * |
||
1452 | ******************************************************************************* |
||
1453 | */ |
||
1454 | int KingPawnSquare(int pawn, int king, int queen, int ptm) { |
||
1455 | int pdist, kdist; |
||
1456 | |||
1457 | pdist = Abs(Rank(pawn) - Rank(queen)) + !ptm; |
||
1458 | kdist = Distance(king, queen); |
||
1459 | return pdist >= kdist; |
||
1460 | } |
||
1461 | |||
154 | pmbaty | 1462 | /* last modified 07/13/16 */ |
33 | pmbaty | 1463 | /* |
1464 | ******************************************************************************* |
||
1465 | * * |
||
154 | pmbaty | 1466 | * Mated() is used to determine if the game has ended by checkmate. * |
33 | pmbaty | 1467 | * * |
154 | pmbaty | 1468 | * We return 0 if the game doesn't end here, 1 if the side on move is mated * |
1469 | * and 2 if the side on move is stalemated. * |
||
1470 | * * |
||
33 | pmbaty | 1471 | ******************************************************************************* |
1472 | */ |
||
154 | pmbaty | 1473 | int Mated(TREE * RESTRICT tree, int ply, int wtm) { |
1474 | unsigned int rmoves[256], *mvp, *lastm; |
||
1475 | int temp = 0; |
||
33 | pmbaty | 1476 | |
154 | pmbaty | 1477 | /* |
1478 | ************************************************************ |
||
1479 | * * |
||
1480 | * first, use GenerateMoves() to generate the set of * |
||
1481 | * legal moves from the root position, after making the * |
||
1482 | * test move passed in. * |
||
1483 | * * |
||
1484 | ************************************************************ |
||
1485 | */ |
||
1486 | lastm = GenerateCaptures(tree, ply, wtm, rmoves); |
||
1487 | lastm = GenerateNoncaptures(tree, ply, wtm, lastm); |
||
1488 | /* |
||
1489 | ************************************************************ |
||
1490 | * * |
||
1491 | * now make each move and use eliminate any that leave * |
||
1492 | * king in check (which makes those moves illegal.) * |
||
1493 | * * |
||
1494 | ************************************************************ |
||
1495 | */ |
||
1496 | for (mvp = rmoves; mvp < lastm; mvp++) { |
||
1497 | MakeMove(tree, ply, wtm, *mvp); |
||
1498 | temp = Check(wtm); |
||
1499 | UnmakeMove(tree, ply, wtm, *mvp); |
||
1500 | if (!temp) |
||
1501 | break; |
||
33 | pmbaty | 1502 | } |
154 | pmbaty | 1503 | /* |
1504 | ************************************************************ |
||
1505 | * * |
||
1506 | * if there is one move that did not leave us in check, * |
||
1507 | * then it can't be checkmate/stalemate. * |
||
1508 | * * |
||
1509 | ************************************************************ |
||
1510 | */ |
||
1511 | if (!temp) |
||
1512 | return 0; |
||
1513 | /* |
||
1514 | ************************************************************ |
||
1515 | * * |
||
1516 | * No legal moves. If we are in check, we have been * |
||
1517 | * checkmated, otherwise we are stalemated. * |
||
1518 | * * |
||
1519 | ************************************************************ |
||
1520 | */ |
||
1521 | if (Check(wtm)) |
||
1522 | return 1; |
||
1523 | return 2; |
||
33 | pmbaty | 1524 | } |
1525 | |||
1526 | /* |
||
1527 | ******************************************************************************* |
||
1528 | * * |
||
1529 | * ParseTime() is used to parse a time value that could be entered as s.ss, * |
||
1530 | * mm:ss, or hh:mm:ss. It is converted to Crafty's internal 1/100th second * |
||
1531 | * time resolution. * |
||
1532 | * * |
||
1533 | ******************************************************************************* |
||
1534 | */ |
||
1535 | int ParseTime(char *string) { |
||
108 | pmbaty | 1536 | int time = 0, minutes = 0; |
33 | pmbaty | 1537 | |
1538 | while (*string) { |
||
1539 | switch (*string) { |
||
1540 | case '0': |
||
1541 | case '1': |
||
1542 | case '2': |
||
1543 | case '3': |
||
1544 | case '4': |
||
1545 | case '5': |
||
1546 | case '6': |
||
1547 | case '7': |
||
1548 | case '8': |
||
1549 | case '9': |
||
1550 | minutes = minutes * 10 + (*string) - '0'; |
||
1551 | break; |
||
1552 | case ':': |
||
1553 | time = time * 60 + minutes; |
||
1554 | minutes = 0; |
||
1555 | break; |
||
1556 | default: |
||
1557 | Print(4095, "illegal character in time, please re-enter\n"); |
||
1558 | break; |
||
1559 | } |
||
1560 | string++; |
||
1561 | } |
||
1562 | return time * 60 + minutes; |
||
1563 | } |
||
1564 | |||
1565 | /* |
||
1566 | ******************************************************************************* |
||
1567 | * * |
||
1568 | * Pass() was written by Tim Mann to handle the case where a position is set * |
||
1569 | * using a FEN string, and then black moves first. The game.nnn file was * |
||
1570 | * designed to start with a white move, so "pass" is now a "no-op" move for * |
||
1571 | * the side whose turn it is to move. * |
||
1572 | * * |
||
1573 | ******************************************************************************* |
||
1574 | */ |
||
1575 | void Pass(void) { |
||
1576 | const int halfmoves_done = 2 * (move_number - 1) + (1 - game_wtm); |
||
1577 | int prev_pass = 0; |
||
108 | pmbaty | 1578 | char buffer[128]; |
33 | pmbaty | 1579 | |
1580 | /* Was previous move a pass? */ |
||
1581 | if (halfmoves_done > 0) { |
||
1582 | if (history_file) { |
||
1583 | fseek(history_file, (halfmoves_done - 1) * 10, SEEK_SET); |
||
108 | pmbaty | 1584 | if (fscanf(history_file, "%s", buffer) == 0 || |
33 | pmbaty | 1585 | strcmp(buffer, "pass") == 0) |
1586 | prev_pass = 1; |
||
1587 | } |
||
1588 | } |
||
1589 | if (prev_pass) { |
||
1590 | if (game_wtm) |
||
1591 | move_number--; |
||
1592 | } else { |
||
1593 | if (history_file) { |
||
1594 | fseek(history_file, halfmoves_done * 10, SEEK_SET); |
||
1595 | fprintf(history_file, "%9s\n", "pass"); |
||
1596 | } |
||
1597 | if (!game_wtm) |
||
1598 | move_number++; |
||
1599 | } |
||
1600 | game_wtm = Flip(game_wtm); |
||
1601 | } |
||
1602 | |||
1603 | /* |
||
1604 | ******************************************************************************* |
||
1605 | * * |
||
1606 | * Print() is the main output procedure. The first argument is a bitmask * |
||
1607 | * that identifies the type of output. If this argument is anded with the * |
||
1608 | * "display" control variable, and a non-zero result is produced, then the * |
||
1609 | * print is done, otherwise the print is skipped and we return (more details * |
