Subversion Repositories QNX 8.QNX8 LLVM/Clang compiler suite

Rev

Details | Last modification | View Log | RSS feed

Rev Author Line No. Line
14 pmbaty 1
/*===---- avxintrin.h - AVX intrinsics -------------------------------------===
2
 *
3
 * Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
 * See https://llvm.org/LICENSE.txt for license information.
5
 * SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
 *
7
 *===-----------------------------------------------------------------------===
8
 */
9
 
10
#ifndef __IMMINTRIN_H
11
#error "Never use <avxintrin.h> directly; include <immintrin.h> instead."
12
#endif
13
 
14
#ifndef __AVXINTRIN_H
15
#define __AVXINTRIN_H
16
 
17
typedef double __v4df __attribute__ ((__vector_size__ (32)));
18
typedef float __v8sf __attribute__ ((__vector_size__ (32)));
19
typedef long long __v4di __attribute__ ((__vector_size__ (32)));
20
typedef int __v8si __attribute__ ((__vector_size__ (32)));
21
typedef short __v16hi __attribute__ ((__vector_size__ (32)));
22
typedef char __v32qi __attribute__ ((__vector_size__ (32)));
23
 
24
/* Unsigned types */
25
typedef unsigned long long __v4du __attribute__ ((__vector_size__ (32)));
26
typedef unsigned int __v8su __attribute__ ((__vector_size__ (32)));
27
typedef unsigned short __v16hu __attribute__ ((__vector_size__ (32)));
28
typedef unsigned char __v32qu __attribute__ ((__vector_size__ (32)));
29
 
30
/* We need an explicitly signed variant for char. Note that this shouldn't
31
 * appear in the interface though. */
32
typedef signed char __v32qs __attribute__((__vector_size__(32)));
33
 
34
typedef float __m256 __attribute__ ((__vector_size__ (32), __aligned__(32)));
35
typedef double __m256d __attribute__((__vector_size__(32), __aligned__(32)));
36
typedef long long __m256i __attribute__((__vector_size__(32), __aligned__(32)));
37
 
38
typedef float __m256_u __attribute__ ((__vector_size__ (32), __aligned__(1)));
39
typedef double __m256d_u __attribute__((__vector_size__(32), __aligned__(1)));
40
typedef long long __m256i_u __attribute__((__vector_size__(32), __aligned__(1)));
41
 
42
#ifdef __SSE2__
43
/* Both _Float16 and __bf16 require SSE2 being enabled. */
44
typedef _Float16 __v16hf __attribute__((__vector_size__(32), __aligned__(32)));
45
typedef _Float16 __m256h __attribute__((__vector_size__(32), __aligned__(32)));
46
typedef _Float16 __m256h_u __attribute__((__vector_size__(32), __aligned__(1)));
47
 
48
typedef __bf16 __v16bf __attribute__((__vector_size__(32), __aligned__(32)));
49
typedef __bf16 __m256bh __attribute__((__vector_size__(32), __aligned__(32)));
50
#endif
51
 
52
/* Define the default attributes for the functions in this file. */
53
#define __DEFAULT_FN_ATTRS __attribute__((__always_inline__, __nodebug__, __target__("avx"), __min_vector_width__(256)))
54
#define __DEFAULT_FN_ATTRS128 __attribute__((__always_inline__, __nodebug__, __target__("avx"), __min_vector_width__(128)))
55
 
56
/* Arithmetic */
57
/// Adds two 256-bit vectors of [4 x double].
58
///
59
/// \headerfile <x86intrin.h>
60
///
61
/// This intrinsic corresponds to the <c> VADDPD </c> instruction.
62
///
63
/// \param __a
64
///    A 256-bit vector of [4 x double] containing one of the source operands.
65
/// \param __b
66
///    A 256-bit vector of [4 x double] containing one of the source operands.
67
/// \returns A 256-bit vector of [4 x double] containing the sums of both
68
///    operands.
69
static __inline __m256d __DEFAULT_FN_ATTRS
70
_mm256_add_pd(__m256d __a, __m256d __b)
71
{
72
  return (__m256d)((__v4df)__a+(__v4df)__b);
73
}
74
 
75
/// Adds two 256-bit vectors of [8 x float].
76
///
77
/// \headerfile <x86intrin.h>
78
///
79
/// This intrinsic corresponds to the <c> VADDPS </c> instruction.
80
///
81
/// \param __a
82
///    A 256-bit vector of [8 x float] containing one of the source operands.
83
/// \param __b
84
///    A 256-bit vector of [8 x float] containing one of the source operands.
85
/// \returns A 256-bit vector of [8 x float] containing the sums of both
86
///    operands.
87
static __inline __m256 __DEFAULT_FN_ATTRS
88
_mm256_add_ps(__m256 __a, __m256 __b)
89
{
90
  return (__m256)((__v8sf)__a+(__v8sf)__b);
91
}
92
 
93
/// Subtracts two 256-bit vectors of [4 x double].
94
///
95
/// \headerfile <x86intrin.h>
96
///
97
/// This intrinsic corresponds to the <c> VSUBPD </c> instruction.
98
///
99
/// \param __a
100
///    A 256-bit vector of [4 x double] containing the minuend.
101
/// \param __b
102
///    A 256-bit vector of [4 x double] containing the subtrahend.
103
/// \returns A 256-bit vector of [4 x double] containing the differences between
104
///    both operands.
105
static __inline __m256d __DEFAULT_FN_ATTRS
106
_mm256_sub_pd(__m256d __a, __m256d __b)
107
{
108
  return (__m256d)((__v4df)__a-(__v4df)__b);
109
}
110
 
111
/// Subtracts two 256-bit vectors of [8 x float].
112
///
113
/// \headerfile <x86intrin.h>
114
///
115
/// This intrinsic corresponds to the <c> VSUBPS </c> instruction.
116
///
117
/// \param __a
118
///    A 256-bit vector of [8 x float] containing the minuend.
119
/// \param __b
120
///    A 256-bit vector of [8 x float] containing the subtrahend.
121
/// \returns A 256-bit vector of [8 x float] containing the differences between
122
///    both operands.
123
static __inline __m256 __DEFAULT_FN_ATTRS
124
_mm256_sub_ps(__m256 __a, __m256 __b)
125
{
126
  return (__m256)((__v8sf)__a-(__v8sf)__b);
127
}
128
 
129
/// Adds the even-indexed values and subtracts the odd-indexed values of
130
///    two 256-bit vectors of [4 x double].
131
///
132
/// \headerfile <x86intrin.h>
133
///
134
/// This intrinsic corresponds to the <c> VADDSUBPD </c> instruction.
135
///
136
/// \param __a
137
///    A 256-bit vector of [4 x double] containing the left source operand.
138
/// \param __b
139
///    A 256-bit vector of [4 x double] containing the right source operand.
140
/// \returns A 256-bit vector of [4 x double] containing the alternating sums
141
///    and differences between both operands.
142
static __inline __m256d __DEFAULT_FN_ATTRS
143
_mm256_addsub_pd(__m256d __a, __m256d __b)
144
{
145
  return (__m256d)__builtin_ia32_addsubpd256((__v4df)__a, (__v4df)__b);
146
}
147
 
148
/// Adds the even-indexed values and subtracts the odd-indexed values of
149
///    two 256-bit vectors of [8 x float].
150
///
151
/// \headerfile <x86intrin.h>
152
///
153
/// This intrinsic corresponds to the <c> VADDSUBPS </c> instruction.
154
///
155
/// \param __a
156
///    A 256-bit vector of [8 x float] containing the left source operand.
157
/// \param __b
158
///    A 256-bit vector of [8 x float] containing the right source operand.
159
/// \returns A 256-bit vector of [8 x float] containing the alternating sums and
160
///    differences between both operands.
161
static __inline __m256 __DEFAULT_FN_ATTRS
162
_mm256_addsub_ps(__m256 __a, __m256 __b)
163
{
164
  return (__m256)__builtin_ia32_addsubps256((__v8sf)__a, (__v8sf)__b);
165
}
166
 
167
/// Divides two 256-bit vectors of [4 x double].
168
///
169
/// \headerfile <x86intrin.h>
170
///
171
/// This intrinsic corresponds to the <c> VDIVPD </c> instruction.
172
///
173
/// \param __a
174
///    A 256-bit vector of [4 x double] containing the dividend.
175
/// \param __b
176
///    A 256-bit vector of [4 x double] containing the divisor.
177
/// \returns A 256-bit vector of [4 x double] containing the quotients of both
178
///    operands.
179
static __inline __m256d __DEFAULT_FN_ATTRS
180
_mm256_div_pd(__m256d __a, __m256d __b)
181
{
182
  return (__m256d)((__v4df)__a/(__v4df)__b);
183
}
184
 
185
/// Divides two 256-bit vectors of [8 x float].
186
///
187
/// \headerfile <x86intrin.h>
188
///
189
/// This intrinsic corresponds to the <c> VDIVPS </c> instruction.
190
///
191
/// \param __a
192
///    A 256-bit vector of [8 x float] containing the dividend.
193
/// \param __b
194
///    A 256-bit vector of [8 x float] containing the divisor.
195
/// \returns A 256-bit vector of [8 x float] containing the quotients of both
196
///    operands.
197
static __inline __m256 __DEFAULT_FN_ATTRS
198
_mm256_div_ps(__m256 __a, __m256 __b)
199
{
200
  return (__m256)((__v8sf)__a/(__v8sf)__b);
201
}
202
 
203
/// Compares two 256-bit vectors of [4 x double] and returns the greater
204
///    of each pair of values.
205
///
206
/// \headerfile <x86intrin.h>
207
///
208
/// This intrinsic corresponds to the <c> VMAXPD </c> instruction.
209
///
210
/// \param __a
211
///    A 256-bit vector of [4 x double] containing one of the operands.
212
/// \param __b
213
///    A 256-bit vector of [4 x double] containing one of the operands.
214
/// \returns A 256-bit vector of [4 x double] containing the maximum values
215
///    between both operands.
216
static __inline __m256d __DEFAULT_FN_ATTRS
217
_mm256_max_pd(__m256d __a, __m256d __b)
218
{
219
  return (__m256d)__builtin_ia32_maxpd256((__v4df)__a, (__v4df)__b);
220
}
221
 
222
/// Compares two 256-bit vectors of [8 x float] and returns the greater
223
///    of each pair of values.
224
///
225
/// \headerfile <x86intrin.h>
226
///
227
/// This intrinsic corresponds to the <c> VMAXPS </c> instruction.
228
///
229
/// \param __a
230
///    A 256-bit vector of [8 x float] containing one of the operands.
231
/// \param __b
232
///    A 256-bit vector of [8 x float] containing one of the operands.
233
/// \returns A 256-bit vector of [8 x float] containing the maximum values
234
///    between both operands.
235
static __inline __m256 __DEFAULT_FN_ATTRS
236
_mm256_max_ps(__m256 __a, __m256 __b)
237
{
238
  return (__m256)__builtin_ia32_maxps256((__v8sf)__a, (__v8sf)__b);
239
}
240
 
241
/// Compares two 256-bit vectors of [4 x double] and returns the lesser
242
///    of each pair of values.
243
///
244
/// \headerfile <x86intrin.h>
245
///
246
/// This intrinsic corresponds to the <c> VMINPD </c> instruction.
247
///
248
/// \param __a
249
///    A 256-bit vector of [4 x double] containing one of the operands.
250
/// \param __b
251
///    A 256-bit vector of [4 x double] containing one of the operands.
252
/// \returns A 256-bit vector of [4 x double] containing the minimum values
253
///    between both operands.
254
static __inline __m256d __DEFAULT_FN_ATTRS
255
_mm256_min_pd(__m256d __a, __m256d __b)
256
{
257
  return (__m256d)__builtin_ia32_minpd256((__v4df)__a, (__v4df)__b);
258
}
259
 
260
/// Compares two 256-bit vectors of [8 x float] and returns the lesser
261
///    of each pair of values.
262
///
263
/// \headerfile <x86intrin.h>
264
///
265
/// This intrinsic corresponds to the <c> VMINPS </c> instruction.
266
///
267
/// \param __a
268
///    A 256-bit vector of [8 x float] containing one of the operands.
269
/// \param __b
270
///    A 256-bit vector of [8 x float] containing one of the operands.
271
/// \returns A 256-bit vector of [8 x float] containing the minimum values
272
///    between both operands.
273
static __inline __m256 __DEFAULT_FN_ATTRS
274
_mm256_min_ps(__m256 __a, __m256 __b)
275
{
276
  return (__m256)__builtin_ia32_minps256((__v8sf)__a, (__v8sf)__b);
277
}
278
 
279
/// Multiplies two 256-bit vectors of [4 x double].
280
///
281
/// \headerfile <x86intrin.h>
282
///
283
/// This intrinsic corresponds to the <c> VMULPD </c> instruction.
284
///
285
/// \param __a
286
///    A 256-bit vector of [4 x double] containing one of the operands.
287
/// \param __b
288
///    A 256-bit vector of [4 x double] containing one of the operands.
289
/// \returns A 256-bit vector of [4 x double] containing the products of both
290
///    operands.
291
static __inline __m256d __DEFAULT_FN_ATTRS
292
_mm256_mul_pd(__m256d __a, __m256d __b)
293
{
294
  return (__m256d)((__v4df)__a * (__v4df)__b);
295
}
296
 
297
/// Multiplies two 256-bit vectors of [8 x float].
298
///
299
/// \headerfile <x86intrin.h>
300
///
301
/// This intrinsic corresponds to the <c> VMULPS </c> instruction.
302
///
303
/// \param __a
304
///    A 256-bit vector of [8 x float] containing one of the operands.
305
/// \param __b
306
///    A 256-bit vector of [8 x float] containing one of the operands.
307
/// \returns A 256-bit vector of [8 x float] containing the products of both
308
///    operands.
309
static __inline __m256 __DEFAULT_FN_ATTRS
310
_mm256_mul_ps(__m256 __a, __m256 __b)
311
{
312
  return (__m256)((__v8sf)__a * (__v8sf)__b);
313
}
314
 
315
/// Calculates the square roots of the values in a 256-bit vector of
316
///    [4 x double].
317
///
318
/// \headerfile <x86intrin.h>
319
///
320
/// This intrinsic corresponds to the <c> VSQRTPD </c> instruction.
321
///
322
/// \param __a
323
///    A 256-bit vector of [4 x double].
324
/// \returns A 256-bit vector of [4 x double] containing the square roots of the
325
///    values in the operand.
326
static __inline __m256d __DEFAULT_FN_ATTRS
327
_mm256_sqrt_pd(__m256d __a)
328
{
329
  return (__m256d)__builtin_ia32_sqrtpd256((__v4df)__a);
330
}
331
 
332
/// Calculates the square roots of the values in a 256-bit vector of
333
///    [8 x float].
334
///
335
/// \headerfile <x86intrin.h>
336
///
337
/// This intrinsic corresponds to the <c> VSQRTPS </c> instruction.
338
///
339
/// \param __a
340
///    A 256-bit vector of [8 x float].
341
/// \returns A 256-bit vector of [8 x float] containing the square roots of the
342
///    values in the operand.
343
static __inline __m256 __DEFAULT_FN_ATTRS
344
_mm256_sqrt_ps(__m256 __a)
345
{
346
  return (__m256)__builtin_ia32_sqrtps256((__v8sf)__a);
347
}
348
 
349
/// Calculates the reciprocal square roots of the values in a 256-bit
350
///    vector of [8 x float].
351
///
352
/// \headerfile <x86intrin.h>
353
///
354
/// This intrinsic corresponds to the <c> VRSQRTPS </c> instruction.
355
///
356
/// \param __a
357
///    A 256-bit vector of [8 x float].
358
/// \returns A 256-bit vector of [8 x float] containing the reciprocal square
359
///    roots of the values in the operand.
360
static __inline __m256 __DEFAULT_FN_ATTRS
361
_mm256_rsqrt_ps(__m256 __a)
362
{
363
  return (__m256)__builtin_ia32_rsqrtps256((__v8sf)__a);
364
}
365
 
