Subversion Repositories Games.Chess Giants

Rev

Rev 108 | Go to most recent revision | Details | Last modification | View Log | RSS feed

Rev Author Line No. Line
33 pmbaty 1
#include "chess.h"
2
#include "data.h"
3
/* last modified 02/22/14 */
4
/*
5
 *******************************************************************************
6
 *                                                                             *
7
 *   HashProbe() is used to retrieve entries from the transposition table so   *
8
 *   this sub-tree won't have to be searched again if we reach a position that *
9
 *   has been searched previously.  A transposition table position contains    *
10
 *   the following data packed into 128 bits with each item taking the number  *
11
 *   of bits given in the table below:                                         *
12
 *                                                                             *
13
 *     shr  bits     name description                                          *
14
 *      55   9       age  search id to identify old trans/ref entries.         *
15
 *      53   2      type  0->value is worthless; 1-> value represents a        *
16
 *                        fail-low bound; 2-> value represents a fail-high     *
17
 *                        bound; 3-> value is an exact score.                  *
18
 *      32  21      move  best move from the current position, according to    *
19
 *                        the search at the time this position was stored.     *
20
 *      17  15     draft  the depth of the search below this position, which   *
21
 *                        is used to see if we can use this entry at the       *
22
 *                        current position.                                    *
23
 *       0  17     value  unsigned integer value of this position + 65536.     *
24
 *                        this might be a good score or search bound.          *
25
 *       0  64       key  64 bit hash signature, used to verify that this      *
26
 *                        entry goes with the current board position.          *
27
 *                                                                             *
28
 *   The underlying scheme here is that we use a "bucket" of N entries.  In    *
29
 *   HashProbe() we simply compare against each of the four entries for a      *
30
 *   match.  Each "bucket" is carefully aligned to a 64-byte boundary so that  *
31
 *   the bucket fits into a single cache line for efficiency.  The bucket size *
32
 *   (N) is currently set to 4.                                                *
33
 *                                                                             *
34
 *   Crafty uses the lockless hashing approach to avoid lock overhead in the   *
35
 *   hash table accessing (reading or writing).  What we do is store the key   *
36
 *   and the information in two successive writes to memory.  But since there  *
37
 *   is nothing that prevents another CPU from interlacing its writes with     *
38
 *   ours, we want to make sure that the bound/draft/etc really goes with the  *
39
 *   key.  Consider thread 1 trying to store A1 and A2 in two successive 64    *
40
 *   words, while thread 2 is trying to store B1 and B2.  Since the two cpus   *
41
 *   are fully independent, we could end up with {A1,A2}, {A1,B2}, {B1,A2} or  *
42
 *   {B1,B2}.  The two cases with one word of entry A and one word of entry B  *
43
 *   are problematic since the information part does not belong with the       *
44
 *   signature part, and a hash hit (signature match) will retrieve data that  *
45
 *   does not match the position.  Let's assume that the first word is the     *
46
 *   signature (A1 or B1) and the second word is the data (A2 or B2).  What we *
47
 *   do is store A1^A2 (exclusive-or the two parts) in the 1 (key) slot of the *
48
 *   entry, and store A2 in the data part.  Now, before we try to compare the  *
49
 *   signatures, we have to "un-corrupt" the stored signature by again using   *
50
 *   xor, since A1^A2^A2 gives us the original A1 signature again.  But if we  *
51
 *   store A1^A2, and the data part gets replaced by B2, then we try to match  *
52
 *   against A1^A2^B2 and that won't match unless we are lucky and A2 == B2    *
53
 *   which means the match is OK anyway.  This eliminates the need to lock the *
54
 *   hash table while storing the two values, which would be a big performance *
55
 *   hit since hash entries are probed/stored in almost every node of the tree *
56
 *   except for the quiescence search.                                         *
57
 *                                                                             *
58
 *******************************************************************************
59
 */
60
