Rev 154 | Details | Compare with Previous | Last modification | View Log | RSS feed
| Rev | Author | Line No. | Line |
|---|---|---|---|
| 33 | pmbaty | 1 | #include <stdarg.h> |
| 2 | #include <errno.h> |
||
| 3 | #include <ctype.h> |
||
| 4 | #include "chess.h" |
||
| 5 | #include "data.h" |
||
| 6 | #if defined(UNIX) |
||
| 7 | # include <unistd.h> |
||
| 8 | # include <sys/types.h> |
||
| 9 | # include <signal.h> |
||
| 10 | # include <sys/wait.h> |
||
| 11 | # include <sys/times.h> |
||
| 12 | # include <sys/time.h> |
||
| 13 | #else |
||
| 14 | # include <windows.h> |
||
| 15 | # include <winbase.h> |
||
| 16 | # include <wincon.h> |
||
| 17 | # include <io.h> |
||
| 18 | # include <time.h> |
||
| 19 | #endif |
||
| 20 | |||
| 21 | /* |
||
| 22 | ******************************************************************************* |
||
| 23 | * * |
||
| 24 | * AlignedMalloc() is used to allocate memory on a precise boundary, * |
||
| 25 | * primarily to optimize cache performance by forcing the start of the * |
||
| 26 | * memory region being allocated to match up so that a structure will lie * |
||
| 27 | * on a single cache line rather than being split across two, assuming the * |
||
| 28 | * structure is 64 bytes or less of course. * |
||
| 29 | * * |
||
| 30 | ******************************************************************************* |
||
| 31 | */ |
||
| 154 | pmbaty | 32 | void AlignedMalloc(void **pointer, uint64_t alignment, size_t size) { |
| 33 | uint64_t temp; |
||
| 34 | |||
| 156 | pmbaty | 35 | segments[nsegments][0] = malloc((size_t) (size + alignment - 1)); // Pierre-Marie Baty -- added type cast |
| 154 | pmbaty | 36 | segments[nsegments][1] = segments[nsegments][0]; |
| 37 | temp = (uint64_t) segments[nsegments][0]; |
||
| 38 | temp = (temp + alignment - 1) & ~(alignment - 1); |
||
| 39 | segments[nsegments][1] = (void *) temp; |
||
| 33 | pmbaty | 40 | *pointer = segments[nsegments][1]; |
| 41 | nsegments++; |
||
| 42 | } |
||
| 43 | |||
| 44 | /* |
||
| 45 | ******************************************************************************* |
||
| 46 | * * |
||
| 108 | pmbaty | 47 | * atoiKMB() is used to read in an integer value that can have a "K" or "M" * |
| 33 | pmbaty | 48 | * appended to it to multiply by 1024 or 1024*1024. It returns a 64 bit * |
| 49 | * value since memory sizes can exceed 4gb on modern hardware. * |
||
| 50 | * * |
||
| 51 | ******************************************************************************* |
||
| 52 | */ |
||
| 108 | pmbaty | 53 | uint64_t atoiKMB(char *input) { |
| 33 | pmbaty | 54 | uint64_t size; |
| 55 | |||
| 56 | size = atoi(input); |
||
| 57 | if (strchr(input, 'K') || strchr(input, 'k')) |
||
| 58 | size *= 1 << 10; |
||
| 59 | if (strchr(input, 'M') || strchr(input, 'm')) |
||
| 60 | size *= 1 << 20; |
||
| 108 | pmbaty | 61 | if (strchr(input, 'B') || strchr(input, 'b') || strchr(input, 'G') || |
| 62 | strchr(input, 'g')) |
||
| 63 | size *= 1 << 30; |
||
| 33 | pmbaty | 64 | return size; |
| 65 | } |
||
| 66 | |||
| 67 | /* |
||
| 68 | ******************************************************************************* |
||
| 69 | * * |
||
| 70 | * AlignedRemalloc() is used to change the size of a memory block that has * |
||
| 71 | * previously been allocated using AlignedMalloc(). * |
||
| 72 | * * |
||
| 73 | ******************************************************************************* |
||
| 74 | */ |
||
| 154 | pmbaty | 75 | void AlignedRemalloc(void **pointer, uint64_t alignment, size_t size) { |
| 76 | uint64_t temp; |
||
| 33 | pmbaty | 77 | int i; |
| 108 | pmbaty | 78 | |
| 33 | pmbaty | 79 | for (i = 0; i < nsegments; i++) |
| 80 | if (segments[i][1] == *pointer) |
||
| 81 | break; |
||
| 82 | if (i == nsegments) { |
||
| 83 | Print(4095, "ERROR AlignedRemalloc() given an invalid pointer\n"); |
||
| 84 | exit(1); |
||
| 85 | } |
||
| 86 | free(segments[i][0]); |
||
| 156 | pmbaty | 87 | segments[i][0] = malloc((size_t) (size + alignment - 1)); // Pierre-Marie Baty -- added type cast |
| 154 | pmbaty | 88 | temp = (uint64_t) segments[i][0]; |
| 89 | temp = (temp + alignment - 1) & ~(alignment - 1); |
||
| 90 | segments[i][1] = (void *) temp; |
||
| 33 | pmbaty | 91 | *pointer = segments[i][1]; |
| 92 | } |
||
| 93 | |||
| 94 | /* |
||
| 95 | ******************************************************************************* |
||
| 96 | * * |
||
| 97 | * BookClusterIn() is used to read a cluster in as characters, then stuff * |
||
| 98 | * the data into a normal array of structures that can be used within Crafty * |
||
| 99 | * without any endian issues. * |
||
| 100 | * * |
||
| 101 | ******************************************************************************* |
||
| 102 | */ |
||
| 103 | void BookClusterIn(FILE * file, int positions, BOOK_POSITION * buffer) { |
||
| 104 | int i; |
||
| 108 | pmbaty | 105 | char file_buffer[BOOK_CLUSTER_SIZE * sizeof(BOOK_POSITION)]; |
| 33 | pmbaty | 106 | |
| 108 | pmbaty | 107 | i = fread(file_buffer, positions, sizeof(BOOK_POSITION), file); |
| 108 | if (i <= 0) |
||
| 109 | perror("BookClusterIn fread error: "); |
||
| 33 | pmbaty | 110 | for (i = 0; i < positions; i++) { |
| 111 | buffer[i].position = |
||
| 108 | pmbaty | 112 | BookIn64((unsigned char *) (file_buffer + i * sizeof(BOOK_POSITION))); |
| 33 | pmbaty | 113 | buffer[i].status_played = |
| 108 | pmbaty | 114 | BookIn32((unsigned char *) (file_buffer + i * sizeof(BOOK_POSITION) + |
| 33 | pmbaty | 115 | 8)); |
| 116 | buffer[i].learn = |
||
| 108 | pmbaty | 117 | BookIn32f((unsigned char *) (file_buffer + i * sizeof(BOOK_POSITION) + |
| 33 | pmbaty | 118 | 12)); |
| 119 | } |
||
| 120 | } |
||
| 121 | |||
| 122 | /* |
||
| 123 | ******************************************************************************* |
||
| 124 | * * |
||
| 125 | * BookClusterOut() is used to write a cluster out as characters, after * |
||
| 126 | * converting the normal array of structures into character data that is * |
||
| 127 | * Endian-independent. * |
||
| 128 | * * |
||
| 129 | ******************************************************************************* |
||
| 130 | */ |
||
| 131 | void BookClusterOut(FILE * file, int positions, BOOK_POSITION * buffer) { |
||
| 132 | int i; |
||
| 108 | pmbaty | 133 | char file_buffer[BOOK_CLUSTER_SIZE * sizeof(BOOK_POSITION)]; |
| 33 | pmbaty | 134 | |
| 135 | for (i = 0; i < positions; i++) { |
||
| 108 | pmbaty | 136 | memcpy(file_buffer + i * sizeof(BOOK_POSITION), |
| 33 | pmbaty | 137 | BookOut64(buffer[i].position), 8); |
| 108 | pmbaty | 138 | memcpy(file_buffer + i * sizeof(BOOK_POSITION) + 8, |
| 33 | pmbaty | 139 | BookOut32(buffer[i].status_played), 4); |
| 108 | pmbaty | 140 | memcpy(file_buffer + i * sizeof(BOOK_POSITION) + 12, |
| 33 | pmbaty | 141 | BookOut32f(buffer[i].learn), 4); |
| 142 | } |
||
| 108 | pmbaty | 143 | fwrite(file_buffer, positions, sizeof(BOOK_POSITION), file); |
| 33 | pmbaty | 144 | } |
| 145 | |||
| 146 | /* |
||
| 147 | ******************************************************************************* |
||
| 148 | * * |
||
| 149 | * BookIn32f() is used to convert 4 bytes from the book file into a valid 32 * |
||
| 108 | pmbaty | 150 | * bit binary value. This eliminates endian worries that make the binary * |
| 33 | pmbaty | 151 | * book non-portable across many architectures. * |
| 152 | * * |
||
| 153 | ******************************************************************************* |
||
| 154 | */ |
||
| 155 | float BookIn32f(unsigned char *ch) { |
||
| 156 | union { |
||
| 157 | float fv; |
||
| 158 | int iv; |
||
| 159 | } temp; |
||
| 160 | |||
| 161 | temp.iv = ch[3] << 24 | ch[2] << 16 | ch[1] << 8 | ch[0]; |
||
| 162 | return temp.fv; |
||
| 163 | } |
||
| 164 | |||
| 165 | /* |
||
| 166 | ******************************************************************************* |
||
| 167 | * * |
||
| 168 | * BookIn32() is used to convert 4 bytes from the book file into a valid 32 * |
||
| 169 | * bit binary value. this eliminates endian worries that make the binary * |
||
| 170 | * book non-portable across many architectures. * |
||
| 171 | * * |
||
| 172 | ******************************************************************************* |
||
| 173 | */ |
||
| 174 | int BookIn32(unsigned char *ch) { |
||
| 175 | return ch[3] << 24 | ch[2] << 16 | ch[1] << 8 | ch[0]; |
||
| 176 | } |
||
| 177 | |||
| 178 | /* |
||
| 179 | ******************************************************************************* |
||
| 180 | * * |
||
| 181 | * BookIn64() is used to convert 8 bytes from the book file into a valid 64 * |
||
| 182 | * bit binary value. this eliminates endian worries that make the binary * |
||
| 183 | * book non-portable across many architectures. * |
||
| 184 | * * |
||
| 185 | ******************************************************************************* |
||
| 186 | */ |
||
| 187 | uint64_t BookIn64(unsigned char *ch) { |
||
| 188 | return (uint64_t) ch[7] << 56 | (uint64_t) ch[6] << 48 | (uint64_t) |
||
| 189 | ch[5] << 40 | (uint64_t) ch[4] << 32 | (uint64_t) ch[3] |
||
| 190 | << 24 | (uint64_t) ch[2] << 16 | (uint64_t) ch[1] << 8 | (uint64_t) |
||
| 191 | ch[0]; |
||
| 192 | } |
||
| 193 | |||
| 194 | /* |
||
| 195 | ******************************************************************************* |
||
| 196 | * * |
||
| 197 | * BookOut32() is used to convert 4 bytes from a valid 32 bit binary value * |
||
| 198 | * to a book value. this eliminates endian worries that make the binary * |
||
| 199 | * book non-portable across many architectures. * |
||
| 200 | * * |
||
| 201 | ******************************************************************************* |
||
| 202 | */ |
||
| 203 | unsigned char *BookOut32(int val) { |
||
| 204 | convert_buff[3] = val >> 24 & 0xff; |
||
| 205 | convert_buff[2] = val >> 16 & 0xff; |
||
| 206 | convert_buff[1] = val >> 8 & 0xff; |
||
| 207 | convert_buff[0] = val & 0xff; |
||
| 208 | return convert_buff; |
||
| 209 | } |
||
| 210 | |||
| 211 | /* |
||
| 212 | ******************************************************************************* |
||
| 213 | * * |
||
| 214 | * BookOut32f() is used to convert 4 bytes from a valid 32 bit binary value * |
||
| 215 | * to a book value. this eliminates endian worries that make the binary * |
||
| 216 | * book non-portable across many architectures. * |
||
| 217 | * * |
||
| 218 | ******************************************************************************* |
||
| 219 | */ |
||
| 220 | unsigned char *BookOut32f(float val) { |
||
| 221 | union { |
||
| 222 | float fv; |
||
| 223 | int iv; |
||
| 224 | } temp; |
||
| 225 | |||
| 226 | temp.fv = val; |
||
| 227 | convert_buff[3] = temp.iv >> 24 & 0xff; |
||
| 228 | convert_buff[2] = temp.iv >> 16 & 0xff; |
||
| 229 | convert_buff[1] = temp.iv >> 8 & 0xff; |
||
| 230 | convert_buff[0] = temp.iv & 0xff; |
||
| 231 | return convert_buff; |
||
| 232 | } |
||
| 233 | |||
| 234 | /* |
||
| 235 | ******************************************************************************* |
||
| 236 | * * |
||
| 237 | * BookOut64() is used to convert 8 bytes from a valid 64 bit binary value * |
||
| 238 | * to a book value. this eliminates endian worries that make the binary * |
||
| 239 | * book non-portable across many architectures. * |
||
| 240 | * * |
||
| 241 | ******************************************************************************* |
||
| 242 | */ |
||
| 243 | unsigned char *BookOut64(uint64_t val) { |
||
| 244 | convert_buff[7] = val >> 56 & 0xff; |
||
| 245 | convert_buff[6] = val >> 48 & 0xff; |
||
| 246 | convert_buff[5] = val >> 40 & 0xff; |
||
| 247 | convert_buff[4] = val >> 32 & 0xff; |
||
| 248 | convert_buff[3] = val >> 24 & 0xff; |
||
| 249 | convert_buff[2] = val >> 16 & 0xff; |
||
| 250 | convert_buff[1] = val >> 8 & 0xff; |
||
| 251 | convert_buff[0] = val & 0xff; |
||
| 252 | return convert_buff; |
||
| 253 | } |
||
| 254 | |||
| 255 | /* |
||
| 256 | ******************************************************************************* |
||
| 257 | * * |
||
| 258 | * the following functions are used to determine if keyboard input is * |
||
| 259 | * present. there are several ways this is done depending on which * |
||
| 260 | * operating system is used. The primary function name is CheckInput() but * |
||
| 261 | * for simplicity there are several O/S-specific versions. * |
||
| 262 | * * |
||
| 263 | ******************************************************************************* |
||
| 264 | */ |
||
| 265 | #if !defined(UNIX) |
||
| 266 | # include <windows.h> |
||
| 267 | # include <conio.h> |
||
| 268 | /* Windows NT using PeekNamedPipe() function */ |
||
| 269 | int CheckInput(void) { |
||
| 270 | int i; |
||
| 271 | static int init = 0, pipe; |
||
| 272 | static HANDLE inh; |
||
| 273 | DWORD dw; |
||
| 274 | |||
| 156 | pmbaty | 275 | if (!xboard && !_isatty(_fileno(stdin))) // Pierre-Marie Baty -- ISO C++ name conformance fixes |
| 33 | pmbaty | 276 | return 0; |
| 277 | if (batch_mode) |
||
| 278 | return 0; |
||
| 279 | if (strchr(cmd_buffer, '\n')) |
||
| 280 | return 1; |
||
| 281 | if (xboard) { |
||
| 282 | # if defined(FILE_CNT) |
||
| 283 | if (stdin->_cnt > 0) |
||
| 284 | return stdin->_cnt; |
||
| 285 | # endif |
||
| 286 | if (!init) { |
||
| 287 | init = 1; |
||
| 288 | inh = GetStdHandle(STD_INPUT_HANDLE); |
||
| 289 | pipe = !GetConsoleMode(inh, &dw); |
||
| 290 | if (!pipe) { |
||
| 291 | SetConsoleMode(inh, dw & ~(ENABLE_MOUSE_INPUT | ENABLE_WINDOW_INPUT)); |
||
| 292 | FlushConsoleInputBuffer(inh); |
||
| 293 | } |
||
| 294 | } |
||
| 295 | if (pipe) { |
||
| 296 | if (!PeekNamedPipe(inh, NULL, 0, NULL, &dw, NULL)) { |
||
| 297 | return 1; |
||
| 298 | } |
||
| 299 | return dw; |
||
| 300 | } else { |
||
| 301 | GetNumberOfConsoleInputEvents(inh, &dw); |
||
| 302 | return dw <= 1 ? 0 : dw; |
||
| 303 | } |
||
| 304 | } else { |
||
| 305 | i = _kbhit(); |
||
| 306 | } |
||
| 307 | return i; |
||
| 308 | } |
||
| 309 | #endif |
||
| 310 | #if defined(UNIX) |
||
| 311 | /* Simple UNIX approach using select with a zero timeout value */ |
||
| 312 | int CheckInput(void) { |
||
| 313 | fd_set readfds; |
||
| 314 | struct timeval tv; |
||
| 315 | int data; |
||
| 316 | |||
| 317 | if (!xboard && !isatty(fileno(stdin))) |
||
| 318 | return 0; |
||
| 319 | if (batch_mode) |
||
| 320 | return 0; |
||
| 321 | if (strchr(cmd_buffer, '\n')) |
||
| 322 | return 1; |
||
| 323 | FD_ZERO(&readfds); |
||
| 324 | FD_SET(fileno(stdin), &readfds); |
||
| 325 | tv.tv_sec = 0; |
||
| 326 | tv.tv_usec = 0; |
||
| 327 | select(16, &readfds, 0, 0, &tv); |
||
| 328 | data = FD_ISSET(fileno(stdin), &readfds); |
||
| 329 | return data; |
||
| 330 | } |
||
| 331 | #endif |
||
| 332 | |||
| 333 | /* |
||
| 334 | ******************************************************************************* |
||
| 335 | * * |
||