366
/// Calculates the reciprocals of the values in a 256-bit vector of
367
///    [8 x float].
368
///
369
/// \headerfile <x86intrin.h>
370
///
371
/// This intrinsic corresponds to the <c> VRCPPS </c> instruction.
372
///
373
/// \param __a
374
///    A 256-bit vector of [8 x float].
375
/// \returns A 256-bit vector of [8 x float] containing the reciprocals of the
376
///    values in the operand.
377
static __inline __m256 __DEFAULT_FN_ATTRS
378
_mm256_rcp_ps(__m256 __a)
379
{
380
  return (__m256)__builtin_ia32_rcpps256((__v8sf)__a);
381
}
382
 
383
/// Rounds the values in a 256-bit vector of [4 x double] as specified
384
///    by the byte operand. The source values are rounded to integer values and
385
///    returned as 64-bit double-precision floating-point values.
386
///
387
/// \headerfile <x86intrin.h>
388
///
389
/// \code
390
/// __m256d _mm256_round_pd(__m256d V, const int M);
391
/// \endcode
392
///
393
/// This intrinsic corresponds to the <c> VROUNDPD </c> instruction.
394
///
395
/// \param V
396
///    A 256-bit vector of [4 x double].
397
/// \param M
398
///    An integer value that specifies the rounding operation. \n
399
///    Bits [7:4] are reserved. \n
400
///    Bit [3] is a precision exception value: \n
401
///      0: A normal PE exception is used. \n
402
///      1: The PE field is not updated. \n
403
///    Bit [2] is the rounding control source: \n
404
///      0: Use bits [1:0] of \a M. \n
405
///      1: Use the current MXCSR setting. \n
406
///    Bits [1:0] contain the rounding control definition: \n
407
///      00: Nearest. \n
408
///      01: Downward (toward negative infinity). \n
409
///      10: Upward (toward positive infinity). \n
410
///      11: Truncated.
411
/// \returns A 256-bit vector of [4 x double] containing the rounded values.
412
#define _mm256_round_pd(V, M) \
413
  ((__m256d)__builtin_ia32_roundpd256((__v4df)(__m256d)(V), (M)))
414
 
415
/// Rounds the values stored in a 256-bit vector of [8 x float] as
416
///    specified by the byte operand. The source values are rounded to integer
417
///    values and returned as floating-point values.
418
///
419
/// \headerfile <x86intrin.h>
420
///
421
/// \code
422
/// __m256 _mm256_round_ps(__m256 V, const int M);
423
/// \endcode
424
///
425
/// This intrinsic corresponds to the <c> VROUNDPS </c> instruction.
426
///
427
/// \param V
428
///    A 256-bit vector of [8 x float].
429
/// \param M
430
///    An integer value that specifies the rounding operation. \n
431
///    Bits [7:4] are reserved. \n
432
///    Bit [3] is a precision exception value: \n
433
///      0: A normal PE exception is used. \n
434
///      1: The PE field is not updated. \n
435
///    Bit [2] is the rounding control source: \n
436
///      0: Use bits [1:0] of \a M. \n
437
///      1: Use the current MXCSR setting. \n
438
///    Bits [1:0] contain the rounding control definition: \n
439
///      00: Nearest. \n
440
///      01: Downward (toward negative infinity). \n
441
///      10: Upward (toward positive infinity). \n
442
///      11: Truncated.
443
/// \returns A 256-bit vector of [8 x float] containing the rounded values.
444
#define _mm256_round_ps(V, M) \
445
  ((__m256)__builtin_ia32_roundps256((__v8sf)(__m256)(V), (M)))
446
 
447
/// Rounds up the values stored in a 256-bit vector of [4 x double]. The
448
///    source values are rounded up to integer values and returned as 64-bit
449
///    double-precision floating-point values.
450
///
451
/// \headerfile <x86intrin.h>
452
///
453
/// \code
454
/// __m256d _mm256_ceil_pd(__m256d V);
455
/// \endcode
456
///
457
/// This intrinsic corresponds to the <c> VROUNDPD </c> instruction.
458
///
459
/// \param V
460
///    A 256-bit vector of [4 x double].
461
/// \returns A 256-bit vector of [4 x double] containing the rounded up values.
462
#define _mm256_ceil_pd(V)  _mm256_round_pd((V), _MM_FROUND_CEIL)
463
 
464
/// Rounds down the values stored in a 256-bit vector of [4 x double].
465
///    The source values are rounded down to integer values and returned as
466
///    64-bit double-precision floating-point values.
467
///
468
/// \headerfile <x86intrin.h>
469
///
470
/// \code
471
/// __m256d _mm256_floor_pd(__m256d V);
472
/// \endcode
473
///
474
/// This intrinsic corresponds to the <c> VROUNDPD </c> instruction.
475
///
476
/// \param V
477
///    A 256-bit vector of [4 x double].
478
/// \returns A 256-bit vector of [4 x double] containing the rounded down
479
///    values.
480
#define _mm256_floor_pd(V) _mm256_round_pd((V), _MM_FROUND_FLOOR)
481
 
482
/// Rounds up the values stored in a 256-bit vector of [8 x float]. The
483
///    source values are rounded up to integer values and returned as
484
///    floating-point values.
485
///
486
/// \headerfile <x86intrin.h>
487
///
488
/// \code
489
/// __m256 _mm256_ceil_ps(__m256 V);
490
/// \endcode
491
///
492
/// This intrinsic corresponds to the <c> VROUNDPS </c> instruction.
493
///
494
/// \param V
495
///    A 256-bit vector of [8 x float].
496
/// \returns A 256-bit vector of [8 x float] containing the rounded up values.
497
#define _mm256_ceil_ps(V)  _mm256_round_ps((V), _MM_FROUND_CEIL)
498
 
499
/// Rounds down the values stored in a 256-bit vector of [8 x float]. The
500
///    source values are rounded down to integer values and returned as
501
///    floating-point values.
502
///
503
/// \headerfile <x86intrin.h>
504
///
505
/// \code
506
/// __m256 _mm256_floor_ps(__m256 V);
507
/// \endcode
508
///
509
/// This intrinsic corresponds to the <c> VROUNDPS </c> instruction.
510
///
511
/// \param V
512
///    A 256-bit vector of [8 x float].
513
/// \returns A 256-bit vector of [8 x float] containing the rounded down values.
514
#define _mm256_floor_ps(V) _mm256_round_ps((V), _MM_FROUND_FLOOR)
515
 
516
/* Logical */
517
/// Performs a bitwise AND of two 256-bit vectors of [4 x double].
518
///
519
/// \headerfile <x86intrin.h>
520
///
521
/// This intrinsic corresponds to the <c> VANDPD </c> instruction.
522
///
523
/// \param __a
524
///    A 256-bit vector of [4 x double] containing one of the source operands.
525
/// \param __b
526
///    A 256-bit vector of [4 x double] containing one of the source operands.
527
/// \returns A 256-bit vector of [4 x double] containing the bitwise AND of the
528
///    values between both operands.
529
static __inline __m256d __DEFAULT_FN_ATTRS
530
_mm256_and_pd(__m256d __a, __m256d __b)
531
{
532
  return (__m256d)((__v4du)__a & (__v4du)__b);
533
}
534
 
535
/// Performs a bitwise AND of two 256-bit vectors of [8 x float].
536
///
537
/// \headerfile <x86intrin.h>
538
///
539
/// This intrinsic corresponds to the <c> VANDPS </c> instruction.
540
///
541
/// \param __a
542
///    A 256-bit vector of [8 x float] containing one of the source operands.
543
/// \param __b
544
///    A 256-bit vector of [8 x float] containing one of the source operands.
545
/// \returns A 256-bit vector of [8 x float] containing the bitwise AND of the
546
///    values between both operands.
547
static __inline __m256 __DEFAULT_FN_ATTRS
548
_mm256_and_ps(__m256 __a, __m256 __b)
549
{
550
  return (__m256)((__v8su)__a & (__v8su)__b);
551
}
552
 
553
/// Performs a bitwise AND of two 256-bit vectors of [4 x double], using
554
///    the one's complement of the values contained in the first source operand.
555
///
556
/// \headerfile <x86intrin.h>
557
///
558
/// This intrinsic corresponds to the <c> VANDNPD </c> instruction.
559
///
560
/// \param __a
561
///    A 256-bit vector of [4 x double] containing the left source operand. The
562
///    one's complement of this value is used in the bitwise AND.
563
/// \param __b
564
///    A 256-bit vector of [4 x double] containing the right source operand.
565
/// \returns A 256-bit vector of [4 x double] containing the bitwise AND of the
566
///    values of the second operand and the one's complement of the first
567
///    operand.
568
static __inline __m256d __DEFAULT_FN_ATTRS
569
_mm256_andnot_pd(__m256d __a, __m256d __b)
570
{
571
  return (__m256d)(~(__v4du)__a & (__v4du)__b);
572
}
573
 
574
/// Performs a bitwise AND of two 256-bit vectors of [8 x float], using
575
///    the one's complement of the values contained in the first source operand.
576
///
577
/// \headerfile <x86intrin.h>
578
///
579
/// This intrinsic corresponds to the <c> VANDNPS </c> instruction.
580
///
581
/// \param __a
582
///    A 256-bit vector of [8 x float] containing the left source operand. The
583
///    one's complement of this value is used in the bitwise AND.
584
/// \param __b
585
///    A 256-bit vector of [8 x float] containing the right source operand.
586
/// \returns A 256-bit vector of [8 x float] containing the bitwise AND of the
587
///    values of the second operand and the one's complement of the first
588
///    operand.
589
static __inline __m256 __DEFAULT_FN_ATTRS
590
_mm256_andnot_ps(__m256 __a, __m256 __b)
591
{
592
  return (__m256)(~(__v8su)__a & (__v8su)__b);
593
}
594
 
595
/// Performs a bitwise OR of two 256-bit vectors of [4 x double].
596
///
597
/// \headerfile <x86intrin.h>
598
///
599
/// This intrinsic corresponds to the <c> VORPD </c> instruction.
600
///
601
/// \param __a
602
///    A 256-bit vector of [4 x double] containing one of the source operands.
603
/// \param __b
604
///    A 256-bit vector of [4 x double] containing one of the source operands.
605
/// \returns A 256-bit vector of [4 x double] containing the bitwise OR of the
606
///    values between both operands.
607
static __inline __m256d __DEFAULT_FN_ATTRS
608
_mm256_or_pd(__m256d __a, __m256d __b)
609
{
610
  return (__m256d)((__v4du)__a | (__v4du)__b);
611
}
612
 
613
/// Performs a bitwise OR of two 256-bit vectors of [8 x float].
614
///
615
/// \headerfile <x86intrin.h>
616
///
617
/// This intrinsic corresponds to the <c> VORPS </c> instruction.
618
///
619
/// \param __a
620
///    A 256-bit vector of [8 x float] containing one of the source operands.
621
/// \param __b
622
///    A 256-bit vector of [8 x float] containing one of the source operands.
623
/// \returns A 256-bit vector of [8 x float] containing the bitwise OR of the
624
///    values between both operands.
625
static __inline __m256 __DEFAULT_FN_ATTRS
626
_mm256_or_ps(__m256 __a, __m256 __b)
627
{
628
  return (__m256)((__v8su)__a | (__v8su)__b);
629
}
630
 
631
/// Performs a bitwise XOR of two 256-bit vectors of [4 x double].
632
///
633
/// \headerfile <x86intrin.h>
634
///
635
/// This intrinsic corresponds to the <c> VXORPD </c> instruction.
636
///
637
/// \param __a
638
///    A 256-bit vector of [4 x double] containing one of the source operands.
639
/// \param __b
640
///    A 256-bit vector of [4 x double] containing one of the source operands.
641
/// \returns A 256-bit vector of [4 x double] containing the bitwise XOR of the
642
///    values between both operands.
643
static __inline __m256d __DEFAULT_FN_ATTRS
644
_mm256_xor_pd(__m256d __a, __m256d __b)
645
{
646
  return (__m256d)((__v4du)__a ^ (__v4du)__b);
647
}
648
 
649
/// Performs a bitwise XOR of two 256-bit vectors of [8 x float].
650
///
651
/// \headerfile <x86intrin.h>
652
///
653
/// This intrinsic corresponds to the <c> VXORPS </c> instruction.
654
///
655
/// \param __a
656
///    A 256-bit vector of [8 x float] containing one of the source operands.
657
/// \param __b
658
///    A 256-bit vector of [8 x float] containing one of the source operands.
659
/// \returns A 256-bit vector of [8 x float] containing the bitwise XOR of the
660
///    values between both operands.
661
static __inline __m256 __DEFAULT_FN_ATTRS
662
_mm256_xor_ps(__m256 __a, __m256 __b)
663
{
664
  return (__m256)((__v8su)__a ^ (__v8su)__b);
665
}
666
 
667
/* Horizontal arithmetic */
668
/// Horizontally adds the adjacent pairs of values contained in two
669
///    256-bit vectors of [4 x double].
670
///
671
/// \headerfile <x86intrin.h>
672
///
673
/// This intrinsic corresponds to the <c> VHADDPD </c> instruction.
674
///
675
/// \param __a
676
///    A 256-bit vector of [4 x double] containing one of the source operands.
677
///    The horizontal sums of the values are returned in the even-indexed
678
///    elements of a vector of [4 x double].
679
/// \param __b
680
///    A 256-bit vector of [4 x double] containing one of the source operands.
681
///    The horizontal sums of the values are returned in the odd-indexed
682
///    elements of a vector of [4 x double].
683
/// \returns A 256-bit vector of [4 x double] containing the horizontal sums of
684
///    both operands.
685
static __inline __m256d __DEFAULT_FN_ATTRS
686
_mm256_hadd_pd(__m256d __a, __m256d __b)
687
{
688
  return (__m256d)__builtin_ia32_haddpd256((__v4df)__a, (__v4df)__b);
689
}
690
 
691
/// Horizontally adds the adjacent pairs of values contained in two
692
///    256-bit vectors of [8 x float].
693
///
694
/// \headerfile <x86intrin.h>
695
///
696
/// This intrinsic corresponds to the <c> VHADDPS </c> instruction.
697
///
698
/// \param __a
699
///    A 256-bit vector of [8 x float] containing one of the source operands.
700
///    The horizontal sums of the values are returned in the elements with
701
///    index 0, 1, 4, 5 of a vector of [8 x float].
702
/// \param __b
703
///    A 256-bit vector of [8 x float] containing one of the source operands.
704
///    The horizontal sums of the values are returned in the elements with
705
///    index 2, 3, 6, 7 of a vector of [8 x float].
706
/// \returns A 256-bit vector of [8 x float] containing the horizontal sums of
707
///    both operands.
708
static __inline __m256 __DEFAULT_FN_ATTRS
709
_mm256_hadd_ps(__m256 __a, __m256 __b)
710
{
711
  return (__m256)__builtin_ia32_haddps256((__v8sf)__a, (__v8sf)__b);
712
}
713
 
714
/// Horizontally subtracts the adjacent pairs of values contained in two
715
///    256-bit vectors of [4 x double].
716
///
717
/// \headerfile <x86intrin.h>
718
///
719
/// This intrinsic corresponds to the <c> VHSUBPD </c> instruction.
720
///
721
/// \param __a
722
///    A 256-bit vector of [4 x double] containing one of the source operands.
723
///    The horizontal differences between the values are returned in the
724
///    even-indexed elements of a vector of [4 x double].
725
/// \param __b
726
///    A 256-bit vector of [4 x double] containing one of the source operands.
727
///    The horizontal differences between the values are returned in the
728
///    odd-indexed elements of a vector of [4 x double].
729
/// \returns A 256-bit vector of [4 x double] containing the horizontal
730
///    differences of both operands.
731
static __inline __m256d __DEFAULT_FN_ATTRS
732
_mm256_hsub_pd(__m256d __a, __m256d __b)
733
{
734
  return (__m256d)__builtin_ia32_hsubpd256((__v4df)__a, (__v4df)__b);
735
}
736
 
