Rev 108 | Details | Compare with Previous | Last modification | View Log | RSS feed
| Rev | Author | Line No. | Line |
|---|---|---|---|
| 33 | pmbaty | 1 | #include "chess.h" |
| 2 | #include "data.h" |
||
| 154 | pmbaty | 3 | /* last modified 08/03/16 */ |
| 33 | pmbaty | 4 | /* |
| 5 | ******************************************************************************* |
||
| 6 | * * |
||
| 7 | * Quiece() is the recursive routine used to implement the quiescence * |
||
| 8 | * search part of the alpha/beta negamax search. It performs the following * |
||
| 9 | * functions: * |
||
| 10 | * * |
||
| 11 | * (1) It computes a stand-pat score, which gives the side-on-move the * |
||
| 12 | * choice of standing pat and not playing any move at all and just accepting * |
||
| 13 | * the current static evaluation, or else it may try captures and/or * |
||
| 14 | * checking moves to see if it can improve the stand-pat score by making a * |
||
| 15 | * move that leads to some sort of positional or material gain. * |
||
| 16 | * * |
||
| 17 | * (2) The first phase is to generate all possible capture moves and then * |
||
| 108 | pmbaty | 18 | * sort them into descending using the value of the captured piece and the * |
| 19 | * complemented value of the capturing piece. This is the classic MVV/LVA * |
||
| 20 | * ordering approach that removes heavy pieces first in an attempt to reduce * |
||
| 21 | * the size of the sub-tree these pieces produce. * |
||
| 33 | pmbaty | 22 | * * |
| 23 | * (3) When we get ready to actually search each capture, we analyze each * |
||
| 24 | * move to see if it appears reasonable. Small pieces can capture larger * |
||
| 108 | pmbaty | 25 | * ones safely, ditto for equal exchanges. For the rest, we use SEE() to * |
| 33 | pmbaty | 26 | * compute the SEE score. If this is less than zero, we do not search this * |
| 27 | * move at all to avoid wasting time, since a losing capture rarely helps * |
||
| 28 | * improve the score in the q-search. The goal here is to find a capture * |
||
| 29 | * that improves on the stand-pat score and gets us closer to a position * |
||
| 30 | * that we would describe as "quiet" or "static". * |
||
| 31 | * * |
||
| 108 | pmbaty | 32 | * (4) If the parameter "checks" is non-zero, then after searching the * |
| 33 | pmbaty | 33 | * captures, we generate checking moves and search those. This value also * |
| 34 | * slightly changes the way captures are searched, since those that are also * |
||
| 35 | * checks result in calling QuiesceEvasions() which evades checks to see if * |
||
| 36 | * the check is actually a mate. This means that we have one layer of full- * |
||
| 37 | * width search to escape checks and do not allow a stand-pat which would * |
||
| 38 | * hide the effect of the check completely. * |
||
| 39 | * * |
||
| 40 | ******************************************************************************* |
||
| 41 | */ |
||
| 108 | pmbaty | 42 | int Quiesce(TREE * RESTRICT tree, int ply, int wtm, int alpha, int beta, |
| 33 | pmbaty | 43 | int checks) { |
| 108 | pmbaty | 44 | unsigned *next, *movep; |
| 154 | pmbaty | 45 | int original_alpha = alpha, value, repeat; |
| 33 | pmbaty | 46 | |
| 47 | /* |
||
| 48 | ************************************************************ |
||
| 49 | * * |
||
| 50 | * Initialize. * |
||
| 51 | * * |
||
| 52 | ************************************************************ |
||
| 53 | */ |
||
| 54 | if (ply >= MAXPLY - 1) |
||
| 55 | return beta; |
||
| 56 | #if defined(NODES) |
||
| 108 | pmbaty | 57 | if (search_nodes && --temp_search_nodes <= 0) { |
| 33 | pmbaty | 58 | abort_search = 1; |
| 59 | return 0; |
||
| 60 | } |
||
| 61 | #endif |
||
| 62 | if (tree->thread_id == 0) |
||
| 63 | next_time_check--; |
||
