Rev 33 | Rev 154 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed
Rev | Author | Line No. | Line |
---|---|---|---|
33 | pmbaty | 1 | #include <math.h> |
2 | #include <time.h> |
||
3 | #include "chess.h" |
||
4 | #include "data.h" |
||
5 | #if defined(UNIX) |
||
6 | # include <unistd.h> |
||
7 | #endif |
||
8 | |||
9 | /* last modified 02/24/14 */ |
||
10 | /* |
||
11 | ******************************************************************************* |
||
12 | * * |
||
13 | * LearnAdjust() us used to scale the learn value, which can be used to * |
||
14 | * limit the aggressiveness of the learning algorithm. All we do here is * |
||
15 | * divide the learn value passed in by "learning / 10". * |
||
16 | * * |
||
17 | ******************************************************************************* |
||
18 | */ |
||
19 | int LearnAdjust(int value) { |
||
20 | |||
21 | if (learning / 10 > 0) |
||
22 | return value / (learning / 10); |
||
23 | else |
||
24 | return 0; |
||
25 | } |
||
26 | |||
27 | /* last modified 02/24/14 */ |
||
28 | /* |
||
29 | ******************************************************************************* |
||
30 | * * |
||
31 | * LearnBook() is used to update the book database when a game ends for any * |
||
32 | * reason. It uses the global "learn_value" variable and updates the book * |
||
33 | * based on the moves played and the value that was "learned". * |
||
34 | * * |
||
35 | * The global learn_value has two possible sources. If a game ends with a * |
||
36 | * real result (win, lose or draw) then the learrn_value will be set to a * |
||
37 | * number in the interval {-300, 300} depending on the result. If there is * |
||
38 | * no result (the operator exits the program prior to reaching a conclusion * |
||
39 | * (quit, end, ^C) then we will use the values from the first few searches * |
||
40 | * after leaving book to compute a learrn_value (see LearnValue() comments * |
||
41 | * later in this file). * |
||
42 | * * |
||
43 | ******************************************************************************* |
||
44 | */ |
||
45 | void LearnBook() { |
||
108 | pmbaty | 46 | float book_learn[64], t_learn_value; |
47 | int nplies = 0, thisply = 0, i, j, v, cluster; |
||
33 | pmbaty | 48 | unsigned char buf32[4]; |
49 | |||
50 | /* |
||
51 | ************************************************************ |
||
52 | * * |
||
53 | * If we have not been "out of book" for N moves, all we * |
||
54 | * we need to do is take the search evaluation for the * |
||
55 | * search just completed and tuck it away in the book * |
||
56 | * learning array (book_learn_eval[]) for use later. * |
||
57 | * * |
||
58 | ************************************************************ |
||
59 | */ |
||
60 | if (!book_file) |
||
61 | return; |
||
62 | if (!learn) |
||
63 | return; |
||
64 | if (Abs(learn_value) != learning) |
||
65 | learn_value = LearnAdjust(learn_value); |
||
66 | learn = 0; |
||
108 | pmbaty | 67 | Print(32, "LearnBook() updating book database\n"); |
33 | pmbaty | 68 | /* |
69 | ************************************************************ |
||
70 | * * |
||
71 | * Now we build a vector of book learning results. We * |
||
72 | * give every book move below the last point where there * |
||
73 | * were alternatives 100% of the learned score. We give * |
||
74 | * the book move played at that point 100% of the learned * |
||
75 | * score as well. Then we divide the learned score by the * |
||
76 | * number of alternatives, and propagate this score back * |
||
77 | * until there was another alternative, where we do this * |
||
78 | * again and again until we reach the top of the book * |
||
79 | * tree. * |
||
80 | * * |
||
81 | ************************************************************ |
||
82 | */ |
||