737
/// Horizontally subtracts the adjacent pairs of values contained in two
738
///    256-bit vectors of [8 x float].
739
///
740
/// \headerfile <x86intrin.h>
741
///
742
/// This intrinsic corresponds to the <c> VHSUBPS </c> instruction.
743
///
744
/// \param __a
745
///    A 256-bit vector of [8 x float] containing one of the source operands.
746
///    The horizontal differences between the values are returned in the
747
///    elements with index 0, 1, 4, 5 of a vector of [8 x float].
748
/// \param __b
749
///    A 256-bit vector of [8 x float] containing one of the source operands.
750
///    The horizontal differences between the values are returned in the
751
///    elements with index 2, 3, 6, 7 of a vector of [8 x float].
752
/// \returns A 256-bit vector of [8 x float] containing the horizontal
753
///    differences of both operands.
754
static __inline __m256 __DEFAULT_FN_ATTRS
755
_mm256_hsub_ps(__m256 __a, __m256 __b)
756
{
757
  return (__m256)__builtin_ia32_hsubps256((__v8sf)__a, (__v8sf)__b);
758
}
759
 
760
/* Vector permutations */
761
/// Copies the values in a 128-bit vector of [2 x double] as specified
762
///    by the 128-bit integer vector operand.
763
///
764
/// \headerfile <x86intrin.h>
765
///
766
/// This intrinsic corresponds to the <c> VPERMILPD </c> instruction.
767
///
768
/// \param __a
769
///    A 128-bit vector of [2 x double].
770
/// \param __c
771
///    A 128-bit integer vector operand specifying how the values are to be
772
///    copied. \n
773
///    Bit [1]: \n
774
///      0: Bits [63:0] of the source are copied to bits [63:0] of the returned
775
///         vector. \n
776
///      1: Bits [127:64] of the source are copied to bits [63:0] of the
777
///         returned vector. \n
778
///    Bit [65]: \n
779
///      0: Bits [63:0] of the source are copied to bits [127:64] of the
780
///         returned vector. \n
781
///      1: Bits [127:64] of the source are copied to bits [127:64] of the
782
///         returned vector.
783
/// \returns A 128-bit vector of [2 x double] containing the copied values.
784
static __inline __m128d __DEFAULT_FN_ATTRS128
785
_mm_permutevar_pd(__m128d __a, __m128i __c)
786
{
787
  return (__m128d)__builtin_ia32_vpermilvarpd((__v2df)__a, (__v2di)__c);
788
}
789
 
790
/// Copies the values in a 256-bit vector of [4 x double] as specified
791
///    by the 256-bit integer vector operand.
792
///
793
/// \headerfile <x86intrin.h>
794
///
795
/// This intrinsic corresponds to the <c> VPERMILPD </c> instruction.
796
///
797
/// \param __a
798
///    A 256-bit vector of [4 x double].
799
/// \param __c
800
///    A 256-bit integer vector operand specifying how the values are to be
801
///    copied. \n
802
///    Bit [1]: \n
803
///      0: Bits [63:0] of the source are copied to bits [63:0] of the returned
804
///         vector. \n
805
///      1: Bits [127:64] of the source are copied to bits [63:0] of the
806
///         returned vector. \n
807
///    Bit [65]: \n
808
///      0: Bits [63:0] of the source are copied to bits [127:64] of the
809
///         returned vector. \n
810
///      1: Bits [127:64] of the source are copied to bits [127:64] of the
811
///         returned vector. \n
812
///    Bit [129]: \n
813
///      0: Bits [191:128] of the source are copied to bits [191:128] of the
814
///         returned vector. \n
815
///      1: Bits [255:192] of the source are copied to bits [191:128] of the
816
///         returned vector. \n
817
///    Bit [193]: \n
818
///      0: Bits [191:128] of the source are copied to bits [255:192] of the
819
///         returned vector. \n
820
///      1: Bits [255:192] of the source are copied to bits [255:192] of the
821
///    returned vector.
822
/// \returns A 256-bit vector of [4 x double] containing the copied values.
823
static __inline __m256d __DEFAULT_FN_ATTRS
824
_mm256_permutevar_pd(__m256d __a, __m256i __c)
825
{
826
  return (__m256d)__builtin_ia32_vpermilvarpd256((__v4df)__a, (__v4di)__c);
827
}
828
 
829
/// Copies the values stored in a 128-bit vector of [4 x float] as
830
///    specified by the 128-bit integer vector operand.
831
/// \headerfile <x86intrin.h>
832
///
833
/// This intrinsic corresponds to the <c> VPERMILPS </c> instruction.
834
///
835
/// \param __a
836
///    A 128-bit vector of [4 x float].
837
/// \param __c
838
///    A 128-bit integer vector operand specifying how the values are to be
839
///    copied. \n
840
///    Bits [1:0]: \n
841
///      00: Bits [31:0] of the source are copied to bits [31:0] of the
842
///          returned vector. \n
843
///      01: Bits [63:32] of the source are copied to bits [31:0] of the
844
///          returned vector. \n
845
///      10: Bits [95:64] of the source are copied to bits [31:0] of the
846
///          returned vector. \n
847
///      11: Bits [127:96] of the source are copied to bits [31:0] of the
848
///          returned vector. \n
849
///    Bits [33:32]: \n
850
///      00: Bits [31:0] of the source are copied to bits [63:32] of the
851
///          returned vector. \n
852
///      01: Bits [63:32] of the source are copied to bits [63:32] of the
853
///          returned vector. \n
854
///      10: Bits [95:64] of the source are copied to bits [63:32] of the
855
///          returned vector. \n
856
///      11: Bits [127:96] of the source are copied to bits [63:32] of the
857
///          returned vector. \n
858
///    Bits [65:64]: \n
859
///      00: Bits [31:0] of the source are copied to bits [95:64] of the
860
///          returned vector. \n
861
///      01: Bits [63:32] of the source are copied to bits [95:64] of the
862
///          returned vector. \n
863
///      10: Bits [95:64] of the source are copied to bits [95:64] of the
864
///          returned vector. \n
865
///      11: Bits [127:96] of the source are copied to bits [95:64] of the
866
///          returned vector. \n
867
///    Bits [97:96]: \n
868
///      00: Bits [31:0] of the source are copied to bits [127:96] of the
869
///          returned vector. \n
870
///      01: Bits [63:32] of the source are copied to bits [127:96] of the
871
///          returned vector. \n
872
///      10: Bits [95:64] of the source are copied to bits [127:96] of the
873
///          returned vector. \n
874
///      11: Bits [127:96] of the source are copied to bits [127:96] of the
875
///          returned vector.
876
/// \returns A 128-bit vector of [4 x float] containing the copied values.
877
static __inline __m128 __DEFAULT_FN_ATTRS128
878
_mm_permutevar_ps(__m128 __a, __m128i __c)
879
{
880
  return (__m128)__builtin_ia32_vpermilvarps((__v4sf)__a, (__v4si)__c);
881
}
882
 
883
/// Copies the values stored in a 256-bit vector of [8 x float] as
884
///    specified by the 256-bit integer vector operand.
885
///
886
/// \headerfile <x86intrin.h>
887
///
888
/// This intrinsic corresponds to the <c> VPERMILPS </c> instruction.
889
///
890
/// \param __a
891
///    A 256-bit vector of [8 x float].
892
/// \param __c
893
///    A 256-bit integer vector operand specifying how the values are to be
894
///    copied. \n
895
///    Bits [1:0]: \n
896
///      00: Bits [31:0] of the source are copied to bits [31:0] of the
897
///          returned vector. \n
898
///      01: Bits [63:32] of the source are copied to bits [31:0] of the
899
///          returned vector. \n
900
///      10: Bits [95:64] of the source are copied to bits [31:0] of the
901
///          returned vector. \n
902
///      11: Bits [127:96] of the source are copied to bits [31:0] of the
903
///          returned vector. \n
904
///    Bits [33:32]: \n
905
///      00: Bits [31:0] of the source are copied to bits [63:32] of the
906
///          returned vector. \n
907
///      01: Bits [63:32] of the source are copied to bits [63:32] of the
908
///          returned vector. \n
909
///      10: Bits [95:64] of the source are copied to bits [63:32] of the
910
///          returned vector. \n
911
///      11: Bits [127:96] of the source are copied to bits [63:32] of the
912
///          returned vector. \n
913
///    Bits [65:64]: \n
914
///      00: Bits [31:0] of the source are copied to bits [95:64] of the
915
///          returned vector. \n
916
///      01: Bits [63:32] of the source are copied to bits [95:64] of the
917
///          returned vector. \n
918
///      10: Bits [95:64] of the source are copied to bits [95:64] of the
919
///          returned vector. \n
920
///      11: Bits [127:96] of the source are copied to bits [95:64] of the
921
///          returned vector. \n
922
///    Bits [97:96]: \n
923
///      00: Bits [31:0] of the source are copied to bits [127:96] of the
924
///          returned vector. \n
925
///      01: Bits [63:32] of the source are copied to bits [127:96] of the
926
///          returned vector. \n
927
///      10: Bits [95:64] of the source are copied to bits [127:96] of the
928
///          returned vector. \n
929
///      11: Bits [127:96] of the source are copied to bits [127:96] of the
930
///          returned vector. \n
931
///    Bits [129:128]: \n
932
///      00: Bits [159:128] of the source are copied to bits [159:128] of the
933
///          returned vector. \n
934
///      01: Bits [191:160] of the source are copied to bits [159:128] of the
935
///          returned vector. \n
936
///      10: Bits [223:192] of the source are copied to bits [159:128] of the
937
///          returned vector. \n
938
///      11: Bits [255:224] of the source are copied to bits [159:128] of the
939
///          returned vector. \n
940
///    Bits [161:160]: \n
941
///      00: Bits [159:128] of the source are copied to bits [191:160] of the
942
///          returned vector. \n
943
///      01: Bits [191:160] of the source are copied to bits [191:160] of the
944
///          returned vector. \n
945
///      10: Bits [223:192] of the source are copied to bits [191:160] of the
946
///          returned vector. \n
947
///      11: Bits [255:224] of the source are copied to bits [191:160] of the
948
///          returned vector. \n
949
///    Bits [193:192]: \n
950
///      00: Bits [159:128] of the source are copied to bits [223:192] of the
951
///          returned vector. \n
952
///      01: Bits [191:160] of the source are copied to bits [223:192] of the
953
///          returned vector. \n
954
///      10: Bits [223:192] of the source are copied to bits [223:192] of the
955
///          returned vector. \n
956
///      11: Bits [255:224] of the source are copied to bits [223:192] of the
957
///          returned vector. \n
958
///    Bits [225:224]: \n
959
///      00: Bits [159:128] of the source are copied to bits [255:224] of the
960
///          returned vector. \n
961
///      01: Bits [191:160] of the source are copied to bits [255:224] of the
962
///          returned vector. \n
963
///      10: Bits [223:192] of the source are copied to bits [255:224] of the
964
///          returned vector. \n
965
///      11: Bits [255:224] of the source are copied to bits [255:224] of the
966
///          returned vector.
967
/// \returns A 256-bit vector of [8 x float] containing the copied values.
968
static __inline __m256 __DEFAULT_FN_ATTRS
969
_mm256_permutevar_ps(__m256 __a, __m256i __c)
970
{
971
  return (__m256)__builtin_ia32_vpermilvarps256((__v8sf)__a, (__v8si)__c);
972
}
973
 
974
/// Copies the values in a 128-bit vector of [2 x double] as specified
975
///    by the immediate integer operand.
976
///
977
/// \headerfile <x86intrin.h>
978
///
979
/// \code
980
/// __m128d _mm_permute_pd(__m128d A, const int C);
981
/// \endcode
982
///
983
/// This intrinsic corresponds to the <c> VPERMILPD </c> instruction.
984
///
985
/// \param A
986
///    A 128-bit vector of [2 x double].
987
/// \param C
988
///    An immediate integer operand specifying how the values are to be
989
///    copied. \n
990
///    Bit [0]: \n
991
///      0: Bits [63:0] of the source are copied to bits [63:0] of the returned
992
///         vector. \n
993
///      1: Bits [127:64] of the source are copied to bits [63:0] of the
994
///         returned vector. \n
995
///    Bit [1]: \n
996
///      0: Bits [63:0] of the source are copied to bits [127:64] of the
997
///         returned vector. \n
998
///      1: Bits [127:64] of the source are copied to bits [127:64] of the
999
///         returned vector.
1000
/// \returns A 128-bit vector of [2 x double] containing the copied values.
1001
#define _mm_permute_pd(A, C) \
1002
  ((__m128d)__builtin_ia32_vpermilpd((__v2df)(__m128d)(A), (int)(C)))
1003
 
1004
/// Copies the values in a 256-bit vector of [4 x double] as specified by
1005
///    the immediate integer operand.
1006
///
1007
/// \headerfile <x86intrin.h>
1008
///
1009
/// \code
1010
/// __m256d _mm256_permute_pd(__m256d A, const int C);
1011
/// \endcode
1012
///
1013
/// This intrinsic corresponds to the <c> VPERMILPD </c> instruction.
1014
///
1015
/// \param A
1016
///    A 256-bit vector of [4 x double].
1017
/// \param C
1018
///    An immediate integer operand specifying how the values are to be
1019
///    copied. \n
1020
///    Bit [0]: \n
1021
///      0: Bits [63:0] of the source are copied to bits [63:0] of the returned
1022
///         vector. \n
1023
///      1: Bits [127:64] of the source are copied to bits [63:0] of the
1024
///         returned vector. \n
1025
///    Bit [1]: \n
1026
///      0: Bits [63:0] of the source are copied to bits [127:64] of the
1027
///         returned vector. \n
1028
///      1: Bits [127:64] of the source are copied to bits [127:64] of the
1029
///         returned vector. \n
1030
///    Bit [2]: \n
1031
///      0: Bits [191:128] of the source are copied to bits [191:128] of the
1032
///         returned vector. \n
1033
///      1: Bits [255:192] of the source are copied to bits [191:128] of the
1034
///         returned vector. \n
1035
///    Bit [3]: \n
1036
///      0: Bits [191:128] of the source are copied to bits [255:192] of the
1037
///         returned vector. \n
1038
///      1: Bits [255:192] of the source are copied to bits [255:192] of the
1039
///         returned vector.
1040
/// \returns A 256-bit vector of [4 x double] containing the copied values.
1041
#define _mm256_permute_pd(A, C) \
1042
  ((__m256d)__builtin_ia32_vpermilpd256((__v4df)(__m256d)(A), (int)(C)))
1043
 
1044
/// Copies the values in a 128-bit vector of [4 x float] as specified by
1045
///    the immediate integer operand.
1046
///
1047
/// \headerfile <x86intrin.h>
1048
///
1049
/// \code
1050
/// __m128 _mm_permute_ps(__m128 A, const int C);
1051
/// \endcode
1052
///
1053
/// This intrinsic corresponds to the <c> VPERMILPS </c> instruction.
1054
///
1055
/// \param A
1056
///    A 128-bit vector of [4 x float].
1057
/// \param C
1058
///    An immediate integer operand specifying how the values are to be
1059
///    copied. \n
1060
///    Bits [1:0]: \n
1061
///      00: Bits [31:0] of the source are copied to bits [31:0] of the
1062
///          returned vector. \n
1063
///      01: Bits [63:32] of the source are copied to bits [31:0] of the
1064
///          returned vector. \n
1065
///      10: Bits [95:64] of the source are copied to bits [31:0] of the
1066
///          returned vector. \n
1067
///      11: Bits [127:96] of the source are copied to bits [31:0] of the
1068
///          returned vector. \n
1069
///    Bits [3:2]: \n
1070
///      00: Bits [31:0] of the source are copied to bits [63:32] of the
1071
///          returned vector. \n
1072
///      01: Bits [63:32] of the source are copied to bits [63:32] of the
1073
///          returned vector. \n
1074
///      10: Bits [95:64] of the source are copied to bits [63:32] of the
1075
///          returned vector. \n
1076
///      11: Bits [127:96] of the source are copied to bits [63:32] of the
1077
///          returned vector. \n
1078
///    Bits [5:4]: \n
1079
///      00: Bits [31:0] of the source are copied to bits [95:64] of the
1080
///          returned vector. \n
1081
///      01: Bits [63:32] of the source are copied to bits [95:64] of the
1082
///          returned vector. \n
1083
///      10: Bits [95:64] of the source are copied to bits [95:64] of the
1084
///          returned vector. \n
1085
///      11: Bits [127:96] of the source are copied to bits [95:64] of the
1086
///          returned vector. \n
1087
///    Bits [7:6]: \n
1088
///      00: Bits [31:0] of the source are copied to bits [127:96] of the
1089
///          returned vector. \n
1090
///      01: Bits [63:32] of the source are copied to bits [127:96] of the
1091
///          returned vector. \n
1092
///      10: Bits [95:64] of the source are copied to bits [127:96] of the
1093
///          returned vector. \n
1094
///      11: Bits [127:96] of the source are copied to bits [127:96] of the
1095
///          returned vector.
1096
/// \returns A 128-bit vector of [4 x float] containing the copied values.
1097
#define _mm_permute_ps(A, C) \
1098
  ((__m128)__builtin_ia32_vpermilps((__v4sf)(__m128)(A), (int)(C)))
1099
 
