Subversion Repositories Games.Chess Giants

Rev

Rev 108 | Go to most recent revision | Details | Last modification | View Log | RSS feed

Rev Author Line No. Line
33 pmbaty 1
#include "chess.h"
2
#include "data.h"
3
/* last modified 05/07/14 */
4
/*
5
 *******************************************************************************
6
 *                                                                             *
7
 *   Quiece() is the recursive routine used to implement the quiescence        *
8
 *   search part of the alpha/beta negamax search.  It performs the following  *
9
 *   functions:                                                                *
10
 *                                                                             *
11
 *   (1) It computes a stand-pat score, which gives the side-on-move the       *
12
 *   choice of standing pat and not playing any move at all and just accepting *
13
 *   the current static evaluation, or else it may try captures and/or         *
14
 *   checking moves to see if it can improve the stand-pat score by making a   *
15
 *   move that leads to some sort of positional or material gain.              *
16
 *                                                                             *
17
 *   (2) The first phase is to generate all possible capture moves and then    *
18
 *   sort them into descending using the value                                 *
19
 *                                                                             *
20
 *        val = 128 * captured_piece_value + capturing_piece_value             *
21
 *                                                                             *
22
 *   This is the classic MVV/LVA ordering approach that removes heavy pieces   *
23
 *   first in an attempt to reduce the size of the sub-tree these pieces       *
24
 *   produce.                                                                  *
25
 *                                                                             *
26
 *   (3) When we get ready to actually search each capture, we analyze each    *
27
 *   move to see if it appears reasonable.  Small pieces can capture larger    *
28
 *   ones safely, ditto for equal exchanges.  For the rest, we use Swap() to   *
29
 *   compute the SEE score.  If this is less than zero, we do not search this  *
30
 *   move at all to avoid wasting time, since a losing capture rarely helps    *
31
 *   improve the score in the q-search.  The goal here is to find a capture    *
32
 *   that improves on the stand-pat score and gets us closer to a position     *
33
 *   that we would describe as "quiet" or "static".                            *
34
 *                                                                             *
35
 *   (4) If the parameter "checks" is non-zero then after searching the        *
36
 *   captures, we generate checking moves and search those.  This value also   *
37
 *   slightly changes the way captures are searched, since those that are also *
38
 *   checks result in calling QuiesceEvasions() which evades checks to see if  *
39
 *   the check is actually a mate.  This means that we have one layer of full- *
40
 *   width search to escape checks and do not allow a stand-pat which would    *
41
 *   hide the effect of the check completely.                                  *
42
 *                                                                             *
43
 *******************************************************************************
44
 */
45
int Quiesce(TREE * RESTRICT tree, int alpha, int beta, int wtm, int ply,
46
    int checks) {
47
  int original_alpha = alpha, value;
48
  int *next;
49
  int *movep, *sortv;
50
 