108 | pmbaty | 83 | t_learn_value = ((float) learn_value) / 100.0f; // Pierre-Marie Baty -- added type cast |
33 | pmbaty | 84 | for (i = 0; i < 64; i++) |
85 | if (learn_nmoves[i] > 1) |
||
86 | nplies++; |
||
87 | nplies = Max(nplies, 1); |
||
88 | for (i = 0; i < 64; i++) { |
||
89 | if (learn_nmoves[i] > 1) |
||
90 | thisply++; |
||
91 | book_learn[i] = t_learn_value * (float) thisply / (float) nplies; |
||
92 | } |
||
93 | /* |
||
94 | ************************************************************ |
||
95 | * * |
||
96 | * Now find the appropriate cluster, find the key we were * |
||
97 | * passed, and update the resulting learn value. * |
||
98 | * * |
||
99 | ************************************************************ |
||
100 | */ |
||
101 | for (i = 0; i < 64 && learn_seekto[i]; i++) { |
||
102 | if (learn_seekto[i] > 0) { |
||
103 | fseek(book_file, learn_seekto[i], SEEK_SET); |
||
108 | pmbaty | 104 | v = fread(buf32, 4, 1, book_file); |
105 | if (v <= 0) |
||
106 | perror("Learn() fread error: "); |
||
33 | pmbaty | 107 | cluster = BookIn32(buf32); |
108 | pmbaty | 108 | if (cluster) |
109 | BookClusterIn(book_file, cluster, book_buffer); |
||
33 | pmbaty | 110 | for (j = 0; j < cluster; j++) |
111 | if (!(learn_key[i] ^ book_buffer[j].position)) |
||
112 | break; |
||
113 | if (j >= cluster) |
||
114 | return; |
||
115 | if (fabs(book_buffer[j].learn) < 0.0001) |
||
116 | book_buffer[j].learn = book_learn[i]; |
||
117 | else |
||
108 | pmbaty | 118 | book_buffer[j].learn = (book_buffer[j].learn + book_learn[i]) / 2.0f; // Pierre-Marie Baty -- added type cast |
33 | pmbaty | 119 | fseek(book_file, learn_seekto[i] + 4, SEEK_SET); |
108 | pmbaty | 120 | if (cluster) |
121 | BookClusterOut(book_file, cluster, book_buffer); |
||
33 | pmbaty | 122 | fflush(book_file); |
123 | } |
||
124 | } |
||
125 | } |
||
126 | |||
127 | /* last modified 02/24/14 */ |
||
128 | /* |
||
129 | ******************************************************************************* |
||
130 | * * |
||
131 | * LearnFunction() is called to compute the adjustment value added to the * |
||
132 | * learn counter in the opening book. It takes three pieces of information * |
||
133 | * into consideration to do this: the search value, the search depth that * |
||
134 | * produced this value, and the rating difference (Crafty-opponent) so that * |
||
135 | * + numbers means Crafty is expected to win, - numbers mean Crafty is ex- * |
||
136 | * pected to lose. * |
||
137 | * * |
||
138 | ******************************************************************************* |
||
139 | */ |
||
140 | int LearnFunction(int sv, int search_depth, int rating_difference, |
||
141 | int trusted_value) { |
||
108 | pmbaty | 142 | float multiplier; |
33 | pmbaty | 143 | static const float rating_mult_t[11] = { .00625f, .0125f, .025f, .05f, .075f, .1f, |
108 | pmbaty | 144 | 0.15f, 0.2f, 0.25f, 0.3f, 0.35f // Pierre-Marie Baty -- added type casts |
33 | pmbaty | 145 | }; |
146 | static const float rating_mult_ut[11] = { .25f, .2f, .15f, .1f, .05f, .025f, .012f, |
||
108 | pmbaty | 147 | .006f, .003f, .001f // Pierre-Marie Baty -- added type casts |
33 | pmbaty | 148 | }; |
149 | int sd, rd, value; |
||
150 | |||
151 | sd = Max(Min(search_depth - 10, 19), 0); |
||
152 | rd = Max(Min(rating_difference / 200, 5), -5) + 5; |
||
153 | if (trusted_value) |
||
154 | multiplier = rating_mult_t[rd] * sd; |
||
155 | else |
||
156 | multiplier = rating_mult_ut[rd] * sd; |
||
157 | sv = Max(Min(sv, 5 * learning), -5 * learning); |
||
158 | value = (int) (sv * multiplier); |
||
159 | return value; |
||
160 | } |
||
161 | |||
162 | /* last modified 02/24/14 */ |
||
163 | /* |
||
164 | ******************************************************************************* |
||
165 | * * |
||