| 64 | /* |
||
| 65 | ************************************************************ |
||
| 66 | * * |
||
| 67 | * Check for draw by repetition, which includes 50 move * |
||
| 68 | * draws also. This is only done at the first ply of the * |
||
| 69 | * quiescence search since we are following checking moves * |
||
| 70 | * as well. The parameter "checks" passed in is "1" for * |
||
| 71 | * that particular case only (when called from Search()). * |
||
| 72 | * all other calls (from inside Quiesce()) pass a value of * |
||
| 73 | * zero so that additional plies of checks are not tried. * |
||
| 74 | * * |
||
| 75 | ************************************************************ |
||
| 76 | */ |
||
| 77 | if (checks) { |
||
| 154 | pmbaty | 78 | repeat = Repeat(tree, ply); |
| 79 | if (repeat) { |
||
| 33 | pmbaty | 80 | value = DrawScore(wtm); |
| 81 | if (value < beta) |
||
| 154 | pmbaty | 82 | SavePV(tree, ply, repeat); |
| 33 | pmbaty | 83 | #if defined(TRACE) |
| 84 | if (ply <= trace_level) |
||
| 85 | printf("draw by repetition detected, ply=%d.\n", ply); |
||
| 86 | #endif |
||
| 87 | return value; |
||
| 88 | } |
||
| 89 | } |
||
| 90 | /* |
||
| 91 | ************************************************************ |
||
| 92 | * * |
||
| 93 | * Now call Evaluate() to produce the "stand-pat" score * |
||
| 94 | * that will be returned if no capture is acceptable. If * |
||
| 95 | * this score is > alpha and < beta, then we also have to * |
||
| 96 | * save the path to this node as it is the PV that leads * |
||
| 97 | * to this score. * |
||
| 98 | * * |
||
| 99 | ************************************************************ |
||
| 100 | */ |
||
| 101 | value = Evaluate(tree, ply, wtm, alpha, beta); |
||
| 102 | #if defined(TRACE) |
||
| 103 | if (ply <= trace_level) |
||
| 154 | pmbaty | 104 | Trace(tree, ply, value, wtm, alpha, beta, "Quiesce", serial, EVALUATION, |
| 105 | 0); |
||
| 33 | pmbaty | 106 | #endif |
| 107 | if (value > alpha) { |
||
| 108 | if (value >= beta) |
||
| 109 | return value; |
||
| 110 | alpha = value; |
||
| 111 | tree->pv[ply].pathl = ply; |
||
| 112 | tree->pv[ply].pathh = 0; |
||
| 108 | pmbaty | 113 | tree->pv[ply].pathd = iteration; |
| 33 | pmbaty | 114 | } |
| 115 | /* |
||
| 116 | ************************************************************ |
||
| 117 | * * |
||
| 118 | * Generate captures and sort them based on simple MVV/LVA * |
||
| 119 | * order. We simply try to capture the most valuable * |
||
| 120 | * piece possible, using the least valuable attacker * |
||
| 121 | * possible, to get rid of heavy pieces quickly and reduce * |
||
| 122 | * the overall size of the tree. * |
||
| 123 | * * |
||
| 124 | * Note that later we use the value of the capturing * |
||
| 125 | * piece, the value of the captured piece, and possibly * |
||
| 108 | pmbaty | 126 | * SEE() to exclude captures that appear to lose material, * |
| 127 | * but we delay expending this effort as long as possible, * |
||
| 128 | * since beta cutoffs make it unnecessary to search all of * |
||
| 129 | * these moves anyway. * |
||
| 33 | pmbaty | 130 | * * |
| 131 | ************************************************************ |
||
| 132 | */ |
||
| 133 | tree->last[ply] = GenerateCaptures(tree, ply, wtm, tree->last[ply - 1]); |
||
| 134 | for (movep = tree->last[ply - 1]; movep < tree->last[ply]; movep++) { |
||
| 135 | if (Captured(*movep) == king) |
||
| 136 | return beta; |
||
| 108 | pmbaty | 137 | *movep += MVV_LVA[Captured(*movep)][Piece(*movep)]; |
| 33 | pmbaty | 138 | } |
| 139 | if (!checks && tree->last[ply] == tree->last[ply - 1]) { |
||
| 140 | if (alpha != original_alpha) { |
||
| 141 | tree->pv[ply - 1] = tree->pv[ply]; |
||
| 142 | tree->pv[ply - 1].path[ply - 1] = tree->curmv[ply - 1]; |