||
1610 | * can be found in the display command comments in option.c). This also * |
||
1611 | * uses the "variable number of arguments" facility in ANSI C since the * |
||
1612 | * normal printf() function accepts a variable number of arguments. * |
||
1613 | * * |
||
1614 | * Print() also sends output to the log.nnn file automatically, so that it * |
||
1615 | * is recorded even if the above display control variable says "do not send * |
||
1616 | * this to stdout" * |
||
1617 | * * |
||
1618 | ******************************************************************************* |
||
1619 | */ |
||
1620 | void Print(int vb, char *fmt, ...) { |
||
1621 | va_list ap; |
||
1622 | |||
1623 | va_start(ap, fmt); |
||
108 | pmbaty | 1624 | if (vb == 4095 || vb & display_options) { |
33 | pmbaty | 1625 | vprintf(fmt, ap); |
108 | pmbaty | 1626 | fflush(stdout); |
1627 | } |
||
1628 | if (time_limit > 5 || tc_time_remaining[root_wtm] > 1000 || vb == 4095) { |
||
33 | pmbaty | 1629 | va_start(ap, fmt); |
108 | pmbaty | 1630 | if (log_file) { |
33 | pmbaty | 1631 | vfprintf(log_file, fmt, ap); |
1632 | fflush(log_file); |
||
108 | pmbaty | 1633 | } |
33 | pmbaty | 1634 | } |
1635 | va_end(ap); |
||
1636 | } |
||
1637 | |||
1638 | /* |
||
1639 | ******************************************************************************* |
||
1640 | * * |
||
1641 | * A 32 bit random number generator. An implementation in C of the algorithm * |
||
1642 | * given by Knuth, the art of computer programming, vol. 2, pp. 26-27. We use * |
||
1643 | * e=32, so we have to evaluate y(n) = y(n - 24) + y(n - 55) mod 2^32, which * |
||
1644 | * is implicitly done by unsigned arithmetic. * |
||
1645 | * * |
||
1646 | ******************************************************************************* |
||
1647 | */ |
||
1648 | unsigned int Random32(void) { |
||
1649 | /* |
||
1650 | random numbers from Mathematica 2.0. |
||
1651 | SeedRandom = 1; |
||
1652 | Table[Random[Integer, {0, 2^32 - 1}] |
||
1653 | */ |
||
1654 | static const uint64_t x[55] = { |
||
1655 | 1410651636UL, 3012776752UL, 3497475623UL, 2892145026UL, 1571949714UL, |
||
1656 | 3253082284UL, 3489895018UL, 387949491UL, 2597396737UL, 1981903553UL, |
||
1657 | 3160251843UL, 129444464UL, 1851443344UL, 4156445905UL, 224604922UL, |
||
1658 | 1455067070UL, 3953493484UL, 1460937157UL, 2528362617UL, 317430674UL, |
||
1659 | 3229354360UL, 117491133UL, 832845075UL, 1961600170UL, 1321557429UL, |
||
1660 | 747750121UL, 545747446UL, 810476036UL, 503334515UL, 4088144633UL, |
||
1661 | 2824216555UL, 3738252341UL, 3493754131UL, 3672533954UL, 29494241UL, |
||
1662 | 1180928407UL, 4213624418UL, 33062851UL, 3221315737UL, 1145213552UL, |
||
1663 | 2957984897UL, 4078668503UL, 2262661702UL, 65478801UL, 2527208841UL, |
||
1664 | 1960622036UL, 315685891UL, 1196037864UL, 804614524UL, 1421733266UL, |
||
1665 | 2017105031UL, 3882325900UL, 810735053UL, 384606609UL, 2393861397UL |
||
1666 | }; |
||
1667 | static int init = 1; |
||
1668 | static uint64_t y[55]; |
||
1669 | static int j, k; |
||
1670 | uint64_t ul; |
||
1671 | |||
1672 | if (init) { |
||
1673 | int i; |
||
1674 | |||
1675 | init = 0; |
||
1676 | for (i = 0; i < 55; i++) |
||
1677 | y[i] = x[i]; |
||
1678 | j = 24 - 1; |
||
1679 | k = 55 - 1; |
||
1680 | } |
||
1681 | ul = (y[k] += y[j]); |
||
1682 | if (--j < 0) |
||
1683 | j = 55 - 1; |
||
1684 | if (--k < 0) |
||
1685 | k = 55 - 1; |
||
1686 | return (unsigned int) ul; |
||
1687 | } |
||
1688 | |||
1689 | /* |
||
1690 | ******************************************************************************* |
||
1691 | * * |
||
1692 | * Random64() uses two calls to Random32() and then concatenates the two * |
||
1693 | * values into one 64 bit random number, used for hash signature updates on * |
||
1694 | * the Zobrist hash signatures. * |
||
1695 | * * |
||
1696 | ******************************************************************************* |
||
1697 | */ |
||
1698 | uint64_t Random64(void) { |
||
1699 | uint64_t result; |
||
1700 | unsigned int r1, r2; |
||
1701 | |||
1702 | r1 = Random32(); |
||
1703 | r2 = Random32(); |
||
1704 | result = r1 | (uint64_t) r2 << 32; |
||
1705 | return result; |
||
1706 | } |
||
1707 | |||
1708 | /* |
||
1709 | ******************************************************************************* |
||
1710 | * * |
||
1711 | * Read() copies data from the command_buffer into a local buffer, and then * |
||
1712 | * uses ReadParse to break this command up into tokens for processing. * |
||
1713 | * * |
||
1714 | ******************************************************************************* |
||
1715 | */ |
||
108 | pmbaty | 1716 | int Read(int wait, char *buffer) { |
33 | pmbaty | 1717 | char *eol, *ret, readdata; |
1718 | |||
1719 | *buffer = 0; |
||
1720 | /* |
||
1721 | case 1: We have a complete command line, with terminating |
||
1722 | N/L character in the buffer. We can simply extract it from |
||
1723 | the I/O buffer, parse it and return. |
||
1724 | */ |
||
1725 | if (strchr(cmd_buffer, '\n')); |
||
1726 | /* |
||
1727 | case 2: The buffer does not contain a complete line. If we |
||
1728 | were asked to not wait for a complete command, then we first |
||
1729 | see if I/O is possible, and if so, read in what is available. |
||
1730 | If that includes a N/L, then we are ready to parse and return. |
||
1731 | If not, we return indicating no input available just yet. |
||
1732 | */ |
||
1733 | else if (!wait) { |
||
1734 | if (CheckInput()) { |
||
1735 | readdata = ReadInput(); |
||
1736 | if (!strchr(cmd_buffer, '\n')) |
||
1737 | return 0; |
||
1738 | if (!readdata) |
||
1739 | return -1; |
||
1740 | } else |
||
1741 | return 0; |
||
1742 | } |
||
1743 | /* |
||
1744 | case 3: The buffer does not contain a complete line, but we |
||
1745 | were asked to wait until a complete command is entered. So we |
||
1746 | hang by doing a ReadInput() and continue doing so until we get |
||
1747 | a N/L character in the buffer. Then we parse and return. |
||
1748 | */ |
||
1749 | else |
||
1750 | while (!strchr(cmd_buffer, '\n')) { |
||
1751 | readdata = ReadInput(); |
||
1752 | if (!readdata) |
||
1753 | return -1; |
||
1754 | } |
||
1755 | eol = strchr(cmd_buffer, '\n'); |
||
1756 | *eol = 0; |
||
1757 | ret = strchr(cmd_buffer, '\r'); |
||
1758 | if (ret) |
||
1759 | *ret = ' '; |
||
