Rev 108 | Go to most recent revision | Details | Last modification | View Log | RSS feed
Rev | Author | Line No. | Line |
---|---|---|---|
33 | pmbaty | 1 | #include "chess.h" |
2 | #include "data.h" |
||
3 | /* last modified 05/07/14 */ |
||
4 | /* |
||
5 | ******************************************************************************* |
||
6 | * * |
||
7 | * Quiece() is the recursive routine used to implement the quiescence * |
||
8 | * search part of the alpha/beta negamax search. It performs the following * |
||
9 | * functions: * |
||
10 | * * |
||
11 | * (1) It computes a stand-pat score, which gives the side-on-move the * |
||
12 | * choice of standing pat and not playing any move at all and just accepting * |
||
13 | * the current static evaluation, or else it may try captures and/or * |
||
14 | * checking moves to see if it can improve the stand-pat score by making a * |
||
15 | * move that leads to some sort of positional or material gain. * |
||
16 | * * |
||
17 | * (2) The first phase is to generate all possible capture moves and then * |
||
18 | * sort them into descending using the value * |
||
19 | * * |
||
20 | * val = 128 * captured_piece_value + capturing_piece_value * |
||
21 | * * |
||
22 | * This is the classic MVV/LVA ordering approach that removes heavy pieces * |
||
23 | * first in an attempt to reduce the size of the sub-tree these pieces * |
||
24 | * produce. * |
||
25 | * * |
||
26 | * (3) When we get ready to actually search each capture, we analyze each * |
||
27 | * move to see if it appears reasonable. Small pieces can capture larger * |
||
28 | * ones safely, ditto for equal exchanges. For the rest, we use Swap() to * |
||
29 | * compute the SEE score. If this is less than zero, we do not search this * |
||
30 | * move at all to avoid wasting time, since a losing capture rarely helps * |
||
31 | * improve the score in the q-search. The goal here is to find a capture * |
||
32 | * that improves on the stand-pat score and gets us closer to a position * |
||
33 | * that we would describe as "quiet" or "static". * |
||
34 | * * |
||
35 | * (4) If the parameter "checks" is non-zero then after searching the * |
||
36 | * captures, we generate checking moves and search those. This value also * |
||
37 | * slightly changes the way captures are searched, since those that are also * |
||
38 | * checks result in calling QuiesceEvasions() which evades checks to see if * |
||
39 | * the check is actually a mate. This means that we have one layer of full- * |
||
40 | * width search to escape checks and do not allow a stand-pat which would * |
||
41 | * hide the effect of the check completely. * |
||
42 | * * |
||
43 | ******************************************************************************* |
||
44 | */ |
||
45 | int Quiesce(TREE * RESTRICT tree, int alpha, int beta, int wtm, int ply, |
||
46 | int checks) { |
||
47 | int original_alpha = alpha, value; |
||
48 | int *next; |
||
49 | int *movep, *sortv; |
||
50 | |||
51 | /* |
||
52 | ************************************************************ |
||
53 | * * |
||
54 | * Initialize. * |
||
55 | * * |
||
56 | ************************************************************ |
||
57 | */ |
||
58 | if (ply >= MAXPLY - 1) |
||
59 | return beta; |
||
60 | #if defined(NODES) |
||
61 | if (--temp_search_nodes <= 0) { |
||
62 | abort_search = 1; |
||
63 | return 0; |
||
64 | } |
||
65 | #endif |
||
66 | if (tree->thread_id == 0) |
||
67 | next_time_check--; |
||
68 | /* |
||
69 | ************************************************************ |
||
70 | * * |
||
71 | * Check for draw by repetition, which includes 50 move * |