1100
/// Copies the values in a 256-bit vector of [8 x float] as specified by
1101
///    the immediate integer operand.
1102
///
1103
/// \headerfile <x86intrin.h>
1104
///
1105
/// \code
1106
/// __m256 _mm256_permute_ps(__m256 A, const int C);
1107
/// \endcode
1108
///
1109
/// This intrinsic corresponds to the <c> VPERMILPS </c> instruction.
1110
///
1111
/// \param A
1112
///    A 256-bit vector of [8 x float].
1113
/// \param C
1114
///    An immediate integer operand specifying how the values are to be
1115
///    copied. \n
1116
///    Bits [1:0]: \n
1117
///      00: Bits [31:0] of the source are copied to bits [31:0] of the
1118
///          returned vector. \n
1119
///      01: Bits [63:32] of the source are copied to bits [31:0] of the
1120
///          returned vector. \n
1121
///      10: Bits [95:64] of the source are copied to bits [31:0] of the
1122
///          returned vector. \n
1123
///      11: Bits [127:96] of the source are copied to bits [31:0] of the
1124
///          returned vector. \n
1125
///    Bits [3:2]: \n
1126
///      00: Bits [31:0] of the source are copied to bits [63:32] of the
1127
///          returned vector. \n
1128
///      01: Bits [63:32] of the source are copied to bits [63:32] of the
1129
///          returned vector. \n
1130
///      10: Bits [95:64] of the source are copied to bits [63:32] of the
1131
///          returned vector. \n
1132
///      11: Bits [127:96] of the source are copied to bits [63:32] of the
1133
///          returned vector. \n
1134
///    Bits [5:4]: \n
1135
///      00: Bits [31:0] of the source are copied to bits [95:64] of the
1136
///          returned vector. \n
1137
///      01: Bits [63:32] of the source are copied to bits [95:64] of the
1138
///          returned vector. \n
1139
///      10: Bits [95:64] of the source are copied to bits [95:64] of the
1140
///          returned vector. \n
1141
///      11: Bits [127:96] of the source are copied to bits [95:64] of the
1142
///          returned vector. \n
1143
///    Bits [7:6]: \n
1144
///      00: Bits [31:0] of the source are copied to bits [127:96] of the
1145
///          returned vector. \n
1146
///      01: Bits [63:32] of the source are copied to bits [127:96] of the
1147
///          returned vector. \n
1148
///      10: Bits [95:64] of the source are copied to bits [127:96] of the
1149
///          returned vector. \n
1150
///      11: Bits [127:96] of the source are copied to bits [127:96] of the
1151
///          returned vector. \n
1152
///    Bits [1:0]: \n
1153
///      00: Bits [159:128] of the source are copied to bits [159:128] of the
1154
///          returned vector. \n
1155
///      01: Bits [191:160] of the source are copied to bits [159:128] of the
1156
///          returned vector. \n
1157
///      10: Bits [223:192] of the source are copied to bits [159:128] of the
1158
///          returned vector. \n
1159
///      11: Bits [255:224] of the source are copied to bits [159:128] of the
1160
///          returned vector. \n
1161
///    Bits [3:2]: \n
1162
///      00: Bits [159:128] of the source are copied to bits [191:160] of the
1163
///          returned vector. \n
1164
///      01: Bits [191:160] of the source are copied to bits [191:160] of the
1165
///          returned vector. \n
1166
///      10: Bits [223:192] of the source are copied to bits [191:160] of the
1167
///          returned vector. \n
1168
///      11: Bits [255:224] of the source are copied to bits [191:160] of the
1169
///          returned vector. \n
1170
///    Bits [5:4]: \n
1171
///      00: Bits [159:128] of the source are copied to bits [223:192] of the
1172
///          returned vector. \n
1173
///      01: Bits [191:160] of the source are copied to bits [223:192] of the
1174
///          returned vector. \n
1175
///      10: Bits [223:192] of the source are copied to bits [223:192] of the
1176
///          returned vector. \n
1177
///      11: Bits [255:224] of the source are copied to bits [223:192] of the
1178
///          returned vector. \n
1179
///    Bits [7:6]: \n
1180
///      00: Bits [159:128] of the source are copied to bits [255:224] of the
1181
///          returned vector. \n
1182
///      01: Bits [191:160] of the source are copied to bits [255:224] of the
1183
///          returned vector. \n
1184
///      10: Bits [223:192] of the source are copied to bits [255:224] of the
1185
///          returned vector. \n
1186
///      11: Bits [255:224] of the source are copied to bits [255:224] of the
1187
///          returned vector.
1188
/// \returns A 256-bit vector of [8 x float] containing the copied values.
1189
#define _mm256_permute_ps(A, C) \
1190
  ((__m256)__builtin_ia32_vpermilps256((__v8sf)(__m256)(A), (int)(C)))
1191
 
1192
/// Permutes 128-bit data values stored in two 256-bit vectors of
1193
///    [4 x double], as specified by the immediate integer operand.
1194
///
1195
/// \headerfile <x86intrin.h>
1196
///
1197
/// \code
1198
/// __m256d _mm256_permute2f128_pd(__m256d V1, __m256d V2, const int M);
1199
/// \endcode
1200
///
1201
/// This intrinsic corresponds to the <c> VPERM2F128 </c> instruction.
1202
///
1203
/// \param V1
1204
///    A 256-bit vector of [4 x double].
1205
/// \param V2
1206
///    A 256-bit vector of [4 x double.
1207
/// \param M
1208
///    An immediate integer operand specifying how the values are to be
1209
///    permuted. \n
1210
///    Bits [1:0]: \n
1211
///      00: Bits [127:0] of operand \a V1 are copied to bits [127:0] of the
1212
///          destination. \n
1213
///      01: Bits [255:128] of operand \a V1 are copied to bits [127:0] of the
1214
///          destination. \n
1215
///      10: Bits [127:0] of operand \a V2 are copied to bits [127:0] of the
1216
///          destination. \n
1217
///      11: Bits [255:128] of operand \a V2 are copied to bits [127:0] of the
1218
///          destination. \n
1219
///    Bits [5:4]: \n
1220
///      00: Bits [127:0] of operand \a V1 are copied to bits [255:128] of the
1221
///          destination. \n
1222
///      01: Bits [255:128] of operand \a V1 are copied to bits [255:128] of the
1223
///          destination. \n
1224
///      10: Bits [127:0] of operand \a V2 are copied to bits [255:128] of the
1225
///          destination. \n
1226
///      11: Bits [255:128] of operand \a V2 are copied to bits [255:128] of the
1227
///          destination.
1228
/// \returns A 256-bit vector of [4 x double] containing the copied values.
1229
#define _mm256_permute2f128_pd(V1, V2, M) \
1230
  ((__m256d)__builtin_ia32_vperm2f128_pd256((__v4df)(__m256d)(V1), \
1231
                                            (__v4df)(__m256d)(V2), (int)(M)))
1232
 
1233
/// Permutes 128-bit data values stored in two 256-bit vectors of
1234
///    [8 x float], as specified by the immediate integer operand.
1235
///
1236
/// \headerfile <x86intrin.h>
1237
///
1238
/// \code
1239
/// __m256 _mm256_permute2f128_ps(__m256 V1, __m256 V2, const int M);
1240
/// \endcode
1241
///
1242
/// This intrinsic corresponds to the <c> VPERM2F128 </c> instruction.
1243
///
1244
/// \param V1
1245
///    A 256-bit vector of [8 x float].
1246
/// \param V2
1247
///    A 256-bit vector of [8 x float].
1248
/// \param M
1249
///    An immediate integer operand specifying how the values are to be
1250
///    permuted. \n
1251
///    Bits [1:0]: \n
1252
///    00: Bits [127:0] of operand \a V1 are copied to bits [127:0] of the
1253
///    destination. \n
1254
///    01: Bits [255:128] of operand \a V1 are copied to bits [127:0] of the
1255
///    destination. \n
1256
///    10: Bits [127:0] of operand \a V2 are copied to bits [127:0] of the
1257
///    destination. \n
1258
///    11: Bits [255:128] of operand \a V2 are copied to bits [127:0] of the
1259
///    destination. \n
1260
///    Bits [5:4]: \n
1261
///    00: Bits [127:0] of operand \a V1 are copied to bits [255:128] of the
1262
///    destination. \n
1263
///    01: Bits [255:128] of operand \a V1 are copied to bits [255:128] of the
1264
///    destination. \n
1265
///    10: Bits [127:0] of operand \a V2 are copied to bits [255:128] of the
1266
///    destination. \n
1267
///    11: Bits [255:128] of operand \a V2 are copied to bits [255:128] of the
1268
///    destination.
1269
/// \returns A 256-bit vector of [8 x float] containing the copied values.
1270
#define _mm256_permute2f128_ps(V1, V2, M) \
1271
  ((__m256)__builtin_ia32_vperm2f128_ps256((__v8sf)(__m256)(V1), \
1272
                                           (__v8sf)(__m256)(V2), (int)(M)))
1273
 
1274
/// Permutes 128-bit data values stored in two 256-bit integer vectors,
1275
///    as specified by the immediate integer operand.
1276
///
1277
/// \headerfile <x86intrin.h>
1278
///
1279
/// \code
1280
/// __m256i _mm256_permute2f128_si256(__m256i V1, __m256i V2, const int M);
1281
/// \endcode
1282
///
1283
/// This intrinsic corresponds to the <c> VPERM2F128 </c> instruction.
1284
///
1285
/// \param V1
1286
///    A 256-bit integer vector.
1287
/// \param V2
1288
///    A 256-bit integer vector.
1289
/// \param M
1290
///    An immediate integer operand specifying how the values are to be copied.
1291
///    Bits [1:0]: \n
1292
///    00: Bits [127:0] of operand \a V1 are copied to bits [127:0] of the
1293
///    destination. \n
1294
///    01: Bits [255:128] of operand \a V1 are copied to bits [127:0] of the
1295
///    destination. \n
1296
///    10: Bits [127:0] of operand \a V2 are copied to bits [127:0] of the
1297
///    destination. \n
1298
///    11: Bits [255:128] of operand \a V2 are copied to bits [127:0] of the
1299
///    destination. \n
1300
///    Bits [5:4]: \n
1301
///    00: Bits [127:0] of operand \a V1 are copied to bits [255:128] of the
1302
///    destination. \n
1303
///    01: Bits [255:128] of operand \a V1 are copied to bits [255:128] of the
1304
///    destination. \n
1305
///    10: Bits [127:0] of operand \a V2 are copied to bits [255:128] of the
1306
///    destination. \n
1307
///    11: Bits [255:128] of operand \a V2 are copied to bits [255:128] of the
1308
///    destination.
1309
/// \returns A 256-bit integer vector containing the copied values.
1310
#define _mm256_permute2f128_si256(V1, V2, M) \
1311
  ((__m256i)__builtin_ia32_vperm2f128_si256((__v8si)(__m256i)(V1), \
1312
                                            (__v8si)(__m256i)(V2), (int)(M)))
1313
 
1314
/* Vector Blend */
1315
/// Merges 64-bit double-precision data values stored in either of the
1316
///    two 256-bit vectors of [4 x double], as specified by the immediate
1317
///    integer operand.
1318
///
1319
/// \headerfile <x86intrin.h>
1320
///
1321
/// \code
1322
/// __m256d _mm256_blend_pd(__m256d V1, __m256d V2, const int M);
1323
/// \endcode
1324
///
1325
/// This intrinsic corresponds to the <c> VBLENDPD </c> instruction.
1326
///
1327
/// \param V1
1328
///    A 256-bit vector of [4 x double].
1329
/// \param V2
1330
///    A 256-bit vector of [4 x double].
1331
/// \param M
1332
///    An immediate integer operand, with mask bits [3:0] specifying how the
1333
///    values are to be copied. The position of the mask bit corresponds to the
1334
///    index of a copied value. When a mask bit is 0, the corresponding 64-bit
1335
///    element in operand \a V1 is copied to the same position in the
1336
///    destination. When a mask bit is 1, the corresponding 64-bit element in
1337
///    operand \a V2 is copied to the same position in the destination.
1338
/// \returns A 256-bit vector of [4 x double] containing the copied values.
1339
#define _mm256_blend_pd(V1, V2, M) \
1340
  ((__m256d)__builtin_ia32_blendpd256((__v4df)(__m256d)(V1), \
1341
                                      (__v4df)(__m256d)(V2), (int)(M)))
1342
 
1343
/// Merges 32-bit single-precision data values stored in either of the
1344
///    two 256-bit vectors of [8 x float], as specified by the immediate
1345
///    integer operand.
1346
///
1347
/// \headerfile <x86intrin.h>
1348
///
1349
/// \code
1350
/// __m256 _mm256_blend_ps(__m256 V1, __m256 V2, const int M);
1351
/// \endcode
1352
///
1353
/// This intrinsic corresponds to the <c> VBLENDPS </c> instruction.
1354
///
1355
/// \param V1
1356
///    A 256-bit vector of [8 x float].
1357
/// \param V2
1358
///    A 256-bit vector of [8 x float].
1359
/// \param M
1360
///    An immediate integer operand, with mask bits [7:0] specifying how the
1361
///    values are to be copied. The position of the mask bit corresponds to the
1362
///    index of a copied value. When a mask bit is 0, the corresponding 32-bit
1363
///    element in operand \a V1 is copied to the same position in the
1364
///    destination. When a mask bit is 1, the corresponding 32-bit element in
1365
///    operand \a V2 is copied to the same position in the destination.
1366
/// \returns A 256-bit vector of [8 x float] containing the copied values.
1367
#define _mm256_blend_ps(V1, V2, M) \
1368
  ((__m256)__builtin_ia32_blendps256((__v8sf)(__m256)(V1), \
1369
                                     (__v8sf)(__m256)(V2), (int)(M)))
1370
 
1371
/// Merges 64-bit double-precision data values stored in either of the
1372
///    two 256-bit vectors of [4 x double], as specified by the 256-bit vector
1373
///    operand.
1374
///
1375
/// \headerfile <x86intrin.h>
1376
///
1377
/// This intrinsic corresponds to the <c> VBLENDVPD </c> instruction.
1378
///
1379
/// \param __a
1380
///    A 256-bit vector of [4 x double].
1381
/// \param __b
1382
///    A 256-bit vector of [4 x double].
1383
/// \param __c
1384
///    A 256-bit vector operand, with mask bits 255, 191, 127, and 63 specifying
1385
///    how the values are to be copied. The position of the mask bit corresponds
1386
///    to the most significant bit of a copied value. When a mask bit is 0, the
1387
///    corresponding 64-bit element in operand \a __a is copied to the same
1388
///    position in the destination. When a mask bit is 1, the corresponding
1389
///    64-bit element in operand \a __b is copied to the same position in the
1390
///    destination.
1391
/// \returns A 256-bit vector of [4 x double] containing the copied values.
1392
static __inline __m256d __DEFAULT_FN_ATTRS
1393
_mm256_blendv_pd(__m256d __a, __m256d __b, __m256d __c)
1394
{
1395
  return (__m256d)__builtin_ia32_blendvpd256(
1396
    (__v4df)__a, (__v4df)__b, (__v4df)__c);
1397
}
1398
 