108 | pmbaty | 1760 | strcpy(buffer, cmd_buffer); |
33 | pmbaty | 1761 | memmove(cmd_buffer, eol + 1, strlen(eol + 1) + 1); |
1762 | return 1; |
||
1763 | } |
||
1764 | |||
1765 | /* |
||
1766 | ******************************************************************************* |
||
1767 | * * |
||
108 | pmbaty | 1768 | * ReadClear() clears the input buffer when input_stream is being switched * |
1769 | * to a file, since we have info buffered up from a different input stream. * |
||
33 | pmbaty | 1770 | * * |
1771 | ******************************************************************************* |
||
1772 | */ |
||
1773 | void ReadClear() { |
||
1774 | cmd_buffer[0] = 0; |
||
1775 | } |
||
1776 | |||
1777 | /* |
||
1778 | ******************************************************************************* |
||
1779 | * * |
||
1780 | * ReadParse() takes one complete command-line, and breaks it up into tokens.* |
||
1781 | * common delimiters are used, such as " ", ",", "/" and ";", any of which * |
||
1782 | * delimit fields. * |
||
1783 | * * |
||
1784 | ******************************************************************************* |
||
1785 | */ |
||
1786 | int ReadParse(char *buffer, char *args[], char *delims) { |
||
108 | pmbaty | 1787 | int nargs; |
33 | pmbaty | 1788 | char *next, tbuffer[4096]; |
1789 | |||
108 | pmbaty | 1790 | strcpy(tbuffer, buffer); |
33 | pmbaty | 1791 | for (nargs = 0; nargs < 512; nargs++) |
1792 | *(args[nargs]) = 0; |
||
1793 | next = strtok(tbuffer, delims); |
||
1794 | if (!next) |
||
1795 | return 0; |
||
1796 | if (strlen(next) > 255) |
||
1797 | Print(4095, "ERROR, ignoring token %s, max allowable len = 255\n", next); |
||
1798 | else |
||
1799 | strcpy(args[0], next); |
||
1800 | for (nargs = 1; nargs < 512; nargs++) { |
||
1801 | next = strtok(0, delims); |
||
1802 | if (!next) |
||
1803 | break; |
||
1804 | if (strlen(next) > 255) |
||
1805 | Print(4095, "ERROR, ignoring token %s, max allowable len = 255\n", |
||
1806 | next); |
||
1807 | else |
||
1808 | strcpy(args[nargs], next); |
||
1809 | } |
||
1810 | return nargs; |
||
1811 | } |
||
1812 | |||
1813 | /* |
||
1814 | ******************************************************************************* |
||
1815 | * * |
||
1816 | * ReadInput() reads data from the input_stream, and buffers this into the * |
||
1817 | * command_buffer for later processing. * |
||
1818 | * * |
||
1819 | ******************************************************************************* |
||
1820 | */ |
||
1821 | int ReadInput(void) { |
||
108 | pmbaty | 1822 | int bytes; |
33 | pmbaty | 1823 | char buffer[4096], *end; |
1824 | |||
1825 | do |
||
154 | pmbaty | 1826 | bytes = read(fileno(input_stream), buffer, 2048); |
33 | pmbaty | 1827 | while (bytes < 0 && errno == EINTR); |
1828 | if (bytes == 0) { |
||
1829 | if (input_stream != stdin) |
||
1830 | fclose(input_stream); |
||
1831 | input_stream = stdin; |
||
1832 | return 0; |
||
1833 | } else if (bytes < 0) { |
||
1834 | Print(4095, "ERROR! input I/O stream is unreadable, exiting.\n"); |
||
1835 | CraftyExit(1); |
||
1836 | } |
||
1837 | end = cmd_buffer + strlen(cmd_buffer); |
||
1838 | memcpy(end, buffer, bytes); |
||
1839 | *(end + bytes) = 0; |
||
1840 | return 1; |
||
1841 | } |
||
1842 | |||
1843 | /* |
||
1844 | ******************************************************************************* |
||
1845 | * * |
||
108 | pmbaty | 1846 | * ReadChessMove() is used to read a move from an input file. The main * |
1847 | * issue is to skip over "trash" like move numbers, times, comments, and so * |
||
1848 | * forth, and find the next actual move. * |
||
33 | pmbaty | 1849 | * * |
1850 | ******************************************************************************* |
||
1851 | */ |
||
1852 | int ReadChessMove(TREE * RESTRICT tree, FILE * input, int wtm, int one_move) { |
||
108 | pmbaty | 1853 | int move = 0, status; |
33 | pmbaty | 1854 | static char text[128]; |
1855 | char *tmove; |
||
1856 | |||
1857 | while (move == 0) { |
||
1858 | status = fscanf(input, "%s", text); |
||
1859 | if (status <= 0) |
||
1860 | return -1; |
||
1861 | if (strcmp(text, "0-0") && strcmp(text, "0-0-0")) |
||
1862 | tmove = text + strspn(text, "0123456789."); |
||
1863 | else |
||
1864 | tmove = text; |
||
1865 | if (((tmove[0] >= 'a' && tmove[0] <= 'z') || (tmove[0] >= 'A' && |
||
1866 | tmove[0] <= 'Z')) || !strcmp(tmove, "0-0") |
||
1867 | || !strcmp(tmove, "0-0-0")) { |
||
1868 | if (!strcmp(tmove, "exit")) |
||
1869 | return -1; |
||
108 | pmbaty | 1870 | move = InputMove(tree, 0, wtm, 1, 0, tmove); |
33 | pmbaty | 1871 | } |
1872 | if (one_move) |
||
1873 | break; |
||
1874 | } |
||
1875 | return move; |
||
1876 | } |
||
1877 | |||
1878 | /* |
||
1879 | ******************************************************************************* |
||
1880 | * * |
||
1881 | * ReadNextMove() is used to take a text chess move from a file, and see if * |
||
1882 | * if is legal, skipping a sometimes embedded move number (1.e4 for example) * |
||
1883 | * to make PGN import easier. * |
||
1884 | * * |
||
1885 | ******************************************************************************* |
||
1886 | */ |
||
1887 | int ReadNextMove(TREE * RESTRICT tree, char *text, int ply, int wtm) { |
||
1888 | char *tmove; |
||
1889 | int move = 0; |
||
1890 | |||
1891 | if (strcmp(text, "0-0") && strcmp(text, "0-0-0")) |
||
1892 | tmove = text + strspn(text, "0123456789./-"); |
||
1893 | else |
||
1894 | tmove = text; |
||
1895 | if (((tmove[0] >= 'a' && tmove[0] <= 'z') || (tmove[0] >= 'A' && |
||
1896 | tmove[0] <= 'Z')) || !strcmp(tmove, "0-0") |
||
1897 | || !strcmp(tmove, "0-0-0")) { |
||
1898 | if (!strcmp(tmove, "exit")) |
||
1899 | return -1; |
||
108 | pmbaty | 1900 | move = InputMove(tree, ply, wtm, 1, 0, tmove); |
33 | pmbaty | 1901 | } |
1902 | return move; |
||
1903 | } |
||
1904 | |||
1905 | /* |
||
1906 | ******************************************************************************* |
||
1907 | * * |
||
1908 | * This routine reads a move from a PGN file to build an opening book or for * |
||
1909 | * annotating. It returns a 1 if a header is read, it returns a 0 if a move * |
||
1910 | * is read, and returns a -1 on end of file. It counts lines and this * |
||
1911 | * counter can be accessed by calling this function with a non-zero second * |