int HashProbe(TREE * RESTRICT tree, int ply, int depth, int side, int alpha,
61
    int beta, int *value) {
62
  HASH_ENTRY *htable;
63
  HPATH_ENTRY *ptable;
64
  uint64_t word1, word2, temp_hashkey;
65
  int type, draft, avoid_null = 0, val, entry, i, j;
66
 
67
/*
68
 ************************************************************
69
 *                                                          *
70
 *  All we have to do is loop through four entries to see   *
71
 *  if there is a signature match.  There can only be one   *
72
 *  instance of any single signature, so the first match is *
73
 *  all we need.                                            *
74
 *                                                          *
75
 ************************************************************
76
 */
77
  tree->hash_move[ply] = 0;
78
  temp_hashkey = (side) ? HashKey : ~HashKey;
79
  htable = trans_ref + (temp_hashkey & hash_mask);
80
  for (entry = 0; entry < 4; entry++, htable++) {
81
    word1 = htable->word1;
82
    word2 = htable->word2 ^ word1;
83
    if (word2 == temp_hashkey)
84
      break;
85
  }
86
/*
87
 ************************************************************
88
 *                                                          *
89
 *  If we found a match, we have to verify that the draft   *
90
 *  is at least equal to the current depth, if not higher,  *
91
 *  and that the bound/score will let us terminate the      *
92
 *  search early.                                           *
93
 *                                                          *
94
 *  We also return an "avoid_null" status if the matched    *
95
 *  entry does not have enough draft to terminate the       *
96
 *  current search but does have enough draft to prove that *
97
 *  a null-move search would not fail high.  This avoids    *
98
 *  the null-move search overhead in positions where it is  *
99
 *  simply a waste of time to try it.                       *
100
 *                                                          *
101
 *  If this is an EXACT entry, we are going to store the PV *
102
 *  in a safe place so that if we get a hit on this entry,  *
103
 *  we can recover the PV and see the complete path rather  *
104
 *  rather than one that is incomplete.                     *
105
 *                                                          *
106
 *  One other issue is to update the age field if we get a  *
107
 *  hit on an old position, so that it won't be replaced    *
108
 *  just because it came from a previous search.            *
109
 *                                                          *
110
 ************************************************************
111
 */
112
  if (entry < 4) {
113
    if (word1 >> 55 != transposition_age) {
114
      word1 =
115
          (word1 & 0x007fffffffffffffull) | ((uint64_t) transposition_age <<
116
          55);
117
      htable->word1 = word1;
118
      htable->word2 = word1 ^ word2;
119
    }
120
    val = (word1 & 0x1ffff) - 65536;
121
    draft = (word1 >> 17) & 0x7fff;
122
    tree->hash_move[ply] = (word1 >> 32) & 0x1fffff;
123
    type = (word1 >> 53) & 3;
124
    if ((type & UPPER) && depth - null_depth - 1 <= draft && val < beta)
125
      avoid_null = AVOID_NULL_MOVE;
126
    if (depth <= draft) {
127
      if (val > 32000)
128
        val -= ply - 1;
129
      else if (val < -32000)
130
        val += ply - 1;
131
      *value = val;
132
/*
133
 ************************************************************
134
 *                                                          *
135
 *  We have three types of results.  An EXACT entry was     *
136
 *  stored when val > alpha and val < beta, and represents  *
137
 *  an exact score.  An UPPER entry was stored when val <   *
138
 *  alpha, which represents an upper bound with the score   *
139
 *  likely being even lower.  A LOWER entry was stored when *
140
 *  val > beta, which represents alower bound with the      *
141
 *  score likely being even higher.                         *
142
 *                                                          *
143
 *  For EXACT entries, we save the path from the position   *
144
 *  to the terminal node that produced the backed-up score  *
145
 *  so that we can complete the PV if we get a hash hit on  *
146
 *  this entry.                                             *
147
 *                                                          *
148
 ************************************************************
149
 */
150
      switch (type) {
151
        case EXACT:
152
          if (val > alpha && val < beta) {
153
            SavePV(tree, ply, 1 + (draft == MAX_DRAFT));
154
            ptable = hash_path + (temp_hashkey & hash_path_mask);
155
            for (i = 0; i < 16; i++, ptable++)
156
              if (ptable->path_sig == temp_hashkey) {