| 336 | * ClearHashTableScores() is used to clear hash table scores without * |
||
| 337 | * clearing the best move, so that move ordering information is preserved. * |
||
| 338 | * We clear the scorew as we approach a 50 move rule so that hash scores * |
||
| 339 | * won't give us false scores since the hash signature does not include any * |
||
| 340 | * search path information in it. * |
||
| 341 | * * |
||
| 342 | ******************************************************************************* |
||
| 343 | */ |
||
| 344 | void ClearHashTableScores(void) { |
||
| 156 | pmbaty | 345 | unsigned int i; // Pierre-Marie Baty -- fixed type |
| 33 | pmbaty | 346 | |
| 108 | pmbaty | 347 | if (hash_table) |
| 154 | pmbaty | 348 | for (i = 0; i < hash_table_size; i++) { |
| 108 | pmbaty | 349 | (hash_table + i)->word2 ^= (hash_table + i)->word1; |
| 350 | (hash_table + i)->word1 = |
||
| 351 | ((hash_table + i)->word1 & mask_clear_entry) | (uint64_t) 65536; |
||
| 352 | (hash_table + i)->word2 ^= (hash_table + i)->word1; |
||
| 33 | pmbaty | 353 | } |
| 354 | } |
||
| 355 | |||
| 356 | /* last modified 02/28/14 */ |
||
| 357 | /* |
||
| 358 | ******************************************************************************* |
||
| 359 | * * |
||
| 360 | * ComputeDifficulty() is used to compute the difficulty rating for the * |
||
| 361 | * current position, which really is based on nothing more than how many * |
||
| 362 | * times we changed our mind in an iteration. No changes caused the * |
||
| 363 | * difficulty to drop (easier, use less time), while more changes ramps the * |
||
| 364 | * difficulty up (harder, use more time). It is called at the end of an * |
||
| 365 | * iteration as well as when displaying fail-high/fail-low moves, in an * |
||
| 366 | * effort to give the operator a heads-up on how long we are going to be * |
||
| 367 | * stuck in an active search. * |
||
| 368 | * * |
||
| 369 | ******************************************************************************* |
||
| 370 | */ |
||
| 371 | int ComputeDifficulty(int difficulty, int direction) { |
||
| 372 | int searched = 0, i; |
||
| 373 | |||
| 374 | /* |
||
| 375 | ************************************************************ |
||
| 376 | * * |
||
| 377 | * Step 1. Handle fail-high-fail low conditions, which * |
||
| 378 | * occur in the middle of an iteration. The actions taken * |
||
| 379 | * are as follows: * |
||
| 380 | * * |
||
| 381 | * (1) Determine how many moves we have searched first, as * |
||
| 382 | * this is important. If we have not searched anything * |
||
| 383 | * (which means we failed high on the first move at the * |
||
| 384 | * root, at the beginning of a new iteration), a fail low * |
||
| 385 | * will immediately set difficult back to 100% (if it is * |
||
| 386 | * currently below 100%). A fail high on the first move * |
||
| 387 | * will not change difficulty at all. Successive fail * |
||
| 388 | * highs or fail lows will not change difficulty, we will * |
||
| 389 | * not even get into this code on the repeats. * |
||
| 390 | * * |
||
| 391 | * (2) If we are beyond the first move, then this must be * |
||
| 392 | * a fail high condition. Since we are changing our mind, * |
||
| 393 | * we need to increase the difficulty level to expend more * |
||
| 394 | * time on this iteration. If difficulty is currently * |
||
| 395 | * less than 100%, we set it to 120%. If it is currently * |
||
| 396 | * at 100% or more, we simply add 20% to the value and * |
||
| 397 | * continue searching, but with a longer time constraint. * |
||
| 398 | * Each time we fail high, we are changing our mind, and * |
||
| 399 | * we will increase difficulty by another 20%. * |
||
| 400 | * * |
||
| 401 | * (3) Direction = 0 means we are at the end of an the * |
||
| 402 | * iteration. Here we simply note if we changed our mind * |
||
| 403 | * during this iteration. If not, we reduce difficulty * |
||
| 404 | * to 90% of its previous value. * |
||
| 405 | * * |
||
| 406 | * After any of these changes, we enforce a lower bound of * |
||
| 407 | * 60% and an upperbound of 200% before we return. * |
||
| 408 | * * |
||
| 409 | * Note: direction = +1 means we failed high on the move, * |
||
| 410 | * direction = -1 means we failed low on the move, and * |
||
| 411 | * direction = 0 means we have completed the iteration and * |
||
| 412 | * all moves were searched successfully. * |
||
| 413 | * * |
||
| 414 | ************************************************************ |
||
| 415 | */ |
||
| 416 | if (direction) { |
||
| 417 | for (i = 0; i < n_root_moves; i++) |
||
| 418 | if (root_moves[i].status & 8) |
||
| 419 | searched++; |
||
| 420 | if (searched == 0) { |
||
| 421 | if (direction > 0) |
||
| 422 | return difficulty; |
||
| 423 | if (direction < 0) |
||
| 424 | difficulty = Max(100, difficulty); |
||
| 425 | } else { |
||
| 426 | if (difficulty < 100) |
||
| 427 | difficulty = 120; |
||
| 428 | else |
||
| 429 | difficulty = difficulty + 20; |
||
| 430 | } |
||
| 431 | } |
||
| 432 | /* |
||
| 433 | ************************************************************ |
||
| 434 | * * |
||
| 435 | * Step 2. We are at the end of an iteration. If we did * |
||
| 436 | * not change our mind and stuck with one move, we reduce * |
||
| 437 | * difficulty by 10% since the move looks to be a little * |
||
| 438 | * "easier" when we don't change our mind. * |
||
| 439 | * * |
||
| 440 | ************************************************************ |
||
| 441 | */ |
||
| 442 | else { |
||
| 443 | searched = 0; |
||
| 444 | for (i = 0; i < n_root_moves; i++) |
||
| 445 | if (root_moves[i].bm_age == 3) |
||
| 446 | searched++; |
||
| 447 | if (searched <= 1) |
||
| 448 | difficulty = 90 * difficulty / 100; |
||
| 449 | } |
||
| 450 | /* |
||
| 451 | ************************************************************ |
||
| 452 | * * |
||
| 453 | * Step 4. Apply limits. We don't let difficulty go * |
||
| 454 | * above 200% (take 2x the target time) nor do we let it * |
||
| 455 | * drop below 60 (take .6x target time) to avoid moving * |
||
| 456 | * too quickly and missing something tactically where the * |
||
| 457 | * move initially looks obvious but really is not. * |
||
| 458 | * * |
||
| 459 | ************************************************************ |
||
| 460 | */ |
||
| 461 | difficulty = Max(60, Min(difficulty, 200)); |
||
| 462 | return difficulty; |
||
| 463 | } |
||
| 464 | |||
| 465 | /* |
||
| 466 | ******************************************************************************* |
||
| 467 | * * |
||
| 468 | * CraftyExit() is used to terminate the program. the main functionality * |
||
| 469 | * is to make sure the "quit" flag is set so that any spinning threads will * |
||
| 470 | * also exit() rather than spinning forever which can cause GUIs to hang * |
||
| 471 | * since all processes have not terminated. * |
||
| 472 | * * |
||
| 473 | ******************************************************************************* |
||
| 474 | */ |
||
| 475 | void CraftyExit(int exit_type) { |
||
| 476 | int proc; |
||
| 477 | |||
| 478 | for (proc = 1; proc < CPUS; proc++) |
||
| 108 | pmbaty | 479 | thread[proc].terminate = 1; |
| 33 | pmbaty | 480 | while (smp_threads); |
| 481 | exit(exit_type); |
||
| 482 | } |
||
| 483 | |||
| 484 | /* |
||
| 485 | ******************************************************************************* |
||
| 486 | * * |
||
| 487 | * DisplayArray() prints array data either 8 or 16 values per line, and also * |
||
| 488 | * reverses the output for arrays that overlay the chess board so that the * |
||
| 489 | * 'white side" is at the bottom rather than the top. this is mainly used * |
||
| 490 | * from inside Option() to display the many evaluation terms. * |
||
| 491 | * * |
||
| 492 | ******************************************************************************* |
||
| 493 | */ |
||
| 494 | void DisplayArray(int *array, int size) { |
||
| 495 | int i, j, len = 16; |
||
| 496 | |||
| 497 | if (Abs(size) % 10 == 0) |
||
| 498 | len = 10; |
||
| 499 | else if (Abs(size) % 8 == 0) |
||
| 500 | len = 8; |
||
| 501 | if (size > 0 && size % 16 == 0 && len == 8) |
||
| 502 | len = 16; |
||
| 503 | if (size > 0) { |
||
| 504 | printf(" "); |
||
| 505 | for (i = 0; i < size; i++) { |
||
| 506 | printf("%3d ", array[i]); |
||
| 507 | if ((i + 1) % len == 0) { |
||
| 508 | printf("\n"); |
||
| 509 | if (i < size - 1) |
||
| 510 | printf(" "); |
||
| 511 | } |
||
| 512 | } |
||
| 513 | if (i % len != 0) |
||
| 514 | printf("\n"); |
||
| 515 | } |
||
| 516 | if (size < 0) { |
||
| 517 | for (i = 0; i < 8; i++) { |
||
| 518 | printf(" "); |
||
| 519 | for (j = 0; j < 8; j++) { |
||
| 520 | printf("%3d ", array[(7 - i) * 8 + j]); |
||
| 521 | } |
||
| 522 | printf(" | %d\n", 8 - i); |
||
| 523 | } |
||
| 524 | printf(" ---------------------------------\n"); |
||
| 525 | printf(" a b c d e f g h\n"); |
||
| 526 | } |
||
| 527 | } |
||
| 528 | |||
| 529 | /* |
||
| 530 | ******************************************************************************* |
||
| 531 | * * |
||
| 532 | * DisplayArray() prints array data either 8 or 16 values per line, and also * |
||
| 533 | * reverses the output for arrays that overlay the chess board so that the * |
||
| 534 | * 'white side" is at the bottom rather than the top. this is mainly used * |
||
| 535 | * from inside Option() to display the many evaluation terms. * |
||
| 536 | * * |
||
| 537 | ******************************************************************************* |
||
| 538 | */ |
||
| 539 | void DisplayArrayX2(int *array, int *array2, int size) { |
||
| 540 | int i, j; |
||
| 541 | |||
| 542 | if (size == 256) { |
||
| 543 | printf(" ----------- Middlegame ----------- "); |
||
| 544 | printf(" ------------- Endgame -----------\n"); |
||
| 545 | for (i = 0; i < 8; i++) { |
||
| 546 | printf(" "); |
||
| 547 | for (j = 0; j < 8; j++) |
||
| 548 | printf("%3d ", array[(7 - i) * 8 + j]); |
||
| 549 | printf(" | %d |", 8 - i); |
||
| 550 | printf(" "); |
||
| 551 | for (j = 0; j < 8; j++) |
||
| 552 | printf("%3d ", array2[(7 - i) * 8 + j]); |
||
| 553 | printf("\n"); |
||
| 554 | } |
||
| 555 | printf |
||
| 556 | (" ---------------------------------- ---------------------------------\n"); |
||
| 557 | printf(" a b c d e f g h "); |
||
| 558 | printf(" a b c d e f g h\n"); |
||
| 559 | } else if (size == 32) { |
||
| 560 | printf(" ----------- Middlegame ----------- "); |
||
| 561 | printf(" ------------- Endgame -----------\n"); |
||
| 562 | printf(" "); |
||
| 563 | for (i = 0; i < 8; i++) |
||
| 564 | printf("%3d ", array[i]); |
||
| 565 | printf(" | |"); |
||
| 566 | printf(" "); |
||
| 567 | for (i = 0; i < 8; i++) |
||
| 568 | printf("%3d ", array2[i]); |
||
| 569 | printf("\n"); |
||
| 570 | } else if (size <= 20) { |
||
| 571 | size = size / 2; |
||
| 572 | printf(" "); |
||
| 573 | for (i = 0; i < size; i++) |
||
| 574 | printf("%3d ", array[i]); |
||
| 575 | printf(" |<mg eg>|"); |
||
| 576 | printf(" "); |
||
| 577 | for (i = 0; i < size; i++) |
||
| 578 | printf("%3d ", array2[i]); |
||
| 579 | printf("\n"); |
||
| 580 | } else if (size > 128) { |
||
| 581 | printf(" ----------- Middlegame ----------- "); |
||
| 582 | printf(" ------------- Endgame -----------\n"); |
||
| 583 | for (i = 0; i < size / 32; i++) { |
||
| 584 | printf(" "); |
||
| 585 | for (j = 0; j < 8; j++) |
||
| 586 | printf("%3d ", array[(7 - i) * 8 + j]); |
||
| 587 | printf(" | %d |", 8 - i); |
||
| 588 | printf(" "); |
||
| 589 | for (j = 0; j < 8; j++) |
||
| 590 | printf("%3d ", array2[(7 - i) * 8 + j]); |
||
| 591 | printf("\n"); |
||
| 592 | } |
||
| 593 | } else |
||
| 594 | Print(4095, "ERROR, invalid size = -%d in packet\n", size); |
||
| 595 | } |
||
| 596 | |||
| 597 | /* |
||
| 598 | ******************************************************************************* |
||
| 599 | * * |
||
| 600 | * DisplayBitBoard() is a debugging function used to display bitboards in a * |
||
| 601 | * more visual way. they are displayed as an 8x8 matrix oriented as the * |
||
| 602 | * normal chess board is, with a1 at the lower left corner. * |
||
| 603 | * * |
||
| 604 | ******************************************************************************* |
||
| 605 | */ |
||
| 606 | void DisplayBitBoard(uint64_t board) { |
||
| 607 | int i, j, x; |
||
| 608 | |||
| 609 | for (i = 56; i >= 0; i -= 8) { |
||
| 610 | x = (board >> i) & 255; |
||
| 611 | for (j = 1; j < 256; j = j << 1) |
||
| 612 | if (x & j) |
||
| 108 | pmbaty | 613 | Print(4095, "X "); |
| 33 | pmbaty | 614 | else |
| 108 | pmbaty | 615 | Print(4095, "- "); |
| 616 | Print(4095, "\n"); |
||
| 33 | pmbaty | 617 | } |
| 618 | } |
||
| 619 | |||
| 620 | /* |
||
| 621 | ******************************************************************************* |
||
| 622 | * * |
||
| 623 | * Display2BitBoards() is a debugging function used to display bitboards in * |
||
| 624 | * a more visual way. they are displayed as an 8x8 matrix oriented as the * |
||
| 625 | * normal chess board is, with a1 at the lower left corner. this function * |
||
| 626 | * displays 2 boards side by side for comparison. * |
||
| 627 | * * |
||
| 628 | ******************************************************************************* |
||
| 629 | */ |
||
| 630 | void Display2BitBoards(uint64_t board1, uint64_t board2) { |
||
| 631 | int i, j, x, y; |
||
| 632 | |||
| 633 | for (i = 56; i >= 0; i -= 8) { |
||
| 634 | x = (board1 >> i) & 255; |
||
| 635 | for (j = 1; j < 256; j = j << 1) |
||
| 636 | if (x & j) |
||
| 637 | printf("X "); |
||
| 638 | else |
||
| 639 | printf("- "); |
||
| 640 | printf(" "); |
||
| 641 | y = (board2 >> i) & 255; |
||
| 642 | for (j = 1; j < 256; j = j << 1) |
||
| 643 | if (y & j) |
||
| 644 | printf("X "); |
||
| 645 | else |
||
| 646 | printf("- "); |
||
| 647 | printf("\n"); |
||
| 648 | } |
||
| 649 | } |
||
| 650 | |||
| 651 | /* |
||
| 652 | ******************************************************************************* |
||
| 653 | * * |
||
| 654 | * DisplayChessBoard() is used to display the board since it is kept in * |
||
| 655 | * both the bit-board and array formats, here we use the array format which * |
||
| 656 | * is nearly ready for display as is. * |
||
| 657 | * * |
||
| 658 | ******************************************************************************* |
||
| 659 | */ |
||
| 660 | void DisplayChessBoard(FILE * display_file, POSITION pos) { |
||
| 108 | pmbaty | 661 | int display_board[64], i, j; |
| 33 | pmbaty | 662 | static const char display_string[16][4] = |
| 663 | { "<K>", "<Q>", "<R>", "<B>", "<N>", "<P>", " ", |
||
| 664 | "-P-", "-N-", "-B-", "-R-", "-Q-", "-K-", " . " |
||
| 665 | }; |
||
| 666 | |||
| 667 | /* |
||
| 668 | ************************************************************ |
||
| 669 | * * |
||