||
1912 | * formal parameter. * |
||
1913 | * * |
||
1914 | ******************************************************************************* |
||
1915 | */ |
||
1916 | int ReadPGN(FILE * input, int option) { |
||
1917 | static int data = 0, lines_read = 0; |
||
108 | pmbaty | 1918 | int braces = 0, parens = 0, brackets = 0, analysis = 0, last_good_line; |
33 | pmbaty | 1919 | static char input_buffer[4096]; |
1920 | char *eof, analysis_move[64]; |
||
1921 | |||
1922 | /* |
||
1923 | ************************************************************ |
||
1924 | * * |
||
1925 | * If the line counter is being requested, return it with * |
||
1926 | * no other changes being made. If "purge" is true, clear * |
||
1927 | * the current input buffer. * |
||
1928 | * * |
||
1929 | ************************************************************ |
||
1930 | */ |
||
1931 | pgn_suggested_percent = 0; |
||
1932 | if (!input) { |
||
1933 | lines_read = 0; |
||
1934 | data = 0; |
||
1935 | return 0; |
||
1936 | } |
||
1937 | if (option == -1) |
||
1938 | data = 0; |
||
1939 | if (option == -2) |
||
1940 | return lines_read; |
||
1941 | /* |
||
1942 | ************************************************************ |
||
1943 | * * |
||
1944 | * If we don't have any data in the buffer, the first step * |
||
1945 | * is to read the next line. * |
||
1946 | * * |
||
1947 | ************************************************************ |
||
1948 | */ |
||
154 | pmbaty | 1949 | while (FOREVER) { |
33 | pmbaty | 1950 | if (!data) { |
1951 | eof = fgets(input_buffer, 4096, input); |
||
1952 | if (!eof) |
||
1953 | return -1; |
||
1954 | if (strchr(input_buffer, '\n')) |
||
1955 | *strchr(input_buffer, '\n') = 0; |
||
1956 | if (strchr(input_buffer, '\r')) |
||
1957 | *strchr(input_buffer, '\r') = ' '; |
||
1958 | lines_read++; |
||
1959 | buffer[0] = 0; |
||
1960 | sscanf(input_buffer, "%s", buffer); |
||
1961 | if (buffer[0] == '[') |
||
1962 | do { |
||
1963 | char *bracket1, *bracket2, value[128]; |
||
1964 | |||
1965 | strcpy(buffer, input_buffer); |
||
1966 | bracket1 = strchr(input_buffer, '\"'); |
||
1967 | if (bracket1 == 0) |
||
1968 | return 1; |
||
1969 | bracket2 = strchr(bracket1 + 1, '\"'); |
||
1970 | if (bracket2 == 0) |
||
1971 | return 1; |
||
1972 | *bracket1 = 0; |
||
1973 | *bracket2 = 0; |
||
1974 | strcpy(value, bracket1 + 1); |
||
1975 | if (strstr(input_buffer, "Event")) |
||
1976 | strcpy(pgn_event, value); |
||
1977 | else if (strstr(input_buffer, "Site")) |
||
1978 | strcpy(pgn_site, value); |
||
1979 | else if (strstr(input_buffer, "Round")) |
||
1980 | strcpy(pgn_round, value); |
||
1981 | else if (strstr(input_buffer, "Date")) |
||
1982 | strcpy(pgn_date, value); |
||
1983 | else if (strstr(input_buffer, "WhiteElo")) |
||
1984 | strcpy(pgn_white_elo, value); |
||
1985 | else if (strstr(input_buffer, "White")) |
||
1986 | strcpy(pgn_white, value); |
||
1987 | else if (strstr(input_buffer, "BlackElo")) |
||
1988 | strcpy(pgn_black_elo, value); |
||
1989 | else if (strstr(input_buffer, "Black")) |
||
1990 | strcpy(pgn_black, value); |
||
1991 | else if (strstr(input_buffer, "Result")) |
||
1992 | strcpy(pgn_result, value); |
||
1993 | else if (strstr(input_buffer, "FEN")) { |
||
108 | pmbaty | 1994 | sprintf(buffer, "setboard %s", value); |
1995 | Option(block[0]); |
||
33 | pmbaty | 1996 | continue; |
1997 | } |
||
1998 | return 1; |
||
1999 | } while (0); |
||
2000 | data = 1; |
||
2001 | } |
||
2002 | /* |
||
2003 | ************************************************************ |
||
2004 | * * |
||
2005 | * If we already have data in the buffer, it is just a * |
||
2006 | * matter of extracting the next move and returning it to * |
||
2007 | * the caller. If the buffer is empty, another line has * |
||
2008 | * to be read in. * |
||
2009 | * * |
||
2010 | ************************************************************ |
||
2011 | */ |
||
2012 | else { |
||
2013 | buffer[0] = 0; |
||
2014 | sscanf(input_buffer, "%s", buffer); |
||
2015 | if (strlen(buffer) == 0) { |
||
2016 | data = 0; |
||
2017 | continue; |
||
2018 | } else { |
||
2019 | char *skip; |
||
2020 | |||
2021 | skip = strstr(input_buffer, buffer) + strlen(buffer); |
||
2022 | if (skip) |
||
2023 | memmove(input_buffer, skip, strlen(skip) + 1); |
||
2024 | } |
||
2025 | /* |
||
2026 | ************************************************************ |
||
2027 | * * |
||
108 | pmbaty | 2028 | * This skips over nested {} or () characters and finds * |
2029 | * the 'mate', before returning any more moves. It also * |
||
2030 | * stops if a PGN header is encountered, probably due to * |
||
2031 | * an incorrectly bracketed analysis variation. * |
||
33 | pmbaty | 2032 | * * |
2033 | ************************************************************ |
||
2034 | */ |
||
2035 | last_good_line = lines_read; |
||
2036 | analysis_move[0] = 0; |
||
2037 | if (strchr(buffer, '{') || strchr(buffer, '(')) |
||
154 | pmbaty | 2038 | while (FOREVER) { |
33 | pmbaty | 2039 | char *skip, *ch; |
2040 | |||
2041 | analysis = 1; |
||
2042 | while ((ch = strpbrk(buffer, "(){}[]"))) { |
||
2043 | if (*ch == '(') { |
||
2044 | *strchr(buffer, '(') = ' '; |
||
2045 | if (!braces) |
||
2046 | parens++; |
||
2047 | } |
||
2048 | if (*ch == ')') { |
||
2049 | *strchr(buffer, ')') = ' '; |
||
2050 | if (!braces) |
||
2051 | parens--; |
||
2052 | } |
||
2053 | if (*ch == '{') { |
||
2054 | *strchr(buffer, '{') = ' '; |
||
2055 | braces++; |
||
2056 | } |
||
2057 | if (*ch == '}') { |
||
2058 | *strchr(buffer, '}') = ' '; |
||
2059 | braces--; |
||
2060 | } |
||
2061 | if (*ch == '[') { |
||
2062 | *strchr(buffer, '[') = ' '; |
||
2063 | if (!braces) |
||
2064 | brackets++; |
||
2065 | } |
||
2066 | if (*ch == ']') { |
||
2067 | *strchr(buffer, ']') = ' '; |
||
2068 | if (!braces) |
||
2069 | brackets--; |
||
2070 | } |
||
2071 | } |
||
2072 | if (analysis && analysis_move[0] == 0) { |
||
2073 | if (strspn(buffer, " ") != strlen(buffer)) { |
||
2074 | char *tmove = analysis_move; |
||
2075 | |||
2076 | sscanf(buffer, "%64s", analysis_move); |
||
2077 | strcpy(buffer, analysis_move); |
||
2078 | if (strcmp(buffer, "0-0") && strcmp(buffer, "0-0-0")) |
||
2079 | tmove = buffer + strspn(buffer, "0123456789."); |
||
2080 | else |
||
2081 | tmove = buffer; |
||
2082 | if ((tmove[0] >= 'a' && tmove[0] <= 'z') || (tmove[0] >= 'A' && |