||
| 143 | } |
||
| 144 | return value; |
||
| 145 | } |
||
| 108 | pmbaty | 146 | NextSort(tree, ply); |
| 33 | pmbaty | 147 | /* |
| 148 | ************************************************************ |
||
| 149 | * * |
||
| 150 | * Iterate through the move list and search the resulting * |
||
| 151 | * positions. Now that we are ready to actually search * |
||
| 152 | * the set of capturing moves, we try three quick tests to * |
||
| 153 | * see if the move should be excluded because it appears * |
||
| 108 | pmbaty | 154 | * to lose material. * |
| 33 | pmbaty | 155 | * * |
| 156 | * (1) If the capturing piece is not more valuable than * |
||
| 157 | * the captured piece, then the move can't lose material * |
||
| 158 | * and should be searched. * |
||
| 159 | * * |
||
| 160 | * (2) If the capture removes the last opponent piece, we * |
||
| 161 | * always search this kind of capture since this can be * |
||
| 162 | * the move the allows a passed pawn to promote when the * |
||
| 163 | * opponent has no piece to catch it. * |
||
| 164 | * * |
||
| 165 | * (3) Otherwise, If the capturing piece is more valuable * |
||
| 108 | pmbaty | 166 | * than the captured piece, we use SEE() to determine if * |
| 33 | pmbaty | 167 | * the capture is losing or not so that we don't search * |
| 168 | * hopeless moves. * |
||
| 169 | * * |
||
| 170 | ************************************************************ |
||
| 171 | */ |
||
| 172 | for (next = tree->last[ply - 1]; next < tree->last[ply]; next++) { |
||
| 108 | pmbaty | 173 | tree->curmv[ply] = Move(*next); |
| 33 | pmbaty | 174 | if (pcval[Piece(tree->curmv[ply])] > pcval[Captured(tree->curmv[ply])] && |
| 108 | pmbaty | 175 | TotalPieces(Flip(wtm), occupied) |
| 33 | pmbaty | 176 | - p_vals[Captured(tree->curmv[ply])] > 0 && |
| 108 | pmbaty | 177 | SEE(tree, wtm, tree->curmv[ply]) < 0) |
| 33 | pmbaty | 178 | continue; |
| 179 | #if defined(TRACE) |
||
| 180 | if (ply <= trace_level) |
||
| 108 | pmbaty | 181 | Trace(tree, ply, 0, wtm, alpha, beta, "Quiesce", serial, CAPTURES, |
| 182 | next - tree->last[ply - 1] + 1); |
||
| 33 | pmbaty | 183 | #endif |
| 108 | pmbaty | 184 | MakeMove(tree, ply, wtm, tree->curmv[ply]); |
| 33 | pmbaty | 185 | tree->nodes_searched++; |
| 186 | if (!checks) |
||
| 108 | pmbaty | 187 | value = -Quiesce(tree, ply + 1, Flip(wtm), -beta, -alpha, 0); |
| 33 | pmbaty | 188 | else if (!Check(wtm)) { |
| 189 | if (Check(Flip(wtm))) { |
||
| 190 | tree->qchecks_done++; |
||
| 108 | pmbaty | 191 | value = -QuiesceEvasions(tree, ply + 1, Flip(wtm), -beta, -alpha); |
| 33 | pmbaty | 192 | } else |
| 108 | pmbaty | 193 | value = -Quiesce(tree, ply + 1, Flip(wtm), -beta, -alpha, 0); |
| 33 | pmbaty | 194 | } |
| 108 | pmbaty | 195 | UnmakeMove(tree, ply, wtm, tree->curmv[ply]); |
| 33 | pmbaty | 196 | if (abort_search || tree->stop) |
| 197 | return 0; |
||
| 198 | if (value > alpha) { |
||
| 199 | if (value >= beta) |
||
| 200 | return value; |
||
| 201 | alpha = value; |
||
| 202 | } |
||
| 203 | } |
||
| 204 | /* |
||
| 205 | ************************************************************ |
||
| 206 | * * |
||
| 207 | * The next block of code is only executed if the checks * |
||
| 208 | * parameter is non-zero, otherwise we skip this and exit * |
||
| 209 | * with no further searching. * |
||
| 210 | * * |
||
| 211 | * Generate just the moves (non-captures) that give check * |
||
| 108 | pmbaty | 212 | * and search the ones that SEE() says are safe. Subtle * |
| 33 | pmbaty | 213 | * trick: we discard the captures left over from the * |
| 214 | * above search since we labeled them "losing moves." * |
||
| 215 | * * |
||
| 216 | ************************************************************ |
||
| 217 | */ |
||
| 218 | if (checks) { |