| 670 | * First, convert square values to indices to the proper * |
||
| 671 | * text string. * |
||
| 672 | * * |
||
| 673 | ************************************************************ |
||
| 674 | */ |
||
| 675 | for (i = 0; i < 64; i++) { |
||
| 676 | display_board[i] = pos.board[i] + 6; |
||
| 677 | if (pos.board[i] == 0) { |
||
| 678 | if (((i / 8) & 1) == ((i % 8) & 1)) |
||
| 679 | display_board[i] = 13; |
||
| 680 | } |
||
| 681 | } |
||
| 682 | /* |
||
| 683 | ************************************************************ |
||
| 684 | * * |
||
| 685 | * Now that that's done, simply display using 8 squares * |
||
| 686 | * per line. * |
||
| 687 | * * |
||
| 688 | ************************************************************ |
||
| 689 | */ |
||
| 690 | fprintf(display_file, "\n +---+---+---+---+---+---+---+---+\n"); |
||
| 691 | for (i = 7; i >= 0; i--) { |
||
| 692 | fprintf(display_file, " %2d ", i + 1); |
||
| 693 | for (j = 0; j < 8; j++) |
||
| 694 | fprintf(display_file, "|%s", display_string[display_board[i * 8 + j]]); |
||
| 695 | fprintf(display_file, "|\n"); |
||
| 696 | fprintf(display_file, " +---+---+---+---+---+---+---+---+\n"); |
||
| 697 | } |
||
| 698 | fprintf(display_file, " a b c d e f g h\n\n"); |
||
| 699 | } |
||
| 700 | |||
| 701 | /* |
||
| 702 | ******************************************************************************* |
||
| 703 | * * |
||
| 108 | pmbaty | 704 | * DisplayChessMove() is a debugging function that displays a chess move in * |
| 705 | * a very simple (non-algebraic) form. * |
||
| 706 | * * |
||
| 707 | ******************************************************************************* |
||
| 708 | */ |
||
| 709 | void DisplayChessMove(char *title, int move) { |
||
| 710 | Print(4095, "%s piece=%d, from=%d, to=%d, captured=%d, promote=%d\n", |
||
| 711 | title, Piece(move), From(move), To(move), Captured(move), |
||
| 712 | Promote(move)); |
||
| 713 | } |
||
| 714 | |||
| 715 | /* |
||
| 716 | ******************************************************************************* |
||
| 717 | * * |
||
| 33 | pmbaty | 718 | * DisplayEvaluation() is used to convert the evaluation to a string that * |
| 719 | * can be displayed. The length is fixed so that screen formatting will * |
||
| 720 | * look nice and aligned. * |
||
| 721 | * * |
||
| 722 | ******************************************************************************* |
||
| 723 | */ |
||
| 724 | char *DisplayEvaluation(int value, int wtm) { |
||
| 108 | pmbaty | 725 | int tvalue; |
| 154 | pmbaty | 726 | static char out[20]; |
| 33 | pmbaty | 727 | |
| 728 | tvalue = (wtm) ? value : -value; |
||
| 154 | pmbaty | 729 | if (!MateScore(value) && !EGTBScore(value)) |
| 108 | pmbaty | 730 | sprintf(out, "%7.2f", ((float) tvalue) / 100.0); |
| 33 | pmbaty | 731 | else if (Abs(value) > MATE) { |
| 732 | if (tvalue < 0) |
||
| 108 | pmbaty | 733 | sprintf(out, " -infnty"); |
| 33 | pmbaty | 734 | else |
| 108 | pmbaty | 735 | sprintf(out, " +infnty"); |
| 154 | pmbaty | 736 | } else { |
| 737 | if (EGTBScore(value)) { |
||
| 738 | if (wtm) { |
||
| 739 | if (value == TBWIN) |
||
| 740 | sprintf(out, " Won "); |
||
| 741 | else if (value == -TBWIN) |
||
| 742 | sprintf(out, " Lost "); |
||
| 743 | } else { |
||
| 744 | if (value == TBWIN) |
||
| 745 | sprintf(out, " -Won "); |
||
| 746 | else if (value == -TBWIN) |
||
| 747 | sprintf(out, " -Lost "); |
||
| 748 | } |
||
| 749 | } |
||
| 750 | if (MateScore(value)) { |
||
| 751 | if (value == MATE - 2 && wtm) |
||
| 752 | sprintf(out, " Mate"); |
||
| 753 | else if (value == MATE - 2 && !wtm) |
||
| 754 | sprintf(out, " -Mate"); |
||
| 755 | else if (value == -(MATE - 1) && wtm) |
||
| 756 | sprintf(out, " -Mate"); |
||
| 757 | else if (value == -(MATE - 1) && !wtm) |
||
| 758 | sprintf(out, " Mate"); |
||
| 759 | else if (value > 0 && wtm) |
||
| 760 | sprintf(out, " Mat%.2d", (MATE - value) / 2); |
||
| 761 | else if (value > 0 && !wtm) |
||
| 762 | sprintf(out, " -Mat%.2d", (MATE - value) / 2); |
||
| 763 | else if (wtm) |
||
| 764 | sprintf(out, " -Mat%.2d", (MATE - Abs(value)) / 2); |
||
| 765 | else |
||
| 766 | sprintf(out, " Mat%.2d", (MATE - Abs(value)) / 2); |
||
| 767 | } |
||
| 768 | } |
||
| 33 | pmbaty | 769 | return out; |
| 770 | } |
||
| 771 | |||
| 772 | /* |
||
| 773 | ******************************************************************************* |
||
| 774 | * * |
||
| 775 | * DisplayEvaluationKibitz() is used to convert the evaluation to a string * |
||
| 776 | * that can be displayed. The length is variable so that ICC kibitzes and * |
||
| 777 | * whispers will look nicer. * |
||
| 778 | * * |
||
| 779 | ******************************************************************************* |
||
| 780 | */ |
||
| 781 | char *DisplayEvaluationKibitz(int value, int wtm) { |
||
| 108 | pmbaty | 782 | int tvalue; |
| 33 | pmbaty | 783 | static char out[10]; |
| 784 | |||
| 785 | tvalue = (wtm) ? value : -value; |
||
| 786 | if (!MateScore(value)) |
||
| 108 | pmbaty | 787 | sprintf(out, "%+.2f", ((float) tvalue) / 100.0); |
| 33 | pmbaty | 788 | else if (Abs(value) > MATE) { |
| 789 | if (tvalue < 0) |
||
| 108 | pmbaty | 790 | sprintf(out, "-infnty"); |
| 33 | pmbaty | 791 | else |
| 108 | pmbaty | 792 | sprintf(out, "+infnty"); |
| 33 | pmbaty | 793 | } else if (value == MATE - 2 && wtm) |
| 108 | pmbaty | 794 | sprintf(out, "Mate"); |
| 33 | pmbaty | 795 | else if (value == MATE - 2 && !wtm) |
| 108 | pmbaty | 796 | sprintf(out, "-Mate"); |
| 33 | pmbaty | 797 | else if (value == -(MATE - 1) && wtm) |
| 108 | pmbaty | 798 | sprintf(out, "-Mate"); |
| 33 | pmbaty | 799 | else if (value == -(MATE - 1) && !wtm) |
| 108 | pmbaty | 800 | sprintf(out, "Mate"); |
| 33 | pmbaty | 801 | else if (value > 0 && wtm) |
| 108 | pmbaty | 802 | sprintf(out, "Mat%.2d", (MATE - value) / 2); |
| 33 | pmbaty | 803 | else if (value > 0 && !wtm) |
| 108 | pmbaty | 804 | sprintf(out, "-Mat%.2d", (MATE - value) / 2); |
| 33 | pmbaty | 805 | else if (wtm) |
| 108 | pmbaty | 806 | sprintf(out, "-Mat%.2d", (MATE - Abs(value)) / 2); |
| 33 | pmbaty | 807 | else |
| 108 | pmbaty | 808 | sprintf(out, "Mat%.2d", (MATE - Abs(value)) / 2); |
| 33 | pmbaty | 809 | return out; |
| 810 | } |
||
| 811 | |||
| 812 | /* |
||
| 813 | ******************************************************************************* |
||
| 814 | * * |
||
| 108 | pmbaty | 815 | * DisplayPath() is used to display a PV during the root move search. * |
| 816 | * * |
||
| 817 | ******************************************************************************* |
||
| 818 | */ |
||
| 819 | char *DisplayPath(TREE * RESTRICT tree, int wtm, PATH * pv) { |
||
| 820 | static char buffer[4096]; |
||
| 821 | int i, t_move_number; |
||
| 822 | |||
| 823 | /* |
||
| 824 | ************************************************************ |
||
| 825 | * * |
||
| 826 | * Initialize. * |
||
| 827 | * * |
||
| 828 | ************************************************************ |
||
| 829 | */ |
||
| 830 | t_move_number = move_number; |
||
| 831 | sprintf(buffer, " %d.", move_number); |
||
| 832 | if (!wtm) |
||
| 833 | sprintf(buffer + strlen(buffer), " ..."); |
||
| 834 | for (i = 1; i < (int) pv->pathl; i++) { |
||
| 835 | if (i > 1 && wtm) |
||
| 836 | sprintf(buffer + strlen(buffer), " %d.", t_move_number); |
||
| 837 | sprintf(buffer + strlen(buffer), " %s", OutputMove(tree, i, wtm, |
||
| 838 | pv->path[i])); |
||
| 839 | MakeMove(tree, i, wtm, pv->path[i]); |
||
| 840 | wtm = Flip(wtm); |
||
| 841 | if (wtm) |
||
| 842 | t_move_number++; |
||
| 843 | } |
||
| 844 | if (pv->pathh == 1) |
||
| 154 | pmbaty | 845 | sprintf(buffer + strlen(buffer), " <HT>"); |
| 108 | pmbaty | 846 | else if (pv->pathh == 2) |
| 154 | pmbaty | 847 | sprintf(buffer + strlen(buffer), " <3-fold>"); |
| 108 | pmbaty | 848 | else if (pv->pathh == 3) |
| 154 | pmbaty | 849 | sprintf(buffer + strlen(buffer), " <50-move>"); |
| 108 | pmbaty | 850 | else if (pv->pathh == 4) |
| 154 | pmbaty | 851 | sprintf(buffer + strlen(buffer), " <EGTB>"); |
| 108 | pmbaty | 852 | if (strlen(buffer) < 30) |
| 156 | pmbaty | 853 | for (i = 0; i < 30 - (int) strlen(buffer); i++) // Pierre-Marie Baty -- added type cast |
| 108 | pmbaty | 854 | strcat(buffer, " "); |
| 855 | strcpy(kibitz_text, buffer); |
||
| 856 | for (i = pv->pathl - 1; i > 0; i--) { |
||
| 857 | wtm = Flip(wtm); |
||
| 858 | UnmakeMove(tree, i, wtm, pv->path[i]); |
||
| 859 | } |
||
| 860 | return buffer; |
||
| 861 | } |
||
| 862 | |||
| 863 | /* |
||
| 864 | ******************************************************************************* |
||
| 865 | * * |
||
| 154 | pmbaty | 866 | * DisplayFail() is used to display a move that fails high or low during * |
| 867 | * the search. Normally disabled. * |
||
| 108 | pmbaty | 868 | * * |
| 869 | ******************************************************************************* |
||
| 870 | */ |
||
| 871 | void DisplayFail(TREE * RESTRICT tree, int type, int level, int wtm, int time, |
||
| 872 | int move, int value, int force) { |
||
| 873 | char buffer[4096], *fh_indicator; |
||
| 874 | |||
| 875 | /* |
||
| 876 | ************************************************************ |
||
| 877 | * * |
||
| 878 | * If we have not used "noise_level" units of time, we * |
||
| 879 | * return immediately. Otherwise we add the fail high/low * |
||
| 880 | * indicator (++/--) and then display the times. * |
||
| 881 | * * |
||
| 882 | ************************************************************ |
||
| 883 | */ |
||
| 156 | pmbaty | 884 | if (time < (int) noise_level) // Pierre-Marie Baty -- added type cast |
| 108 | pmbaty | 885 | return; |
| 886 | if (type == 1) |
||
| 887 | fh_indicator = (wtm) ? "++" : "--"; |
||
| 888 | else |
||
| 889 | fh_indicator = (wtm) ? "--" : "++"; |
||
| 890 | Print(4, " %2i %s %2s ", iteration, |
||
| 891 | Display2Times(end_time - start_time), fh_indicator); |
||
| 892 | /* |
||
| 893 | ************************************************************ |
||
| 894 | * * |
||
| 895 | * If we are pondering, we need to add the (ponder-move) * |
||
| 896 | * to the front of the buffer, correcting the move number * |
||
| 897 | * if necessary. Then fill in the move number and the * |
||
| 898 | * fail high/low bound. * |
||
| 899 | * * |
||
| 900 | ************************************************************ |
||
| 901 | */ |
||
| 902 | if (!pondering) { |
||
| 903 | sprintf(buffer, "%d.", move_number); |
||
| 904 | if (!wtm) |
||
| 905 | sprintf(buffer + strlen(buffer), " ..."); |
||
| 906 | } else { |
||
| 907 | if (wtm) |
||
| 908 | sprintf(buffer, "%d. ... (%s) %d.", move_number - 1, ponder_text, |
||
| 909 | move_number); |
||
| 910 | else |
||
| 911 | sprintf(buffer, "%d. (%s)", move_number, ponder_text); |
||
| 912 | } |
||
| 913 | sprintf(buffer + strlen(buffer), " %s%c", OutputMove(tree, 1, wtm, move), |
||
| 914 | (type == 1) ? '!' : '?'); |
||
| 915 | strcpy(kibitz_text, buffer); |
||
| 156 | pmbaty | 916 | if (time >= (int) noise_level || force) { // Pierre-Marie Baty -- added type cast |
| 108 | pmbaty | 917 | noise_block = 0; |
| 918 | Lock(lock_io); |
||
| 919 | Print(4, "%s", buffer); |
||
| 920 | Unlock(lock_io); |
||
| 921 | if (type == 1) |
||
| 922 | Print(4, " (%c%s) \n", (wtm) ? '>' : '<', |
||
| 923 | DisplayEvaluationKibitz(value, wtm)); |
||
| 924 | else |
||
| 925 | Print(4, " (%c%s) \n", (wtm) ? '<' : '>', |
||
| 926 | DisplayEvaluationKibitz(value, wtm)); |
||
| 927 | } |
||
| 928 | } |
||
| 929 | |||
| 930 | /* |
||
| 931 | ******************************************************************************* |
||
| 932 | * * |
||
| 33 | pmbaty | 933 | * DisplayPV() is used to display a PV during the search. * |
| 934 | * * |
||
| 935 | ******************************************************************************* |
||
| 936 | */ |
||
| 108 | pmbaty | 937 | void DisplayPV(TREE * RESTRICT tree, int level, int wtm, int time, PATH * pv, |
| 938 | int force) { |
||
| 33 | pmbaty | 939 | char buffer[4096], *buffp, *bufftemp; |
| 108 | pmbaty | 940 | char blanks[40] = { " " }; |
| 941 | int i, len, t_move_number, nskip = 0, twtm = wtm, pv_depth = pv->pathd;; |
||
| 942 | unsigned int idle_time; |
||
| 33 | pmbaty | 943 | |
| 944 | /* |
||
| 945 | ************************************************************ |
||
| 946 | * * |
||
| 947 | * Initialize. * |
||
| 948 | * * |
||
| 949 | ************************************************************ |
||
| 950 | */ |
||
| 108 | pmbaty | 951 | for (i = 0; i < n_root_moves; i++) |
| 952 | if (root_moves[i].status & 4) |
||
| 33 | pmbaty | 953 | nskip++; |
| 108 | pmbaty | 954 | for (i = 0; i < 4096; i++) |
| 955 | buffer[i] = ' '; |
||
| 33 | pmbaty | 956 | t_move_number = move_number; |
| 108 | pmbaty | 957 | if (!pondering || analyze_mode) { |
| 958 | sprintf(buffer, "%d.", move_number); |
||
| 959 | if (!wtm) |
||
| 960 | sprintf(buffer + strlen(buffer), " ..."); |
||
| 961 | } else { |
||
| 962 | if (wtm) |
||
| 963 | sprintf(buffer, "%d. ... (%s) %d.", move_number - 1, ponder_text, |
||
| 964 | move_number); |
||
| 965 | else |
||
| 966 | sprintf(buffer, "%d. (%s)", move_number, ponder_text); |
||
| 967 | } |
||
| 968 | for (i = 1; i < (int) pv->pathl; i++) { |
||
| 969 | if (i > 1 && wtm) |
||
| 970 | sprintf(buffer + strlen(buffer), " %d.", t_move_number); |
||
| 971 | sprintf(buffer + strlen(buffer), " %s", OutputMove(tree, i, wtm, |
||
| 972 | pv->path[i])); |
||
| 973 | MakeMove(tree, i, wtm, pv->path[i]); |
||
| 33 | pmbaty | 974 | wtm = Flip(wtm); |
| 975 | if (wtm) |
||
| 976 | t_move_number++; |
||
| 977 | } |
||
| 978 | if (pv->pathh == 1) |
||
| 108 | pmbaty | 979 | sprintf(buffer + strlen(buffer), " <HT>"); |
| 33 | pmbaty | 980 | else if (pv->pathh == 2) |
| 108 | pmbaty | 981 | sprintf(buffer + strlen(buffer), " <3-fold>"); |
| 982 | else if (pv->pathh == 3) |
||
| 983 | sprintf(buffer + strlen(buffer), " <50-move>"); |
||
| 154 | pmbaty | 984 | else if (pv->pathh == 4) |
| 985 | sprintf(buffer + strlen(buffer), " <EGTB>"); |
||
| 108 | pmbaty | 986 | if (nskip > 1 && smp_max_threads > 1) |
| 987 | sprintf(buffer + strlen(buffer), " (s=%d)", nskip); |
||
| 988 | if (strlen(buffer) < 30) { |
||
| 989 | len = 30 - strlen(buffer); |
||
| 990 | for (i = 0; i < len; i++) |
||
| 991 | strcat(buffer, " "); |
||
| 33 | pmbaty | 992 | } |
| 108 | pmbaty | 993 | strcpy(kibitz_text, buffer); |
| 156 | pmbaty | 994 | if (time >= (int) noise_level || force) { // Pierre-Marie Baty -- added type cast |
| 33 | pmbaty | 995 | noise_block = 0; |
| 996 | Lock(lock_io); |
||
| 108 | pmbaty | 997 | Print(2, " "); |
| 33 | pmbaty | 998 | if (level == 6) |
| 108 | pmbaty | 999 | Print(2, "%2i %s%s ", pv_depth, Display2Times(time), |
| 33 | pmbaty | 1000 | DisplayEvaluation(pv->pathv, twtm)); |
| 1001 | else |
||
| 108 | pmbaty | 1002 | Print(2, "%2i-> %s%s ", pv_depth, Display2Times(time) |