||
72 | * draws also. This is only done at the first ply of the * |
||
73 | * quiescence search since we are following checking moves * |
||
74 | * as well. The parameter "checks" passed in is "1" for * |
||
75 | * that particular case only (when called from Search()). * |
||
76 | * all other calls (from inside Quiesce()) pass a value of * |
||
77 | * zero so that additional plies of checks are not tried. * |
||
78 | * * |
||
79 | ************************************************************ |
||
80 | */ |
||
81 | if (checks) { |
||
82 | if (Repeat(tree, ply)) { |
||
83 | value = DrawScore(wtm); |
||
84 | if (value < beta) |
||
85 | SavePV(tree, ply, 0); |
||
86 | #if defined(TRACE) |
||
87 | if (ply <= trace_level) |
||
88 | printf("draw by repetition detected, ply=%d.\n", ply); |
||
89 | #endif |
||
90 | return value; |
||
91 | } |
||
92 | } |
||
93 | /* |
||
94 | ************************************************************ |
||
95 | * * |
||
96 | * Now call Evaluate() to produce the "stand-pat" score * |
||
97 | * that will be returned if no capture is acceptable. If * |
||
98 | * this score is > alpha and < beta, then we also have to * |
||
99 | * save the path to this node as it is the PV that leads * |
||
100 | * to this score. * |
||
101 | * * |
||
102 | ************************************************************ |
||
103 | */ |
||
104 | tree->curmv[ply] = 0; |
||
105 | value = Evaluate(tree, ply, wtm, alpha, beta); |
||
106 | #if defined(TRACE) |
||
107 | if (ply <= trace_level) |
||
108 | Trace(tree, ply, value, wtm, alpha, beta, "Quiesce", EVALUATION); |
||
109 | #endif |
||
110 | if (value > alpha) { |
||
111 | if (value >= beta) |
||
112 | return value; |
||
113 | alpha = value; |
||
114 | tree->pv[ply].pathl = ply; |
||
115 | tree->pv[ply].pathh = 0; |
||
116 | tree->pv[ply].pathd = iteration_depth; |
||
117 | } |
||
118 | /* |
||
119 | ************************************************************ |
||
120 | * * |
||
121 | * Generate captures and sort them based on simple MVV/LVA * |
||
122 | * order. We simply try to capture the most valuable * |
||
123 | * piece possible, using the least valuable attacker * |
||
124 | * possible, to get rid of heavy pieces quickly and reduce * |
||
125 | * the overall size of the tree. * |
||
126 | * * |
||
127 | * Note that later we use the value of the capturing * |
||
128 | * piece, the value of the captured piece, and possibly * |
||
129 | * Swap() to exclude captures that appear to lose * |
||
130 | * material, but we delay expending this effort as long as * |
||
131 | * possible, since beta cutoffs make it unnecessary to * |
||
132 | * search all of these moves anyway. * |
||
133 | * * |
||
134 | ************************************************************ |
||
135 | */ |
||
136 | tree->last[ply] = GenerateCaptures(tree, ply, wtm, tree->last[ply - 1]); |
||
137 | sortv = tree->sort_value; |
||
138 | for (movep = tree->last[ply - 1]; movep < tree->last[ply]; movep++) { |
||
139 | if (Captured(*movep) == king) |
||
140 | return beta; |
||
141 | *sortv++ = 128 * pcval[Captured(*movep)] - pcval[Piece(*movep)]; |
||
142 | } |
||
143 | if (!checks && tree->last[ply] == tree->last[ply - 1]) { |
||
144 | if (alpha != original_alpha) { |
||
145 | tree->pv[ply - 1] = tree->pv[ply]; |
||
146 | tree->pv[ply - 1].path[ply - 1] = tree->curmv[ply - 1]; |
||
147 | } |
||
148 | return value; |
||
149 | } |
||
150 | /* |
||
151 | ************************************************************ |
||
152 | * * |
||
153 | * This is a simple insertion sort algorithm. It seems be * |
||