1399
/// Merges 32-bit single-precision data values stored in either of the
1400
///    two 256-bit vectors of [8 x float], as specified by the 256-bit vector
1401
///    operand.
1402
///
1403
/// \headerfile <x86intrin.h>
1404
///
1405
/// This intrinsic corresponds to the <c> VBLENDVPS </c> instruction.
1406
///
1407
/// \param __a
1408
///    A 256-bit vector of [8 x float].
1409
/// \param __b
1410
///    A 256-bit vector of [8 x float].
1411
/// \param __c
1412
///    A 256-bit vector operand, with mask bits 255, 223, 191, 159, 127, 95, 63,
1413
///    and 31 specifying how the values are to be copied. The position of the
1414
///    mask bit corresponds to the most significant bit of a copied value. When
1415
///    a mask bit is 0, the corresponding 32-bit element in operand \a __a is
1416
///    copied to the same position in the destination. When a mask bit is 1, the
1417
///    corresponding 32-bit element in operand \a __b is copied to the same
1418
///    position in the destination.
1419
/// \returns A 256-bit vector of [8 x float] containing the copied values.
1420
static __inline __m256 __DEFAULT_FN_ATTRS
1421
_mm256_blendv_ps(__m256 __a, __m256 __b, __m256 __c)
1422
{
1423
  return (__m256)__builtin_ia32_blendvps256(
1424
    (__v8sf)__a, (__v8sf)__b, (__v8sf)__c);
1425
}
1426
 
1427
/* Vector Dot Product */
1428
/// Computes two dot products in parallel, using the lower and upper
1429
///    halves of two [8 x float] vectors as input to the two computations, and
1430
///    returning the two dot products in the lower and upper halves of the
1431
///    [8 x float] result.
1432
///
1433
///    The immediate integer operand controls which input elements will
1434
///    contribute to the dot product, and where the final results are returned.
1435
///    In general, for each dot product, the four corresponding elements of the
1436
///    input vectors are multiplied; the first two and second two products are
1437
///    summed, then the two sums are added to form the final result.
1438
///
1439
/// \headerfile <x86intrin.h>
1440
///
1441
/// \code
1442
/// __m256 _mm256_dp_ps(__m256 V1, __m256 V2, const int M);
1443
/// \endcode
1444
///
1445
/// This intrinsic corresponds to the <c> VDPPS </c> instruction.
1446
///
1447
/// \param V1
1448
///    A vector of [8 x float] values, treated as two [4 x float] vectors.
1449
/// \param V2
1450
///    A vector of [8 x float] values, treated as two [4 x float] vectors.
1451
/// \param M
1452
///    An immediate integer argument. Bits [7:4] determine which elements of
1453
///    the input vectors are used, with bit [4] corresponding to the lowest
1454
///    element and bit [7] corresponding to the highest element of each [4 x
1455
///    float] subvector. If a bit is set, the corresponding elements from the
1456
///    two input vectors are used as an input for dot product; otherwise that
1457
///    input is treated as zero. Bits [3:0] determine which elements of the
1458
///    result will receive a copy of the final dot product, with bit [0]
1459
///    corresponding to the lowest element and bit [3] corresponding to the
1460
///    highest element of each [4 x float] subvector. If a bit is set, the dot
1461
///    product is returned in the corresponding element; otherwise that element
1462
///    is set to zero. The bitmask is applied in the same way to each of the
1463
///    two parallel dot product computations.
1464
/// \returns A 256-bit vector of [8 x float] containing the two dot products.
1465
#define _mm256_dp_ps(V1, V2, M) \
1466
  ((__m256)__builtin_ia32_dpps256((__v8sf)(__m256)(V1), \
1467
                                  (__v8sf)(__m256)(V2), (M)))
1468
 
1469
/* Vector shuffle */
1470
/// Selects 8 float values from the 256-bit operands of [8 x float], as
1471
///    specified by the immediate value operand.
1472
///
1473
///    The four selected elements in each operand are copied to the destination
1474
///    according to the bits specified in the immediate operand. The selected
1475
///    elements from the first 256-bit operand are copied to bits [63:0] and
1476
///    bits [191:128] of the destination, and the selected elements from the
1477
///    second 256-bit operand are copied to bits [127:64] and bits [255:192] of
1478
///    the destination. For example, if bits [7:0] of the immediate operand
1479
///    contain a value of 0xFF, the 256-bit destination vector would contain the
1480
///    following values: b[7], b[7], a[7], a[7], b[3], b[3], a[3], a[3].
1481
///
1482
/// \headerfile <x86intrin.h>
1483
///
1484
/// \code
1485
/// __m256 _mm256_shuffle_ps(__m256 a, __m256 b, const int mask);
1486
/// \endcode
1487
///
1488
/// This intrinsic corresponds to the <c> VSHUFPS </c> instruction.
1489
///
1490
/// \param a
1491
///    A 256-bit vector of [8 x float]. The four selected elements in this
1492
///    operand are copied to bits [63:0] and bits [191:128] in the destination,
1493
///    according to the bits specified in the immediate operand.
1494
/// \param b
1495
///    A 256-bit vector of [8 x float]. The four selected elements in this
1496
///    operand are copied to bits [127:64] and bits [255:192] in the
1497
///    destination, according to the bits specified in the immediate operand.
1498
/// \param mask
1499
///    An immediate value containing an 8-bit value specifying which elements to
1500
///    copy from \a a and \a b \n.
1501
///    Bits [3:0] specify the values copied from operand \a a. \n
1502
///    Bits [7:4] specify the values copied from operand \a b. \n
1503
///    The destinations within the 256-bit destination are assigned values as
1504
///    follows, according to the bit value assignments described below: \n
1505
///    Bits [1:0] are used to assign values to bits [31:0] and [159:128] in the
1506
///    destination. \n
1507
///    Bits [3:2] are used to assign values to bits [63:32] and [191:160] in the
1508
///    destination. \n
1509
///    Bits [5:4] are used to assign values to bits [95:64] and [223:192] in the
1510
///    destination. \n
1511
///    Bits [7:6] are used to assign values to bits [127:96] and [255:224] in
1512
///    the destination. \n
1513
///    Bit value assignments: \n
1514
///    00: Bits [31:0] and [159:128] are copied from the selected operand. \n
1515
///    01: Bits [63:32] and [191:160] are copied from the selected operand. \n
1516
///    10: Bits [95:64] and [223:192] are copied from the selected operand. \n
1517
///    11: Bits [127:96] and [255:224] are copied from the selected operand. \n
1518
///    Note: To generate a mask, you can use the \c _MM_SHUFFLE macro.
1519
///    <c>_MM_SHUFFLE(b6, b4, b2, b0)</c> can create an 8-bit mask of the form
1520
///    <c>[b6, b4, b2, b0]</c>.
1521
/// \returns A 256-bit vector of [8 x float] containing the shuffled values.
1522
#define _mm256_shuffle_ps(a, b, mask) \
1523
  ((__m256)__builtin_ia32_shufps256((__v8sf)(__m256)(a), \
1524
                                    (__v8sf)(__m256)(b), (int)(mask)))
1525
 
1526
/// Selects four double-precision values from the 256-bit operands of
1527
///    [4 x double], as specified by the immediate value operand.
1528
///
1529
///    The selected elements from the first 256-bit operand are copied to bits
1530
///    [63:0] and bits [191:128] in the destination, and the selected elements
1531
///    from the second 256-bit operand are copied to bits [127:64] and bits
1532
///    [255:192] in the destination. For example, if bits [3:0] of the immediate
1533
///    operand contain a value of 0xF, the 256-bit destination vector would
1534
///    contain the following values: b[3], a[3], b[1], a[1].
1535
///
1536
/// \headerfile <x86intrin.h>
1537
///
1538
/// \code
1539
/// __m256d _mm256_shuffle_pd(__m256d a, __m256d b, const int mask);
1540
/// \endcode
1541
///
1542
/// This intrinsic corresponds to the <c> VSHUFPD </c> instruction.
1543
///
1544
/// \param a
1545
///    A 256-bit vector of [4 x double].
1546
/// \param b
1547
///    A 256-bit vector of [4 x double].
1548
/// \param mask
1549
///    An immediate value containing 8-bit values specifying which elements to
1550
///    copy from \a a and \a b: \n
1551
///    Bit [0]=0: Bits [63:0] are copied from \a a to bits [63:0] of the
1552
///    destination. \n
1553
///    Bit [0]=1: Bits [127:64] are copied from \a a to bits [63:0] of the
1554
///    destination. \n
1555
///    Bit [1]=0: Bits [63:0] are copied from \a b to bits [127:64] of the
1556
///    destination. \n
1557
///    Bit [1]=1: Bits [127:64] are copied from \a b to bits [127:64] of the
1558
///    destination. \n
1559
///    Bit [2]=0: Bits [191:128] are copied from \a a to bits [191:128] of the
1560
///    destination. \n
1561
///    Bit [2]=1: Bits [255:192] are copied from \a a to bits [191:128] of the
1562
///    destination. \n
1563
///    Bit [3]=0: Bits [191:128] are copied from \a b to bits [255:192] of the
1564
///    destination. \n
1565
///    Bit [3]=1: Bits [255:192] are copied from \a b to bits [255:192] of the
1566
///    destination.
1567
/// \returns A 256-bit vector of [4 x double] containing the shuffled values.
1568
#define _mm256_shuffle_pd(a, b, mask) \
1569
  ((__m256d)__builtin_ia32_shufpd256((__v4df)(__m256d)(a), \
1570
                                     (__v4df)(__m256d)(b), (int)(mask)))
1571
 
1572
/* Compare */
1573
#define _CMP_EQ_OQ    0x00 /* Equal (ordered, non-signaling)  */
1574
#define _CMP_LT_OS    0x01 /* Less-than (ordered, signaling)  */
1575
#define _CMP_LE_OS    0x02 /* Less-than-or-equal (ordered, signaling)  */
1576
#define _CMP_UNORD_Q  0x03 /* Unordered (non-signaling)  */
1577
#define _CMP_NEQ_UQ   0x04 /* Not-equal (unordered, non-signaling)  */
1578
#define _CMP_NLT_US   0x05 /* Not-less-than (unordered, signaling)  */
1579
#define _CMP_NLE_US   0x06 /* Not-less-than-or-equal (unordered, signaling)  */
1580
#define _CMP_ORD_Q    0x07 /* Ordered (non-signaling)   */
1581
#define _CMP_EQ_UQ    0x08 /* Equal (unordered, non-signaling)  */
1582
#define _CMP_NGE_US   0x09 /* Not-greater-than-or-equal (unordered, signaling)  */
1583
#define _CMP_NGT_US   0x0a /* Not-greater-than (unordered, signaling)  */
1584
#define _CMP_FALSE_OQ 0x0b /* False (ordered, non-signaling)  */
1585
#define _CMP_NEQ_OQ   0x0c /* Not-equal (ordered, non-signaling)  */
1586
#define _CMP_GE_OS    0x0d /* Greater-than-or-equal (ordered, signaling)  */
1587
#define _CMP_GT_OS    0x0e /* Greater-than (ordered, signaling)  */
1588
#define _CMP_TRUE_UQ  0x0f /* True (unordered, non-signaling)  */
1589
#define _CMP_EQ_OS    0x10 /* Equal (ordered, signaling)  */
1590
#define _CMP_LT_OQ    0x11 /* Less-than (ordered, non-signaling)  */
1591
#define _CMP_LE_OQ    0x12 /* Less-than-or-equal (ordered, non-signaling)  */
1592
#define _CMP_UNORD_S  0x13 /* Unordered (signaling)  */
1593
#define _CMP_NEQ_US   0x14 /* Not-equal (unordered, signaling)  */
1594
#define _CMP_NLT_UQ   0x15 /* Not-less-than (unordered, non-signaling)  */
1595
#define _CMP_NLE_UQ   0x16 /* Not-less-than-or-equal (unordered, non-signaling)  */
1596
#define _CMP_ORD_S    0x17 /* Ordered (signaling)  */
1597
#define _CMP_EQ_US    0x18 /* Equal (unordered, signaling)  */
1598
#define _CMP_NGE_UQ   0x19 /* Not-greater-than-or-equal (unordered, non-signaling)  */
1599
#define _CMP_NGT_UQ   0x1a /* Not-greater-than (unordered, non-signaling)  */
1600
#define _CMP_FALSE_OS 0x1b /* False (ordered, signaling)  */
1601
#define _CMP_NEQ_OS   0x1c /* Not-equal (ordered, signaling)  */
1602
#define _CMP_GE_OQ    0x1d /* Greater-than-or-equal (ordered, non-signaling)  */
1603
#define _CMP_GT_OQ    0x1e /* Greater-than (ordered, non-signaling)  */
1604
#define _CMP_TRUE_US  0x1f /* True (unordered, signaling)  */
1605
 
1606
/// Compares each of the corresponding double-precision values of two
1607
///    128-bit vectors of [2 x double], using the operation specified by the
1608
///    immediate integer operand.
1609
///
1610
///    Returns a [2 x double] vector consisting of two doubles corresponding to
1611
///    the two comparison results: zero if the comparison is false, and all 1's
1612
///    if the comparison is true.
1613
///
1614
/// \headerfile <x86intrin.h>
1615
///
1616
/// \code
1617
/// __m128d _mm_cmp_pd(__m128d a, __m128d b, const int c);
1618
/// \endcode
1619
///
1620
/// This intrinsic corresponds to the <c> VCMPPD </c> instruction.
1621
///
1622
/// \param a
1623
///    A 128-bit vector of [2 x double].
1624
/// \param b
1625
///    A 128-bit vector of [2 x double].
1626
/// \param c
1627
///    An immediate integer operand, with bits [4:0] specifying which comparison
1628
///    operation to use: \n
1629
///    0x00: Equal (ordered, non-signaling) \n
1630
///    0x01: Less-than (ordered, signaling) \n
1631
///    0x02: Less-than-or-equal (ordered, signaling) \n
1632
///    0x03: Unordered (non-signaling) \n
1633
///    0x04: Not-equal (unordered, non-signaling) \n
1634
///    0x05: Not-less-than (unordered, signaling) \n
1635
///    0x06: Not-less-than-or-equal (unordered, signaling) \n
1636
///    0x07: Ordered (non-signaling) \n
1637
///    0x08: Equal (unordered, non-signaling) \n
1638
///    0x09: Not-greater-than-or-equal (unordered, signaling) \n
1639
///    0x0A: Not-greater-than (unordered, signaling) \n
1640
///    0x0B: False (ordered, non-signaling) \n
1641
///    0x0C: Not-equal (ordered, non-signaling) \n
1642
///    0x0D: Greater-than-or-equal (ordered, signaling) \n
1643
///    0x0E: Greater-than (ordered, signaling) \n
1644
///    0x0F: True (unordered, non-signaling) \n
1645
///    0x10: Equal (ordered, signaling) \n
1646
///    0x11: Less-than (ordered, non-signaling) \n
1647
///    0x12: Less-than-or-equal (ordered, non-signaling) \n
1648
///    0x13: Unordered (signaling) \n
1649
///    0x14: Not-equal (unordered, signaling) \n
1650
///    0x15: Not-less-than (unordered, non-signaling) \n
1651
///    0x16: Not-less-than-or-equal (unordered, non-signaling) \n
1652
///    0x17: Ordered (signaling) \n
1653
///    0x18: Equal (unordered, signaling) \n
1654
///    0x19: Not-greater-than-or-equal (unordered, non-signaling) \n
1655
///    0x1A: Not-greater-than (unordered, non-signaling) \n
1656
///    0x1B: False (ordered, signaling) \n
1657
///    0x1C: Not-equal (ordered, signaling) \n
1658
///    0x1D: Greater-than-or-equal (ordered, non-signaling) \n
1659
///    0x1E: Greater-than (ordered, non-signaling) \n
1660
///    0x1F: True (unordered, signaling)
1661
/// \returns A 128-bit vector of [2 x double] containing the comparison results.
1662
#define _mm_cmp_pd(a, b, c) \
1663
  ((__m128d)__builtin_ia32_cmppd((__v2df)(__m128d)(a), \
1664
                                 (__v2df)(__m128d)(b), (c)))
1665
 