| 33 | pmbaty | 1003 | , DisplayEvaluation(pv->pathv, twtm)); |
| 108 | pmbaty | 1004 | buffp = buffer; |
| 33 | pmbaty | 1005 | do { |
| 108 | pmbaty | 1006 | if ((int) strlen(buffp) > line_length - 38) { |
| 1007 | bufftemp = buffp + line_length - 38; |
||
| 1008 | while (*bufftemp != ' ') |
||
| 1009 | bufftemp--; |
||
| 1010 | if (*(bufftemp - 1) == '.') |
||
| 1011 | while (*(--bufftemp) != ' '); |
||
| 1012 | } else |
||
| 33 | pmbaty | 1013 | bufftemp = 0; |
| 1014 | if (bufftemp) |
||
| 1015 | *bufftemp = 0; |
||
| 108 | pmbaty | 1016 | Print(2, "%s\n", buffp); |
| 33 | pmbaty | 1017 | buffp = bufftemp + 1; |
| 1018 | if (bufftemp) |
||
| 108 | pmbaty | 1019 | if (!strncmp(buffp, blanks, strlen(buffp))) |
| 1020 | bufftemp = 0; |
||
| 1021 | if (bufftemp) |
||
| 1022 | Print(2, " "); |
||
| 33 | pmbaty | 1023 | } while (bufftemp); |
| 108 | pmbaty | 1024 | idle_time = 0; |
| 154 | pmbaty | 1025 | for (i = 0; i < smp_max_threads; i++) |
| 108 | pmbaty | 1026 | idle_time += thread[i].idle; |
| 1027 | busy_percent = |
||
| 33 | pmbaty | 1028 | 100 - Min(100, |
| 1029 | 100 * idle_time / (smp_max_threads * (end_time - start_time) + 1)); |
||
| 1030 | Kibitz(level, twtm, pv_depth, end_time - start_time, pv->pathv, |
||
| 156 | pmbaty | 1031 | tree->nodes_searched, busy_percent, (int) tree->egtb_hits, kibitz_text); // Pierre-Marie Baty -- added type cast |
| 33 | pmbaty | 1032 | Unlock(lock_io); |
| 1033 | } |
||
| 1034 | for (i = pv->pathl - 1; i > 0; i--) { |
||
| 1035 | wtm = Flip(wtm); |
||
| 108 | pmbaty | 1036 | UnmakeMove(tree, i, wtm, pv->path[i]); |
| 33 | pmbaty | 1037 | } |
| 1038 | } |
||
| 1039 | |||
| 1040 | /* |
||
| 1041 | ******************************************************************************* |
||
| 1042 | * * |
||
| 1043 | * DisplayHHMMSS is used to convert integer time values in 1/100th second * |
||
| 1044 | * units into a traditional output format for time, hh:mm:ss rather than * |
||
| 1045 | * just nnn.n seconds. * |
||
| 1046 | * * |
||
| 1047 | ******************************************************************************* |
||
| 1048 | */ |
||
| 1049 | char *DisplayHHMMSS(unsigned int time) { |
||
| 108 | pmbaty | 1050 | static char out[32]; |
| 33 | pmbaty | 1051 | |
| 1052 | time = time / 100; |
||
| 108 | pmbaty | 1053 | sprintf(out, "%3u:%02u:%02u", time / 3600, (time % 3600) / 60, time % 60); |
| 33 | pmbaty | 1054 | return out; |
| 1055 | } |
||
| 1056 | |||
| 1057 | /* |
||
| 1058 | ******************************************************************************* |
||
| 1059 | * * |
||
| 1060 | * DisplayHHMM is used to convert integer time values in 1/100th second * |
||
| 1061 | * units into a traditional output format for time, mm:ss rather than just * |
||
| 1062 | * nnn.n seconds. * |
||
| 1063 | * * |
||
| 1064 | ******************************************************************************* |
||
| 1065 | */ |
||
| 1066 | char *DisplayHHMM(unsigned int time) { |
||
| 1067 | static char out[10]; |
||
| 1068 | |||
| 1069 | time = time / 6000; |
||
| 108 | pmbaty | 1070 | sprintf(out, "%3u:%02u", time / 60, time % 60); |
| 33 | pmbaty | 1071 | return out; |
| 1072 | } |
||
| 1073 | |||
| 1074 | /* |
||
| 1075 | ******************************************************************************* |
||
| 1076 | * * |
||
| 1077 | * DisplayKMB() takes an integer value that represents nodes per second, or * |
||
| 1078 | * just total nodes, and converts it into a more compact form, so that * |
||
| 108 | pmbaty | 1079 | * instead of nps=57200931, we get nps=57.2M. We use units of "K", "M", * |
| 1080 | * "B" and "T". If type==0, K=1000, etc. If type=1, K=1024, etc. * |
||
| 33 | pmbaty | 1081 | * * |
| 1082 | ******************************************************************************* |
||
| 1083 | */ |
||
| 108 | pmbaty | 1084 | char *DisplayKMB(uint64_t val, int type) { |
| 33 | pmbaty | 1085 | static char out[10]; |
| 1086 | |||
| 108 | pmbaty | 1087 | if (type == 0) { |
| 1088 | if (val < 1000) |
||
| 1089 | sprintf(out, "%" PRIu64, val); |
||
| 1090 | else if (val < 1000000) |
||
| 1091 | sprintf(out, "%.1fK", (double) val / 1000); |
||
| 1092 | else if (val < 1000000000) |
||
| 1093 | sprintf(out, "%.1fM", (double) val / 1000000); |
||
| 1094 | else |
||
| 1095 | sprintf(out, "%.1fB", (double) val / 1000000000); |
||
| 1096 | } else { |
||
| 1097 | if (val > 0 && !(val & 0x000000003fffffffULL)) |
||
| 1098 | sprintf(out, "%dG", (int) (val / (1 << 30))); |
||
| 1099 | else if (val > 0 && !(val & 0x00000000000fffffULL)) |
||
| 1100 | sprintf(out, "%dM", (int) (val / (1 << 20))); |
||
| 1101 | else if (val > 0 && !(val & 0x00000000000003ffULL)) |
||
| 1102 | sprintf(out, "%dK", (int) (val / (1 << 10))); |
||
| 1103 | else |
||
| 1104 | sprintf(out, "%" PRIu64, val); |
||
| 1105 | } |
||
| 33 | pmbaty | 1106 | return out; |
| 1107 | } |
||
| 1108 | |||
| 1109 | /* |
||
| 1110 | ******************************************************************************* |
||
| 1111 | * * |
||
| 1112 | * DisplayTime() is used to display search times, and shows times in one of * |
||
| 1113 | * two ways depending on the value passed in. If less than 60 seconds is to * |
||
| 1114 | * be displayed, it is displayed as a decimal fraction like 32.7, while if * |
||
| 1115 | * more than 60 seconds is to be displayed, it is converted to the more * |
||
| 1116 | * traditional mm:ss form. The string it produces is of fixed length to * |
||
| 1117 | * provide neater screen formatting. * |
||
| 1118 | * * |
||
| 1119 | ******************************************************************************* |
||
| 1120 | */ |
||
| 1121 | char *DisplayTime(unsigned int time) { |
||
| 1122 | static char out[10]; |
||
| 1123 | |||
| 1124 | if (time < 6000) |
||
| 108 | pmbaty | 1125 | sprintf(out, "%6.2f", (float) time / 100.0); |
| 33 | pmbaty | 1126 | else { |
| 1127 | time = time / 100; |
||
| 108 | pmbaty | 1128 | sprintf(out, "%3u:%02u", time / 60, time % 60); |
| 33 | pmbaty | 1129 | } |
| 1130 | return out; |
||
| 1131 | } |
||
| 1132 | |||
| 1133 | /* |
||
| 1134 | ******************************************************************************* |
||
| 1135 | * * |
||
| 1136 | * Display2Times() is used to display search times, and shows times in one * |
||
| 1137 | * of two ways depending on the value passed in. If less than 60 seconds is * |
||
| 1138 | * to be displayed, it is displayed as a decimal fraction like 32.7, while * |
||
| 1139 | * if more than 60 seconds is to be displayed, it is converted to the more * |
||
| 1140 | * traditional mm:ss form. The string it produces is of fixed length to * |
||
| 1141 | * provide neater screen formatting. * |
||
| 1142 | * * |
||
| 1143 | * The second argument is the "difficulty" value which lets us display the * |
||
| 1144 | * target time (as modified by difficulty) so that it is possible to know * |
||
| 1145 | * roughly when the move will be announced. * |
||
| 1146 | * * |
||
| 1147 | ******************************************************************************* |
||
| 1148 | */ |
||
| 1149 | char *Display2Times(unsigned int time) { |
||
| 108 | pmbaty | 1150 | int ttime, c, spaces; |
| 33 | pmbaty | 1151 | static char out[20], tout[10]; |
| 1152 | |||
| 1153 | if (time < 6000) |
||
| 108 | pmbaty | 1154 | sprintf(out, "%6.2f", (float) time / 100.0); |
| 33 | pmbaty | 1155 | else { |
| 1156 | time = time / 100; |
||
| 108 | pmbaty | 1157 | sprintf(out, "%3u:%02u", time / 60, time % 60); |
| 33 | pmbaty | 1158 | } |
| 1159 | if (search_time_limit) |
||
| 1160 | ttime = search_time_limit; |
||
| 1161 | else |
||
| 1162 | ttime = difficulty * time_limit / 100; |
||
| 1163 | if (ttime < 360000) { |
||
| 1164 | if (ttime < 6000) |
||
| 108 | pmbaty | 1165 | sprintf(tout, "%6.2f", (float) ttime / 100.0); |
| 33 | pmbaty | 1166 | else { |
| 1167 | ttime = ttime / 100; |
||
| 108 | pmbaty | 1168 | sprintf(tout, "%3u:%02u", ttime / 60, ttime % 60); |
| 33 | pmbaty | 1169 | } |
| 1170 | c = strspn(tout, " "); |
||
| 108 | pmbaty | 1171 | strcat(out, "/"); |
| 1172 | strcat(out, tout + c); |
||
| 154 | pmbaty | 1173 | } else |
| 1174 | strcat(out, " "); |
||
| 33 | pmbaty | 1175 | spaces = 13 - strlen(out); |
| 1176 | for (c = 0; c < spaces; c++) |
||
| 108 | pmbaty | 1177 | strcat(out, " "); |
| 33 | pmbaty | 1178 | return out; |
| 1179 | } |
||
| 1180 | |||
| 1181 | /* |
||
| 1182 | ******************************************************************************* |
||
| 1183 | * * |
||
| 1184 | * DisplayTimeKibitz() behaves just like DisplayTime() except that the * |
||
| 1185 | * string it produces is a variable-length string that is as short as * |
||
| 1186 | * possible to make ICC kibitzes/whispers look neater. * |
||
| 1187 | * * |
||
| 1188 | ******************************************************************************* |
||
| 1189 | */ |
||
| 1190 | char *DisplayTimeKibitz(unsigned int time) { |
||
| 1191 | static char out[10]; |
||
| 1192 | |||
| 1193 | if (time < 6000) |
||
| 108 | pmbaty | 1194 | sprintf(out, "%.2f", (float) time / 100.0); |
| 33 | pmbaty | 1195 | else { |
| 1196 | time = time / 100; |
||
| 108 | pmbaty | 1197 | sprintf(out, "%u:%02u", time / 60, time % 60); |
| 33 | pmbaty | 1198 | } |
| 1199 | return out; |
||
| 1200 | } |
||
| 1201 | |||
| 1202 | /* |
||
| 1203 | ******************************************************************************* |
||
| 1204 | * * |
||
| 1205 | * FormatPV() is used to display a PV during the search. It will also note * |
||
| 1206 | * when the PV was terminated by a hash table hit. * |
||
| 1207 | * * |
||
| 1208 | ******************************************************************************* |
||
| 1209 | */ |
||
| 1210 | char *FormatPV(TREE * RESTRICT tree, int wtm, PATH pv) { |
||
| 108 | pmbaty | 1211 | int i, t_move_number; |
| 33 | pmbaty | 1212 | static char buffer[4096]; |
| 1213 | |||
| 1214 | /* |
||
| 1215 | ************************************************************ |
||
| 1216 | * * |
||
| 1217 | * Initialize. * |
||
| 1218 | * * |
||
| 1219 | ************************************************************ |
||
| 1220 | */ |
||
| 1221 | t_move_number = move_number; |
||
| 108 | pmbaty | 1222 | sprintf(buffer, " %d.", move_number); |
| 1223 | if (!wtm) |
||
| 1224 | sprintf(buffer + strlen(buffer), " ..."); |
||
| 33 | pmbaty | 1225 | for (i = 1; i < (int) pv.pathl; i++) { |
| 108 | pmbaty | 1226 | if (i > 1 && wtm) |
| 33 | pmbaty | 1227 | sprintf(buffer + strlen(buffer), " %d.", t_move_number); |
| 108 | pmbaty | 1228 | sprintf(buffer + strlen(buffer), " %s", OutputMove(tree, i, wtm, |
| 1229 | pv.path[i])); |
||
| 1230 | MakeMove(tree, i, wtm, pv.path[i]); |
||
| 33 | pmbaty | 1231 | wtm = Flip(wtm); |
| 1232 | if (wtm) |
||
| 1233 | t_move_number++; |
||
| 1234 | } |
||
| 1235 | for (i = pv.pathl - 1; i > 0; i--) { |
||
| 1236 | wtm = Flip(wtm); |
||
| 108 | pmbaty | 1237 | UnmakeMove(tree, i, wtm, pv.path[i]); |
| 33 | pmbaty | 1238 | } |
| 1239 | return buffer; |
||
| 1240 | } |
||
| 1241 | |||
| 1242 | /* last modified 02/26/14 */ |
||
| 1243 | /* |
||
| 1244 | ******************************************************************************* |
||
| 1245 | * * |
||
| 1246 | * GameOver() is used to determine if the game is over by rule. More * |
||
| 1247 | * specifically, after our move, the opponent has no legal move to play. He * |
||
| 1248 | * is either checkmated or stalemated, either of which is sufficient reason * |
||
| 1249 | * to terminate the game. * |
||
| 1250 | * * |
||
| 1251 | ******************************************************************************* |
||
| 1252 | */ |
||
| 1253 | int GameOver(int wtm) { |
||
| 1254 | TREE *const tree = block[0]; |
||
| 108 | pmbaty | 1255 | unsigned *mvp, *lastm, rmoves[256], over = 1; |
| 33 | pmbaty | 1256 | |
| 1257 | /* |
||
| 1258 | ************************************************************ |
||
| 1259 | * * |
||
| 1260 | * First, use GenerateMoves() to generate the set of * |
||
| 1261 | * legal moves from the root position. * |
||
| 1262 | * * |
||
| 1263 | ************************************************************ |
||
| 1264 | */ |
||
| 1265 | lastm = GenerateCaptures(tree, 1, wtm, rmoves); |
||
| 1266 | lastm = GenerateNoncaptures(tree, 1, wtm, lastm); |
||
| 1267 | /* |
||
| 1268 | ************************************************************ |
||
| 1269 | * * |
||
| 1270 | * Now make each move and determine if we are in check * |
||
| 1271 | * after each one. Any move that does not leave us in * |
||
| 1272 | * check is good enough to prove that the game is not yet * |
||
| 1273 | * officially over. * |
||
| 1274 | * * |
||
| 1275 | ************************************************************ |
||
| 1276 | */ |
||
| 1277 | for (mvp = rmoves; mvp < lastm; mvp++) { |
||
| 108 | pmbaty | 1278 | MakeMove(tree, 1, wtm, *mvp); |
| 33 | pmbaty | 1279 | if (!Check(wtm)) |
| 1280 | over = 0; |
||
| 108 | pmbaty | 1281 | UnmakeMove(tree, 1, wtm, *mvp); |
| 33 | pmbaty | 1282 | } |
| 1283 | /* |
||
| 1284 | ************************************************************ |
||
| 1285 | * * |
||
| 1286 | * If we did not make it thru the complete move list, we * |
||
| 1287 | * must have at least one legal move so the game is not * |
||
| 1288 | * over. return 0. Otherwise, we have no move and the * |
||
| 1289 | * game is over. We return 1 if this side is stalmated or * |
||
| 1290 | * we return 2 if this side is mated. * |
||
| 1291 | * * |
||
| 1292 | ************************************************************ |
||
| 1293 | */ |
||
| 1294 | if (!over) |
||
| 1295 | return 0; |
||
| 1296 | else if (!Check(wtm)) |
||
| 1297 | return 1; |
||
| 1298 | else |
||
| 1299 | return 2; |
||
| 1300 | } |
||
| 1301 | |||
| 1302 | /* |
||
| 1303 | ******************************************************************************* |
||
| 1304 | * * |
||
| 1305 | * ReadClock() is a procedure used to read the elapsed time. Since this * |
||
| 1306 | * varies from system to system, this procedure has several flavors to * |
||
| 1307 | * provide portability. * |
||
| 1308 | * * |
||
| 1309 | ******************************************************************************* |
||
| 1310 | */ |
||
| 1311 | unsigned int ReadClock(void) { |
||
| 1312 | #if defined(UNIX) |
||
| 1313 | struct timeval timeval; |
||
| 1314 | struct timezone timezone; |
||
| 1315 | #endif |
||
| 1316 | #if defined(UNIX) |
||
| 1317 | gettimeofday(&timeval, &timezone); |
||
| 1318 | return timeval.tv_sec * 100 + (timeval.tv_usec / 10000); |
||
| 1319 | #else |
||
| 1320 | return (unsigned int) GetTickCount() / 10; |
||
| 1321 | #endif |
||
| 1322 | } |
||
| 1323 | |||
| 1324 | /* |
||
| 1325 | ******************************************************************************* |
||
| 1326 | * * |
||
| 108 | pmbaty | 1327 | * FindBlockID() converts a thread block pointer into an ID that is easier * |