154 | * be no faster than a normal bubble sort, but using this * |
||
155 | * eliminated a lot of explaining about "why?". :) * |
||
156 | * * |
||
157 | ************************************************************ |
||
158 | */ |
||
159 | if (tree->last[ply] > tree->last[ply - 1] + 1) { |
||
160 | int temp1, temp2, *tmovep, *tsortv, *end; |
||
161 | |||
162 | sortv = tree->sort_value + 1; |
||
163 | end = tree->last[ply]; |
||
164 | for (movep = tree->last[ply - 1] + 1; movep < end; movep++, sortv++) { |
||
165 | temp1 = *movep; |
||
166 | temp2 = *sortv; |
||
167 | tmovep = movep - 1; |
||
168 | tsortv = sortv - 1; |
||
169 | while (tmovep >= tree->last[ply - 1] && *tsortv < temp2) { |
||
170 | *(tsortv + 1) = *tsortv; |
||
171 | *(tmovep + 1) = *tmovep; |
||
172 | tmovep--; |
||
173 | tsortv--; |
||
174 | } |
||
175 | *(tmovep + 1) = temp1; |
||
176 | *(tsortv + 1) = temp2; |
||
177 | } |
||
178 | } |
||
179 | tree->next_status[ply].last = tree->last[ply - 1]; |
||
180 | /* |
||
181 | ************************************************************ |
||
182 | * * |
||
183 | * Iterate through the move list and search the resulting * |
||
184 | * positions. Now that we are ready to actually search * |
||
185 | * the set of capturing moves, we try three quick tests to * |
||
186 | * see if the move should be excluded because it appears * |
||
187 | * to lose material. * |
||
188 | * * |
||
189 | * (1) If the capturing piece is not more valuable than * |
||
190 | * the captured piece, then the move can't lose material * |
||
191 | * and should be searched. * |
||
192 | * * |
||
193 | * (2) If the capture removes the last opponent piece, we * |
||
194 | * always search this kind of capture since this can be * |
||
195 | * the move the allows a passed pawn to promote when the * |
||
196 | * opponent has no piece to catch it. * |
||
197 | * * |
||
198 | * (3) Otherwise, If the capturing piece is more valuable * |
||
199 | * than the captured piece, we use Swap() to determine if * |
||
200 | * the capture is losing or not so that we don't search * |
||
201 | * hopeless moves. * |
||
202 | * * |
||
203 | ************************************************************ |
||
204 | */ |
||
205 | for (next = tree->last[ply - 1]; next < tree->last[ply]; next++) { |
||
206 | tree->curmv[ply] = *next; |
||
207 | if (pcval[Piece(tree->curmv[ply])] > pcval[Captured(tree->curmv[ply])] && |
||
208 | TotalPieces(wtm, occupied) |
||
209 | - p_vals[Captured(tree->curmv[ply])] > 0 && |
||
210 | Swap(tree, tree->curmv[ply], wtm) < 0) |
||
211 | continue; |
||
212 | #if defined(TRACE) |
||
213 | if (ply <= trace_level) |
||
214 | Trace(tree, ply, 0, wtm, alpha, beta, "Quiesce", CAPTURE_MOVES); |
||
215 | #endif |
||
216 | MakeMove(tree, ply, tree->curmv[ply], wtm); |
||
217 | tree->nodes_searched++; |
||
218 | if (!checks) |
||
219 | value = -Quiesce(tree, -beta, -alpha, Flip(wtm), ply + 1, 0); |
||
220 | else if (!Check(wtm)) { |
||
221 | if (Check(Flip(wtm))) { |
||
222 | tree->qchecks_done++; |
||
223 | value = -QuiesceEvasions(tree, -beta, -alpha, Flip(wtm), ply + 1); |
||
224 | } else |
||
225 | value = -Quiesce(tree, -beta, -alpha, Flip(wtm), ply + 1, 0); |
||
226 | } |
||
227 | UnmakeMove(tree, ply, tree->curmv[ply], wtm); |
||
228 | if (abort_search || tree->stop) |
||
229 | return 0; |
||
230 | if (value > alpha) { |
||
231 | if (value >= beta) |
||
232 | return value; |
||
233 | alpha = value; |
||
234 | } |
||
235 | } |
||
236 | /* |
||
237 | ************************************************************ |
||
238 | * * |
||
239 | * The next block of code is only executed if the checks * |