1666
/// Compares each of the corresponding values of two 128-bit vectors of
1667
///    [4 x float], using the operation specified by the immediate integer
1668
///    operand.
1669
///
1670
///    Returns a [4 x float] vector consisting of four floats corresponding to
1671
///    the four comparison results: zero if the comparison is false, and all 1's
1672
///    if the comparison is true.
1673
///
1674
/// \headerfile <x86intrin.h>
1675
///
1676
/// \code
1677
/// __m128 _mm_cmp_ps(__m128 a, __m128 b, const int c);
1678
/// \endcode
1679
///
1680
/// This intrinsic corresponds to the <c> VCMPPS </c> instruction.
1681
///
1682
/// \param a
1683
///    A 128-bit vector of [4 x float].
1684
/// \param b
1685
///    A 128-bit vector of [4 x float].
1686
/// \param c
1687
///    An immediate integer operand, with bits [4:0] specifying which comparison
1688
///    operation to use: \n
1689
///    0x00: Equal (ordered, non-signaling) \n
1690
///    0x01: Less-than (ordered, signaling) \n
1691
///    0x02: Less-than-or-equal (ordered, signaling) \n
1692
///    0x03: Unordered (non-signaling) \n
1693
///    0x04: Not-equal (unordered, non-signaling) \n
1694
///    0x05: Not-less-than (unordered, signaling) \n
1695
///    0x06: Not-less-than-or-equal (unordered, signaling) \n
1696
///    0x07: Ordered (non-signaling) \n
1697
///    0x08: Equal (unordered, non-signaling) \n
1698
///    0x09: Not-greater-than-or-equal (unordered, signaling) \n
1699
///    0x0A: Not-greater-than (unordered, signaling) \n
1700
///    0x0B: False (ordered, non-signaling) \n
1701
///    0x0C: Not-equal (ordered, non-signaling) \n
1702
///    0x0D: Greater-than-or-equal (ordered, signaling) \n
1703
///    0x0E: Greater-than (ordered, signaling) \n
1704
///    0x0F: True (unordered, non-signaling) \n
1705
///    0x10: Equal (ordered, signaling) \n
1706
///    0x11: Less-than (ordered, non-signaling) \n
1707
///    0x12: Less-than-or-equal (ordered, non-signaling) \n
1708
///    0x13: Unordered (signaling) \n
1709
///    0x14: Not-equal (unordered, signaling) \n
1710
///    0x15: Not-less-than (unordered, non-signaling) \n
1711
///    0x16: Not-less-than-or-equal (unordered, non-signaling) \n
1712
///    0x17: Ordered (signaling) \n
1713
///    0x18: Equal (unordered, signaling) \n
1714
///    0x19: Not-greater-than-or-equal (unordered, non-signaling) \n
1715
///    0x1A: Not-greater-than (unordered, non-signaling) \n
1716
///    0x1B: False (ordered, signaling) \n
1717
///    0x1C: Not-equal (ordered, signaling) \n
1718
///    0x1D: Greater-than-or-equal (ordered, non-signaling) \n
1719
///    0x1E: Greater-than (ordered, non-signaling) \n
1720
///    0x1F: True (unordered, signaling)
1721
/// \returns A 128-bit vector of [4 x float] containing the comparison results.
1722
#define _mm_cmp_ps(a, b, c) \
1723
  ((__m128)__builtin_ia32_cmpps((__v4sf)(__m128)(a), \
1724
                                (__v4sf)(__m128)(b), (c)))
1725
 
1726
/// Compares each of the corresponding double-precision values of two
1727
///    256-bit vectors of [4 x double], using the operation specified by the
1728
///    immediate integer operand.
1729
///
1730
///    Returns a [4 x double] vector consisting of four doubles corresponding to
1731
///    the four comparison results: zero if the comparison is false, and all 1's
1732
///    if the comparison is true.
1733
///
1734
/// \headerfile <x86intrin.h>
1735
///
1736
/// \code
1737
/// __m256d _mm256_cmp_pd(__m256d a, __m256d b, const int c);
1738
/// \endcode
1739
///
1740
/// This intrinsic corresponds to the <c> VCMPPD </c> instruction.
1741
///
1742
/// \param a
1743
///    A 256-bit vector of [4 x double].
1744
/// \param b
1745
///    A 256-bit vector of [4 x double].
1746
/// \param c
1747
///    An immediate integer operand, with bits [4:0] specifying which comparison
1748
///    operation to use: \n
1749
///    0x00: Equal (ordered, non-signaling) \n
1750
///    0x01: Less-than (ordered, signaling) \n
1751
///    0x02: Less-than-or-equal (ordered, signaling) \n
1752
///    0x03: Unordered (non-signaling) \n
1753
///    0x04: Not-equal (unordered, non-signaling) \n
1754
///    0x05: Not-less-than (unordered, signaling) \n
1755
///    0x06: Not-less-than-or-equal (unordered, signaling) \n
1756
///    0x07: Ordered (non-signaling) \n
1757
///    0x08: Equal (unordered, non-signaling) \n
1758
///    0x09: Not-greater-than-or-equal (unordered, signaling) \n
1759
///    0x0A: Not-greater-than (unordered, signaling) \n
1760
///    0x0B: False (ordered, non-signaling) \n
1761
///    0x0C: Not-equal (ordered, non-signaling) \n
1762
///    0x0D: Greater-than-or-equal (ordered, signaling) \n
1763
///    0x0E: Greater-than (ordered, signaling) \n
1764
///    0x0F: True (unordered, non-signaling) \n
1765
///    0x10: Equal (ordered, signaling) \n
1766
///    0x11: Less-than (ordered, non-signaling) \n
1767
///    0x12: Less-than-or-equal (ordered, non-signaling) \n
1768
///    0x13: Unordered (signaling) \n
1769
///    0x14: Not-equal (unordered, signaling) \n
1770
///    0x15: Not-less-than (unordered, non-signaling) \n
1771
///    0x16: Not-less-than-or-equal (unordered, non-signaling) \n
1772
///    0x17: Ordered (signaling) \n
1773
///    0x18: Equal (unordered, signaling) \n
1774
///    0x19: Not-greater-than-or-equal (unordered, non-signaling) \n
1775
///    0x1A: Not-greater-than (unordered, non-signaling) \n
1776
///    0x1B: False (ordered, signaling) \n
1777
///    0x1C: Not-equal (ordered, signaling) \n
1778
///    0x1D: Greater-than-or-equal (ordered, non-signaling) \n
1779
///    0x1E: Greater-than (ordered, non-signaling) \n
1780
///    0x1F: True (unordered, signaling)
1781
/// \returns A 256-bit vector of [4 x double] containing the comparison results.
1782
#define _mm256_cmp_pd(a, b, c) \
1783
  ((__m256d)__builtin_ia32_cmppd256((__v4df)(__m256d)(a), \
1784
                                    (__v4df)(__m256d)(b), (c)))
1785
 
1786
/// Compares each of the corresponding values of two 256-bit vectors of
1787
///    [8 x float], using the operation specified by the immediate integer
1788
///    operand.
1789
///
1790
///    Returns a [8 x float] vector consisting of eight floats corresponding to
1791
///    the eight comparison results: zero if the comparison is false, and all
1792
///    1's if the comparison is true.
1793
///
1794
/// \headerfile <x86intrin.h>
1795
///
1796
/// \code
1797
/// __m256 _mm256_cmp_ps(__m256 a, __m256 b, const int c);
1798
/// \endcode
1799
///
1800
/// This intrinsic corresponds to the <c> VCMPPS </c> instruction.
1801
///
1802
/// \param a
1803
///    A 256-bit vector of [8 x float].
1804
/// \param b
1805
///    A 256-bit vector of [8 x float].
1806
/// \param c
1807
///    An immediate integer operand, with bits [4:0] specifying which comparison
1808
///    operation to use: \n
1809
///    0x00: Equal (ordered, non-signaling) \n
1810
///    0x01: Less-than (ordered, signaling) \n
1811
///    0x02: Less-than-or-equal (ordered, signaling) \n
1812
///    0x03: Unordered (non-signaling) \n
1813
///    0x04: Not-equal (unordered, non-signaling) \n
1814
///    0x05: Not-less-than (unordered, signaling) \n
1815
///    0x06: Not-less-than-or-equal (unordered, signaling) \n
1816
///    0x07: Ordered (non-signaling) \n
1817
///    0x08: Equal (unordered, non-signaling) \n
1818
///    0x09: Not-greater-than-or-equal (unordered, signaling) \n
1819
///    0x0A: Not-greater-than (unordered, signaling) \n
1820
///    0x0B: False (ordered, non-signaling) \n
1821
///    0x0C: Not-equal (ordered, non-signaling) \n
1822
///    0x0D: Greater-than-or-equal (ordered, signaling) \n
1823
///    0x0E: Greater-than (ordered, signaling) \n
1824
///    0x0F: True (unordered, non-signaling) \n
1825
///    0x10: Equal (ordered, signaling) \n
1826
///    0x11: Less-than (ordered, non-signaling) \n
1827
///    0x12: Less-than-or-equal (ordered, non-signaling) \n
1828
///    0x13: Unordered (signaling) \n
1829
///    0x14: Not-equal (unordered, signaling) \n
1830
///    0x15: Not-less-than (unordered, non-signaling) \n
1831
///    0x16: Not-less-than-or-equal (unordered, non-signaling) \n
1832
///    0x17: Ordered (signaling) \n
1833
///    0x18: Equal (unordered, signaling) \n
1834
///    0x19: Not-greater-than-or-equal (unordered, non-signaling) \n
1835
///    0x1A: Not-greater-than (unordered, non-signaling) \n
1836
///    0x1B: False (ordered, signaling) \n
1837
///    0x1C: Not-equal (ordered, signaling) \n
1838
///    0x1D: Greater-than-or-equal (ordered, non-signaling) \n
1839
///    0x1E: Greater-than (ordered, non-signaling) \n
1840
///    0x1F: True (unordered, signaling)
1841
/// \returns A 256-bit vector of [8 x float] containing the comparison results.
1842
#define _mm256_cmp_ps(a, b, c) \
1843
  ((__m256)__builtin_ia32_cmpps256((__v8sf)(__m256)(a), \
1844
                                   (__v8sf)(__m256)(b), (c)))
1845
 
1846
/// Compares each of the corresponding scalar double-precision values of
1847
///    two 128-bit vectors of [2 x double], using the operation specified by the
1848
///    immediate integer operand.
1849
///
1850
///    If the result is true, all 64 bits of the destination vector are set;
1851
///    otherwise they are cleared.
1852
///
1853
/// \headerfile <x86intrin.h>
1854
///
1855
/// \code
1856
/// __m128d _mm_cmp_sd(__m128d a, __m128d b, const int c);
1857
/// \endcode
1858
///
1859
/// This intrinsic corresponds to the <c> VCMPSD </c> instruction.
1860
///
1861
/// \param a
1862
///    A 128-bit vector of [2 x double].
1863
/// \param b
1864
///    A 128-bit vector of [2 x double].
1865
/// \param c
1866
///    An immediate integer operand, with bits [4:0] specifying which comparison
1867
///    operation to use: \n
1868
///    0x00: Equal (ordered, non-signaling) \n
1869
///    0x01: Less-than (ordered, signaling) \n
1870
///    0x02: Less-than-or-equal (ordered, signaling) \n
1871
///    0x03: Unordered (non-signaling) \n
1872
///    0x04: Not-equal (unordered, non-signaling) \n
1873
///    0x05: Not-less-than (unordered, signaling) \n
1874
///    0x06: Not-less-than-or-equal (unordered, signaling) \n
1875
///    0x07: Ordered (non-signaling) \n
1876
///    0x08: Equal (unordered, non-signaling) \n
1877
///    0x09: Not-greater-than-or-equal (unordered, signaling) \n
1878
///    0x0A: Not-greater-than (unordered, signaling) \n
1879
///    0x0B: False (ordered, non-signaling) \n
1880
///    0x0C: Not-equal (ordered, non-signaling) \n
1881
///    0x0D: Greater-than-or-equal (ordered, signaling) \n
1882
///    0x0E: Greater-than (ordered, signaling) \n
1883
///    0x0F: True (unordered, non-signaling) \n
1884
///    0x10: Equal (ordered, signaling) \n
1885
///    0x11: Less-than (ordered, non-signaling) \n
1886
///    0x12: Less-than-or-equal (ordered, non-signaling) \n
1887
///    0x13: Unordered (signaling) \n
1888
///    0x14: Not-equal (unordered, signaling) \n
1889
///    0x15: Not-less-than (unordered, non-signaling) \n
1890
///    0x16: Not-less-than-or-equal (unordered, non-signaling) \n
1891
///    0x17: Ordered (signaling) \n
1892
///    0x18: Equal (unordered, signaling) \n
1893
///    0x19: Not-greater-than-or-equal (unordered, non-signaling) \n
1894
///    0x1A: Not-greater-than (unordered, non-signaling) \n
1895
///    0x1B: False (ordered, signaling) \n
1896
///    0x1C: Not-equal (ordered, signaling) \n
1897
///    0x1D: Greater-than-or-equal (ordered, non-signaling) \n
1898
///    0x1E: Greater-than (ordered, non-signaling) \n
1899
///    0x1F: True (unordered, signaling)
1900
/// \returns A 128-bit vector of [2 x double] containing the comparison results.
1901
#define _mm_cmp_sd(a, b, c) \
1902
  ((__m128d)__builtin_ia32_cmpsd((__v2df)(__m128d)(a), \
1903
                                 (__v2df)(__m128d)(b), (c)))
1904
 
1905
/// Compares each of the corresponding scalar values of two 128-bit
1906
///    vectors of [4 x float], using the operation specified by the immediate
1907
///    integer operand.
1908
///
1909
///    If the result is true, all 32 bits of the destination vector are set;
1910
///    otherwise they are cleared.
1911
///
1912
/// \headerfile <x86intrin.h>
1913
///
1914
/// \code
1915
/// __m128 _mm_cmp_ss(__m128 a, __m128 b, const int c);
1916
/// \endcode
1917
///
1918
/// This intrinsic corresponds to the <c> VCMPSS </c> instruction.
1919
///
1920
/// \param a
1921
///    A 128-bit vector of [4 x float].
1922
/// \param b
1923
///    A 128-bit vector of [4 x float].
1924
/// \param c
1925
///    An immediate integer operand, with bits [4:0] specifying which comparison
1926
///    operation to use: \n
1927
///    0x00: Equal (ordered, non-signaling) \n
1928
///    0x01: Less-than (ordered, signaling) \n
1929
///    0x02: Less-than-or-equal (ordered, signaling) \n
1930
///    0x03: Unordered (non-signaling) \n
1931
///    0x04: Not-equal (unordered, non-signaling) \n
1932
///    0x05: Not-less-than (unordered, signaling) \n
1933
///    0x06: Not-less-than-or-equal (unordered, signaling) \n
1934
///    0x07: Ordered (non-signaling) \n
1935
///    0x08: Equal (unordered, non-signaling) \n
1936
///    0x09: Not-greater-than-or-equal (unordered, signaling) \n
1937
///    0x0A: Not-greater-than (unordered, signaling) \n
1938
///    0x0B: False (ordered, non-signaling) \n
1939
///    0x0C: Not-equal (ordered, non-signaling) \n
1940
///    0x0D: Greater-than-or-equal (ordered, signaling) \n
1941
///    0x0E: Greater-than (ordered, signaling) \n
1942
///    0x0F: True (unordered, non-signaling) \n
1943
///    0x10: Equal (ordered, signaling) \n
1944
///    0x11: Less-than (ordered, non-signaling) \n
1945
///    0x12: Less-than-or-equal (ordered, non-signaling) \n
1946
///    0x13: Unordered (signaling) \n
1947
///    0x14: Not-equal (unordered, signaling) \n
1948
///    0x15: Not-less-than (unordered, non-signaling) \n
1949
///    0x16: Not-less-than-or-equal (unordered, non-signaling) \n
1950
///    0x17: Ordered (signaling) \n
1951
///    0x18: Equal (unordered, signaling) \n
1952
///    0x19: Not-greater-than-or-equal (unordered, non-signaling) \n
1953
///    0x1A: Not-greater-than (unordered, non-signaling) \n
1954
///    0x1B: False (ordered, signaling) \n
1955
///    0x1C: Not-equal (ordered, signaling) \n
1956
///    0x1D: Greater-than-or-equal (ordered, non-signaling) \n
1957
///    0x1E: Greater-than (ordered, non-signaling) \n
1958
///    0x1F: True (unordered, signaling)
1959
/// \returns A 128-bit vector of [4 x float] containing the comparison results.
1960
#define _mm_cmp_ss(a, b, c) \
1961
  ((__m128)__builtin_ia32_cmpss((__v4sf)(__m128)(a), \
1962
                                (__v4sf)(__m128)(b), (c)))
1963
 