51
/*
52
 ************************************************************
53
 *                                                          *
54
 *  Initialize.                                             *
55
 *                                                          *
56
 ************************************************************
57
 */
58
  if (ply >= MAXPLY - 1)
59
    return beta;
60
#if defined(NODES)
61
  if (--temp_search_nodes <= 0) {
62
    abort_search = 1;
63
    return 0;
64
  }
65
#endif
66
  if (tree->thread_id == 0)
67
    next_time_check--;
68
/*
69
 ************************************************************
70
 *                                                          *
71
 *  Check for draw by repetition, which includes 50 move    *
72
 *  draws also.  This is only done at the first ply of the  *
73
 *  quiescence search since we are following checking moves *
74
 *  as well.  The parameter "checks" passed in is "1" for   *
75
 *  that particular case only (when called from Search()).  *
76
 *  all other calls (from inside Quiesce()) pass a value of *
77
 *  zero so that additional plies of checks are not tried.  *
78
 *                                                          *
79
 ************************************************************
80
 */
81
  if (checks) {
82
    if (Repeat(tree, ply)) {
83
      value = DrawScore(wtm);
84
      if (value < beta)
85
        SavePV(tree, ply, 0);
86
#if defined(TRACE)
87
      if (ply <= trace_level)
88
        printf("draw by repetition detected, ply=%d.\n", ply);
89
#endif
90
      return value;
91
    }
92
  }
93
/*
94
 ************************************************************
95
 *                                                          *
96
 *  Now call Evaluate() to produce the "stand-pat" score    *
97
 *  that will be returned if no capture is acceptable.  If  *
98
 *  this score is > alpha and < beta, then we also have to  *
99
 *  save the path to this node as it is the PV that leads   *
100
 *  to this score.                                          *
101
 *                                                          *
102
 ************************************************************
103
 */
104
  tree->curmv[ply] = 0;
105
  value = Evaluate(tree, ply, wtm, alpha, beta);
106
#if defined(TRACE)
107
  if (ply <= trace_level)
108
    Trace(tree, ply, value, wtm, alpha, beta, "Quiesce", EVALUATION);
109
#endif
110
  if (value > alpha) {
111
    if (value >= beta)
112
      return value;
113
    alpha = value;
114
    tree->pv[ply].pathl = ply;
115
    tree->pv[ply].pathh = 0;
116
    tree->pv[ply].pathd = iteration_depth;
117
  }
118
/*
119
 ************************************************************
120
 *                                                          *
121
 *  Generate captures and sort them based on simple MVV/LVA *
122
 *  order.  We simply try to capture the most valuable      *
123
 *  piece possible, using the least valuable attacker       *
124
 *  possible, to get rid of heavy pieces quickly and reduce *
125
 *  the overall size of the tree.                           *
126
 *                                                          *
127
 *  Note that later we use the value of the capturing       *
128
 *  piece, the value of the captured piece, and possibly    *
129
 *  Swap() to exclude captures that appear to lose          *
130
 *  material, but we delay expending this effort as long as *
131
 *  possible, since beta cutoffs make it unnecessary to     *
132
 *  search all of these moves anyway.                       *
133
 *                                                          *
134
 ************************************************************
135
 */
136
  tree->last[ply] = GenerateCaptures(tree, ply, wtm, tree->last[ply - 1]);
137
  sortv = tree->sort_value;
138
  for (movep = tree->last[ply - 1]; movep < tree->last[ply]; movep++) {
139
    if (Captured(*movep) == king)
140
      return beta;
141
    *sortv++ = 128 * pcval[Captured(*movep)] - pcval[Piece(*movep)];
142
  }
143
  if (!checks && tree->last[ply] == tree->last[ply - 1]) {
144
    if (alpha != original_alpha) {
145
      tree->pv[ply - 1] = tree->pv[ply];
146
      tree->pv[ply - 1].path[ply - 1] = tree->curmv[ply - 1];
147
    }
148
    return value;
149
  }
150
/*
151
 ************************************************************
152
 *                                                          *
153
 *  This is a simple insertion sort algorithm.  It seems be *
154
 *  be no faster than a normal bubble sort, but using this  *
155
 *  eliminated a lot of explaining about "why?". :)         *
156
 *                                                          *
157
 ************************************************************
158
 */
159
  if (tree->last[ply] > tree->last[ply - 1] + 1) {
160
    int temp1, temp2, *tmovep, *tsortv, *end;
161
 