157
                for (j = ply; j < Min(MAXPLY - 1, ptable->hash_pathl + ply);
158
                    j++)
159
                  tree->pv[ply - 1].path[j] =
160
                      ptable->hash_path_moves[j - ply];
161
                if (draft != MAX_DRAFT &&
162
                    ptable->hash_pathl + ply < MAXPLY - 1)
163
                  tree->pv[ply - 1].pathh = 0;
164
                tree->pv[ply - 1].pathl =
165
                    Min(MAXPLY - 1, ply + ptable->hash_pathl);
166
                ptable->hash_path_age = transposition_age;
167
                break;
168
              }
169
          }
170
          return HASH_HIT;
171
        case UPPER:
172
          if (val <= alpha)
173
            return HASH_HIT;
174
          break;
175
        case LOWER:
176
          if (val >= beta)
177
            return HASH_HIT;
178
          break;
179
      }
180
    }
181
    return avoid_null;
182
  }
183
  return HASH_MISS;
184
}
185
 
186
/* last modified 02/22/14 */
187
/*
188
 *******************************************************************************
189
 *                                                                             *
190
 *   HashStore() is used to store entries into the transposition table so that *
191
 *   this sub-tree won't have to be searched again if the same position is     *
192
 *   reached.  We basically store three types of entries:                      *
193
 *                                                                             *
194
 *     (1) EXACT.  This entry is stored when we complete a search at some ply  *
195
 *        and end up with a score that is greater than alpha and less than     *
196
 *        beta, which is an exact score, which also has a best move to try if  *
197
 *        we encounter this position again.                                    *
198
 *                                                                             *
199
 *     (2) LOWER.  This entry is stored when we complete a search at some ply  *
200
 *        and end up with a score that is greater than or equal to beta.  We   *
201
 *        know know that this score should be at least equal to beta and may   *
202
 *        well be even higher.  So this entry represents a lower bound on the  *
203
 *        score for this node, and we also have a good move to try since it    *
204
 *        caused the cutoff, although we do not know if it is the best move or *
205
 *        not since not all moves were search.                                 *
206
 *                                                                             *
207
 *     (3) UPPER.  This entry is stored when we complete a search at some ply  *
208
 *        and end up with a score that is less than or equal to alpha.  We     *
209
 *        know know that this score should be at least equal to alpha and may  *
210
 *        well be even lower.  So this entry represents an upper bound on the  *
211
 *        score for this node.  We have no idea about which move is best in    *
212
 *        this position since they all failed low, so we store a best move of  *
213
 *        zero.                                                                *
214
 *                                                                             *
215
 *   For storing, we may require three passes.  We make our first pass looking *
216
 *   for an entry that matches the current hash signature.  If we find a match *
217
 *   then we are constrained to overwrite that entry regardless of any other   *
218
 *   considerations.  The second pass looks for entries stored in previous     *
219
 *   searches (not iterations) and chooses the one with the shallowest draft,  *
220
 *   if one is found;  Otherwise we make a final pass over the bucket and      *
221
 *   choose the entry with the shallowest draft, period.                       *
222
 *                                                                             *
223
 *******************************************************************************
224
 */
225
void HashStore(TREE * RESTRICT tree, int ply, int depth, int side, int type,
226
    int value, int bestmove) {
227
  HASH_ENTRY *htable, *replace = 0;
228
  HPATH_ENTRY *ptable;
229
  uint64_t word1, temp_hashkey;
230
  int entry, draft, age, replace_draft, i, j;
231
 
232
/*
233
 ************************************************************
234
 *                                                          *
235
 *  "Fill in the blank" and build a table entry from        *
236
 *  current search information.                             *
237
 *                                                          *
238
 ************************************************************
239
 */
240
  word1 = transposition_age;