1964
/// Takes a [8 x i32] vector and returns the vector element value
1965
///    indexed by the immediate constant operand.
1966
///
1967
/// \headerfile <x86intrin.h>
1968
///
1969
/// \code
1970
/// int _mm256_extract_epi32(__m256i X, const int N);
1971
/// \endcode
1972
///
1973
/// This intrinsic corresponds to the <c> VEXTRACTF128+COMPOSITE </c>
1974
///   instruction.
1975
///
1976
/// \param X
1977
///    A 256-bit vector of [8 x i32].
1978
/// \param N
1979
///    An immediate integer operand with bits [2:0] determining which vector
1980
///    element is extracted and returned.
1981
/// \returns A 32-bit integer containing the extracted 32 bits of extended
1982
///    packed data.
1983
#define _mm256_extract_epi32(X, N) \
1984
  ((int)__builtin_ia32_vec_ext_v8si((__v8si)(__m256i)(X), (int)(N)))
1985
 
1986
/// Takes a [16 x i16] vector and returns the vector element value
1987
///    indexed by the immediate constant operand.
1988
///
1989
/// \headerfile <x86intrin.h>
1990
///
1991
/// \code
1992
/// int _mm256_extract_epi16(__m256i X, const int N);
1993
/// \endcode
1994
///
1995
/// This intrinsic corresponds to the <c> VEXTRACTF128+COMPOSITE </c>
1996
///   instruction.
1997
///
1998
/// \param X
1999
///    A 256-bit integer vector of [16 x i16].
2000
/// \param N
2001
///    An immediate integer operand with bits [3:0] determining which vector
2002
///    element is extracted and returned.
2003
/// \returns A 32-bit integer containing the extracted 16 bits of zero extended
2004
///    packed data.
2005
#define _mm256_extract_epi16(X, N) \
2006
  ((int)(unsigned short)__builtin_ia32_vec_ext_v16hi((__v16hi)(__m256i)(X), \
2007
                                                     (int)(N)))
2008
 
2009
/// Takes a [32 x i8] vector and returns the vector element value
2010
///    indexed by the immediate constant operand.
2011
///
2012
/// \headerfile <x86intrin.h>
2013
///
2014
/// \code
2015
/// int _mm256_extract_epi8(__m256i X, const int N);
2016
/// \endcode
2017
///
2018
/// This intrinsic corresponds to the <c> VEXTRACTF128+COMPOSITE </c>
2019
///   instruction.
2020
///
2021
/// \param X
2022
///    A 256-bit integer vector of [32 x i8].
2023
/// \param N
2024
///    An immediate integer operand with bits [4:0] determining which vector
2025
///    element is extracted and returned.
2026
/// \returns A 32-bit integer containing the extracted 8 bits of zero extended
2027
///    packed data.
2028
#define _mm256_extract_epi8(X, N) \
2029
  ((int)(unsigned char)__builtin_ia32_vec_ext_v32qi((__v32qi)(__m256i)(X), \
2030
                                                    (int)(N)))
2031
 
2032
#ifdef __x86_64__
2033
/// Takes a [4 x i64] vector and returns the vector element value
2034
///    indexed by the immediate constant operand.
2035
///
2036
/// \headerfile <x86intrin.h>
2037
///
2038
/// \code
2039
/// long long _mm256_extract_epi64(__m256i X, const int N);
2040
/// \endcode
2041
///
2042
/// This intrinsic corresponds to the <c> VEXTRACTF128+COMPOSITE </c>
2043
///   instruction.
2044
///
2045
/// \param X
2046
///    A 256-bit integer vector of [4 x i64].
2047
/// \param N
2048
///    An immediate integer operand with bits [1:0] determining which vector
2049
///    element is extracted and returned.
2050
/// \returns A 64-bit integer containing the extracted 64 bits of extended
2051
///    packed data.
2052
#define _mm256_extract_epi64(X, N) \
2053
  ((long long)__builtin_ia32_vec_ext_v4di((__v4di)(__m256i)(X), (int)(N)))
2054
#endif
2055
 
2056
/// Takes a [8 x i32] vector and replaces the vector element value
2057
///    indexed by the immediate constant operand by a new value. Returns the
2058
///    modified vector.
2059
///
2060
/// \headerfile <x86intrin.h>
2061
///
2062
/// \code
2063
/// __m256i _mm256_insert_epi32(__m256i X, int I, const int N);
2064
/// \endcode
2065
///
2066
/// This intrinsic corresponds to the <c> VINSERTF128+COMPOSITE </c>
2067
///   instruction.
2068
///
2069
/// \param X
2070
///    A vector of [8 x i32] to be used by the insert operation.
2071
/// \param I
2072
///    An integer value. The replacement value for the insert operation.
2073
/// \param N
2074
///    An immediate integer specifying the index of the vector element to be
2075
///    replaced.
2076
/// \returns A copy of vector \a X, after replacing its element indexed by
2077
///    \a N with \a I.
2078
#define _mm256_insert_epi32(X, I, N) \
2079
  ((__m256i)__builtin_ia32_vec_set_v8si((__v8si)(__m256i)(X), \
2080
                                        (int)(I), (int)(N)))
2081
 
2082
 
2083
/// Takes a [16 x i16] vector and replaces the vector element value
2084
///    indexed by the immediate constant operand with a new value. Returns the
2085
///    modified vector.
2086
///
2087
/// \headerfile <x86intrin.h>
2088
///
2089
/// \code
2090
/// __m256i _mm256_insert_epi16(__m256i X, int I, const int N);
2091
/// \endcode
2092
///
2093
/// This intrinsic corresponds to the <c> VINSERTF128+COMPOSITE </c>
2094
///   instruction.
2095
///
2096
/// \param X
2097
///    A vector of [16 x i16] to be used by the insert operation.
2098
/// \param I
2099
///    An i16 integer value. The replacement value for the insert operation.
2100
/// \param N
2101
///    An immediate integer specifying the index of the vector element to be
2102
///    replaced.
2103
/// \returns A copy of vector \a X, after replacing its element indexed by
2104
///    \a N with \a I.
2105
#define _mm256_insert_epi16(X, I, N) \
2106
  ((__m256i)__builtin_ia32_vec_set_v16hi((__v16hi)(__m256i)(X), \
2107
                                         (int)(I), (int)(N)))
2108
 
2109
/// Takes a [32 x i8] vector and replaces the vector element value
2110
///    indexed by the immediate constant operand with a new value. Returns the
2111
///    modified vector.
2112
///
2113
/// \headerfile <x86intrin.h>
2114
///
2115
/// \code
2116
/// __m256i _mm256_insert_epi8(__m256i X, int I, const int N);
2117
/// \endcode
2118
///
2119
/// This intrinsic corresponds to the <c> VINSERTF128+COMPOSITE </c>
2120
///   instruction.
2121
///
2122
/// \param X
2123
///    A vector of [32 x i8] to be used by the insert operation.
2124
/// \param I
2125
///    An i8 integer value. The replacement value for the insert operation.
2126
/// \param N
2127
///    An immediate integer specifying the index of the vector element to be
2128
///    replaced.
2129
/// \returns A copy of vector \a X, after replacing its element indexed by
2130
///    \a N with \a I.
2131
#define _mm256_insert_epi8(X, I, N) \
2132
  ((__m256i)__builtin_ia32_vec_set_v32qi((__v32qi)(__m256i)(X), \
2133
                                         (int)(I), (int)(N)))
2134
 
2135
#ifdef __x86_64__
2136
/// Takes a [4 x i64] vector and replaces the vector element value
2137
///    indexed by the immediate constant operand with a new value. Returns the
2138
///    modified vector.
2139
///
2140
/// \headerfile <x86intrin.h>
2141
///
2142
/// \code
2143
/// __m256i _mm256_insert_epi64(__m256i X, int I, const int N);
2144
/// \endcode
2145
///
2146
/// This intrinsic corresponds to the <c> VINSERTF128+COMPOSITE </c>
2147
///   instruction.
2148
///
2149
/// \param X
2150
///    A vector of [4 x i64] to be used by the insert operation.
2151
/// \param I
2152
///    A 64-bit integer value. The replacement value for the insert operation.
2153
/// \param N
2154
///    An immediate integer specifying the index of the vector element to be
2155
///    replaced.
2156
/// \returns A copy of vector \a X, after replacing its element indexed by
2157
///     \a N with \a I.
2158
#define _mm256_insert_epi64(X, I, N) \
2159
  ((__m256i)__builtin_ia32_vec_set_v4di((__v4di)(__m256i)(X), \
2160
                                        (long long)(I), (int)(N)))
2161
#endif
2162
 
2163
/* Conversion */
2164
/// Converts a vector of [4 x i32] into a vector of [4 x double].
2165
///
2166
/// \headerfile <x86intrin.h>
2167
///
2168
/// This intrinsic corresponds to the <c> VCVTDQ2PD </c> instruction.
2169
///
2170
/// \param __a
2171
///    A 128-bit integer vector of [4 x i32].
2172
/// \returns A 256-bit vector of [4 x double] containing the converted values.
2173
static __inline __m256d __DEFAULT_FN_ATTRS
2174
_mm256_cvtepi32_pd(__m128i __a)
2175
{
2176
  return (__m256d)__builtin_convertvector((__v4si)__a, __v4df);
2177
}
2178
 
2179
/// Converts a vector of [8 x i32] into a vector of [8 x float].
2180
///
2181
/// \headerfile <x86intrin.h>
2182
///
2183
/// This intrinsic corresponds to the <c> VCVTDQ2PS </c> instruction.
2184
///
2185
/// \param __a
2186
///    A 256-bit integer vector.
2187
/// \returns A 256-bit vector of [8 x float] containing the converted values.
2188
static __inline __m256 __DEFAULT_FN_ATTRS
2189
_mm256_cvtepi32_ps(__m256i __a)
2190
{
2191
  return (__m256)__builtin_convertvector((__v8si)__a, __v8sf);
2192
}
2193
 
2194
/// Converts a 256-bit vector of [4 x double] into a 128-bit vector of
2195
///    [4 x float].
2196
///
2197
/// \headerfile <x86intrin.h>
2198
///
2199
/// This intrinsic corresponds to the <c> VCVTPD2PS </c> instruction.
2200
///
2201
/// \param __a
2202
///    A 256-bit vector of [4 x double].
2203
/// \returns A 128-bit vector of [4 x float] containing the converted values.
2204
static __inline __m128 __DEFAULT_FN_ATTRS
2205
_mm256_cvtpd_ps(__m256d __a)
2206
{
2207
  return (__m128)__builtin_ia32_cvtpd2ps256((__v4df) __a);
2208
}
2209
 
2210
/// Converts a vector of [8 x float] into a vector of [8 x i32].
2211
///
2212
/// \headerfile <x86intrin.h>
2213
///
2214
/// This intrinsic corresponds to the <c> VCVTPS2DQ </c> instruction.
2215
///
2216
/// \param __a
2217
///    A 256-bit vector of [8 x float].
2218
/// \returns A 256-bit integer vector containing the converted values.
2219
static __inline __m256i __DEFAULT_FN_ATTRS
2220
_mm256_cvtps_epi32(__m256 __a)
2221
{
2222
  return (__m256i)__builtin_ia32_cvtps2dq256((__v8sf) __a);
2223
}
2224
 
2225
/// Converts a 128-bit vector of [4 x float] into a 256-bit vector of [4
2226
///    x double].
2227
///
2228
/// \headerfile <x86intrin.h>
2229
///
2230
/// This intrinsic corresponds to the <c> VCVTPS2PD </c> instruction.
2231
///
2232
/// \param __a
2233
///    A 128-bit vector of [4 x float].
2234
/// \returns A 256-bit vector of [4 x double] containing the converted values.
2235
static __inline __m256d __DEFAULT_FN_ATTRS
2236
_mm256_cvtps_pd(__m128 __a)
2237
{
2238
  return (__m256d)__builtin_convertvector((__v4sf)__a, __v4df);
2239
}
2240
 
2241
/// Converts a 256-bit vector of [4 x double] into a 128-bit vector of [4
2242
///    x i32], truncating the result by rounding towards zero when it is
2243
///    inexact.
2244
///
2245
/// \headerfile <x86intrin.h>
2246
///
2247
/// This intrinsic corresponds to the <c> VCVTTPD2DQ </c> instruction.
2248
///
2249
/// \param __a
2250
///    A 256-bit vector of [4 x double].
2251
/// \returns A 128-bit integer vector containing the converted values.
2252
static __inline __m128i __DEFAULT_FN_ATTRS
2253
_mm256_cvttpd_epi32(__m256d __a)
2254
{
2255
  return (__m128i)__builtin_ia32_cvttpd2dq256((__v4df) __a);
2256
}
2257
 
2258
/// Converts a 256-bit vector of [4 x double] into a 128-bit vector of [4
2259
///    x i32]. When a conversion is inexact, the value returned is rounded
2260
///    according to the rounding control bits in the MXCSR register.
2261
///
2262
/// \headerfile <x86intrin.h>
2263
///
2264
/// This intrinsic corresponds to the <c> VCVTPD2DQ </c> instruction.
2265
///
2266
/// \param __a
2267
///    A 256-bit vector of [4 x double].
2268
/// \returns A 128-bit integer vector containing the converted values.
2269
static __inline __m128i __DEFAULT_FN_ATTRS
2270
_mm256_cvtpd_epi32(__m256d __a)
2271
{
2272
  return (__m128i)__builtin_ia32_cvtpd2dq256((__v4df) __a);
2273
}
2274
 
2275
/// Converts a vector of [8 x float] into a vector of [8 x i32],
2276
///    truncating the result by rounding towards zero when it is inexact.
2277
///
2278
/// \headerfile <x86intrin.h>
2279
///
2280
/// This intrinsic corresponds to the <c> VCVTTPS2DQ </c> instruction.
2281
///
2282
/// \param __a
2283
///    A 256-bit vector of [8 x float].
2284
/// \returns A 256-bit integer vector containing the converted values.
2285
static __inline __m256i __DEFAULT_FN_ATTRS
2286
_mm256_cvttps_epi32(__m256 __a)
2287
{
2288
  return (__m256i)__builtin_ia32_cvttps2dq256((__v8sf) __a);
2289
}
2290
 
2291
/// Returns the first element of the input vector of [4 x double].
2292
///
2293
/// \headerfile <x86intrin.h>
2294
///
2295
/// This intrinsic is a utility function and does not correspond to a specific
2296
///    instruction.
2297
///
2298
/// \param __a
2299
///    A 256-bit vector of [4 x double].
2300
/// \returns A 64 bit double containing the first element of the input vector.
2301
static __inline double __DEFAULT_FN_ATTRS
2302
_mm256_cvtsd_f64(__m256d __a)
2303
{
2304
 return __a[0];
2305
}
2306
 