162
    sortv = tree->sort_value + 1;
163
    end = tree->last[ply];
164
    for (movep = tree->last[ply - 1] + 1; movep < end; movep++, sortv++) {
165
      temp1 = *movep;
166
      temp2 = *sortv;
167
      tmovep = movep - 1;
168
      tsortv = sortv - 1;
169
      while (tmovep >= tree->last[ply - 1] && *tsortv < temp2) {
170
        *(tsortv + 1) = *tsortv;
171
        *(tmovep + 1) = *tmovep;
172
        tmovep--;
173
        tsortv--;
174
      }
175
      *(tmovep + 1) = temp1;
176
      *(tsortv + 1) = temp2;
177
    }
178
  }
179
  tree->next_status[ply].last = tree->last[ply - 1];
180
/*
181
 ************************************************************
182
 *                                                          *
183
 *  Iterate through the move list and search the resulting  *
184
 *  positions.  Now that we are ready to actually search    *
185
 *  the set of capturing moves, we try three quick tests to *
186
 *  see if the move should be excluded because it appears   *
187
 *  to lose material.                                       *
188
 *                                                          *
189
 *  (1) If the capturing piece is not more valuable than    *
190
 *  the captured piece, then the move can't lose material   *
191
 *  and should be searched.                                 *
192
 *                                                          *
193
 *  (2) If the capture removes the last opponent piece, we  *
194
 *  always search this kind of capture since this can be    *
195
 *  the move the allows a passed pawn to promote when the   *
196
 *  opponent has no piece to catch it.                      *
197
 *                                                          *
198
 *  (3) Otherwise, If the capturing piece is more valuable  *
199
 *  than the captured piece, we use Swap() to determine if  *
200
 *  the capture is losing or not so that we don't search    *
201
 *  hopeless moves.                                         *
202
 *                                                          *
203
 ************************************************************
204
 */
205
  for (next = tree->last[ply - 1]; next < tree->last[ply]; next++) {
206
    tree->curmv[ply] = *next;
207
    if (pcval[Piece(tree->curmv[ply])] > pcval[Captured(tree->curmv[ply])] &&
208
        TotalPieces(wtm, occupied)
209
        - p_vals[Captured(tree->curmv[ply])] > 0 &&
210
        Swap(tree, tree->curmv[ply], wtm) < 0)
211
      continue;
212
#if defined(TRACE)
213
    if (ply <= trace_level)
214
      Trace(tree, ply, 0, wtm, alpha, beta, "Quiesce", CAPTURE_MOVES);
215
#endif
216
    MakeMove(tree, ply, tree->curmv[ply], wtm);
217
    tree->nodes_searched++;
218
    if (!checks)
219
      value = -Quiesce(tree, -beta, -alpha, Flip(wtm), ply + 1, 0);
220
    else if (!Check(wtm)) {
221
      if (Check(Flip(wtm))) {
222
        tree->qchecks_done++;
223
        value = -QuiesceEvasions(tree, -beta, -alpha, Flip(wtm), ply + 1);
224
      } else
225
        value = -Quiesce(tree, -beta, -alpha, Flip(wtm), ply + 1, 0);
226
    }
227
    UnmakeMove(tree, ply, tree->curmv[ply], wtm);
228
    if (abort_search || tree->stop)
229
      return 0;
230
    if (value > alpha) {
231
      if (value >= beta)
232
        return value;
233
      alpha = value;
234
    }
235
  }
236
/*
237
 ************************************************************
238
 *                                                          *
239
 *  The next block of code is only executed if the checks   *
240
 *  parameter is non-zero, otherwise we skip this and exit  *
241
 *  with no further searching.                              *
242
 *                                                          *
243
 *  Generate just the moves (non-captures) that give check  *
244
 *  and search the ones that Swap() says are safe.  Subtle  *
245
 *  trick:  we discard the captures left over from the      *
246
 *  above search since we labeled them "losing moves."      *
247
 *                                                          *
248
 ************************************************************
249
 */
250
  if (checks) {
251
    tree->last[ply] = GenerateChecks(tree, wtm, tree->last[ply - 1]);
252
/*
253
 ************************************************************
254
 *                                                          *
255
 *  Iterate through the move list and search the resulting  *
256
 *  positions.  We take them in the normal order that       *
257
 *  GenerateChecks() provides.                              *
258
 *                                                          *
259
 ************************************************************
260
 */
261
    for (next = tree->last[ply - 1]; next < tree->last[ply]; next++) {
262
      tree->curmv[ply] = *next;
263
      if (Swap(tree, tree->curmv[ply], wtm) >= 0) {
264
#if defined(TRACE)
265
        if (ply <= trace_level)
266
          Trace(tree, ply, 0, wtm, alpha, beta, "Quiesce", REMAINING_MOVES);
267
#endif
268
        MakeMove(tree, ply, tree->curmv[ply], wtm);
269
        tree->nodes_searched++;
270
        if (!Check(wtm)) {
271
          tree->qchecks_done++;
272
          value = -QuiesceEvasions(tree, -beta, -alpha, Flip(wtm), ply + 1);
273
        }
274
        UnmakeMove(tree, ply, tree->curmv[ply], wtm);
275
        if (abort_search || tree->stop)
276
          return 0;
277
        if (value > alpha) {
278
          if (value >= beta)
279
            return value;
280
          alpha = value;
281
        }
282
      }
283
    }
284
  }
285
/*
286
 ************************************************************
287
 *                                                          *
288
 *  All moves have been searched.  Return the search result *
289
 *  that was found.  If the result is not the original      *
290
 *  alpha score, then we need to back up the PV that is     *
291
 *  associated with this score.                             *
292
 *                                                          *
293
 ************************************************************
294
 */
295
  if (alpha != original_alpha) {
296
    tree->pv[ply - 1] = tree->pv[ply];
297
    tree->pv[ply - 1].path[ply - 1] = tree->curmv[ply - 1];
298
  }
299
  return alpha;
300
}
301
 
