Rev 33 | Details | Compare with Previous | Last modification | View Log | RSS feed
Rev | Author | Line No. | Line |
---|---|---|---|
33 | pmbaty | 1 | #include "chess.h" |
2 | #include "data.h" |
||
3 | /* last modified 01/07/14 */ |
||
4 | /* |
||
5 | ******************************************************************************* |
||
6 | * * |
||
7 | * Attacks() is used to determine if <side> attacks <square>. The algorithm * |
||
8 | * is simple, and is based on the AttacksTo() algorithm, but, rather than * |
||
9 | * returning a bitmap of squares attacking <square> it returns a "1" as soon * |
||
10 | * as it finds anything that attacks <square>. * |
||
11 | * * |
||
12 | ******************************************************************************* |
||
13 | */ |
||
14 | int Attacks(TREE * RESTRICT tree, int side, int square) { |
||
15 | if ((rook_attacks[square] & (Rooks(side) | Queens(side))) |
||
16 | && (RookAttacks(square, |
||
17 | OccupiedSquares) & (Rooks(side) | Queens(side)))) |
||
18 | return 1; |
||
19 | if ((bishop_attacks[square] & (Bishops(side) | Queens(side))) |
||
20 | && (BishopAttacks(square, |
||
21 | OccupiedSquares) & (Bishops(side) | Queens(side)))) |
||
22 | return 1; |
||
23 | if (KnightAttacks(square) & Knights(side)) |
||
24 | return 1; |
||
25 | if (PawnAttacks(Flip(side), square) & Pawns(side)) |
||
26 | return 1; |
||
27 | if (KingAttacks(square) & Kings(side)) |
||
28 | return 1; |
||
29 | return 0; |
||
30 | } |
||
31 | |||
32 | /* last modified 01/07/14 */ |
||
33 | /* |
||
34 | ******************************************************************************* |
||
35 | * * |
||
36 | * AttacksTo() is used to produce a bitboard which is a map of all squares * |
||
37 | * that directly attack this <square>. The non-sliding pieces are trivial * |
||
38 | * to detect, but for sliding pieces, we use a bitboard trick. The idea is * |
||
39 | * to compute the squares a queen would attack, if it was standing on * |
||
40 | * <square> and then look at the last square attacked in each direction to * |
||
41 | * determine if it is a sliding piece that moves in the right direction. To * |
||
42 | * finish up, we simply need to Or() all these attackers together. * |
||
43 | * * |
||
44 | ******************************************************************************* |
||
45 | */ |
||
46 | uint64_t AttacksTo(TREE * RESTRICT tree, int square) { |
||
47 | uint64_t attacks = |
||
48 | (PawnAttacks(white, square) & Pawns(black)) | (PawnAttacks(black, |
||
49 | square) & Pawns(white)); |
||
50 | uint64_t bsliders = |
||
51 | Bishops(white) | Bishops(black) | Queens(white) | Queens(black); |
||
52 | uint64_t rsliders = |
||
53 | Rooks(white) | Rooks(black) | Queens(white) | Queens(black); |
||
54 | attacks |= KnightAttacks(square) & (Knights(black) | Knights(white)); |
||
55 | if (bishop_attacks[square] & bsliders) |
||
56 | attacks |= BishopAttacks(square, OccupiedSquares) & bsliders; |
||
57 | if (rook_attacks[square] & rsliders) |
||
58 | attacks |= RookAttacks(square, OccupiedSquares) & rsliders; |
||
59 | attacks |= KingAttacks(square) & (Kings(black) | Kings(white)); |
||
60 | return attacks; |
||
61 | } |
||
62 | |||
63 | /* last modified 01/07/14 */ |
||
64 | /* |
||
65 | ******************************************************************************* |
||
66 | * * |
||
67 | * AttacksFrom() is used to compute the set of squares the piece on <source> * |
||
68 | * attacks. * |
||
69 | * * |
||
70 | ******************************************************************************* |
||
71 | */ |
||
72 | uint64_t AttacksFrom(TREE * RESTRICT tree, int side, int source) { |
||
73 | |||
74 | switch (Abs(PcOnSq(source))) { |
||
75 | case queen: |
||
76 | return QueenAttacks(source, OccupiedSquares); |
||
77 | case rook: |
||
78 | return RookAttacks(source, OccupiedSquares); |
||
79 | case bishop: |
||
80 | return BishopAttacks(source, OccupiedSquares); |
||
81 | case knight: |
||
82 | return KnightAttacks(source); |
||
83 | case pawn: |
||
84 | return PawnAttacks(side, source); |
||
85 | case king: |
||
86 | return KingAttacks(source); |
||
87 | } |
||
88 | return 0; |
||
89 | } |
||
108 | pmbaty | 90 | |
91 | /* last modified 01/07/14 */ |
||
92 | /* |
||
93 | ******************************************************************************* |
||
94 | * * |
||
95 | * Attacked() is used to determine if <square> is attacked. It returns a * |
||
96 | * two bit value, 01 if <square> is attacked by <side>, 10 if <square> is * |
||
97 | * attacked by <enemy> and 11 if <square> is attacked by both sides. * |
||
98 | * * |
||
99 | ******************************************************************************* |
||
100 | */ |
||
101 | uint64_t Attacked(TREE * RESTRICT tree, int side, uint64_t squares) { |
||
102 | uint64_t bsliders, rsliders, set; |
||
103 | int square; |
||
104 | |||
105 | bsliders = Bishops(side) | Queens(side); |
||
106 | rsliders = Rooks(side) | Queens(side); |
||
107 | for (set = squares; set; set &= set - 1) { |
||
108 | square = LSB(set); |
||
109 | do { |
||
110 | if (KingAttacks(square) & Kings(side)) |
||
111 | break; |
||
112 | if (KnightAttacks(square) & Knights(side)) |
||
113 | break; |
||
114 | if (bishop_attacks[square] & bsliders && |
||
115 | BishopAttacks(square, OccupiedSquares) & bsliders) |
||
116 | break; |
||
117 | if (rook_attacks[square] & rsliders && |
||
118 | RookAttacks(square, OccupiedSquares) & rsliders) |
||
119 | break; |
||
120 | Clear(square, squares); |
||
121 | } while (0); |
||
122 | } |
||
123 | return squares; |
||
124 | } |