241
  word1 = (word1 << 2) | type;
242
  if (value > 32000)
243
    value += ply - 1;
244
  else if (value < -32000)
245
    value -= ply - 1;
246
  word1 = (word1 << 21) | bestmove;
247
  word1 = (word1 << 15) | depth;
248
  word1 = (word1 << 17) | (value + 65536);
249
  temp_hashkey = (side) ? HashKey : ~HashKey;
250
/*
251
 ************************************************************
252
 *                                                          *
253
 *  Now we search for an entry to overwrite in three        *
254
 *  passes.                                                 *
255
 *                                                          *
256
 *  Pass 1:  If any signature in the table matches the      *
257
 *    current signature, we are going to overwrite this     *
258
 *    entry, period.  It might seem worthwhile to check the *
259
 *    draft and not overwrite if the table draft is greater *
260
 *    than the current remaining depth, but after you think *
261
 *    about it, this is a bad idea.  If the draft is        *
262
 *    greater than or equal the current remaining depth,    *
263
 *    then we should never get here unless the stored bound *
264
 *    or score is unusable because of the current alpha/    *
265
 *    beta window.  So we are overwriting to avoid losing   *
266
 *    the current result.                                   *
267
 *                                                          *
268
 *  Pass 2:  If any of the entries come from a previous     *
269
 *    search (not iteration) then we choose the entry from  *
270
 *    this set that has the smallest draft, since it is the *
271
 *    least potentially usable result.                      *
272
 *                                                          *
273
 *  Pass 3:  If neither of the above two found an entry to  *
274
 *    overwrite, we simply choose the entry from the bucket *
275
 *    with the smallest draft and overwrite that.           *
276
 *                                                          *
277
 ************************************************************
278
 */
279
  htable = trans_ref + (temp_hashkey & hash_mask);
280
  for (entry = 0; entry < 4; entry++, htable++) {
281
    if (temp_hashkey == (htable->word1 ^ htable->word2)) {
282
      replace = htable;
283
      break;
284
    }
285
  }
286
  if (!replace) {
287
    replace_draft = 99999;
288
    htable = trans_ref + (temp_hashkey & hash_mask);
289
    for (entry = 0; entry < 4; entry++, htable++) {
290
      age = htable->word1 >> 55;
291
      draft = (htable->word1 >> 17) & 0x7fff;
292
      if (age != transposition_age && replace_draft > draft) {
293
        replace = htable;
294
        replace_draft = draft;
295
      }
296
    }
297
    if (!replace) {
298
      htable = trans_ref + (temp_hashkey & hash_mask);
299
      for (entry = 0; entry < 4; entry++, htable++) {
300
        draft = (htable->word1 >> 17) & 0x7fff;
301
        if (replace_draft > draft) {
302
          replace = htable;
303
          replace_draft = draft;
304
        }
305
      }
306
    }
307
  }
308
/*
309
 ************************************************************
310
 *                                                          *
311
 *  Now that we know which entry to replace, we simply      *
312
 *  stuff the values and exit.  Note that the two 64 bit    *
313
 *  words are xor'ed together and stored as the signature   *
314
 *  for the "lockless-hash" approach.                       *
315
 *                                                          *
316
 ************************************************************
317
 */
318
  replace->word1 = word1;
319
  replace->word2 = temp_hashkey ^ word1;
320
/*
321
 ************************************************************
322
 *                                                          *
323
 *  If this is an EXACT entry, we are going to store the PV *
324
 *  in a safe place so that if we get a hit on this entry,  *
325
 *  we can recover the PV and see the complete path rather  *
326
 *  rather than one that is incomplete.                     *
327
 *                                                          *
328
 ************************************************************
329
 */
330
  if (type == EXACT) {
331
    ptable = hash_path + (temp_hashkey & hash_path_mask);
332
    for (i = 0; i < 16; i++, ptable++) {
333
      if (ptable->path_sig == temp_hashkey ||
334
          ((transposition_age - ptable->hash_path_age) > 1)) {
335
        for (j = ply; j < tree->pv[ply - 1].pathl; j++)
336
          ptable->hash_path_moves[j - ply] = tree->pv[ply - 1].path[j];
337
        ptable->hash_pathl = tree->pv[ply - 1].pathl - ply;
338
        ptable->path_sig = temp_hashkey;
339
        ptable->hash_path_age = transposition_age;