| 1328 | * to understand when debugging. * |
||
| 33 | pmbaty | 1329 | * * |
| 1330 | ******************************************************************************* |
||
| 1331 | */ |
||
| 1332 | int FindBlockID(TREE * RESTRICT which) { |
||
| 1333 | int i; |
||
| 1334 | |||
| 154 | pmbaty | 1335 | for (i = 0; i <= smp_max_threads * 64; i++) |
| 33 | pmbaty | 1336 | if (which == block[i]) |
| 1337 | return i; |
||
| 1338 | return -1; |
||
| 1339 | } |
||
| 1340 | |||
| 1341 | /* |
||
| 1342 | ******************************************************************************* |
||
| 1343 | * * |
||
| 1344 | * InvalidPosition() is used to determine if the position just entered via a * |
||
| 1345 | * FEN-string or the "edit" command is legal. This includes the expected * |
||
| 1346 | * tests for too many pawns or pieces for one side, pawns on impossible * |
||
| 1347 | * squares, and the like. * |
||
| 1348 | * * |
||
| 1349 | ******************************************************************************* |
||
| 1350 | */ |
||
| 1351 | int InvalidPosition(TREE * RESTRICT tree) { |
||
| 108 | pmbaty | 1352 | int error = 0, wp, wn, wb, wr, wq, wk, bp, bn, bb, br, bq, bk; |
| 33 | pmbaty | 1353 | |
| 1354 | wp = PopCnt(Pawns(white)); |
||
| 1355 | wn = PopCnt(Knights(white)); |
||
| 1356 | wb = PopCnt(Bishops(white)); |
||
| 1357 | wr = PopCnt(Rooks(white)); |
||
| 1358 | wq = PopCnt(Queens(white)); |
||
| 108 | pmbaty | 1359 | wk = PopCnt(Kings(white)); |
| 33 | pmbaty | 1360 | bp = PopCnt(Pawns(black)); |
| 1361 | bn = PopCnt(Knights(black)); |
||
| 1362 | bb = PopCnt(Bishops(black)); |
||
| 1363 | br = PopCnt(Rooks(black)); |
||
| 1364 | bq = PopCnt(Queens(black)); |
||
| 108 | pmbaty | 1365 | bk = PopCnt(Kings(black)); |
| 33 | pmbaty | 1366 | if (wp > 8) { |
| 1367 | Print(4095, "illegal position, too many white pawns\n"); |
||
| 1368 | error = 1; |
||
| 1369 | } |
||
| 108 | pmbaty | 1370 | if (wn && wp + wn > 10) { |
| 33 | pmbaty | 1371 | Print(4095, "illegal position, too many white knights\n"); |
| 1372 | error = 1; |
||
| 1373 | } |
||
| 108 | pmbaty | 1374 | if (wb && wp + wb > 10) { |
| 33 | pmbaty | 1375 | Print(4095, "illegal position, too many white bishops\n"); |
| 1376 | error = 1; |
||
| 1377 | } |
||
| 108 | pmbaty | 1378 | if (wr && wp + wr > 10) { |
| 33 | pmbaty | 1379 | Print(4095, "illegal position, too many white rooks\n"); |
| 1380 | error = 1; |
||
| 1381 | } |
||
| 108 | pmbaty | 1382 | if (wq && wp + wq > 10) { |
| 33 | pmbaty | 1383 | Print(4095, "illegal position, too many white queens\n"); |
| 1384 | error = 1; |
||
| 1385 | } |
||
| 108 | pmbaty | 1386 | if (wk == 0) { |
| 33 | pmbaty | 1387 | Print(4095, "illegal position, no white king\n"); |
| 1388 | error = 1; |
||
| 1389 | } |
||
| 108 | pmbaty | 1390 | if (wk > 1) { |
| 1391 | Print(4095, "illegal position, multiple white kings\n"); |
||
| 1392 | error = 1; |
||
| 1393 | } |
||
| 1394 | if ((wn + wb + wr + wq) && wp + wn + wb + wr + wq > 15) { |
||
| 33 | pmbaty | 1395 | Print(4095, "illegal position, too many white pieces\n"); |
| 1396 | error = 1; |
||
| 1397 | } |
||
| 1398 | if (Pawns(white) & (rank_mask[RANK1] | rank_mask[RANK8])) { |
||
| 1399 | Print(4095, "illegal position, white pawns on first/eighth rank(s)\n"); |
||
| 1400 | error = 1; |
||
| 1401 | } |
||
| 1402 | if (bp > 8) { |
||
| 1403 | Print(4095, "illegal position, too many black pawns\n"); |
||
| 1404 | error = 1; |
||
| 1405 | } |
||
| 108 | pmbaty | 1406 | if (bn && bp + bn > 10) { |
| 33 | pmbaty | 1407 | Print(4095, "illegal position, too many black knights\n"); |
| 1408 | error = 1; |
||
| 1409 | } |
||
| 108 | pmbaty | 1410 | if (bb && bp + bb > 10) { |
| 33 | pmbaty | 1411 | Print(4095, "illegal position, too many black bishops\n"); |
| 1412 | error = 1; |
||
| 1413 | } |
||
| 108 | pmbaty | 1414 | if (br && bp + br > 10) { |
| 33 | pmbaty | 1415 | Print(4095, "illegal position, too many black rooks\n"); |
| 1416 | error = 1; |
||
| 1417 | } |
||
| 108 | pmbaty | 1418 | if (bq && bp + bq > 10) { |
| 33 | pmbaty | 1419 | Print(4095, "illegal position, too many black queens\n"); |
| 1420 | error = 1; |
||
| 1421 | } |
||
| 108 | pmbaty | 1422 | if (bk == 0) { |
| 33 | pmbaty | 1423 | Print(4095, "illegal position, no black king\n"); |
| 1424 | error = 1; |
||
| 1425 | } |
||
| 108 | pmbaty | 1426 | if (bk > 1) { |
| 1427 | Print(4095, "illegal position, multiple black kings\n"); |
||
| 1428 | error = 1; |
||
| 1429 | } |
||
| 1430 | if ((bn + bb + br + bq) && bp + bn + bb + br + bq > 15) { |
||
| 33 | pmbaty | 1431 | Print(4095, "illegal position, too many black pieces\n"); |
| 1432 | error = 1; |
||
| 1433 | } |
||
| 1434 | if (Pawns(black) & (rank_mask[RANK1] | rank_mask[RANK8])) { |
||
| 1435 | Print(4095, "illegal position, black pawns on first/eighth rank(s)\n"); |
||
| 1436 | error = 1; |
||
| 1437 | } |
||
| 1438 | if (error == 0 && Check(!game_wtm)) { |
||
| 1439 | Print(4095, "ERROR side not on move is in check!\n"); |
||
| 1440 | error = 1; |
||
| 1441 | } |
||
| 1442 | return error; |
||
| 1443 | } |
||
| 1444 | |||
| 1445 | /* |
||
| 1446 | ******************************************************************************* |
||
| 1447 | * * |
||
| 1448 | * KingPawnSquare() is used to initialize some of the passed pawn race * |
||
| 1449 | * tables used by Evaluate(). It simply answers the question "is the king * |
||
| 1450 | * in the square of the pawn so the pawn can't outrun it and promote?" * |
||
| 1451 | * * |
||
| 1452 | ******************************************************************************* |
||
| 1453 | */ |
||
| 1454 | int KingPawnSquare(int pawn, int king, int queen, int ptm) { |
||
| 1455 | int pdist, kdist; |
||
| 1456 | |||
| 1457 | pdist = Abs(Rank(pawn) - Rank(queen)) + !ptm; |
||
| 1458 | kdist = Distance(king, queen); |
||
| 1459 | return pdist >= kdist; |
||
| 1460 | } |
||
| 1461 | |||
| 154 | pmbaty | 1462 | /* last modified 07/13/16 */ |
| 33 | pmbaty | 1463 | /* |
| 1464 | ******************************************************************************* |
||
| 1465 | * * |
||
| 154 | pmbaty | 1466 | * Mated() is used to determine if the game has ended by checkmate. * |
| 33 | pmbaty | 1467 | * * |
| 154 | pmbaty | 1468 | * We return 0 if the game doesn't end here, 1 if the side on move is mated * |
| 1469 | * and 2 if the side on move is stalemated. * |
||
| 1470 | * * |
||
| 33 | pmbaty | 1471 | ******************************************************************************* |
| 1472 | */ |
||
| 154 | pmbaty | 1473 | int Mated(TREE * RESTRICT tree, int ply, int wtm) { |
| 1474 | unsigned int rmoves[256], *mvp, *lastm; |
||
| 1475 | int temp = 0; |
||
| 33 | pmbaty | 1476 | |
| 154 | pmbaty | 1477 | /* |
| 1478 | ************************************************************ |
||
| 1479 | * * |
||
| 1480 | * first, use GenerateMoves() to generate the set of * |
||
| 1481 | * legal moves from the root position, after making the * |
||
| 1482 | * test move passed in. * |
||
| 1483 | * * |
||
| 1484 | ************************************************************ |
||
| 1485 | */ |
||
| 1486 | lastm = GenerateCaptures(tree, ply, wtm, rmoves); |
||
| 1487 | lastm = GenerateNoncaptures(tree, ply, wtm, lastm); |
||
| 1488 | /* |
||
| 1489 | ************************************************************ |
||
| 1490 | * * |
||
| 1491 | * now make each move and use eliminate any that leave * |
||
| 1492 | * king in check (which makes those moves illegal.) * |
||
| 1493 | * * |
||
| 1494 | ************************************************************ |
||
| 1495 | */ |
||
| 1496 | for (mvp = rmoves; mvp < lastm; mvp++) { |
||
| 1497 | MakeMove(tree, ply, wtm, *mvp); |
||
| 1498 | temp = Check(wtm); |
||
| 1499 | UnmakeMove(tree, ply, wtm, *mvp); |
||
| 1500 | if (!temp) |
||
| 1501 | break; |
||
| 33 | pmbaty | 1502 | } |
| 154 | pmbaty | 1503 | /* |
| 1504 | ************************************************************ |
||
| 1505 | * * |
||
| 1506 | * if there is one move that did not leave us in check, * |
||
| 1507 | * then it can't be checkmate/stalemate. * |
||
| 1508 | * * |
||
| 1509 | ************************************************************ |
||
| 1510 | */ |
||
| 1511 | if (!temp) |
||
| 1512 | return 0; |
||
| 1513 | /* |
||
| 1514 | ************************************************************ |
||
| 1515 | * * |
||
| 1516 | * No legal moves. If we are in check, we have been * |
||
| 1517 | * checkmated, otherwise we are stalemated. * |
||
| 1518 | * * |
||
| 1519 | ************************************************************ |
||
| 1520 | */ |
||
| 1521 | if (Check(wtm)) |
||
| 1522 | return 1; |
||
| 1523 | return 2; |
||
| 33 | pmbaty | 1524 | } |
| 1525 | |||
| 1526 | /* |
||
| 1527 | ******************************************************************************* |
||
| 1528 | * * |
||
| 1529 | * ParseTime() is used to parse a time value that could be entered as s.ss, * |
||
| 1530 | * mm:ss, or hh:mm:ss. It is converted to Crafty's internal 1/100th second * |
||
| 1531 | * time resolution. * |
||
| 1532 | * * |
||
| 1533 | ******************************************************************************* |
||
| 1534 | */ |
||
| 1535 | int ParseTime(char *string) { |
||
| 108 | pmbaty | 1536 | int time = 0, minutes = 0; |
| 33 | pmbaty | 1537 | |
| 1538 | while (*string) { |
||
| 1539 | switch (*string) { |
||
| 1540 | case '0': |
||
| 1541 | case '1': |
||
| 1542 | case '2': |
||
| 1543 | case '3': |
||
| 1544 | case '4': |
||
| 1545 | case '5': |
||
| 1546 | case '6': |
||
| 1547 | case '7': |
||
| 1548 | case '8': |
||
| 1549 | case '9': |
||
| 1550 | minutes = minutes * 10 + (*string) - '0'; |
||
| 1551 | break; |
||
| 1552 | case ':': |
||
| 1553 | time = time * 60 + minutes; |
||
| 1554 | minutes = 0; |
||
| 1555 | break; |
||
| 1556 | default: |
||
| 1557 | Print(4095, "illegal character in time, please re-enter\n"); |
||
| 1558 | break; |
||
| 1559 | } |
||
| 1560 | string++; |
||
| 1561 | } |
||
| 1562 | return time * 60 + minutes; |
||
| 1563 | } |
||
| 1564 | |||
| 1565 | /* |
||
| 1566 | ******************************************************************************* |
||
| 1567 | * * |
||
| 1568 | * Pass() was written by Tim Mann to handle the case where a position is set * |
||
| 1569 | * using a FEN string, and then black moves first. The game.nnn file was * |
||
| 1570 | * designed to start with a white move, so "pass" is now a "no-op" move for * |
||
| 1571 | * the side whose turn it is to move. * |
||
| 1572 | * * |
||
| 1573 | ******************************************************************************* |
||
| 1574 | */ |
||
| 1575 | void Pass(void) { |
||
| 1576 | const int halfmoves_done = 2 * (move_number - 1) + (1 - game_wtm); |
||
| 1577 | int prev_pass = 0; |
||
| 108 | pmbaty | 1578 | char buffer[128]; |
| 33 | pmbaty | 1579 | |
| 1580 | /* Was previous move a pass? */ |
||
| 1581 | if (halfmoves_done > 0) { |
||
| 1582 | if (history_file) { |
||
| 1583 | fseek(history_file, (halfmoves_done - 1) * 10, SEEK_SET); |
||
| 108 | pmbaty | 1584 | if (fscanf(history_file, "%s", buffer) == 0 || |
| 33 | pmbaty | 1585 | strcmp(buffer, "pass") == 0) |
| 1586 | prev_pass = 1; |
||
| 1587 | } |
||
| 1588 | } |
||
| 1589 | if (prev_pass) { |
||
| 1590 | if (game_wtm) |
||
| 1591 | move_number--; |
||
| 1592 | } else { |
||
| 1593 | if (history_file) { |
||
| 1594 | fseek(history_file, halfmoves_done * 10, SEEK_SET); |
||
| 1595 | fprintf(history_file, "%9s\n", "pass"); |
||
| 1596 | } |
||
| 1597 | if (!game_wtm) |
||
| 1598 | move_number++; |
||
| 1599 | } |
||
| 1600 | game_wtm = Flip(game_wtm); |
||
| 1601 | } |
||
| 1602 | |||
| 1603 | /* |
||
| 1604 | ******************************************************************************* |
||
| 1605 | * * |
||
| 1606 | * Print() is the main output procedure. The first argument is a bitmask * |
||
| 1607 | * that identifies the type of output. If this argument is anded with the * |
||
| 1608 | * "display" control variable, and a non-zero result is produced, then the * |
||
| 1609 | * print is done, otherwise the print is skipped and we return (more details * |
||
| 1610 | * can be found in the display command comments in option.c). This also * |
||
| 1611 | * uses the "variable number of arguments" facility in ANSI C since the * |
||
| 1612 | * normal printf() function accepts a variable number of arguments. * |
||
| 1613 | * * |
||
| 1614 | * Print() also sends output to the log.nnn file automatically, so that it * |
||
| 1615 | * is recorded even if the above display control variable says "do not send * |
||
| 1616 | * this to stdout" * |
||
| 1617 | * * |
||
| 1618 | ******************************************************************************* |
||
| 1619 | */ |
||
| 1620 | void Print(int vb, char *fmt, ...) { |
||
| 1621 | va_list ap; |
||
| 1622 | |||
| 1623 | va_start(ap, fmt); |
||
| 108 | pmbaty | 1624 | if (vb == 4095 || vb & display_options) { |
| 33 | pmbaty | 1625 | vprintf(fmt, ap); |
| 108 | pmbaty | 1626 | fflush(stdout); |
| 1627 | } |
||
| 1628 | if (time_limit > 5 || tc_time_remaining[root_wtm] > 1000 || vb == 4095) { |
||
| 33 | pmbaty | 1629 | va_start(ap, fmt); |
| 108 | pmbaty | 1630 | if (log_file) { |
| 33 | pmbaty | 1631 | vfprintf(log_file, fmt, ap); |
| 1632 | fflush(log_file); |
||
| 108 | pmbaty | 1633 | } |
| 33 | pmbaty | 1634 | } |
| 1635 | va_end(ap); |
||
| 1636 | } |
||
| 1637 | |||
| 1638 | /* |
||
| 1639 | ******************************************************************************* |
||
| 1640 | * * |
||
| 1641 | * A 32 bit random number generator. An implementation in C of the algorithm * |
||
| 1642 | * given by Knuth, the art of computer programming, vol. 2, pp. 26-27. We use * |
||
| 1643 | * e=32, so we have to evaluate y(n) = y(n - 24) + y(n - 55) mod 2^32, which * |
||
| 1644 | * is implicitly done by unsigned arithmetic. * |
||
| 1645 | * * |
||
| 1646 | ******************************************************************************* |
||
| 1647 | */ |
||
| 1648 | unsigned int Random32(void) { |
||
| 1649 | /* |
||
| 1650 | random numbers from Mathematica 2.0. |
||
| 1651 | SeedRandom = 1; |
||
| 1652 | Table[Random[Integer, {0, 2^32 - 1}] |
||
| 1653 | */ |
||
| 1654 | static const uint64_t x[55] = { |
||
| 1655 | 1410651636UL, 3012776752UL, 3497475623UL, 2892145026UL, 1571949714UL, |
||
| 1656 | 3253082284UL, 3489895018UL, 387949491UL, 2597396737UL, 1981903553UL, |
||
| 1657 | 3160251843UL, 129444464UL, 1851443344UL, 4156445905UL, 224604922UL, |
||
| 1658 | 1455067070UL, 3953493484UL, 1460937157UL, 2528362617UL, 317430674UL, |
||
| 1659 | 3229354360UL, 117491133UL, 832845075UL, 1961600170UL, 1321557429UL, |
||
| 1660 | 747750121UL, 545747446UL, 810476036UL, 503334515UL, 4088144633UL, |
||
| 1661 | 2824216555UL, 3738252341UL, 3493754131UL, 3672533954UL, 29494241UL, |