166 | * LearnValue() is used to monitor the scores over the first N moves out of * |
||
167 | * book. After these moves have been played, the evaluations are then used * |
||
168 | * to decide whether the last book move played was a reasonable choice or * |
||
169 | * not. (N is set by the #define LEARN_INTERVAL definition.) * |
||
170 | * * |
||
171 | * This procedure does not directly update the book. Rather, it sets the * |
||
172 | * global learn_value variable to represent the goodness or badness of the * |
||
173 | * position where we left the opening book. This will be used later to * |
||
174 | * update the book in the event the game ends without any sort of actual * |
||
175 | * result. In a normal situation, we will base our learning on the result * |
||
176 | * of the game, win-lose-draw. But it is possible that the game ends before * |
||
177 | * the final result is known. In this case, we will use the score from the * |
||
178 | * learn_value we compute here so that we learn _something_ from playing a * |
||
179 | * game fragment. * |
||
180 | * * |
||
181 | * There are three cases to be handled. (1) If the evaluation is bad right * |
||
182 | * out of book, or it drops enough to be considered a bad line, then the * |
||
183 | * book move will have its "learn" value reduced to discourage playing this * |
||
184 | * move again. (2) If the evaluation is even after N moves, then the learn * |
||
185 | * value will be increased, but by a relatively modest amount, so that a few * |
||
186 | * even results will offset one bad result. (3) If the evaluation is very * |
||
187 | * good after N moves, the learn value will be increased by a large amount * |
||
188 | * so that this move will be favored the next time the game is played. * |
||
189 | * * |
||
190 | ******************************************************************************* |
||
191 | */ |
||
192 | void LearnValue(int search_value, int search_depth) { |
||
108 | pmbaty | 193 | int i, interval; |
33 | pmbaty | 194 | int best_eval = -999999, best_eval_p = 0; |
195 | int worst_eval = 999999, worst_eval_p = 0; |
||
196 | int best_after_worst_eval = -999999, worst_after_best_eval = 999999; |
||
197 | |||
198 | /* |
||
199 | ************************************************************ |
||
200 | * * |
||
201 | * If we have not been "out of book" for N moves, all we * |
||
202 | * need to do is take the search evaluation for the search * |
||
203 | * just completed and tuck it away in the book learning * |
||
204 | * array (book_learn_eval[]) for use later. * |
||
205 | * * |
||
206 | ************************************************************ |
||
207 | */ |
||
208 | if (!book_file) |
||
209 | return; |
||
210 | if (!learn || learn_value != 0) |
||
211 | return; |
||
212 | if (moves_out_of_book <= LEARN_INTERVAL) { |
||
213 | if (moves_out_of_book) { |
||
214 | book_learn_eval[moves_out_of_book - 1] = search_value; |
||
215 | book_learn_depth[moves_out_of_book - 1] = search_depth; |
||
216 | } |
||
217 | } |
||
218 | /* |
||
219 | ************************************************************ |
||
220 | * * |
||
221 | * Check the evaluations we've seen so far. If they are * |
||
222 | * within reason (+/- 1/3 of a pawn or so) we simply keep * |
||
223 | * playing and leave the book alone. If the eval is much * |
||
224 | * better or worse, we need to update the learning data. * |
||
225 | * * |
||
226 | ************************************************************ |
||
227 | */ |
||
228 | else if (moves_out_of_book == LEARN_INTERVAL + 1) { |
||
229 | if (moves_out_of_book < 1) |
||
230 | return; |
||
231 | interval = Min(LEARN_INTERVAL, moves_out_of_book); |
||
232 | if (interval < 2) |
||
233 | return; |
||
234 | for (i = 0; i < interval; i++) { |
||
235 | if (book_learn_eval[i] > best_eval) { |