||
| 219 | tree->last[ply] = GenerateChecks(tree, wtm, tree->last[ply - 1]); |
||
| 220 | /* |
||
| 221 | ************************************************************ |
||
| 222 | * * |
||
| 223 | * Iterate through the move list and search the resulting * |
||
| 224 | * positions. We take them in the normal order that * |
||
| 225 | * GenerateChecks() provides. * |
||
| 226 | * * |
||
| 227 | ************************************************************ |
||
| 228 | */ |
||
| 229 | for (next = tree->last[ply - 1]; next < tree->last[ply]; next++) { |
||
| 108 | pmbaty | 230 | tree->curmv[ply] = Move(*next); |
| 231 | if (SEE(tree, wtm, tree->curmv[ply]) >= 0) { |
||
| 33 | pmbaty | 232 | #if defined(TRACE) |
| 233 | if (ply <= trace_level) |
||
| 108 | pmbaty | 234 | Trace(tree, ply, 0, wtm, alpha, beta, "Quiesce+checks", serial, |
| 235 | REMAINING, next - tree->last[ply - 1] + 1); |
||
| 33 | pmbaty | 236 | #endif |
| 108 | pmbaty | 237 | MakeMove(tree, ply, wtm, tree->curmv[ply]); |
| 33 | pmbaty | 238 | tree->nodes_searched++; |
| 239 | if (!Check(wtm)) { |
||
| 240 | tree->qchecks_done++; |
||
| 108 | pmbaty | 241 | value = -QuiesceEvasions(tree, ply + 1, Flip(wtm), -beta, -alpha); |
| 33 | pmbaty | 242 | } |
| 108 | pmbaty | 243 | UnmakeMove(tree, ply, wtm, tree->curmv[ply]); |
| 33 | pmbaty | 244 | if (abort_search || tree->stop) |
| 245 | return 0; |
||
| 246 | if (value > alpha) { |
||
| 247 | if (value >= beta) |
||
| 248 | return value; |
||
| 249 | alpha = value; |
||
| 250 | } |
||
| 251 | } |
||
| 252 | } |
||
| 253 | } |
||
| 254 | /* |
||
| 255 | ************************************************************ |
||
| 256 | * * |
||
| 257 | * All moves have been searched. Return the search result * |
||
| 258 | * that was found. If the result is not the original * |
||
| 259 | * alpha score, then we need to back up the PV that is * |
||
| 260 | * associated with this score. * |
||
| 261 | * * |
||
| 262 | ************************************************************ |
||
| 263 | */ |
||
| 264 | if (alpha != original_alpha) { |
||
| 265 | tree->pv[ply - 1] = tree->pv[ply]; |
||
| 266 | tree->pv[ply - 1].path[ply - 1] = tree->curmv[ply - 1]; |
||
| 267 | } |
||
| 268 | return alpha; |
||
| 269 | } |
||
| 270 | |||
| 154 | pmbaty | 271 | /* last modified 08/03/16 */ |
| 33 | pmbaty | 272 | /* |
| 273 | ******************************************************************************* |
||
| 274 | * * |
||
| 275 | * QuiesceEvasions() is the recursive routine used to implement the alpha/ * |
||
| 276 | * beta negamax quiescence search. The primary function here is to escape a * |
||
| 154 | pmbaty | 277 | * check that was delivered by Quiesce() at the previous ply. We do not * |
| 278 | * have the usual "stand pat" option because we have to find a legal move to * |
||
| 279 | * prove we have not been checkmated. * |
||
| 33 | pmbaty | 280 | * * |
| 281 | * QuiesceEvasions() uses the legal move generator (GenerateCheckEvasions()) * |
||
| 282 | * to produce only the set of legal moves that escape check. We try those * |
||
| 283 | * in the the order they are generated since we are going to try them all * |
||
| 284 | * unless we get a fail-high. * |
||
| 285 | * * |
||
| 286 | ******************************************************************************* |
||
| 287 | */ |
||
| 108 | pmbaty | 288 | int QuiesceEvasions(TREE * RESTRICT tree, int ply, int wtm, int alpha, |
| 289 | int beta) { |
||
| 154 | pmbaty | 290 | int original_alpha, value, moves_searched = 0, order, repeat; |
| 33 | pmbaty | 291 | |
| 292 | /* |
||
| 293 | ************************************************************ |
||
| 294 | * * |
||
| 295 | * Initialize. * |
||
| 296 | * * |
||