||
| 1662 | 1180928407UL, 4213624418UL, 33062851UL, 3221315737UL, 1145213552UL, |
||
| 1663 | 2957984897UL, 4078668503UL, 2262661702UL, 65478801UL, 2527208841UL, |
||
| 1664 | 1960622036UL, 315685891UL, 1196037864UL, 804614524UL, 1421733266UL, |
||
| 1665 | 2017105031UL, 3882325900UL, 810735053UL, 384606609UL, 2393861397UL |
||
| 1666 | }; |
||
| 1667 | static int init = 1; |
||
| 1668 | static uint64_t y[55]; |
||
| 1669 | static int j, k; |
||
| 1670 | uint64_t ul; |
||
| 1671 | |||
| 1672 | if (init) { |
||
| 1673 | int i; |
||
| 1674 | |||
| 1675 | init = 0; |
||
| 1676 | for (i = 0; i < 55; i++) |
||
| 1677 | y[i] = x[i]; |
||
| 1678 | j = 24 - 1; |
||
| 1679 | k = 55 - 1; |
||
| 1680 | } |
||
| 1681 | ul = (y[k] += y[j]); |
||
| 1682 | if (--j < 0) |
||
| 1683 | j = 55 - 1; |
||
| 1684 | if (--k < 0) |
||
| 1685 | k = 55 - 1; |
||
| 1686 | return (unsigned int) ul; |
||
| 1687 | } |
||
| 1688 | |||
| 1689 | /* |
||
| 1690 | ******************************************************************************* |
||
| 1691 | * * |
||
| 1692 | * Random64() uses two calls to Random32() and then concatenates the two * |
||
| 1693 | * values into one 64 bit random number, used for hash signature updates on * |
||
| 1694 | * the Zobrist hash signatures. * |
||
| 1695 | * * |
||
| 1696 | ******************************************************************************* |
||
| 1697 | */ |
||
| 1698 | uint64_t Random64(void) { |
||
| 1699 | uint64_t result; |
||
| 1700 | unsigned int r1, r2; |
||
| 1701 | |||
| 1702 | r1 = Random32(); |
||
| 1703 | r2 = Random32(); |
||
| 1704 | result = r1 | (uint64_t) r2 << 32; |
||
| 1705 | return result; |
||
| 1706 | } |
||
| 1707 | |||
| 1708 | /* |
||
| 1709 | ******************************************************************************* |
||
| 1710 | * * |
||
| 1711 | * Read() copies data from the command_buffer into a local buffer, and then * |
||
| 1712 | * uses ReadParse to break this command up into tokens for processing. * |
||
| 1713 | * * |
||
| 1714 | ******************************************************************************* |
||
| 1715 | */ |
||
| 108 | pmbaty | 1716 | int Read(int wait, char *buffer) { |
| 33 | pmbaty | 1717 | char *eol, *ret, readdata; |
| 1718 | |||
| 1719 | *buffer = 0; |
||
| 1720 | /* |
||
| 1721 | case 1: We have a complete command line, with terminating |
||
| 1722 | N/L character in the buffer. We can simply extract it from |
||
| 1723 | the I/O buffer, parse it and return. |
||
| 1724 | */ |
||
| 1725 | if (strchr(cmd_buffer, '\n')); |
||
| 1726 | /* |
||
| 1727 | case 2: The buffer does not contain a complete line. If we |
||
| 1728 | were asked to not wait for a complete command, then we first |
||
| 1729 | see if I/O is possible, and if so, read in what is available. |
||
| 1730 | If that includes a N/L, then we are ready to parse and return. |
||
| 1731 | If not, we return indicating no input available just yet. |
||
| 1732 | */ |
||
| 1733 | else if (!wait) { |
||
| 1734 | if (CheckInput()) { |
||
| 1735 | readdata = ReadInput(); |
||
| 1736 | if (!strchr(cmd_buffer, '\n')) |
||
| 1737 | return 0; |
||
| 1738 | if (!readdata) |
||
| 1739 | return -1; |
||
| 1740 | } else |
||
| 1741 | return 0; |
||
| 1742 | } |
||
| 1743 | /* |
||
| 1744 | case 3: The buffer does not contain a complete line, but we |
||
| 1745 | were asked to wait until a complete command is entered. So we |
||
| 1746 | hang by doing a ReadInput() and continue doing so until we get |
||
| 1747 | a N/L character in the buffer. Then we parse and return. |
||
| 1748 | */ |
||
| 1749 | else |
||
| 1750 | while (!strchr(cmd_buffer, '\n')) { |
||
| 1751 | readdata = ReadInput(); |
||
| 1752 | if (!readdata) |
||
| 1753 | return -1; |
||
| 1754 | } |
||
| 1755 | eol = strchr(cmd_buffer, '\n'); |
||
| 1756 | *eol = 0; |
||
| 1757 | ret = strchr(cmd_buffer, '\r'); |
||
| 1758 | if (ret) |
||
| 1759 | *ret = ' '; |
||
| 108 | pmbaty | 1760 | strcpy(buffer, cmd_buffer); |
| 33 | pmbaty | 1761 | memmove(cmd_buffer, eol + 1, strlen(eol + 1) + 1); |
| 1762 | return 1; |
||
| 1763 | } |
||
| 1764 | |||
| 1765 | /* |
||
| 1766 | ******************************************************************************* |
||
| 1767 | * * |
||
| 108 | pmbaty | 1768 | * ReadClear() clears the input buffer when input_stream is being switched * |
| 1769 | * to a file, since we have info buffered up from a different input stream. * |
||
| 33 | pmbaty | 1770 | * * |
| 1771 | ******************************************************************************* |
||
| 1772 | */ |
||
| 1773 | void ReadClear() { |
||
| 1774 | cmd_buffer[0] = 0; |
||
| 1775 | } |
||
| 1776 | |||
| 1777 | /* |
||
| 1778 | ******************************************************************************* |
||
| 1779 | * * |
||
| 1780 | * ReadParse() takes one complete command-line, and breaks it up into tokens.* |
||
| 1781 | * common delimiters are used, such as " ", ",", "/" and ";", any of which * |
||
| 1782 | * delimit fields. * |
||
| 1783 | * * |
||
| 1784 | ******************************************************************************* |
||
| 1785 | */ |
||
| 1786 | int ReadParse(char *buffer, char *args[], char *delims) { |
||
| 108 | pmbaty | 1787 | int nargs; |
| 33 | pmbaty | 1788 | char *next, tbuffer[4096]; |
| 1789 | |||
| 108 | pmbaty | 1790 | strcpy(tbuffer, buffer); |
| 33 | pmbaty | 1791 | for (nargs = 0; nargs < 512; nargs++) |
| 1792 | *(args[nargs]) = 0; |
||
| 1793 | next = strtok(tbuffer, delims); |
||
| 1794 | if (!next) |
||
| 1795 | return 0; |
||
| 1796 | if (strlen(next) > 255) |
||
| 1797 | Print(4095, "ERROR, ignoring token %s, max allowable len = 255\n", next); |
||
| 1798 | else |
||
| 1799 | strcpy(args[0], next); |
||
| 1800 | for (nargs = 1; nargs < 512; nargs++) { |
||
| 1801 | next = strtok(0, delims); |
||
| 1802 | if (!next) |
||
| 1803 | break; |
||
| 1804 | if (strlen(next) > 255) |
||
| 1805 | Print(4095, "ERROR, ignoring token %s, max allowable len = 255\n", |
||
| 1806 | next); |
||
| 1807 | else |
||
| 1808 | strcpy(args[nargs], next); |
||
| 1809 | } |
||
| 1810 | return nargs; |
||
| 1811 | } |
||
| 1812 | |||
| 1813 | /* |
||
| 1814 | ******************************************************************************* |
||
| 1815 | * * |
||
| 1816 | * ReadInput() reads data from the input_stream, and buffers this into the * |
||
| 1817 | * command_buffer for later processing. * |
||
| 1818 | * * |
||
| 1819 | ******************************************************************************* |
||
| 1820 | */ |
||
| 1821 | int ReadInput(void) { |
||
| 108 | pmbaty | 1822 | int bytes; |
| 33 | pmbaty | 1823 | char buffer[4096], *end; |
| 1824 | |||
| 1825 | do |
||
| 156 | pmbaty | 1826 | bytes = _read(_fileno(input_stream), buffer, 2048); // Pierre-Marie Baty -- ISO C++ name conformance fixes |
| 33 | pmbaty | 1827 | while (bytes < 0 && errno == EINTR); |
| 1828 | if (bytes == 0) { |
||
| 1829 | if (input_stream != stdin) |
||
| 1830 | fclose(input_stream); |
||
| 1831 | input_stream = stdin; |
||
| 1832 | return 0; |
||
| 1833 | } else if (bytes < 0) { |
||
| 1834 | Print(4095, "ERROR! input I/O stream is unreadable, exiting.\n"); |
||
| 1835 | CraftyExit(1); |
||
| 1836 | } |
||
| 1837 | end = cmd_buffer + strlen(cmd_buffer); |
||
| 1838 | memcpy(end, buffer, bytes); |
||
| 1839 | *(end + bytes) = 0; |
||
| 1840 | return 1; |
||
| 1841 | } |
||
| 1842 | |||
| 1843 | /* |
||
| 1844 | ******************************************************************************* |
||
| 1845 | * * |
||
| 108 | pmbaty | 1846 | * ReadChessMove() is used to read a move from an input file. The main * |
| 1847 | * issue is to skip over "trash" like move numbers, times, comments, and so * |
||
| 1848 | * forth, and find the next actual move. * |
||
| 33 | pmbaty | 1849 | * * |
| 1850 | ******************************************************************************* |
||
| 1851 | */ |
||
| 1852 | int ReadChessMove(TREE * RESTRICT tree, FILE * input, int wtm, int one_move) { |
||
| 108 | pmbaty | 1853 | int move = 0, status; |
| 33 | pmbaty | 1854 | static char text[128]; |
| 1855 | char *tmove; |
||
| 1856 | |||
| 1857 | while (move == 0) { |
||
| 1858 | status = fscanf(input, "%s", text); |
||
| 1859 | if (status <= 0) |
||
| 1860 | return -1; |
||
| 1861 | if (strcmp(text, "0-0") && strcmp(text, "0-0-0")) |
||
| 1862 | tmove = text + strspn(text, "0123456789."); |
||
| 1863 | else |
||
| 1864 | tmove = text; |
||
| 1865 | if (((tmove[0] >= 'a' && tmove[0] <= 'z') || (tmove[0] >= 'A' && |
||
| 1866 | tmove[0] <= 'Z')) || !strcmp(tmove, "0-0") |
||
| 1867 | || !strcmp(tmove, "0-0-0")) { |
||
| 1868 | if (!strcmp(tmove, "exit")) |
||
| 1869 | return -1; |
||
| 108 | pmbaty | 1870 | move = InputMove(tree, 0, wtm, 1, 0, tmove); |
| 33 | pmbaty | 1871 | } |
| 1872 | if (one_move) |
||
| 1873 | break; |
||
| 1874 | } |
||
| 1875 | return move; |
||
| 1876 | } |
||
| 1877 | |||
| 1878 | /* |
||
| 1879 | ******************************************************************************* |
||
| 1880 | * * |
||
| 1881 | * ReadNextMove() is used to take a text chess move from a file, and see if * |
||
| 1882 | * if is legal, skipping a sometimes embedded move number (1.e4 for example) * |
||
| 1883 | * to make PGN import easier. * |
||
| 1884 | * * |
||
| 1885 | ******************************************************************************* |
||
| 1886 | */ |
||
| 1887 | int ReadNextMove(TREE * RESTRICT tree, char *text, int ply, int wtm) { |
||
| 1888 | char *tmove; |
||
| 1889 | int move = 0; |
||
| 1890 | |||
| 1891 | if (strcmp(text, "0-0") && strcmp(text, "0-0-0")) |
||
| 1892 | tmove = text + strspn(text, "0123456789./-"); |
||
| 1893 | else |
||
| 1894 | tmove = text; |
||
| 1895 | if (((tmove[0] >= 'a' && tmove[0] <= 'z') || (tmove[0] >= 'A' && |
||
| 1896 | tmove[0] <= 'Z')) || !strcmp(tmove, "0-0") |
||
| 1897 | || !strcmp(tmove, "0-0-0")) { |
||
| 1898 | if (!strcmp(tmove, "exit")) |
||
| 1899 | return -1; |
||
| 108 | pmbaty | 1900 | move = InputMove(tree, ply, wtm, 1, 0, tmove); |
| 33 | pmbaty | 1901 | } |
| 1902 | return move; |
||
| 1903 | } |
||
| 1904 | |||
| 1905 | /* |
||
| 1906 | ******************************************************************************* |
||
| 1907 | * * |
||
| 1908 | * This routine reads a move from a PGN file to build an opening book or for * |
||
| 1909 | * annotating. It returns a 1 if a header is read, it returns a 0 if a move * |
||
| 1910 | * is read, and returns a -1 on end of file. It counts lines and this * |
||
| 1911 | * counter can be accessed by calling this function with a non-zero second * |
||
| 1912 | * formal parameter. * |
||
| 1913 | * * |
||
| 1914 | ******************************************************************************* |
||
| 1915 | */ |
||
| 1916 | int ReadPGN(FILE * input, int option) { |
||
| 1917 | static int data = 0, lines_read = 0; |
||
| 108 | pmbaty | 1918 | int braces = 0, parens = 0, brackets = 0, analysis = 0, last_good_line; |
| 33 | pmbaty | 1919 | static char input_buffer[4096]; |
| 1920 | char *eof, analysis_move[64]; |
||
| 1921 | |||
| 1922 | /* |
||
| 1923 | ************************************************************ |
||
| 1924 | * * |
||
| 1925 | * If the line counter is being requested, return it with * |
||
| 1926 | * no other changes being made. If "purge" is true, clear * |
||
| 1927 | * the current input buffer. * |
||
| 1928 | * * |
||
| 1929 | ************************************************************ |
||
| 1930 | */ |
||
| 1931 | pgn_suggested_percent = 0; |
||
| 1932 | if (!input) { |
||
| 1933 | lines_read = 0; |
||
| 1934 | data = 0; |
||
| 1935 | return 0; |
||
| 1936 | } |
||
| 1937 | if (option == -1) |
||
| 1938 | data = 0; |
||
| 1939 | if (option == -2) |
||
| 1940 | return lines_read; |
||
| 1941 | /* |
||
| 1942 | ************************************************************ |
||
| 1943 | * * |
||
| 1944 | * If we don't have any data in the buffer, the first step * |
||
| 1945 | * is to read the next line. * |
||
| 1946 | * * |
||
| 1947 | ************************************************************ |
||
| 1948 | */ |
||
| 154 | pmbaty | 1949 | while (FOREVER) { |
| 33 | pmbaty | 1950 | if (!data) { |
| 1951 | eof = fgets(input_buffer, 4096, input); |
||
| 1952 | if (!eof) |
||
| 1953 | return -1; |
||
| 1954 | if (strchr(input_buffer, '\n')) |
||
| 1955 | *strchr(input_buffer, '\n') = 0; |
||
| 1956 | if (strchr(input_buffer, '\r')) |
||
| 1957 | *strchr(input_buffer, '\r') = ' '; |
||
| 1958 | lines_read++; |
||
| 1959 | buffer[0] = 0; |
||
| 1960 | sscanf(input_buffer, "%s", buffer); |
||
| 1961 | if (buffer[0] == '[') |
||
| 1962 | do { |
||
| 1963 | char *bracket1, *bracket2, value[128]; |
||
| 1964 | |||
| 1965 | strcpy(buffer, input_buffer); |
||
| 1966 | bracket1 = strchr(input_buffer, '\"'); |
||
| 1967 | if (bracket1 == 0) |
||
| 1968 | return 1; |
||
| 1969 | bracket2 = strchr(bracket1 + 1, '\"'); |
||
| 1970 | if (bracket2 == 0) |
||
| 1971 | return 1; |
||
| 1972 | *bracket1 = 0; |
||
| 1973 | *bracket2 = 0; |
||
| 1974 | strcpy(value, bracket1 + 1); |
||
| 1975 | if (strstr(input_buffer, "Event")) |
||
| 1976 | strcpy(pgn_event, value); |
||
| 1977 | else if (strstr(input_buffer, "Site")) |
||
| 1978 | strcpy(pgn_site, value); |
||
| 1979 | else if (strstr(input_buffer, "Round")) |
||
| 1980 | strcpy(pgn_round, value); |
||
| 1981 | else if (strstr(input_buffer, "Date")) |
||
| 1982 | strcpy(pgn_date, value); |
||
| 1983 | else if (strstr(input_buffer, "WhiteElo")) |
||
| 1984 | strcpy(pgn_white_elo, value); |
||
| 1985 | else if (strstr(input_buffer, "White")) |
||
| 1986 | strcpy(pgn_white, value); |
||
| 1987 | else if (strstr(input_buffer, "BlackElo")) |
||
| 1988 | strcpy(pgn_black_elo, value); |
||
| 1989 | else if (strstr(input_buffer, "Black")) |
||
| 1990 | strcpy(pgn_black, value); |
||
| 1991 | else if (strstr(input_buffer, "Result")) |
||
| 1992 | strcpy(pgn_result, value); |
||
| 1993 | else if (strstr(input_buffer, "FEN")) { |
||
| 108 | pmbaty | 1994 | sprintf(buffer, "setboard %s", value); |
| 1995 | Option(block[0]); |
||
| 33 | pmbaty | 1996 | continue; |
| 1997 | } |
||
| 1998 | return 1; |
||
| 1999 | } while (0); |
||
| 2000 | data = 1; |
||
| 2001 | } |
||
| 2002 | /* |
||
| 2003 | ************************************************************ |
||
| 2004 | * * |
||
| 2005 | * If we already have data in the buffer, it is just a * |
||
| 2006 | * matter of extracting the next move and returning it to * |
||
| 2007 | * the caller. If the buffer is empty, another line has * |
||
| 2008 | * to be read in. * |
||
| 2009 | * * |
||
| 2010 | ************************************************************ |
||
| 2011 | */ |
||
| 2012 | else { |
||
| 2013 | buffer[0] = 0; |
||
| 2014 | sscanf(input_buffer, "%s", buffer); |
||
| 2015 | if (strlen(buffer) == 0) { |