||
2083 | tmove[0] <= 'Z') || !strcmp(tmove, "0-0") |
||
2084 | || !strcmp(tmove, "0-0-0")) |
||
2085 | strcpy(analysis_move, buffer); |
||
2086 | else |
||
2087 | analysis_move[0] = 0; |
||
2088 | } |
||
2089 | } |
||
2090 | if (parens == 0 && braces == 0 && brackets == 0) |
||
2091 | break; |
||
2092 | buffer[0] = 0; |
||
2093 | sscanf(input_buffer, "%s", buffer); |
||
2094 | if (strlen(buffer) == 0) { |
||
2095 | eof = fgets(input_buffer, 4096, input); |
||
2096 | if (!eof) { |
||
2097 | parens = 0; |
||
2098 | braces = 0; |
||
2099 | brackets = 0; |
||
2100 | return -1; |
||
2101 | } |
||
2102 | if (strchr(input_buffer, '\n')) |
||
2103 | *strchr(input_buffer, '\n') = 0; |
||
2104 | if (strchr(input_buffer, '\r')) |
||
2105 | *strchr(input_buffer, '\r') = ' '; |
||
2106 | lines_read++; |
||
2107 | if (lines_read - last_good_line >= 100) { |
||
2108 | parens = 0; |
||
2109 | braces = 0; |
||
2110 | brackets = 0; |
||
2111 | Print(4095, |
||
2112 | "ERROR. comment spans over 100 lines, starting at line %d\n", |
||
2113 | last_good_line); |
||
2114 | break; |
||
2115 | } |
||
2116 | } |
||
2117 | skip = strstr(input_buffer, buffer) + strlen(buffer); |
||
2118 | memmove(input_buffer, skip, strlen(skip) + 1); |
||
2119 | } else { |
||
2120 | int skip; |
||
2121 | |||
108 | pmbaty | 2122 | if ((skip = strspn(buffer, "0123456789./-"))) { |
33 | pmbaty | 2123 | if (skip > 1) |
2124 | memmove(buffer, buffer + skip, strlen(buffer + skip) + 1); |
||
2125 | } |
||
2126 | if (isalpha(buffer[0]) || strchr(buffer, '-')) { |
||
2127 | char *first, *last, *percent; |
||
2128 | |||
2129 | first = input_buffer + strspn(input_buffer, " "); |
||
2130 | if (first == 0 || *first != '{') |
||
2131 | return 0; |
||
2132 | last = strchr(input_buffer, '}'); |
||
2133 | if (last == 0) |
||
2134 | return 0; |
||
2135 | percent = strstr(first, "play"); |
||
2136 | if (percent == 0) |
||
2137 | return 0; |
||
2138 | pgn_suggested_percent = |
||
2139 | atoi(percent + 4 + strspn(percent + 4, " ")); |
||
2140 | return 0; |
||
2141 | } |
||
2142 | } |
||
2143 | if (analysis_move[0] && option == 1) { |
||
2144 | strcpy(buffer, analysis_move); |
||
2145 | return 2; |
||
2146 | } |
||
2147 | } |
||
2148 | } |
||
2149 | } |
||
2150 | |||
2151 | /* |
||
2152 | ******************************************************************************* |
||
2153 | * * |
||
2154 | * RestoreGame() resets the position to the beginning of the game, and then * |
||
108 | pmbaty | 2155 | * reads in the game.nnn history file to set the position up so that the * |
2156 | * game position matches the position at the end of the history file. * |
||
33 | pmbaty | 2157 | * * |
2158 | ******************************************************************************* |
||
2159 | */ |
||
2160 | void RestoreGame(void) { |
||
108 | pmbaty | 2161 | int i, v, move; |
33 | pmbaty | 2162 | char cmd[16]; |
2163 | |||
2164 | if (!history_file) |
||
2165 | return; |
||
2166 | game_wtm = 1; |
||
2167 | InitializeChessBoard(block[0]); |
||
2168 | for (i = 0; i < 500; i++) { |
||
2169 | fseek(history_file, i * 10, SEEK_SET); |
||
2170 | strcpy(cmd, ""); |
||
108 | pmbaty | 2171 | v = fscanf(history_file, "%s", cmd); |
2172 | if (v < 0) |
||
2173 | perror("RestoreGame fscanf error: "); |
||
33 | pmbaty | 2174 | if (strcmp(cmd, "pass")) { |
108 | pmbaty | 2175 | move = InputMove(block[0], 0, game_wtm, 1, 0, cmd); |
33 | pmbaty | 2176 | if (move) |
108 | pmbaty | 2177 | MakeMoveRoot(block[0], game_wtm, move); |
33 | pmbaty | 2178 | else |
2179 | break; |
||
2180 | } |
||
2181 | game_wtm = Flip(game_wtm); |
||
2182 | } |
||
2183 | } |
||
2184 | |||
2185 | /* |
||
2186 | ******************************************************************************* |
||
2187 | * * |
||
2188 | * Kibitz() is used to whisper/kibitz information to a chess server. It has * |
||
2189 | * to handle the xboard whisper/kibitz interface. * |
||
2190 | * * |
||
2191 | ******************************************************************************* |
||
2192 | */ |
||
2193 | void Kibitz(int level, int wtm, int depth, int time, int value, |
||
2194 | uint64_t nodes, int ip, int tb_hits, char *pv) { |
||
2195 | int nps; |
||
2196 | |||
2197 | nps = (int) ((time) ? 100 * nodes / (uint64_t) time : nodes); |
||
2198 | if (!puzzling) { |
||
2199 | char prefix[128]; |
||
2200 | |||
2201 | if (!(kibitz & 16)) |
||
108 | pmbaty | 2202 | sprintf(prefix, "kibitz"); |
33 | pmbaty | 2203 | else |
108 | pmbaty | 2204 | sprintf(prefix, "whisper"); |
33 | pmbaty | 2205 | switch (level) { |
2206 | case 1: |
||
2207 | if ((kibitz & 15) >= 1) { |
||
154 | pmbaty | 2208 | if (value > 0) |
33 | pmbaty | 2209 | printf("%s mate in %d moves.\n\n", prefix, value); |
154 | pmbaty | 2210 | if (value < 0) |
33 | pmbaty | 2211 | printf("%s mated in %d moves.\n\n", prefix, -value); |
2212 | } |
||
2213 | break; |
||
2214 | case 2: |
||
154 | pmbaty | 2215 | if ((kibitz & 15) >= 2) { |
2216 | printf("%s ply=%d; eval=%s; nps=%s; time=%s(%d%%)", prefix, depth, |
||
2217 | DisplayEvaluationKibitz(value, wtm), DisplayKMB(nps, 0), |
||
2218 | DisplayTimeKibitz(time), ip); |
||
2219 | printf("; egtb=%s\n", DisplayKMB(tb_hits, 0)); |
||
2220 | } |
||
2221 | break; |
||
33 | pmbaty | 2222 | case 3: |
108 | pmbaty | 2223 | if ((kibitz & 15) >= 3 && (nodes > 5000 || level == 2)) |
33 | pmbaty | 2224 | printf("%s %s\n", prefix, pv); |
2225 | break; |
||
2226 | case 4: |
||
108 | pmbaty | 2227 | if ((kibitz & 15) >= 4) |
33 | pmbaty | 2228 | printf("%s %s\n", prefix, pv); |
2229 | break; |
||
2230 | case 5: |
||
2231 | if ((kibitz & 15) >= 5 && nodes > 5000) { |
||
2232 | printf("%s d%d-> %s/s %s(%d%%) %s %s ", prefix, depth, |
||
108 | pmbaty | 2233 | DisplayKMB(nps, 0), DisplayTimeKibitz(time), ip, |
33 | pmbaty | 2234 | DisplayEvaluationKibitz(value, wtm), pv); |
2235 | if (tb_hits) |
||
154 | pmbaty | 2236 | printf("egtb=%s", DisplayKMB(tb_hits, 0)); |
33 | pmbaty | 2237 | printf("\n"); |
2238 | } |
||
2239 | break; |
||
2240 | } |
||
2241 | value = (wtm) ? value : -value; |
||
2242 | if (post && level > 1) { |
||
2243 | if (strstr(pv, "book")) |
||
108 | pmbaty | 2244 | printf(" %2d %5d %7d %" PRIu64 " %s\n", depth, value, time, |
33 | pmbaty | 2245 | nodes, pv + 10); |
2246 | else |
||
108 | pmbaty | 2247 | printf(" %2d %5d %7d %" PRIu64 " %s\n", depth, value, time, |