302
/* last modified 05/07/14 */
303
/*
304
 *******************************************************************************
305
 *                                                                             *
306
 *   QuiesceEvasions() is the recursive routine used to implement the alpha/   *
307
 *   beta negamax quiescence search.  The primary function here is to escape a *
308
 *   check that was delivered by QuiesceChecks() at the previous ply.  We do   *
309
 *   not have the usual "stand pat" option because we have to find a legal     *
310
 *   move to prove we have not been checkmated.                                *
311
 *                                                                             *
312
 *   QuiesceEvasions() uses the legal move generator (GenerateCheckEvasions()) *
313
 *   to produce only the set of legal moves that escape check.  We try those   *
314
 *   in the the order they are generated since we are going to try them all    *
315
 *   unless we get a fail-high.                                                *
316
 *                                                                             *
317
 *******************************************************************************
318
 */
319
int QuiesceEvasions(TREE * RESTRICT tree, int alpha, int beta, int wtm,
320
    int ply) {
321
  int original_alpha, value;
322
  int moves_searched = 0;
323
 
324
/*
325
 ************************************************************
326
 *                                                          *
327
 *  Initialize.                                             *
328
 *                                                          *
329
 ************************************************************
330
 */
331
  if (ply >= MAXPLY - 1)
332
    return beta;
333
#if defined(NODES)
334
  if (--temp_search_nodes <= 0) {
335
    abort_search = 1;
336
    return 0;
337
  }
338
  if (tree->thread_id == 0)
339
    next_time_check--;
340
#endif
341
/*
342
 ************************************************************
343
 *                                                          *
344
 *  Check for draw by repetition, which includes 50 move    *
345
 *  draws also.                                             *
346
 *                                                          *
347
 ************************************************************
348
 */
349
  if (Repeat(tree, ply)) {
350
    value = DrawScore(wtm);
351
    if (value < beta)
352
      SavePV(tree, ply, 0);
353
#if defined(TRACE)
354
    if (ply <= trace_level)
355
      printf("draw by repetition detected, ply=%d.\n", ply);
356
#endif
357
    return value;
358
  }
359
  original_alpha = alpha;
360
/*
361
 ************************************************************
362
 *                                                          *
363
 *  Iterate through the move list and search the resulting  *
364
 *  positions.  These moves are searched in the order that  *
365
 *  GenerateEvasions() produces them.  No hash move is      *
366
 *  possible since we don't do probes in Quiesce().  We do  *
367
 *  clear the hash move before we start selecting moves so  *
368
 *  that we don't search a bogus move from a different      *
369
 *  position.                                               *
370
 *                                                          *
371
 ************************************************************
372
 */
373
  tree->hash_move[ply] = 0;
374
  tree->next_status[ply].phase = HASH_MOVE;
375
  while ((tree->phase[ply] = NextEvasion(tree, ply, wtm))) {
376
#if defined(TRACE)
377
    if (ply <= trace_level)
378
      Trace(tree, ply, 0, wtm, alpha, beta, "QuiesceEvasions",
379
          tree->phase[ply]);
380
#endif
381
    moves_searched++;
382
    MakeMove(tree, ply, tree->curmv[ply], wtm);
383
    tree->nodes_searched++;
384
    value = -Quiesce(tree, -beta, -alpha, Flip(wtm), ply + 1, 0);
385
    UnmakeMove(tree, ply, tree->curmv[ply], wtm);
386
    if (abort_search || tree->stop)
387
      return 0;
388
    if (value > alpha) {
389
      if (value >= beta)
390
        return value;
391
      alpha = value;
392
    }
393
  }
394
/*
395
 ************************************************************
396
 *                                                          *
397
 *  All moves have been searched.  If none were legal,      *
398
 *  return either MATE or DRAW depending on whether the     *
399
 *  side to move is in check or not.                        *
400
 *                                                          *
401
 ************************************************************
402
 */
403
  if (moves_searched == 0) {
404
    value = (Check(wtm)) ? -(MATE - ply) : DrawScore(wtm);
405
    if (value >= alpha && value < beta) {
406
      SavePV(tree, ply, 0);
407
#if defined(TRACE)
408
      if (ply <= trace_level)
409
        printf("Search() no moves!  ply=%d\n", ply);
410
#endif
411
    }
412
    return value;
413
  } else if (alpha != original_alpha) {
414
    tree->pv[ply - 1] = tree->pv[ply];
415
    tree->pv[ply - 1].path[ply - 1] = tree->curmv[ply - 1];
416
  }
417
  return alpha;
418
}