||
| 2016 | data = 0; |
||
| 2017 | continue; |
||
| 2018 | } else { |
||
| 2019 | char *skip; |
||
| 2020 | |||
| 2021 | skip = strstr(input_buffer, buffer) + strlen(buffer); |
||
| 2022 | if (skip) |
||
| 2023 | memmove(input_buffer, skip, strlen(skip) + 1); |
||
| 2024 | } |
||
| 2025 | /* |
||
| 2026 | ************************************************************ |
||
| 2027 | * * |
||
| 108 | pmbaty | 2028 | * This skips over nested {} or () characters and finds * |
| 2029 | * the 'mate', before returning any more moves. It also * |
||
| 2030 | * stops if a PGN header is encountered, probably due to * |
||
| 2031 | * an incorrectly bracketed analysis variation. * |
||
| 33 | pmbaty | 2032 | * * |
| 2033 | ************************************************************ |
||
| 2034 | */ |
||
| 2035 | last_good_line = lines_read; |
||
| 2036 | analysis_move[0] = 0; |
||
| 2037 | if (strchr(buffer, '{') || strchr(buffer, '(')) |
||
| 154 | pmbaty | 2038 | while (FOREVER) { |
| 33 | pmbaty | 2039 | char *skip, *ch; |
| 2040 | |||
| 2041 | analysis = 1; |
||
| 2042 | while ((ch = strpbrk(buffer, "(){}[]"))) { |
||
| 2043 | if (*ch == '(') { |
||
| 2044 | *strchr(buffer, '(') = ' '; |
||
| 2045 | if (!braces) |
||
| 2046 | parens++; |
||
| 2047 | } |
||
| 2048 | if (*ch == ')') { |
||
| 2049 | *strchr(buffer, ')') = ' '; |
||
| 2050 | if (!braces) |
||
| 2051 | parens--; |
||
| 2052 | } |
||
| 2053 | if (*ch == '{') { |
||
| 2054 | *strchr(buffer, '{') = ' '; |
||
| 2055 | braces++; |
||
| 2056 | } |
||
| 2057 | if (*ch == '}') { |
||
| 2058 | *strchr(buffer, '}') = ' '; |
||
| 2059 | braces--; |
||
| 2060 | } |
||
| 2061 | if (*ch == '[') { |
||
| 2062 | *strchr(buffer, '[') = ' '; |
||
| 2063 | if (!braces) |
||
| 2064 | brackets++; |
||
| 2065 | } |
||
| 2066 | if (*ch == ']') { |
||
| 2067 | *strchr(buffer, ']') = ' '; |
||
| 2068 | if (!braces) |
||
| 2069 | brackets--; |
||
| 2070 | } |
||
| 2071 | } |
||
| 2072 | if (analysis && analysis_move[0] == 0) { |
||
| 2073 | if (strspn(buffer, " ") != strlen(buffer)) { |
||
| 2074 | char *tmove = analysis_move; |
||
| 2075 | |||
| 2076 | sscanf(buffer, "%64s", analysis_move); |
||
| 2077 | strcpy(buffer, analysis_move); |
||
| 2078 | if (strcmp(buffer, "0-0") && strcmp(buffer, "0-0-0")) |
||
| 2079 | tmove = buffer + strspn(buffer, "0123456789."); |
||
| 2080 | else |
||
| 2081 | tmove = buffer; |
||
| 2082 | if ((tmove[0] >= 'a' && tmove[0] <= 'z') || (tmove[0] >= 'A' && |
||
| 2083 | tmove[0] <= 'Z') || !strcmp(tmove, "0-0") |
||
| 2084 | || !strcmp(tmove, "0-0-0")) |
||
| 2085 | strcpy(analysis_move, buffer); |
||
| 2086 | else |
||
| 2087 | analysis_move[0] = 0; |
||
| 2088 | } |
||
| 2089 | } |
||
| 2090 | if (parens == 0 && braces == 0 && brackets == 0) |
||
| 2091 | break; |
||
| 2092 | buffer[0] = 0; |
||
| 2093 | sscanf(input_buffer, "%s", buffer); |
||
| 2094 | if (strlen(buffer) == 0) { |
||
| 2095 | eof = fgets(input_buffer, 4096, input); |
||
| 2096 | if (!eof) { |
||
| 2097 | parens = 0; |
||
| 2098 | braces = 0; |
||
| 2099 | brackets = 0; |
||
| 2100 | return -1; |
||
| 2101 | } |
||
| 2102 | if (strchr(input_buffer, '\n')) |
||
| 2103 | *strchr(input_buffer, '\n') = 0; |
||
| 2104 | if (strchr(input_buffer, '\r')) |
||
| 2105 | *strchr(input_buffer, '\r') = ' '; |
||
| 2106 | lines_read++; |
||
| 2107 | if (lines_read - last_good_line >= 100) { |
||
| 2108 | parens = 0; |
||
| 2109 | braces = 0; |
||
| 2110 | brackets = 0; |
||
| 2111 | Print(4095, |
||
| 2112 | "ERROR. comment spans over 100 lines, starting at line %d\n", |
||
| 2113 | last_good_line); |
||
| 2114 | break; |
||
| 2115 | } |
||
| 2116 | } |
||
| 2117 | skip = strstr(input_buffer, buffer) + strlen(buffer); |
||
| 2118 | memmove(input_buffer, skip, strlen(skip) + 1); |
||
| 2119 | } else { |
||
| 2120 | int skip; |
||
| 2121 | |||
| 108 | pmbaty | 2122 | if ((skip = strspn(buffer, "0123456789./-"))) { |
| 33 | pmbaty | 2123 | if (skip > 1) |
| 2124 | memmove(buffer, buffer + skip, strlen(buffer + skip) + 1); |
||
| 2125 | } |
||
| 2126 | if (isalpha(buffer[0]) || strchr(buffer, '-')) { |
||
| 2127 | char *first, *last, *percent; |
||
| 2128 | |||
| 2129 | first = input_buffer + strspn(input_buffer, " "); |
||
| 2130 | if (first == 0 || *first != '{') |
||
| 2131 | return 0; |
||
| 2132 | last = strchr(input_buffer, '}'); |
||
| 2133 | if (last == 0) |
||
| 2134 | return 0; |
||
| 2135 | percent = strstr(first, "play"); |
||
| 2136 | if (percent == 0) |
||
| 2137 | return 0; |
||
| 2138 | pgn_suggested_percent = |
||
| 2139 | atoi(percent + 4 + strspn(percent + 4, " ")); |
||
| 2140 | return 0; |
||
| 2141 | } |
||
| 2142 | } |
||
| 2143 | if (analysis_move[0] && option == 1) { |
||
| 2144 | strcpy(buffer, analysis_move); |
||
| 2145 | return 2; |
||
| 2146 | } |
||
| 2147 | } |
||
| 2148 | } |
||
| 2149 | } |
||
| 2150 | |||
| 2151 | /* |
||
| 2152 | ******************************************************************************* |
||
| 2153 | * * |
||
| 2154 | * RestoreGame() resets the position to the beginning of the game, and then * |
||
| 108 | pmbaty | 2155 | * reads in the game.nnn history file to set the position up so that the * |
| 2156 | * game position matches the position at the end of the history file. * |
||
| 33 | pmbaty | 2157 | * * |
| 2158 | ******************************************************************************* |
||
| 2159 | */ |
||
| 2160 | void RestoreGame(void) { |
||
| 108 | pmbaty | 2161 | int i, v, move; |
| 33 | pmbaty | 2162 | char cmd[16]; |
| 2163 | |||
| 2164 | if (!history_file) |
||
| 2165 | return; |
||
| 2166 | game_wtm = 1; |
||
| 2167 | InitializeChessBoard(block[0]); |
||
| 2168 | for (i = 0; i < 500; i++) { |
||
| 2169 | fseek(history_file, i * 10, SEEK_SET); |
||
| 2170 | strcpy(cmd, ""); |
||
| 108 | pmbaty | 2171 | v = fscanf(history_file, "%s", cmd); |
| 2172 | if (v < 0) |
||
| 2173 | perror("RestoreGame fscanf error: "); |
||
| 33 | pmbaty | 2174 | if (strcmp(cmd, "pass")) { |
| 108 | pmbaty | 2175 | move = InputMove(block[0], 0, game_wtm, 1, 0, cmd); |
| 33 | pmbaty | 2176 | if (move) |
| 108 | pmbaty | 2177 | MakeMoveRoot(block[0], game_wtm, move); |
| 33 | pmbaty | 2178 | else |
| 2179 | break; |
||
| 2180 | } |
||
| 2181 | game_wtm = Flip(game_wtm); |
||
| 2182 | } |
||
| 2183 | } |
||
| 2184 | |||
| 2185 | /* |
||
| 2186 | ******************************************************************************* |
||
| 2187 | * * |
||
| 2188 | * Kibitz() is used to whisper/kibitz information to a chess server. It has * |
||
| 2189 | * to handle the xboard whisper/kibitz interface. * |
||
| 2190 | * * |
||
| 2191 | ******************************************************************************* |
||
| 2192 | */ |
||
| 2193 | void Kibitz(int level, int wtm, int depth, int time, int value, |
||
| 2194 | uint64_t nodes, int ip, int tb_hits, char *pv) { |
||
| 2195 | int nps; |
||
| 2196 | |||
| 2197 | nps = (int) ((time) ? 100 * nodes / (uint64_t) time : nodes); |
||
| 2198 | if (!puzzling) { |
||
| 2199 | char prefix[128]; |
||
| 2200 | |||
| 2201 | if (!(kibitz & 16)) |
||
| 108 | pmbaty | 2202 | sprintf(prefix, "kibitz"); |
| 33 | pmbaty | 2203 | else |
| 108 | pmbaty | 2204 | sprintf(prefix, "whisper"); |
| 33 | pmbaty | 2205 | switch (level) { |
| 2206 | case 1: |
||
| 2207 | if ((kibitz & 15) >= 1) { |
||
| 154 | pmbaty | 2208 | if (value > 0) |
| 33 | pmbaty | 2209 | printf("%s mate in %d moves.\n\n", prefix, value); |
| 154 | pmbaty | 2210 | if (value < 0) |
| 33 | pmbaty | 2211 | printf("%s mated in %d moves.\n\n", prefix, -value); |
| 2212 | } |
||
| 2213 | break; |
||
| 2214 | case 2: |
||
| 154 | pmbaty | 2215 | if ((kibitz & 15) >= 2) { |
| 2216 | printf("%s ply=%d; eval=%s; nps=%s; time=%s(%d%%)", prefix, depth, |
||
| 2217 | DisplayEvaluationKibitz(value, wtm), DisplayKMB(nps, 0), |
||
| 2218 | DisplayTimeKibitz(time), ip); |
||
| 2219 | printf("; egtb=%s\n", DisplayKMB(tb_hits, 0)); |
||
| 2220 | } |
||
| 2221 | break; |
||
| 33 | pmbaty | 2222 | case 3: |
| 108 | pmbaty | 2223 | if ((kibitz & 15) >= 3 && (nodes > 5000 || level == 2)) |
| 33 | pmbaty | 2224 | printf("%s %s\n", prefix, pv); |
| 2225 | break; |
||
| 2226 | case 4: |
||
| 108 | pmbaty | 2227 | if ((kibitz & 15) >= 4) |
| 33 | pmbaty | 2228 | printf("%s %s\n", prefix, pv); |
| 2229 | break; |
||
| 2230 | case 5: |
||
| 2231 | if ((kibitz & 15) >= 5 && nodes > 5000) { |
||
| 2232 | printf("%s d%d-> %s/s %s(%d%%) %s %s ", prefix, depth, |
||
| 108 | pmbaty | 2233 | DisplayKMB(nps, 0), DisplayTimeKibitz(time), ip, |
| 33 | pmbaty | 2234 | DisplayEvaluationKibitz(value, wtm), pv); |
| 2235 | if (tb_hits) |
||
| 154 | pmbaty | 2236 | printf("egtb=%s", DisplayKMB(tb_hits, 0)); |
| 33 | pmbaty | 2237 | printf("\n"); |
| 2238 | } |
||
| 2239 | break; |
||
| 2240 | } |
||
| 2241 | value = (wtm) ? value : -value; |
||
| 2242 | if (post && level > 1) { |
||
| 2243 | if (strstr(pv, "book")) |
||
| 108 | pmbaty | 2244 | printf(" %2d %5d %7d %" PRIu64 " %s\n", depth, value, time, |
| 33 | pmbaty | 2245 | nodes, pv + 10); |
| 2246 | else |
||
| 108 | pmbaty | 2247 | printf(" %2d %5d %7d %" PRIu64 " %s\n", depth, value, time, |
| 33 | pmbaty | 2248 | nodes, pv); |
| 2249 | } |
||
| 2250 | fflush(stdout); |
||
| 2251 | } |
||
| 2252 | } |
||
| 2253 | |||
| 2254 | /* |
||
| 2255 | ******************************************************************************* |
||
| 2256 | * * |
||
| 2257 | * Output() is used to print the principal variation whenever it changes. * |
||
| 2258 | * * |
||
| 2259 | ******************************************************************************* |
||
| 2260 | */ |
||
| 108 | pmbaty | 2261 | void Output(TREE * RESTRICT tree) { |
| 2262 | int wtm, i; |
||
| 33 | pmbaty | 2263 | |
| 2264 | /* |
||
| 2265 | ************************************************************ |
||
| 2266 | * * |
||
| 108 | pmbaty | 2267 | * Output the PV by walking down the path being backed up. * |
| 2268 | * We do set the "age" for this move to "4" which will * |
||
| 2269 | * keep it in the group of "search with all threads" moves * |
||
| 2270 | * so that it will be searched faster. * |
||
| 33 | pmbaty | 2271 | * * |
| 2272 | ************************************************************ |
||
| 2273 | */ |
||
| 2274 | wtm = root_wtm; |
||
| 2275 | if (!abort_search) { |
||
| 108 | pmbaty | 2276 | kibitz_depth = iteration; |
| 2277 | end_time = ReadClock(); |
||
| 2278 | DisplayPV(tree, 6, wtm, end_time - start_time, &tree->pv[1], 0); |
||
| 33 | pmbaty | 2279 | for (i = 0; i < n_root_moves; i++) |
| 108 | pmbaty | 2280 | if (tree->pv[1].path[1] == root_moves[i].move) |
| 33 | pmbaty | 2281 | break; |
| 108 | pmbaty | 2282 | root_moves[i].path = tree->pv[1]; |
| 2283 | root_moves[i].bm_age = 4; |
||
| 2284 | } |
||
| 2285 | } |
||
| 2286 | |||
| 33 | pmbaty | 2287 | /* |
| 108 | pmbaty | 2288 | ******************************************************************************* |
| 2289 | * * |
||
| 2290 | * Trace() is used to print the search trace output each time a node is * |
||
| 33 | pmbaty | 2291 | * traversed in the tree. * |
| 2292 | * * |
||
| 2293 | ******************************************************************************* |
||
| 2294 | */ |
||
| 2295 | void Trace(TREE * RESTRICT tree, int ply, int depth, int wtm, int alpha, |
||
| 108 | pmbaty | 2296 | int beta, const char *name, int mode, int phase, int order) { |
| 33 | pmbaty | 2297 | int i; |
| 2298 | |||
| 2299 | Lock(lock_io); |
||
| 2300 | for (i = 1; i < ply; i++) |
||
| 108 | pmbaty | 2301 | Print(-1, " "); |
| 33 | pmbaty | 2302 | if (phase != EVALUATION) { |
| 108 | pmbaty | 2303 | Print(-1, "%d %s(%d) d:%2d [%s,", ply, OutputMove(tree, ply, wtm, |
| 2304 | tree->curmv[ply]), order, depth, DisplayEvaluation(alpha, 1)); |
||
| 2305 | Print(-1, "%s] n:%" PRIu64 " %s(%c:%d)", DisplayEvaluation(beta, 1), |
||
| 2306 | tree->nodes_searched, name, (mode) ? 'P' : 'S', phase); |
||
| 2307 | Print(-1, " (t=%d)\n", tree->thread_id); |
||
| 33 | pmbaty | 2308 | } else { |
| 108 | pmbaty | 2309 | Print(-1, "%d window/eval(%s) = {", ply, name); |
| 2310 | Print(-1, "%s, ", DisplayEvaluation(alpha, 1)); |
||
| 2311 | Print(-1, "%s, ", DisplayEvaluation(depth, 1)); |
||
| 2312 | Print(-1, "%s}\n", DisplayEvaluation(beta, 1)); |
||
| 33 | pmbaty | 2313 | } |
| 2314 | fflush(0); |
||
| 2315 | Unlock(lock_io); |
||
| 2316 | } |
||
| 2317 | |||
| 2318 | /* |
||
| 2319 | ******************************************************************************* |
||
| 2320 | * * |
||
| 2321 | * StrCnt() counts the number of times a character occurs in a string. * |
||
| 2322 | * * |
||
| 2323 | ******************************************************************************* |
||
| 2324 | */ |
||
| 2325 | int StrCnt(char *string, char testchar) { |
||
| 156 | pmbaty | 2326 | int count = 0; size_t i; // Pierre-Marie Baty -- fixed type |
| 33 | pmbaty | 2327 | |
| 154 | pmbaty | 2328 | for (i = 0; i < strlen(string); i++) |
| 33 | pmbaty | 2329 | if (string[i] == testchar) |
| 2330 | count++; |
||
| 2331 | return count; |
||
| 2332 | } |
||
| 2333 | |||
| 2334 | /* |
||
| 2335 | ******************************************************************************* |
||
| 2336 | * * |
||
| 2337 | * ValidMove() is used to verify that a move is playable. It is mainly * |
||
| 2338 | * used to confirm that a move retrieved from the transposition/refutation * |
||
| 2339 | * and/or killer move is valid in the current position by checking the move * |
||
| 2340 | * against the current chess board, castling status, en passant status, etc. * |
||
| 2341 | * * |
||
| 2342 | ******************************************************************************* |
||
| 2343 | */ |
||
| 2344 | int ValidMove(TREE * RESTRICT tree, int ply, int wtm, int move) { |
||
| 2345 | int btm = Flip(wtm); |
||
| 2346 | |||
| 2347 | /* |
||
| 2348 | ************************************************************ |
||
| 2349 | * * |
||
| 2350 | * Make sure that the piece on <from> is the right color. * |
||
| 2351 | * * |
||
| 2352 | ************************************************************ |
||
| 2353 | */ |
||
| 2354 | if (PcOnSq(From(move)) != ((wtm) ? Piece(move) : -Piece(move))) |
||
| 2355 | return 0; |
||
| 2356 | switch (Piece(move)) { |
||
| 2357 | /* |
||
| 2358 | ************************************************************ |
||
| 2359 | * * |
||
| 2360 | * Null-moves are caught as it is possible for a killer * |
||
| 2361 | * move entry to be zero at certain times. * |
||
| 2362 | * * |
||
| 2363 | ************************************************************ |
||
| 2364 | */ |
||
| 2365 | case empty: |
||
| 2366 | return 0; |
||
| 2367 | /* |
||
| 2368 | ************************************************************ |
||
| 2369 | * * |
||
| 2370 | * King moves are validated here if the king is moving two * |
||