| 297 | ************************************************************ |
||
| 298 | */ |
||
| 299 | if (ply >= MAXPLY - 1) |
||
| 300 | return beta; |
||
| 301 | #if defined(NODES) |
||
| 108 | pmbaty | 302 | if (search_nodes && --temp_search_nodes <= 0) { |
| 33 | pmbaty | 303 | abort_search = 1; |
| 304 | return 0; |
||
| 305 | } |
||
| 306 | if (tree->thread_id == 0) |
||
| 307 | next_time_check--; |
||
| 308 | #endif |
||
| 309 | /* |
||
| 310 | ************************************************************ |
||
| 311 | * * |
||
| 312 | * Check for draw by repetition, which includes 50 move * |
||
| 313 | * draws also. * |
||
| 314 | * * |
||
| 315 | ************************************************************ |
||
| 316 | */ |
||
| 154 | pmbaty | 317 | repeat = Repeat(tree, ply); |
| 318 | if (repeat) { |
||
| 33 | pmbaty | 319 | value = DrawScore(wtm); |
| 320 | if (value < beta) |
||
| 154 | pmbaty | 321 | SavePV(tree, ply, repeat); |
| 33 | pmbaty | 322 | #if defined(TRACE) |
| 323 | if (ply <= trace_level) |
||
| 324 | printf("draw by repetition detected, ply=%d.\n", ply); |
||
| 325 | #endif |
||
| 326 | return value; |
||
| 327 | } |
||
| 328 | original_alpha = alpha; |
||
| 329 | /* |
||
| 330 | ************************************************************ |
||
| 331 | * * |
||
| 332 | * Iterate through the move list and search the resulting * |
||
| 333 | * positions. These moves are searched in the order that * |
||
| 334 | * GenerateEvasions() produces them. No hash move is * |
||
| 335 | * possible since we don't do probes in Quiesce(). We do * |
||
| 336 | * clear the hash move before we start selecting moves so * |
||
| 337 | * that we don't search a bogus move from a different * |
||
| 338 | * position. * |
||
| 339 | * * |
||
| 340 | ************************************************************ |
||
| 341 | */ |
||
| 342 | tree->hash_move[ply] = 0; |
||
| 108 | pmbaty | 343 | tree->next_status[ply].phase = HASH; |
| 344 | while ((order = NextMove(tree, ply, 0, wtm, 1))) { |
||
| 33 | pmbaty | 345 | #if defined(TRACE) |
| 346 | if (ply <= trace_level) |
||
| 108 | pmbaty | 347 | Trace(tree, ply, 0, wtm, alpha, beta, "QuiesceEvasions", serial, |
| 348 | tree->phase[ply], order); |
||
| 33 | pmbaty | 349 | #endif |
| 350 | moves_searched++; |
||
| 108 | pmbaty | 351 | MakeMove(tree, ply, wtm, tree->curmv[ply]); |
| 33 | pmbaty | 352 | tree->nodes_searched++; |
| 108 | pmbaty | 353 | value = -Quiesce(tree, ply + 1, Flip(wtm), -beta, -alpha, 0); |
| 354 | UnmakeMove(tree, ply, wtm, tree->curmv[ply]); |
||
| 33 | pmbaty | 355 | if (abort_search || tree->stop) |
| 356 | return 0; |
||
| 357 | if (value > alpha) { |
||
| 358 | if (value >= beta) |
||
| 359 | return value; |
||
| 360 | alpha = value; |
||
| 361 | } |
||
| 362 | } |
||
| 363 | /* |
||
| 364 | ************************************************************ |
||
| 365 | * * |
||
| 108 | pmbaty | 366 | * All moves have been searched. If none were legal, it * |
| 367 | * must be a mate since we have to be in check to reach * |
||
| 368 | * QuiesceEvasions(). * |
||
| 33 | pmbaty | 369 | * * |
| 370 | ************************************************************ |
||
| 371 | */ |
||
| 372 | if (moves_searched == 0) { |
||
| 108 | pmbaty | 373 | value = -(MATE - ply); |
| 33 | pmbaty | 374 | if (value >= alpha && value < beta) { |
| 375 | SavePV(tree, ply, 0); |
||
| 376 | #if defined(TRACE) |
||
| 377 | if (ply <= trace_level) |
||
| 378 | printf("Search() no moves! ply=%d\n", ply); |
||
| 379 | #endif |
||
| 380 | } |
||
| 381 | return value; |
||
| 382 | } else if (alpha != original_alpha) { |
||
| 383 | tree->pv[ply - 1] = tree->pv[ply]; |
||
| 384 | tree->pv[ply - 1].path[ply - 1] = tree->curmv[ply - 1]; |
||
| 385 | } |
||
| 386 | return alpha; |
||
| 387 | } |