33 | pmbaty | 2248 | nodes, pv); |
2249 | } |
||
2250 | fflush(stdout); |
||
2251 | } |
||
2252 | } |
||
2253 | |||
2254 | /* |
||
2255 | ******************************************************************************* |
||
2256 | * * |
||
2257 | * Output() is used to print the principal variation whenever it changes. * |
||
2258 | * * |
||
2259 | ******************************************************************************* |
||
2260 | */ |
||
108 | pmbaty | 2261 | void Output(TREE * RESTRICT tree) { |
2262 | int wtm, i; |
||
33 | pmbaty | 2263 | |
2264 | /* |
||
2265 | ************************************************************ |
||
2266 | * * |
||
108 | pmbaty | 2267 | * Output the PV by walking down the path being backed up. * |
2268 | * We do set the "age" for this move to "4" which will * |
||
2269 | * keep it in the group of "search with all threads" moves * |
||
2270 | * so that it will be searched faster. * |
||
33 | pmbaty | 2271 | * * |
2272 | ************************************************************ |
||
2273 | */ |
||
2274 | wtm = root_wtm; |
||
2275 | if (!abort_search) { |
||
108 | pmbaty | 2276 | kibitz_depth = iteration; |
2277 | end_time = ReadClock(); |
||
2278 | DisplayPV(tree, 6, wtm, end_time - start_time, &tree->pv[1], 0); |
||
33 | pmbaty | 2279 | for (i = 0; i < n_root_moves; i++) |
108 | pmbaty | 2280 | if (tree->pv[1].path[1] == root_moves[i].move) |
33 | pmbaty | 2281 | break; |
108 | pmbaty | 2282 | root_moves[i].path = tree->pv[1]; |
2283 | root_moves[i].bm_age = 4; |
||
2284 | } |
||
2285 | } |
||
2286 | |||
33 | pmbaty | 2287 | /* |
108 | pmbaty | 2288 | ******************************************************************************* |
2289 | * * |
||
2290 | * Trace() is used to print the search trace output each time a node is * |
||
33 | pmbaty | 2291 | * traversed in the tree. * |
2292 | * * |
||
2293 | ******************************************************************************* |
||
2294 | */ |
||
2295 | void Trace(TREE * RESTRICT tree, int ply, int depth, int wtm, int alpha, |
||
108 | pmbaty | 2296 | int beta, const char *name, int mode, int phase, int order) { |
33 | pmbaty | 2297 | int i; |
2298 | |||
2299 | Lock(lock_io); |
||
2300 | for (i = 1; i < ply; i++) |
||
108 | pmbaty | 2301 | Print(-1, " "); |
33 | pmbaty | 2302 | if (phase != EVALUATION) { |
108 | pmbaty | 2303 | Print(-1, "%d %s(%d) d:%2d [%s,", ply, OutputMove(tree, ply, wtm, |
2304 | tree->curmv[ply]), order, depth, DisplayEvaluation(alpha, 1)); |
||
2305 | Print(-1, "%s] n:%" PRIu64 " %s(%c:%d)", DisplayEvaluation(beta, 1), |
||
2306 | tree->nodes_searched, name, (mode) ? 'P' : 'S', phase); |
||
2307 | Print(-1, " (t=%d)\n", tree->thread_id); |
||
33 | pmbaty | 2308 | } else { |
108 | pmbaty | 2309 | Print(-1, "%d window/eval(%s) = {", ply, name); |
2310 | Print(-1, "%s, ", DisplayEvaluation(alpha, 1)); |
||
2311 | Print(-1, "%s, ", DisplayEvaluation(depth, 1)); |
||
2312 | Print(-1, "%s}\n", DisplayEvaluation(beta, 1)); |
||
33 | pmbaty | 2313 | } |
2314 | fflush(0); |
||
2315 | Unlock(lock_io); |
||
2316 | } |
||
2317 | |||
2318 | /* |
||
2319 | ******************************************************************************* |
||
2320 | * * |
||
2321 | * StrCnt() counts the number of times a character occurs in a string. * |
||
2322 | * * |
||
2323 | ******************************************************************************* |
||
2324 | */ |
||
2325 | int StrCnt(char *string, char testchar) { |
||
108 | pmbaty | 2326 | int count = 0, i; |
33 | pmbaty | 2327 | |
154 | pmbaty | 2328 | for (i = 0; i < strlen(string); i++) |
33 | pmbaty | 2329 | if (string[i] == testchar) |
2330 | count++; |
||
2331 | return count; |
||
2332 | } |
||
2333 | |||
2334 | /* |
||
2335 | ******************************************************************************* |
||
2336 | * * |
||
2337 | * ValidMove() is used to verify that a move is playable. It is mainly * |
||
2338 | * used to confirm that a move retrieved from the transposition/refutation * |
||
2339 | * and/or killer move is valid in the current position by checking the move * |
||
2340 | * against the current chess board, castling status, en passant status, etc. * |
||
2341 | * * |
||
2342 | ******************************************************************************* |
||
2343 | */ |
||
2344 | int ValidMove(TREE * RESTRICT tree, int ply, int wtm, int move) { |
||
2345 | int btm = Flip(wtm); |
||
2346 | |||
2347 | /* |
||
2348 | ************************************************************ |
||
2349 | * * |
||
2350 | * Make sure that the piece on <from> is the right color. * |
||
2351 | * * |
||
2352 | ************************************************************ |
||
2353 | */ |
||
2354 | if (PcOnSq(From(move)) != ((wtm) ? Piece(move) : -Piece(move))) |
||
2355 | return 0; |
||
2356 | switch (Piece(move)) { |
||
2357 | /* |
||
2358 | ************************************************************ |
||
2359 | * * |
||
2360 | * Null-moves are caught as it is possible for a killer * |
||
2361 | * move entry to be zero at certain times. * |
||
2362 | * * |
||
2363 | ************************************************************ |
||
2364 | */ |
||
2365 | case empty: |
||
2366 | return 0; |
||
2367 | /* |
||
2368 | ************************************************************ |
||
2369 | * * |
||
2370 | * King moves are validated here if the king is moving two * |
||
2371 | * squares at one time (castling moves). Otherwise fall * |
||
2372 | * into the normal piece validation routine below. For * |
||
2373 | * castling moves, we need to verify that the castling * |
||
2374 | * status is correct to avoid "creating" a new rook or * |
||
2375 | * king. * |
||
2376 | * * |
||
2377 | ************************************************************ |
||
2378 | */ |
||
2379 | case king: |
||
2380 | if (Abs(From(move) - To(move)) == 2) { |
||
2381 | if (Castle(ply, wtm) > 0) { |
||
2382 | if (To(move) == csq[wtm]) { |
||
2383 | if ((!(Castle(ply, wtm) & 2)) || (OccupiedSquares & OOO[wtm]) |
||
2384 | || (AttacksTo(tree, csq[wtm]) & Occupied(btm)) |
||
2385 | || (AttacksTo(tree, dsq[wtm]) & Occupied(btm)) |
||
2386 | || (AttacksTo(tree, esq[wtm]) & Occupied(btm))) |
||
2387 | return 0; |
||
2388 | } else if (To(move) == gsq[wtm]) { |
||