| 2371 | * squares at one time (castling moves). Otherwise fall * |
||
| 2372 | * into the normal piece validation routine below. For * |
||
| 2373 | * castling moves, we need to verify that the castling * |
||
| 2374 | * status is correct to avoid "creating" a new rook or * |
||
| 2375 | * king. * |
||
| 2376 | * * |
||
| 2377 | ************************************************************ |
||
| 2378 | */ |
||
| 2379 | case king: |
||
| 2380 | if (Abs(From(move) - To(move)) == 2) { |
||
| 2381 | if (Castle(ply, wtm) > 0) { |
||
| 2382 | if (To(move) == csq[wtm]) { |
||
| 2383 | if ((!(Castle(ply, wtm) & 2)) || (OccupiedSquares & OOO[wtm]) |
||
| 2384 | || (AttacksTo(tree, csq[wtm]) & Occupied(btm)) |
||
| 2385 | || (AttacksTo(tree, dsq[wtm]) & Occupied(btm)) |
||
| 2386 | || (AttacksTo(tree, esq[wtm]) & Occupied(btm))) |
||
| 2387 | return 0; |
||
| 2388 | } else if (To(move) == gsq[wtm]) { |
||
| 2389 | if ((!(Castle(ply, wtm) & 1)) || (OccupiedSquares & OO[wtm]) |
||
| 2390 | || (AttacksTo(tree, esq[wtm]) & Occupied(btm)) |
||
| 2391 | || (AttacksTo(tree, fsq[wtm]) & Occupied(btm)) |
||
| 2392 | || (AttacksTo(tree, gsq[wtm]) & Occupied(btm))) |
||
| 2393 | return 0; |
||
| 2394 | } |
||
| 2395 | } else |
||
| 2396 | return 0; |
||
| 2397 | return 1; |
||
| 2398 | } |
||
| 2399 | break; |
||
| 2400 | /* |
||
| 2401 | ************************************************************ |
||
| 2402 | * * |
||
| 2403 | * Check for a normal pawn advance. * |
||
| 2404 | * * |
||
| 2405 | ************************************************************ |
||
| 2406 | */ |
||
| 2407 | case pawn: |
||
| 2408 | if (((wtm) ? To(move) - From(move) : From(move) - To(move)) < 0) |
||
| 2409 | return 0; |
||
| 108 | pmbaty | 2410 | if (Abs(From(move) - To(move)) == 8) |
| 154 | pmbaty | 2411 | return PcOnSq(To(move)) ? 0 : 1; |
| 108 | pmbaty | 2412 | if (Abs(From(move) - To(move)) == 16) |
| 2413 | return (PcOnSq(To(move)) || PcOnSq(To(move) + epdir[wtm])) ? 0 : 1; |
||
| 33 | pmbaty | 2414 | if (!Captured(move)) |
| 2415 | return 0; |
||
| 2416 | /* |
||
| 2417 | ************************************************************ |
||
| 2418 | * * |
||
| 2419 | * Check for an en passant capture which is somewhat * |
||
| 2420 | * unusual in that the [to] square does not contain the * |
||
| 2421 | * pawn being captured. Make sure that the pawn being * |
||
| 2422 | * captured advanced two ranks the previous move. * |
||
| 2423 | * * |
||
| 2424 | ************************************************************ |
||
| 2425 | */ |
||
| 2426 | if ((PcOnSq(To(move)) == 0) |
||
| 2427 | && (PcOnSq(To(move) + epdir[wtm]) == ((wtm) ? -pawn : pawn)) |
||
| 2428 | && (EnPassantTarget(ply) & SetMask(To(move)))) |
||
| 2429 | return 1; |
||
| 2430 | break; |
||
| 2431 | /* |
||
| 2432 | ************************************************************ |
||
| 2433 | * * |
||
| 2434 | * Normal moves are all checked the same way. * |
||
| 2435 | * * |
||
| 2436 | ************************************************************ |
||
| 2437 | */ |
||
| 2438 | case queen: |
||
| 2439 | case rook: |
||
| 2440 | case bishop: |
||
| 2441 | if (Attack(From(move), To(move))) |
||
| 2442 | break; |
||
| 2443 | return 0; |
||
| 2444 | case knight: |
||
| 2445 | break; |
||
| 2446 | } |
||
| 2447 | /* |
||
| 2448 | ************************************************************ |
||
| 2449 | * * |
||
| 2450 | * All normal moves are validated in the same manner, by * |
||
| 2451 | * checking the from and to squares and also the attack * |
||
| 2452 | * status for completeness. * |
||
| 2453 | * * |
||
| 2454 | ************************************************************ |
||
| 2455 | */ |
||
| 108 | pmbaty | 2456 | return ((Captured(move) == ((wtm) ? -PcOnSq(To(move)) : PcOnSq(To(move)))) |
| 2457 | && Captured(move) != king) ? 1 : 0; |
||
| 33 | pmbaty | 2458 | } |
| 2459 | |||
| 2460 | /* last modified 02/26/14 */ |
||
| 2461 | /* |
||
| 2462 | ******************************************************************************* |
||
| 2463 | * * |
||
| 2464 | * VerifyMove() tests a move to confirm it is absolutely legal. It shouldn't * |
||
| 2465 | * be used inside the search, but can be used to check a 21-bit (compressed) * |
||
| 2466 | * move to be sure it is safe to make it on the permanent game board. * |
||
| 2467 | * * |
||
| 2468 | ******************************************************************************* |
||
| 2469 | */ |
||
| 2470 | int VerifyMove(TREE * RESTRICT tree, int ply, int wtm, int move) { |
||
| 108 | pmbaty | 2471 | unsigned moves[256], *mv, *mvp; |
| 33 | pmbaty | 2472 | |
| 2473 | /* |
||
| 2474 | Generate moves, then eliminate any that are illegal. |
||
| 2475 | */ |
||
| 2476 | if (move == 0) |
||
| 2477 | return 0; |
||
| 2478 | tree->status[MAXPLY] = tree->status[ply]; |
||
| 2479 | mvp = GenerateCaptures(tree, MAXPLY, wtm, moves); |
||
| 2480 | mvp = GenerateNoncaptures(tree, MAXPLY, wtm, mvp); |
||
| 2481 | for (mv = &moves[0]; mv < mvp; mv++) { |
||
| 108 | pmbaty | 2482 | MakeMove(tree, MAXPLY, wtm, *mv); |
| 33 | pmbaty | 2483 | if (!Check(wtm) && move == *mv) { |
| 108 | pmbaty | 2484 | UnmakeMove(tree, MAXPLY, wtm, *mv); |
| 33 | pmbaty | 2485 | return 1; |
| 2486 | } |
||
| 108 | pmbaty | 2487 | UnmakeMove(tree, MAXPLY, wtm, *mv); |
| 33 | pmbaty | 2488 | } |
| 2489 | return 0; |
||
| 2490 | } |
||
| 2491 | |||
| 2492 | /* |
||
| 2493 | ******************************************************************************* |
||
| 2494 | * * |
||
| 2495 | * Windows NUMA support * |
||
| 2496 | * * |
||
| 2497 | ******************************************************************************* |
||
| 2498 | */ |
||
| 2499 | #if !defined(UNIX) |
||
| 2500 | static BOOL(WINAPI * pGetNumaHighestNodeNumber) (PULONG); |
||
| 2501 | static BOOL(WINAPI * pGetNumaNodeProcessorMask) (UCHAR, PULONGLONG); |
||
| 2502 | static DWORD(WINAPI * pSetThreadIdealProcessor) (HANDLE, DWORD); |
||
| 2503 | static volatile BOOL fThreadsInitialized = FALSE; |
||
| 2504 | static BOOL fSystemIsNUMA = FALSE; |
||
| 2505 | static ULONGLONG ullProcessorMask[256]; |
||
| 2506 | static ULONG ulNumaNodes; |
||
| 2507 | static ULONG ulNumaNode = 0; |
||
| 2508 | |||
| 2509 | // Get NUMA-related information from Windows |
||
| 2510 | static void WinNumaInit(void) { |
||
| 2511 | HMODULE hModule; |
||
| 2512 | ULONG ulCPU, ulNode; |
||
| 2513 | ULONGLONG ullMask; |
||
| 2514 | DWORD dwCPU; |
||
| 2515 | |||
| 2516 | if (!fThreadsInitialized) { |
||
| 108 | pmbaty | 2517 | Lock(lock_smp); |
| 33 | pmbaty | 2518 | if (!fThreadsInitialized) { |
| 2519 | printf("\nInitializing multiple threads.\n"); |
||
| 2520 | fThreadsInitialized = TRUE; |
||
| 2521 | hModule = GetModuleHandle("kernel32"); |
||
| 2522 | pGetNumaHighestNodeNumber = |
||
| 2523 | (void *) GetProcAddress(hModule, "GetNumaHighestNodeNumber"); |
||
| 2524 | pGetNumaNodeProcessorMask = |
||
| 2525 | (void *) GetProcAddress(hModule, "GetNumaNodeProcessorMask"); |
||
| 2526 | pSetThreadIdealProcessor = |
||
| 2527 | (void *) GetProcAddress(hModule, "SetThreadIdealProcessor"); |
||
| 2528 | if (pGetNumaHighestNodeNumber && pGetNumaNodeProcessorMask && |
||
| 2529 | pGetNumaHighestNodeNumber(&ulNumaNodes) && (ulNumaNodes > 0)) { |
||
| 2530 | fSystemIsNUMA = TRUE; |
||
| 2531 | if (ulNumaNodes > 255) |
||
| 2532 | ulNumaNodes = 255; |
||
| 156 | pmbaty | 2533 | printf("System is NUMA. %" PRId64 " nodes reported by Windows\n", // Pierre-Marie Baty -- fixed format string |
| 2534 | (int64_t) (ulNumaNodes + 1)); // Pierre-Marie Baty -- added type cast |
||
| 33 | pmbaty | 2535 | for (ulNode = 0; ulNode <= ulNumaNodes; ulNode++) { |
| 2536 | pGetNumaNodeProcessorMask((UCHAR) ulNode, |
||
| 2537 | &ullProcessorMask[ulNode]); |
||
| 156 | pmbaty | 2538 | printf("Node %" PRId64 " CPUs: ", (int64_t) ulNode); // Pierre-Marie Baty -- fixed format string + added type cast |
| 33 | pmbaty | 2539 | ullMask = ullProcessorMask[ulNode]; |
| 2540 | if (0 == ullMask) |
||
| 2541 | fSystemIsNUMA = FALSE; |
||
| 2542 | else { |
||
| 2543 | ulCPU = 0; |
||
| 2544 | do { |
||
| 2545 | if (ullMask & 1) |
||
| 156 | pmbaty | 2546 | printf("%" PRId64 " ", (int64_t) ulCPU); // Pierre-Marie Baty -- fixed format string + added type cast |
| 33 | pmbaty | 2547 | ulCPU++; |
| 2548 | ullMask >>= 1; |
||
| 2549 | } while (ullMask); |
||
| 2550 | } |
||
| 2551 | printf("\n"); |
||
| 2552 | } |
||
| 2553 | // Thread 0 was already started on some CPU. To simplify things further, |
||
| 154 | pmbaty | 2554 | // exchange ProcessorMask[0] and ProcessorMask[node for that CPU], |
| 2555 | // so ProcessorMask[0] would always be node for thread 0 |
||
| 33 | pmbaty | 2556 | dwCPU = |
| 2557 | pSetThreadIdealProcessor(GetCurrentThread(), MAXIMUM_PROCESSORS); |
||
| 156 | pmbaty | 2558 | printf("Current ideal CPU is %llu\n", (long long unsigned) dwCPU); // Pierre-Marie Baty -- added type cast |
| 33 | pmbaty | 2559 | pSetThreadIdealProcessor(GetCurrentThread(), dwCPU); |
| 2560 | if ((((DWORD) - 1) != dwCPU) && (MAXIMUM_PROCESSORS != dwCPU) |
||
| 156 | pmbaty | 2561 | && !(ullProcessorMask[0] & (1uLL << dwCPU))) { // Pierre-Marie Baty -- fixed type |
| 33 | pmbaty | 2562 | for (ulNode = 1; ulNode <= ulNumaNodes; ulNode++) { |
| 156 | pmbaty | 2563 | if (ullProcessorMask[ulNode] & (1uLL << dwCPU)) { // Pierre-Marie Baty -- fixed type |
| 2564 | printf("Exchanging nodes 0 and %" PRId64 "\n", (int64_t) ulNode); // Pierre-Marie Baty -- fixed format string + added type cast |
||
| 33 | pmbaty | 2565 | ullMask = ullProcessorMask[ulNode]; |
| 2566 | ullProcessorMask[ulNode] = ullProcessorMask[0]; |
||
| 2567 | ullProcessorMask[0] = ullMask; |
||
| 2568 | break; |
||
| 2569 | } |
||
| 2570 | } |
||
| 2571 | } |
||
| 2572 | } else |
||
| 2573 | printf("System is SMP, not NUMA.\n"); |
||
| 2574 | } |
||
| 108 | pmbaty | 2575 | Unlock(lock_smp); |
| 33 | pmbaty | 2576 | } |
| 2577 | } |
||
| 2578 | |||
| 2579 | // Start thread. For NUMA system set its affinity. |
||
| 2580 | # if (CPUS > 1) |
||
| 2581 | pthread_t NumaStartThread(void *func, void *args) { |
||
| 2582 | HANDLE hThread; |
||
| 2583 | ULONGLONG ullMask; |
||
| 2584 | |||
| 2585 | WinNumaInit(); |
||
| 2586 | if (fSystemIsNUMA) { |
||
| 2587 | ulNumaNode++; |
||
| 2588 | if (ulNumaNode > ulNumaNodes) |
||
| 2589 | ulNumaNode = 0; |
||
| 2590 | ullMask = ullProcessorMask[ulNumaNode]; |
||
| 156 | pmbaty | 2591 | printf("Starting thread on node %" PRId64 " CPU mask %I64d\n", (int64_t) ulNumaNode, // Pierre-Marie Baty -- fixed format string + added type cast |
| 33 | pmbaty | 2592 | ullMask); |
| 2593 | SetThreadAffinityMask(GetCurrentThread(), (DWORD_PTR) ullMask); |
||
| 2594 | hThread = (HANDLE) _beginthreadex(0, 0, func, args, CREATE_SUSPENDED, 0); |
||
| 2595 | SetThreadAffinityMask(hThread, (DWORD_PTR) ullMask); |
||
| 2596 | ResumeThread(hThread); |
||
| 156 | pmbaty | 2597 | SetThreadAffinityMask(GetCurrentThread(), (DWORD_PTR) ullProcessorMask[0]); // Pierre-Marie Baty -- added type cast |
| 33 | pmbaty | 2598 | } else |
| 2599 | hThread = (HANDLE) _beginthreadex(0, 0, func, args, 0, 0); |
||
| 2600 | return hThread; |
||
| 2601 | } |
||
| 2602 | # endif |
||
| 2603 | |||
| 2604 | // Allocate memory for thread #N |
||
| 2605 | void *WinMalloc(size_t cbBytes, int iThread) { |
||
| 2606 | HANDLE hThread; |
||
| 2607 | DWORD_PTR dwAffinityMask; |
||
| 2608 | void *pBytes; |
||
| 2609 | ULONG ulNode; |
||
| 2610 | |||
| 2611 | WinNumaInit(); |
||
| 2612 | if (fSystemIsNUMA) { |
||
| 2613 | ulNode = iThread % (ulNumaNodes + 1); |
||
| 2614 | hThread = GetCurrentThread(); |
||
| 156 | pmbaty | 2615 | dwAffinityMask = SetThreadAffinityMask(hThread, (DWORD_PTR) ullProcessorMask[ulNode]); // Pierre-Marie Baty -- added type cast |
| 33 | pmbaty | 2616 | pBytes = VirtualAlloc(NULL, cbBytes, MEM_COMMIT, PAGE_READWRITE); |
| 2617 | if (pBytes == NULL) |
||
| 2618 | ExitProcess(GetLastError()); |
||
| 2619 | memset(pBytes, 0, cbBytes); |
||
| 2620 | SetThreadAffinityMask(hThread, dwAffinityMask); |
||
| 2621 | } else { |
||
| 2622 | pBytes = VirtualAlloc(NULL, cbBytes, MEM_COMMIT, PAGE_READWRITE); |
||
| 2623 | if (pBytes == NULL) |
||
| 2624 | ExitProcess(GetLastError()); |
||
| 2625 | memset(pBytes, 0, cbBytes); |
||
| 2626 | } |
||
| 2627 | return pBytes; |
||
| 2628 | } |
||
| 2629 | |||
| 2630 | // Allocate interleaved memory |
||
| 2631 | void *WinMallocInterleaved(size_t cbBytes, int cThreads) { |
||
| 2632 | char *pBase; |
||
| 2633 | char *pEnd; |
||
| 2634 | char *pch; |
||
| 2635 | HANDLE hThread; |
||
| 2636 | DWORD_PTR dwAffinityMask; |
||
| 2637 | ULONG ulNode; |
||
| 2638 | SYSTEM_INFO sSysInfo; |
||
| 2639 | size_t dwStep; |
||
| 2640 | int iThread; |
||
| 2641 | DWORD dwPageSize; // the page size on this computer |
||
| 2642 | LPVOID lpvResult; |
||
| 2643 | |||
| 2644 | WinNumaInit(); |
||
| 2645 | if (fSystemIsNUMA && (cThreads > 1)) { |
||
| 108 | pmbaty | 2646 | GetSystemInfo(&sSysInfo); // populate the system information structure |
| 33 | pmbaty | 2647 | dwPageSize = sSysInfo.dwPageSize; |
| 2648 | // Reserve pages in the process's virtual address space. |
||
| 2649 | pBase = (char *) VirtualAlloc(NULL, cbBytes, MEM_RESERVE, PAGE_NOACCESS); |
||
| 2650 | if (pBase == NULL) { |
||
| 2651 | printf("VirtualAlloc() reserve failed\n"); |
||
| 2652 | CraftyExit(0); |
||
| 2653 | } |
||
| 2654 | // Now walk through memory, committing each page |
||
| 2655 | hThread = GetCurrentThread(); |
||
| 2656 | dwStep = dwPageSize * cThreads; |
||
| 2657 | pEnd = pBase + cbBytes; |
||
| 2658 | for (iThread = 0; iThread < cThreads; iThread++) { |
||
| 2659 | ulNode = iThread % (ulNumaNodes + 1); |
||
| 2660 | dwAffinityMask = |
||
| 156 | pmbaty | 2661 | SetThreadAffinityMask(hThread, (DWORD_PTR) ullProcessorMask[ulNode]); // Pierre-Marie Baty -- added type cast |
| 33 | pmbaty | 2662 | for (pch = pBase + iThread * dwPageSize; pch < pEnd; pch += dwStep) { |
| 108 | pmbaty | 2663 | lpvResult = VirtualAlloc(pch, // next page to commit |
| 33 | pmbaty | 2664 | dwPageSize, // page size, in bytes |
| 2665 | MEM_COMMIT, // allocate a committed page |
||
| 108 | pmbaty | 2666 | PAGE_READWRITE); // read/write access |
| 33 | pmbaty | 2667 | if (lpvResult == NULL) |
| 2668 | ExitProcess(GetLastError()); |
||
| 2669 | memset(lpvResult, 0, dwPageSize); |
||
| 2670 | } |
||
| 2671 | SetThreadAffinityMask(hThread, dwAffinityMask); |
||
| 2672 | } |
||
| 2673 | } else { |
||
| 2674 | pBase = VirtualAlloc(NULL, cbBytes, MEM_COMMIT, PAGE_READWRITE); |
||
| 2675 | if (pBase == NULL) |
||
| 2676 | ExitProcess(GetLastError()); |
||
| 2677 | memset(pBase, 0, cbBytes); |
||
| 2678 | } |
||
| 2679 | return (void *) pBase; |
||
| 2680 | } |
||
| 2681 | |||
| 2682 | // Free interleaved memory |
||
| 2683 | void WinFreeInterleaved(void *pMemory, size_t cBytes) { |
||
| 2684 | VirtualFree(pMemory, 0, MEM_RELEASE); |
||
| 2685 | } |
||
| 2686 | #endif |