||
236 | best_eval = book_learn_eval[i]; |
||
237 | best_eval_p = i; |
||
238 | } |
||
239 | if (book_learn_eval[i] < worst_eval) { |
||
240 | worst_eval = book_learn_eval[i]; |
||
241 | worst_eval_p = i; |
||
242 | } |
||
243 | } |
||
244 | if (best_eval_p < interval - 1) { |
||
245 | for (i = best_eval_p; i < interval; i++) |
||
246 | if (book_learn_eval[i] < worst_after_best_eval) |
||
247 | worst_after_best_eval = book_learn_eval[i]; |
||
248 | } else |
||
249 | worst_after_best_eval = book_learn_eval[interval - 1]; |
||
250 | if (worst_eval_p < interval - 1) { |
||
251 | for (i = worst_eval_p; i < interval; i++) |
||
252 | if (book_learn_eval[i] > best_after_worst_eval) |
||
253 | best_after_worst_eval = book_learn_eval[i]; |
||
254 | } else |
||
255 | best_after_worst_eval = book_learn_eval[interval - 1]; |
||
256 | /* |
||
257 | ************************************************************ |
||
258 | * * |
||
259 | * We now have the best eval for the first N moves out of * |
||
260 | * book, the worst eval for the first N moves out of book, * |
||
261 | * and the worst eval that follows the best eval. This * |
||
262 | * will be used to recognize the following cases of * |
||
263 | * results that follow a book move: * |
||
264 | * * |
||
265 | ************************************************************ |
||
266 | */ |
||
267 | /* |
||
268 | ************************************************************ |
||
269 | * * |
||
270 | * (1) The best score is very good, and it doesn't drop * |
||
271 | * after following the game further. This case detects * |
||
272 | * those moves in book that are "good" and should be * |
||
273 | * played whenever possible, while avoiding the sound * |
||
274 | * gambits that leave us ahead in material for a short * |
||
275 | * while until the score starts to drop as the gambit * |
||
276 | * begins to show its effect. * |
||
277 | * * |
||
278 | ************************************************************ |
||
279 | */ |
||
280 | if (best_eval == best_after_worst_eval) { |
||
281 | learn_value = best_eval; |
||
282 | for (i = 0; i < interval; i++) |
||
283 | if (learn_value == book_learn_eval[i]) |
||
284 | search_depth = Max(search_depth, book_learn_depth[i]); |
||
285 | } |
||
286 | /* |
||
287 | ************************************************************ |
||
288 | * * |
||
289 | * (2) The worst score is bad, and doesn't improve any * |
||
290 | * after the worst point, indicating that the book move * |
||
291 | * chosen was "bad" and should be avoided in the future. * |
||
292 | * * |
||
293 | ************************************************************ |
||
294 | */ |
||
295 | else if (worst_eval == worst_after_best_eval) { |
||
296 | learn_value = worst_eval; |
||
297 | for (i = 0; i < interval; i++) |
||
298 | if (learn_value == book_learn_eval[i]) |
||
299 | search_depth = Max(search_depth, book_learn_depth[i]); |
||
300 | } |
||
301 | /* |
||
302 | ************************************************************ |
||
303 | * * |
||
304 | * (3) Things seem even out of book and remain that way * |
||
305 | * for N moves. We will just average the 10 scores and * |
||
306 | * use that as an approximation. * |
||
307 | * * |
||
308 | ************************************************************ |
||
309 | */ |
||
310 | else { |
||
311 | learn_value = 0; |
||
312 | search_depth = 0; |
||
313 | for (i = 0; i < interval; i++) { |
||
314 | learn_value += book_learn_eval[i]; |
||
315 | search_depth += book_learn_depth[i]; |
||
316 | } |
||
317 | learn_value /= interval; |
||
318 | search_depth /= interval; |
||
319 | } |
||
320 | learn_value = |
||
321 | LearnFunction(learn_value, search_depth, |
||
322 | crafty_rating - opponent_rating, learn_value < 0); |
||
323 | } |
||
324 | } |