2389 | if ((!(Castle(ply, wtm) & 1)) || (OccupiedSquares & OO[wtm]) |
||
2390 | || (AttacksTo(tree, esq[wtm]) & Occupied(btm)) |
||
2391 | || (AttacksTo(tree, fsq[wtm]) & Occupied(btm)) |
||
2392 | || (AttacksTo(tree, gsq[wtm]) & Occupied(btm))) |
||
2393 | return 0; |
||
2394 | } |
||
2395 | } else |
||
2396 | return 0; |
||
2397 | return 1; |
||
2398 | } |
||
2399 | break; |
||
2400 | /* |
||
2401 | ************************************************************ |
||
2402 | * * |
||
2403 | * Check for a normal pawn advance. * |
||
2404 | * * |
||
2405 | ************************************************************ |
||
2406 | */ |
||
2407 | case pawn: |
||
2408 | if (((wtm) ? To(move) - From(move) : From(move) - To(move)) < 0) |
||
2409 | return 0; |
||
108 | pmbaty | 2410 | if (Abs(From(move) - To(move)) == 8) |
154 | pmbaty | 2411 | return PcOnSq(To(move)) ? 0 : 1; |
108 | pmbaty | 2412 | if (Abs(From(move) - To(move)) == 16) |
2413 | return (PcOnSq(To(move)) || PcOnSq(To(move) + epdir[wtm])) ? 0 : 1; |
||
33 | pmbaty | 2414 | if (!Captured(move)) |
2415 | return 0; |
||
2416 | /* |
||
2417 | ************************************************************ |
||
2418 | * * |
||
2419 | * Check for an en passant capture which is somewhat * |
||
2420 | * unusual in that the [to] square does not contain the * |
||
2421 | * pawn being captured. Make sure that the pawn being * |
||
2422 | * captured advanced two ranks the previous move. * |
||
2423 | * * |
||
2424 | ************************************************************ |
||
2425 | */ |
||
2426 | if ((PcOnSq(To(move)) == 0) |
||
2427 | && (PcOnSq(To(move) + epdir[wtm]) == ((wtm) ? -pawn : pawn)) |
||
2428 | && (EnPassantTarget(ply) & SetMask(To(move)))) |
||
2429 | return 1; |
||
2430 | break; |
||
2431 | /* |
||
2432 | ************************************************************ |
||
2433 | * * |
||
2434 | * Normal moves are all checked the same way. * |
||
2435 | * * |
||
2436 | ************************************************************ |
||
2437 | */ |
||
2438 | case queen: |
||
2439 | case rook: |
||
2440 | case bishop: |
||
2441 | if (Attack(From(move), To(move))) |
||
2442 | break; |
||
2443 | return 0; |
||
2444 | case knight: |
||
2445 | break; |
||
2446 | } |
||
2447 | /* |
||
2448 | ************************************************************ |
||
2449 | * * |
||
2450 | * All normal moves are validated in the same manner, by * |
||
2451 | * checking the from and to squares and also the attack * |
||
2452 | * status for completeness. * |
||
2453 | * * |
||
2454 | ************************************************************ |
||
2455 | */ |
||
108 | pmbaty | 2456 | return ((Captured(move) == ((wtm) ? -PcOnSq(To(move)) : PcOnSq(To(move)))) |
2457 | && Captured(move) != king) ? 1 : 0; |
||
33 | pmbaty | 2458 | } |
2459 | |||
2460 | /* last modified 02/26/14 */ |
||
2461 | /* |
||
2462 | ******************************************************************************* |
||
2463 | * * |
||
2464 | * VerifyMove() tests a move to confirm it is absolutely legal. It shouldn't * |
||
2465 | * be used inside the search, but can be used to check a 21-bit (compressed) * |
||
2466 | * move to be sure it is safe to make it on the permanent game board. * |
||
2467 | * * |
||
2468 | ******************************************************************************* |
||
2469 | */ |
||
2470 | int VerifyMove(TREE * RESTRICT tree, int ply, int wtm, int move) { |
||
108 | pmbaty | 2471 | unsigned moves[256], *mv, *mvp; |
33 | pmbaty | 2472 | |
2473 | /* |
||
2474 | Generate moves, then eliminate any that are illegal. |
||
2475 | */ |
||
2476 | if (move == 0) |
||
2477 | return 0; |
||
2478 | tree->status[MAXPLY] = tree->status[ply]; |
||
2479 | mvp = GenerateCaptures(tree, MAXPLY, wtm, moves); |
||
2480 | mvp = GenerateNoncaptures(tree, MAXPLY, wtm, mvp); |
||
2481 | for (mv = &moves[0]; mv < mvp; mv++) { |
||
108 | pmbaty | 2482 | MakeMove(tree, MAXPLY, wtm, *mv); |
33 | pmbaty | 2483 | if (!Check(wtm) && move == *mv) { |
108 | pmbaty | 2484 | UnmakeMove(tree, MAXPLY, wtm, *mv); |
33 | pmbaty | 2485 | return 1; |
2486 | } |
||
108 | pmbaty | 2487 | UnmakeMove(tree, MAXPLY, wtm, *mv); |
33 | pmbaty | 2488 | } |
2489 | return 0; |
||
2490 | } |
||
2491 | |||
2492 | /* |
||
2493 | ******************************************************************************* |
||
2494 | * * |
||
2495 | * Windows NUMA support * |
||
2496 | * * |
||
2497 | ******************************************************************************* |
||
2498 | */ |
||
2499 | #if !defined(UNIX) |
||
2500 | static BOOL(WINAPI * pGetNumaHighestNodeNumber) (PULONG); |
||
2501 | static BOOL(WINAPI * pGetNumaNodeProcessorMask) (UCHAR, PULONGLONG); |
||
2502 | static DWORD(WINAPI * pSetThreadIdealProcessor) (HANDLE, DWORD); |
||
2503 | static volatile BOOL fThreadsInitialized = FALSE; |
||
2504 | static BOOL fSystemIsNUMA = FALSE; |
||
2505 | static ULONGLONG ullProcessorMask[256]; |
||
2506 | static ULONG ulNumaNodes; |
||
2507 | static ULONG ulNumaNode = 0; |
||
2508 | |||
2509 | // Get NUMA-related information from Windows |
||
2510 | static void WinNumaInit(void) { |
||
2511 | HMODULE hModule; |
||
2512 | ULONG ulCPU, ulNode; |
||
2513 | ULONGLONG ullMask; |
||
2514 | DWORD dwCPU; |
||
2515 | |||
2516 | if (!fThreadsInitialized) { |
||
108 | pmbaty | 2517 | Lock(lock_smp); |
33 | pmbaty | 2518 | if (!fThreadsInitialized) { |
2519 | printf("\nInitializing multiple threads.\n"); |
||
2520 | fThreadsInitialized = TRUE; |
||
2521 | hModule = GetModuleHandle("kernel32"); |
||
2522 | pGetNumaHighestNodeNumber = |
||
2523 | (void *) GetProcAddress(hModule, "GetNumaHighestNodeNumber"); |
||
2524 | pGetNumaNodeProcessorMask = |
||
2525 | (void *) GetProcAddress(hModule, "GetNumaNodeProcessorMask"); |
||
2526 | pSetThreadIdealProcessor = |
||
2527 | (void *) GetProcAddress(hModule, "SetThreadIdealProcessor"); |
||
2528 | if (pGetNumaHighestNodeNumber && pGetNumaNodeProcessorMask && |
||
2529 | pGetNumaHighestNodeNumber(&ulNumaNodes) && (ulNumaNodes > 0)) { |
||
2530 | fSystemIsNUMA = TRUE; |
||
2531 | if (ulNumaNodes > 255) |
||
2532 | ulNumaNodes = 255; |
||
154 | pmbaty | 2533 | printf("System is NUMA. " PRId64 " nodes reported by Windows\n", |
33 | pmbaty | 2534 | ulNumaNodes + 1); |
2535 | for (ulNode = 0; ulNode <= ulNumaNodes; ulNode++) { |
||