||
240 | * parameter is non-zero, otherwise we skip this and exit * |
||
241 | * with no further searching. * |
||
242 | * * |
||
243 | * Generate just the moves (non-captures) that give check * |
||
244 | * and search the ones that Swap() says are safe. Subtle * |
||
245 | * trick: we discard the captures left over from the * |
||
246 | * above search since we labeled them "losing moves." * |
||
247 | * * |
||
248 | ************************************************************ |
||
249 | */ |
||
250 | if (checks) { |
||
251 | tree->last[ply] = GenerateChecks(tree, wtm, tree->last[ply - 1]); |
||
252 | /* |
||
253 | ************************************************************ |
||
254 | * * |
||
255 | * Iterate through the move list and search the resulting * |
||
256 | * positions. We take them in the normal order that * |
||
257 | * GenerateChecks() provides. * |
||
258 | * * |
||
259 | ************************************************************ |
||
260 | */ |
||
261 | for (next = tree->last[ply - 1]; next < tree->last[ply]; next++) { |
||
262 | tree->curmv[ply] = *next; |
||
263 | if (Swap(tree, tree->curmv[ply], wtm) >= 0) { |
||
264 | #if defined(TRACE) |
||
265 | if (ply <= trace_level) |
||
266 | Trace(tree, ply, 0, wtm, alpha, beta, "Quiesce", REMAINING_MOVES); |
||
267 | #endif |
||
268 | MakeMove(tree, ply, tree->curmv[ply], wtm); |
||
269 | tree->nodes_searched++; |
||
270 | if (!Check(wtm)) { |
||
271 | tree->qchecks_done++; |
||
272 | value = -QuiesceEvasions(tree, -beta, -alpha, Flip(wtm), ply + 1); |
||
273 | } |
||
274 | UnmakeMove(tree, ply, tree->curmv[ply], wtm); |
||
275 | if (abort_search || tree->stop) |
||
276 | return 0; |
||
277 | if (value > alpha) { |
||
278 | if (value >= beta) |
||
279 | return value; |
||
280 | alpha = value; |
||
281 | } |
||
282 | } |
||
283 | } |
||
284 | } |
||
285 | /* |
||
286 | ************************************************************ |
||
287 | * * |
||
288 | * All moves have been searched. Return the search result * |
||
289 | * that was found. If the result is not the original * |
||
290 | * alpha score, then we need to back up the PV that is * |
||
291 | * associated with this score. * |
||
292 | * * |
||
293 | ************************************************************ |
||
294 | */ |
||
295 | if (alpha != original_alpha) { |
||
296 | tree->pv[ply - 1] = tree->pv[ply]; |
||
297 | tree->pv[ply - 1].path[ply - 1] = tree->curmv[ply - 1]; |
||
298 | } |
||
299 | return alpha; |
||
300 | } |
||
301 | |||
302 | /* last modified 05/07/14 */ |
||
303 | /* |
||
304 | ******************************************************************************* |
||
305 | * * |
||
306 | * QuiesceEvasions() is the recursive routine used to implement the alpha/ * |
||
307 | * beta negamax quiescence search. The primary function here is to escape a * |
||
308 | * check that was delivered by QuiesceChecks() at the previous ply. We do * |
||
309 | * not have the usual "stand pat" option because we have to find a legal * |
||
310 | * move to prove we have not been checkmated. * |
||
311 | * * |
||
312 | * QuiesceEvasions() uses the legal move generator (GenerateCheckEvasions()) * |
||
313 | * to produce only the set of legal moves that escape check. We try those * |
||
314 | * in the the order they are generated since we are going to try them all * |
||
315 | * unless we get a fail-high. * |
||
316 | * * |
||
317 | ******************************************************************************* |
||
318 | */ |
||
319 | int QuiesceEvasions(TREE * RESTRICT tree, int alpha, int beta, int wtm, |
||
320 | int ply) { |
||