340
        break;
341
      }
342
    }
343
  }
344
}
345
 
346
/* last modified 02/22/14 */
347
/*
348
 *******************************************************************************
349
 *                                                                             *
350
 *   HashStorePV() is called by Iterate() to insert the PV moves so they will  *
351
 *   be searched before any other moves.  Normally the PV moves would be in    *
352
 *   the table, but on occasion they can be overwritten, particularly the ones *
353
 *   that are a significant distance from the root since those table entries   *
354
 *   will have a low draft.                                                    *
355
 *                                                                             *
356
 *******************************************************************************
357
 */
358
void HashStorePV(TREE * RESTRICT tree, int side, int ply) {
359
  HASH_ENTRY *htable, *replace;
360
  uint64_t temp_hashkey, word1;
361
  int entry, draft, replace_draft, age;
362
 
363
/*
364
 ************************************************************
365
 *                                                          *
366
 *  First, compute the initial hash address and the fake    *
367
 *  entry we will store if we don't find a valid match      *
368
 *  already in the table.                                   *
369
 *                                                          *
370
 ************************************************************
371
 */
372
  temp_hashkey = (side) ? HashKey : ~HashKey;
373
  word1 = transposition_age;
374
  word1 = (word1 << 2) | WORTHLESS;
375
  word1 = (word1 << 21) | tree->pv[0].path[ply];
376
  word1 = (word1 << 32) | 65536;
377
/*
378
 ************************************************************
379
 *                                                          *
380
 *  Now we search for an entry to overwrite in three        *
381
 *  passes.                                                 *
382
 *                                                          *
383
 *  Pass 1:  If any signature in the table matches the      *
384
 *    current signature, we are going to overwrite this     *
385
 *    entry, period.  It might seem worthwhile to check the *
386
 *    draft and not overwrite if the table draft is greater *
387
 *    than the current remaining depth, but after you think *
388
 *    about it, this is a bad idea.  If the draft is        *
389
 *    greater than or equal the current remaining depth,    *
390
 *    then we should never get here unless the stored bound *
391
 *    or score is unusable because of the current alpha/    *
392
 *    beta window.  So we are overwriting to avoid losing   *
393
 *    the current result.                                   *
394
 *                                                          *
395
 *  Pass 2:  If any of the entries come from a previous     *
396
 *    search (not iteration) then we choose the entry from  *
397
 *    this set that has the smallest draft, since it is the *
398
 *    least potentially usable result.                      *
399
 *                                                          *
400
 *  Pass 3:  If neither of the above two found an entry to  *
401
 *    overwrite, we simply choose the entry from the bucket *
402
 *    with the smallest draft and overwrite that.           *
403
 *                                                          *
404
 ************************************************************
405
 */
406
  htable = trans_ref + (temp_hashkey & hash_mask);
407
  for (entry = 0; entry < 4; entry++, htable++) {
408
    if ((htable->word2 ^ htable->word1) == temp_hashkey) {
409
      htable->word1 &= ~((uint64_t) 0x1fffff << 32);
410
      htable->word1 |= (uint64_t) tree->pv[0].path[ply] << 32;
411
      htable->word2 = temp_hashkey ^ htable->word1;
412
      break;
413
    }
414
  }
415
  if (entry == 4) {
416
    htable = trans_ref + (temp_hashkey & hash_mask);
417
    replace = 0;
418
    replace_draft = 99999;
419
    for (entry = 0; entry < 4; entry++, htable++) {
420
      age = htable->word1 >> 55;
421
      draft = (htable->word1 >> 17) & 0x7fff;
422
      if (age != transposition_age && replace_draft > draft) {
423
        replace = htable;
424
        replace_draft = draft;
425
      }
426
    }
427
    if (!replace) {
428
      htable = trans_ref + (temp_hashkey & hash_mask);
429
      for (entry = 0; entry < 4; entry++, htable++) {
430
        draft = (htable->word1 >> 17) & 0x7fff;
431
        if (replace_draft > draft) {
432
          replace = htable;
433
          replace_draft = draft;
434
        }
435
      }
436
    }
437
    replace->word1 = word1;
438
    replace->word2 = temp_hashkey ^ word1;
439
  }
440
}