2536 | pGetNumaNodeProcessorMask((UCHAR) ulNode, |
||
2537 | &ullProcessorMask[ulNode]); |
||
154 | pmbaty | 2538 | printf("Node " PRId64 " CPUs: ", ulNode); |
33 | pmbaty | 2539 | ullMask = ullProcessorMask[ulNode]; |
2540 | if (0 == ullMask) |
||
2541 | fSystemIsNUMA = FALSE; |
||
2542 | else { |
||
2543 | ulCPU = 0; |
||
2544 | do { |
||
2545 | if (ullMask & 1) |
||
154 | pmbaty | 2546 | printf("" PRId64 " ", ulCPU); |
33 | pmbaty | 2547 | ulCPU++; |
2548 | ullMask >>= 1; |
||
2549 | } while (ullMask); |
||
2550 | } |
||
2551 | printf("\n"); |
||
2552 | } |
||
2553 | // Thread 0 was already started on some CPU. To simplify things further, |
||
154 | pmbaty | 2554 | // exchange ProcessorMask[0] and ProcessorMask[node for that CPU], |
2555 | // so ProcessorMask[0] would always be node for thread 0 |
||
33 | pmbaty | 2556 | dwCPU = |
2557 | pSetThreadIdealProcessor(GetCurrentThread(), MAXIMUM_PROCESSORS); |
||
154 | pmbaty | 2558 | printf("Current ideal CPU is %llu\n", dwCPU); |
33 | pmbaty | 2559 | pSetThreadIdealProcessor(GetCurrentThread(), dwCPU); |
2560 | if ((((DWORD) - 1) != dwCPU) && (MAXIMUM_PROCESSORS != dwCPU) |
||
154 | pmbaty | 2561 | && !(ullProcessorMask[0] & (1u << dwCPU))) { |
33 | pmbaty | 2562 | for (ulNode = 1; ulNode <= ulNumaNodes; ulNode++) { |
154 | pmbaty | 2563 | if (ullProcessorMask[ulNode] & (1u << dwCPU)) { |
2564 | printf("Exchanging nodes 0 and " PRId64 "\n", ulNode); |
||
33 | pmbaty | 2565 | ullMask = ullProcessorMask[ulNode]; |
2566 | ullProcessorMask[ulNode] = ullProcessorMask[0]; |
||
2567 | ullProcessorMask[0] = ullMask; |
||
2568 | break; |
||
2569 | } |
||
2570 | } |
||
2571 | } |
||
2572 | } else |
||
2573 | printf("System is SMP, not NUMA.\n"); |
||
2574 | } |
||
108 | pmbaty | 2575 | Unlock(lock_smp); |
33 | pmbaty | 2576 | } |
2577 | } |
||
2578 | |||
2579 | // Start thread. For NUMA system set its affinity. |
||
2580 | # if (CPUS > 1) |
||
2581 | pthread_t NumaStartThread(void *func, void *args) { |
||
2582 | HANDLE hThread; |
||
2583 | ULONGLONG ullMask; |
||
2584 | |||
2585 | WinNumaInit(); |
||
2586 | if (fSystemIsNUMA) { |
||
2587 | ulNumaNode++; |
||
2588 | if (ulNumaNode > ulNumaNodes) |
||
2589 | ulNumaNode = 0; |
||
2590 | ullMask = ullProcessorMask[ulNumaNode]; |
||
154 | pmbaty | 2591 | printf("Starting thread on node " PRId64 " CPU mask %I64d\n", ulNumaNode, |
33 | pmbaty | 2592 | ullMask); |
2593 | SetThreadAffinityMask(GetCurrentThread(), (DWORD_PTR) ullMask); |
||
2594 | hThread = (HANDLE) _beginthreadex(0, 0, func, args, CREATE_SUSPENDED, 0); |
||
2595 | SetThreadAffinityMask(hThread, (DWORD_PTR) ullMask); |
||
2596 | ResumeThread(hThread); |
||
154 | pmbaty | 2597 | SetThreadAffinityMask(GetCurrentThread(), ullProcessorMask[0]); |
33 | pmbaty | 2598 | } else |
2599 | hThread = (HANDLE) _beginthreadex(0, 0, func, args, 0, 0); |
||
2600 | return hThread; |
||
2601 | } |
||
2602 | # endif |
||
2603 | |||
2604 | // Allocate memory for thread #N |
||
2605 | void *WinMalloc(size_t cbBytes, int iThread) { |
||
2606 | HANDLE hThread; |
||
2607 | DWORD_PTR dwAffinityMask; |
||
2608 | void *pBytes; |
||
2609 | ULONG ulNode; |
||
2610 | |||
2611 | WinNumaInit(); |
||
2612 | if (fSystemIsNUMA) { |
||
2613 | ulNode = iThread % (ulNumaNodes + 1); |
||
2614 | hThread = GetCurrentThread(); |
||
154 | pmbaty | 2615 | dwAffinityMask = SetThreadAffinityMask(hThread, ullProcessorMask[ulNode]); |
33 | pmbaty | 2616 | pBytes = VirtualAlloc(NULL, cbBytes, MEM_COMMIT, PAGE_READWRITE); |
2617 | if (pBytes == NULL) |
||
2618 | ExitProcess(GetLastError()); |
||
2619 | memset(pBytes, 0, cbBytes); |
||
2620 | SetThreadAffinityMask(hThread, dwAffinityMask); |
||
2621 | } else { |
||
2622 | pBytes = VirtualAlloc(NULL, cbBytes, MEM_COMMIT, PAGE_READWRITE); |
||
2623 | if (pBytes == NULL) |
||
2624 | ExitProcess(GetLastError()); |
||
2625 | memset(pBytes, 0, cbBytes); |
||
2626 | } |
||
2627 | return pBytes; |
||
2628 | } |
||
2629 | |||
2630 | // Allocate interleaved memory |
||
2631 | void *WinMallocInterleaved(size_t cbBytes, int cThreads) { |
||
2632 | char *pBase; |
||
2633 | char *pEnd; |
||
2634 | char *pch; |
||
2635 | HANDLE hThread; |
||
2636 | DWORD_PTR dwAffinityMask; |
||
2637 | ULONG ulNode; |
||
2638 | SYSTEM_INFO sSysInfo; |
||
2639 | size_t dwStep; |
||
2640 | int iThread; |
||
2641 | DWORD dwPageSize; // the page size on this computer |
||
2642 | LPVOID lpvResult; |
||
2643 | |||
2644 | WinNumaInit(); |
||
2645 | if (fSystemIsNUMA && (cThreads > 1)) { |
||
108 | pmbaty | 2646 | GetSystemInfo(&sSysInfo); // populate the system information structure |
33 | pmbaty | 2647 | dwPageSize = sSysInfo.dwPageSize; |
2648 | // Reserve pages in the process's virtual address space. |
||
2649 | pBase = (char *) VirtualAlloc(NULL, cbBytes, MEM_RESERVE, PAGE_NOACCESS); |
||
2650 | if (pBase == NULL) { |
||
2651 | printf("VirtualAlloc() reserve failed\n"); |
||
2652 | CraftyExit(0); |
||
2653 | } |
||
2654 | // Now walk through memory, committing each page |
||
2655 | hThread = GetCurrentThread(); |
||
2656 | dwStep = dwPageSize * cThreads; |
||
2657 | pEnd = pBase + cbBytes; |
||
2658 | for (iThread = 0; iThread < cThreads; iThread++) { |
||
2659 | ulNode = iThread % (ulNumaNodes + 1); |
||
2660 | dwAffinityMask = |
||
154 | pmbaty | 2661 | SetThreadAffinityMask(hThread, ullProcessorMask[ulNode]); |
33 | pmbaty | 2662 | for (pch = pBase + iThread * dwPageSize; pch < pEnd; pch += dwStep) { |
108 | pmbaty | 2663 | lpvResult = VirtualAlloc(pch, // next page to commit |
33 | pmbaty | 2664 | dwPageSize, // page size, in bytes |
2665 | MEM_COMMIT, // allocate a committed page |
||
108 | pmbaty | 2666 | PAGE_READWRITE); // read/write access |
33 | pmbaty | 2667 | if (lpvResult == NULL) |
2668 | ExitProcess(GetLastError()); |
||
2669 | memset(lpvResult, 0, dwPageSize); |
||
2670 | } |
||
2671 | SetThreadAffinityMask(hThread, dwAffinityMask); |
||
2672 | } |
||
2673 | } else { |
||
2674 | pBase = VirtualAlloc(NULL, cbBytes, MEM_COMMIT, PAGE_READWRITE); |
||
2675 | if (pBase == NULL) |
||
2676 | ExitProcess(GetLastError()); |
||
2677 | memset(pBase, 0, cbBytes); |
||
2678 | } |
||
2679 | return (void *) pBase; |
||
2680 | } |
||
2681 | |||
2682 | // Free interleaved memory |
||
2683 | void WinFreeInterleaved(void *pMemory, size_t cBytes) { |
||
2684 | VirtualFree(pMemory, 0, MEM_RELEASE); |
||
2685 | } |
||
2686 | #endif |