321 | int original_alpha, value; |
||
322 | int moves_searched = 0; |
||
323 | |||
324 | /* |
||
325 | ************************************************************ |
||
326 | * * |
||
327 | * Initialize. * |
||
328 | * * |
||
329 | ************************************************************ |
||
330 | */ |
||
331 | if (ply >= MAXPLY - 1) |
||
332 | return beta; |
||
333 | #if defined(NODES) |
||
334 | if (--temp_search_nodes <= 0) { |
||
335 | abort_search = 1; |
||
336 | return 0; |
||
337 | } |
||
338 | if (tree->thread_id == 0) |
||
339 | next_time_check--; |
||
340 | #endif |
||
341 | /* |
||
342 | ************************************************************ |
||
343 | * * |
||
344 | * Check for draw by repetition, which includes 50 move * |
||
345 | * draws also. * |
||
346 | * * |
||
347 | ************************************************************ |
||
348 | */ |
||
349 | if (Repeat(tree, ply)) { |
||
350 | value = DrawScore(wtm); |
||
351 | if (value < beta) |
||
352 | SavePV(tree, ply, 0); |
||
353 | #if defined(TRACE) |
||
354 | if (ply <= trace_level) |
||
355 | printf("draw by repetition detected, ply=%d.\n", ply); |
||
356 | #endif |
||
357 | return value; |
||
358 | } |
||
359 | original_alpha = alpha; |
||
360 | /* |
||
361 | ************************************************************ |
||
362 | * * |
||
363 | * Iterate through the move list and search the resulting * |
||
364 | * positions. These moves are searched in the order that * |
||
365 | * GenerateEvasions() produces them. No hash move is * |
||
366 | * possible since we don't do probes in Quiesce(). We do * |
||
367 | * clear the hash move before we start selecting moves so * |
||
368 | * that we don't search a bogus move from a different * |
||
369 | * position. * |
||
370 | * * |
||
371 | ************************************************************ |
||
372 | */ |
||
373 | tree->hash_move[ply] = 0; |
||
374 | tree->next_status[ply].phase = HASH_MOVE; |
||
375 | while ((tree->phase[ply] = NextEvasion(tree, ply, wtm))) { |
||
376 | #if defined(TRACE) |
||
377 | if (ply <= trace_level) |
||
378 | Trace(tree, ply, 0, wtm, alpha, beta, "QuiesceEvasions", |
||
379 | tree->phase[ply]); |
||
380 | #endif |
||
381 | moves_searched++; |
||
382 | MakeMove(tree, ply, tree->curmv[ply], wtm); |
||
383 | tree->nodes_searched++; |
||
384 | value = -Quiesce(tree, -beta, -alpha, Flip(wtm), ply + 1, 0); |
||
385 | UnmakeMove(tree, ply, tree->curmv[ply], wtm); |
||
386 | if (abort_search || tree->stop) |
||
387 | return 0; |
||
388 | if (value > alpha) { |
||
389 | if (value >= beta) |
||
390 | return value; |
||
391 | alpha = value; |
||
392 | } |
||
393 | } |
||
394 | /* |
||
395 | ************************************************************ |
||
396 | * * |
||
397 | * All moves have been searched. If none were legal, * |
||
398 | * return either MATE or DRAW depending on whether the * |
||
399 | * side to move is in check or not. * |
||
400 | * * |
||
401 | ************************************************************ |
||
402 | */ |
||
403 | if (moves_searched == 0) { |
||
404 | value = (Check(wtm)) ? -(MATE - ply) : DrawScore(wtm); |
||
405 | if (value >= alpha && value < beta) { |
||
406 | SavePV(tree, ply, 0); |
||
407 | #if defined(TRACE) |
||
408 | if (ply <= trace_level) |
||
409 | printf("Search() no moves! ply=%d\n", ply); |
||
410 | #endif |
||
411 | } |
||
412 | return value; |
||
413 | } else if (alpha != original_alpha) { |
||
414 | tree->pv[ply - 1] = tree->pv[ply]; |
||
415 | tree->pv[ply - 1].path[ply - 1] = tree->curmv[ply - 1]; |
||
416 | } |
||
417 | return alpha; |
||
418 | } |