2307
/// Returns the first element of the input vector of [8 x i32].
2308
///
2309
/// \headerfile <x86intrin.h>
2310
///
2311
/// This intrinsic is a utility function and does not correspond to a specific
2312
///    instruction.
2313
///
2314
/// \param __a
2315
///    A 256-bit vector of [8 x i32].
2316
/// \returns A 32 bit integer containing the first element of the input vector.
2317
static __inline int __DEFAULT_FN_ATTRS
2318
_mm256_cvtsi256_si32(__m256i __a)
2319
{
2320
 __v8si __b = (__v8si)__a;
2321
 return __b[0];
2322
}
2323
 
2324
/// Returns the first element of the input vector of [8 x float].
2325
///
2326
/// \headerfile <x86intrin.h>
2327
///
2328
/// This intrinsic is a utility function and does not correspond to a specific
2329
///    instruction.
2330
///
2331
/// \param __a
2332
///    A 256-bit vector of [8 x float].
2333
/// \returns A 32 bit float containing the first element of the input vector.
2334
static __inline float __DEFAULT_FN_ATTRS
2335
_mm256_cvtss_f32(__m256 __a)
2336
{
2337
 return __a[0];
2338
}
2339
 
2340
/* Vector replicate */
2341
/// Moves and duplicates odd-indexed values from a 256-bit vector of
2342
///    [8 x float] to float values in a 256-bit vector of [8 x float].
2343
///
2344
/// \headerfile <x86intrin.h>
2345
///
2346
/// This intrinsic corresponds to the <c> VMOVSHDUP </c> instruction.
2347
///
2348
/// \param __a
2349
///    A 256-bit vector of [8 x float]. \n
2350
///    Bits [255:224] of \a __a are written to bits [255:224] and [223:192] of
2351
///    the return value. \n
2352
///    Bits [191:160] of \a __a are written to bits [191:160] and [159:128] of
2353
///    the return value. \n
2354
///    Bits [127:96] of \a __a are written to bits [127:96] and [95:64] of the
2355
///    return value. \n
2356
///    Bits [63:32] of \a __a are written to bits [63:32] and [31:0] of the
2357
///    return value.
2358
/// \returns A 256-bit vector of [8 x float] containing the moved and duplicated
2359
///    values.
2360
static __inline __m256 __DEFAULT_FN_ATTRS
2361
_mm256_movehdup_ps(__m256 __a)
2362
{
2363
  return __builtin_shufflevector((__v8sf)__a, (__v8sf)__a, 1, 1, 3, 3, 5, 5, 7, 7);
2364
}
2365
 
2366
/// Moves and duplicates even-indexed values from a 256-bit vector of
2367
///    [8 x float] to float values in a 256-bit vector of [8 x float].
2368
///
2369
/// \headerfile <x86intrin.h>
2370
///
2371
/// This intrinsic corresponds to the <c> VMOVSLDUP </c> instruction.
2372
///
2373
/// \param __a
2374
///    A 256-bit vector of [8 x float]. \n
2375
///    Bits [223:192] of \a __a are written to bits [255:224] and [223:192] of
2376
///    the return value. \n
2377
///    Bits [159:128] of \a __a are written to bits [191:160] and [159:128] of
2378
///    the return value. \n
2379
///    Bits [95:64] of \a __a are written to bits [127:96] and [95:64] of the
2380
///    return value. \n
2381
///    Bits [31:0] of \a __a are written to bits [63:32] and [31:0] of the
2382
///    return value.
2383
/// \returns A 256-bit vector of [8 x float] containing the moved and duplicated
2384
///    values.
2385
static __inline __m256 __DEFAULT_FN_ATTRS
2386
_mm256_moveldup_ps(__m256 __a)
2387
{
2388
  return __builtin_shufflevector((__v8sf)__a, (__v8sf)__a, 0, 0, 2, 2, 4, 4, 6, 6);
2389
}
2390
 
2391
/// Moves and duplicates double-precision floating point values from a
2392
///    256-bit vector of [4 x double] to double-precision values in a 256-bit
2393
///    vector of [4 x double].
2394
///
2395
/// \headerfile <x86intrin.h>
2396
///
2397
/// This intrinsic corresponds to the <c> VMOVDDUP </c> instruction.
2398
///
2399
/// \param __a
2400
///    A 256-bit vector of [4 x double]. \n
2401
///    Bits [63:0] of \a __a are written to bits [127:64] and [63:0] of the
2402
///    return value. \n
2403
///    Bits [191:128] of \a __a are written to bits [255:192] and [191:128] of
2404
///    the return value.
2405
/// \returns A 256-bit vector of [4 x double] containing the moved and
2406
///    duplicated values.
2407
static __inline __m256d __DEFAULT_FN_ATTRS
2408
_mm256_movedup_pd(__m256d __a)
2409
{
2410
  return __builtin_shufflevector((__v4df)__a, (__v4df)__a, 0, 0, 2, 2);
2411
}
2412
 
2413
/* Unpack and Interleave */
2414
/// Unpacks the odd-indexed vector elements from two 256-bit vectors of
2415
///    [4 x double] and interleaves them into a 256-bit vector of [4 x double].
2416
///
2417
/// \headerfile <x86intrin.h>
2418
///
2419
/// This intrinsic corresponds to the <c> VUNPCKHPD </c> instruction.
2420
///
2421
/// \param __a
2422
///    A 256-bit floating-point vector of [4 x double]. \n
2423
///    Bits [127:64] are written to bits [63:0] of the return value. \n
2424
///    Bits [255:192] are written to bits [191:128] of the return value. \n
2425
/// \param __b
2426
///    A 256-bit floating-point vector of [4 x double]. \n
2427
///    Bits [127:64] are written to bits [127:64] of the return value. \n
2428
///    Bits [255:192] are written to bits [255:192] of the return value. \n
2429
/// \returns A 256-bit vector of [4 x double] containing the interleaved values.
2430
static __inline __m256d __DEFAULT_FN_ATTRS
2431
_mm256_unpackhi_pd(__m256d __a, __m256d __b)
2432
{
2433
  return __builtin_shufflevector((__v4df)__a, (__v4df)__b, 1, 5, 1+2, 5+2);
2434
}
2435
 
2436
/// Unpacks the even-indexed vector elements from two 256-bit vectors of
2437
///    [4 x double] and interleaves them into a 256-bit vector of [4 x double].
2438
///
2439
/// \headerfile <x86intrin.h>
2440
///
2441
/// This intrinsic corresponds to the <c> VUNPCKLPD </c> instruction.
2442
///
2443
/// \param __a
2444
///    A 256-bit floating-point vector of [4 x double]. \n
2445
///    Bits [63:0] are written to bits [63:0] of the return value. \n
2446
///    Bits [191:128] are written to bits [191:128] of the return value.
2447
/// \param __b
2448
///    A 256-bit floating-point vector of [4 x double]. \n
2449
///    Bits [63:0] are written to bits [127:64] of the return value. \n
2450
///    Bits [191:128] are written to bits [255:192] of the return value. \n
2451
/// \returns A 256-bit vector of [4 x double] containing the interleaved values.
2452
static __inline __m256d __DEFAULT_FN_ATTRS
2453
_mm256_unpacklo_pd(__m256d __a, __m256d __b)
2454
{
2455
  return __builtin_shufflevector((__v4df)__a, (__v4df)__b, 0, 4, 0+2, 4+2);
2456
}
2457
 
2458
/// Unpacks the 32-bit vector elements 2, 3, 6 and 7 from each of the
2459
///    two 256-bit vectors of [8 x float] and interleaves them into a 256-bit
2460
///    vector of [8 x float].
2461
///
2462
/// \headerfile <x86intrin.h>
2463
///
2464
/// This intrinsic corresponds to the <c> VUNPCKHPS </c> instruction.
2465
///
2466
/// \param __a
2467
///    A 256-bit vector of [8 x float]. \n
2468
///    Bits [95:64] are written to bits [31:0] of the return value. \n
2469
///    Bits [127:96] are written to bits [95:64] of the return value. \n
2470
///    Bits [223:192] are written to bits [159:128] of the return value. \n
2471
///    Bits [255:224] are written to bits [223:192] of the return value.
2472
/// \param __b
2473
///    A 256-bit vector of [8 x float]. \n
2474
///    Bits [95:64] are written to bits [63:32] of the return value. \n
2475
///    Bits [127:96] are written to bits [127:96] of the return value. \n
2476
///    Bits [223:192] are written to bits [191:160] of the return value. \n
2477
///    Bits [255:224] are written to bits [255:224] of the return value.
2478
/// \returns A 256-bit vector of [8 x float] containing the interleaved values.
2479
static __inline __m256 __DEFAULT_FN_ATTRS
2480
_mm256_unpackhi_ps(__m256 __a, __m256 __b)
2481
{
2482
  return __builtin_shufflevector((__v8sf)__a, (__v8sf)__b, 2, 10, 2+1, 10+1, 6, 14, 6+1, 14+1);
2483
}
2484
 
2485
/// Unpacks the 32-bit vector elements 0, 1, 4 and 5 from each of the
2486
///    two 256-bit vectors of [8 x float] and interleaves them into a 256-bit
2487
///    vector of [8 x float].
2488
///
2489
/// \headerfile <x86intrin.h>
2490
///
2491
/// This intrinsic corresponds to the <c> VUNPCKLPS </c> instruction.
2492
///
2493
/// \param __a
2494
///    A 256-bit vector of [8 x float]. \n
2495
///    Bits [31:0] are written to bits [31:0] of the return value. \n
2496
///    Bits [63:32] are written to bits [95:64] of the return value. \n
2497
///    Bits [159:128] are written to bits [159:128] of the return value. \n
2498
///    Bits [191:160] are written to bits [223:192] of the return value.
2499
/// \param __b
2500
///    A 256-bit vector of [8 x float]. \n
2501
///    Bits [31:0] are written to bits [63:32] of the return value. \n
2502
///    Bits [63:32] are written to bits [127:96] of the return value. \n
2503
///    Bits [159:128] are written to bits [191:160] of the return value. \n
2504
///    Bits [191:160] are written to bits [255:224] of the return value.
2505
/// \returns A 256-bit vector of [8 x float] containing the interleaved values.
2506
static __inline __m256 __DEFAULT_FN_ATTRS
2507
_mm256_unpacklo_ps(__m256 __a, __m256 __b)
2508
{
2509
  return __builtin_shufflevector((__v8sf)__a, (__v8sf)__b, 0, 8, 0+1, 8+1, 4, 12, 4+1, 12+1);
2510
}
2511
 
2512
/* Bit Test */
2513
/// Given two 128-bit floating-point vectors of [2 x double], perform an
2514
///    element-by-element comparison of the double-precision element in the
2515
///    first source vector and the corresponding element in the second source
2516
///    vector.
2517
///
2518
///    The EFLAGS register is updated as follows: \n
2519
///    If there is at least one pair of double-precision elements where the
2520
///    sign-bits of both elements are 1, the ZF flag is set to 0. Otherwise the
2521
///    ZF flag is set to 1. \n
2522
///    If there is at least one pair of double-precision elements where the
2523
///    sign-bit of the first element is 0 and the sign-bit of the second element
2524
///    is 1, the CF flag is set to 0. Otherwise the CF flag is set to 1. \n
2525
///    This intrinsic returns the value of the ZF flag.
2526
///
2527
/// \headerfile <x86intrin.h>
2528
///
2529
/// This intrinsic corresponds to the <c> VTESTPD </c> instruction.
2530
///
2531
/// \param __a
2532
///    A 128-bit vector of [2 x double].
2533
/// \param __b
2534
///    A 128-bit vector of [2 x double].
2535
/// \returns the ZF flag in the EFLAGS register.
2536
static __inline int __DEFAULT_FN_ATTRS128
2537
_mm_testz_pd(__m128d __a, __m128d __b)
2538
{
2539
  return __builtin_ia32_vtestzpd((__v2df)__a, (__v2df)__b);
2540
}
2541
 
2542
/// Given two 128-bit floating-point vectors of [2 x double], perform an
2543
///    element-by-element comparison of the double-precision element in the
2544
///    first source vector and the corresponding element in the second source
2545
///    vector.
2546
///
2547
///    The EFLAGS register is updated as follows: \n
2548
///    If there is at least one pair of double-precision elements where the
2549
///    sign-bits of both elements are 1, the ZF flag is set to 0. Otherwise the
2550
///    ZF flag is set to 1. \n
2551
///    If there is at least one pair of double-precision elements where the
2552
///    sign-bit of the first element is 0 and the sign-bit of the second element
2553
///    is 1, the CF flag is set to 0. Otherwise the CF flag is set to 1. \n
2554
///    This intrinsic returns the value of the CF flag.
2555
///
2556
/// \headerfile <x86intrin.h>
2557
///
2558
/// This intrinsic corresponds to the <c> VTESTPD </c> instruction.
2559
///
2560
/// \param __a
2561
///    A 128-bit vector of [2 x double].
2562
/// \param __b
2563
///    A 128-bit vector of [2 x double].
2564
/// \returns the CF flag in the EFLAGS register.
2565
static __inline int __DEFAULT_FN_ATTRS128
2566
_mm_testc_pd(__m128d __a, __m128d __b)
2567
{
2568
  return __builtin_ia32_vtestcpd((__v2df)__a, (__v2df)__b);
2569
}
2570
 
2571
/// Given two 128-bit floating-point vectors of [2 x double], perform an
2572
///    element-by-element comparison of the double-precision element in the
2573
///    first source vector and the corresponding element in the second source
2574
///    vector.
2575
///
2576
///    The EFLAGS register is updated as follows: \n
2577
///    If there is at least one pair of double-precision elements where the
2578
///    sign-bits of both elements are 1, the ZF flag is set to 0. Otherwise the
2579
///    ZF flag is set to 1. \n
2580
///    If there is at least one pair of double-precision elements where the
2581
///    sign-bit of the first element is 0 and the sign-bit of the second element
2582
///    is 1, the CF flag is set to 0. Otherwise the CF flag is set to 1. \n
2583
///    This intrinsic returns 1 if both the ZF and CF flags are set to 0,
2584
///    otherwise it returns 0.
2585
///
2586
/// \headerfile <x86intrin.h>
2587
///
2588
/// This intrinsic corresponds to the <c> VTESTPD </c> instruction.
2589
///
2590
/// \param __a
2591
///    A 128-bit vector of [2 x double].
2592
/// \param __b
2593
///    A 128-bit vector of [2 x double].
2594
/// \returns 1 if both the ZF and CF flags are set to 0, otherwise returns 0.
2595
static __inline int __DEFAULT_FN_ATTRS128
2596
_mm_testnzc_pd(__m128d __a, __m128d __b)
2597
{
2598
  return __builtin_ia32_vtestnzcpd((__v2df)__a, (__v2df)__b);
2599
}
2600
 
2601
/// Given two 128-bit floating-point vectors of [4 x float], perform an
2602
///    element-by-element comparison of the single-precision element in the
2603
///    first source vector and the corresponding element in the second source
2604
///    vector.
2605
///
2606
///    The EFLAGS register is updated as follows: \n
2607
///    If there is at least one pair of single-precision elements where the
2608
///    sign-bits of both elements are 1, the ZF flag is set to 0. Otherwise the
2609
///    ZF flag is set to 1. \n
2610
///    If there is at least one pair of single-precision elements where the
2611
///    sign-bit of the first element is 0 and the sign-bit of the second element
2612
///    is 1, the CF flag is set to 0. Otherwise the CF flag is set to 1. \n
2613
///    This intrinsic returns the value of the ZF flag.
2614
///
2615
/// \headerfile <x86intrin.h>
2616
///
2617
/// This intrinsic corresponds to the <c> VTESTPS </c> instruction.
2618
///
2619
/// \param __a
2620
///    A 128-bit vector of [4 x float].
2621
/// \param __b
2622
///    A 128-bit vector of [4 x float].
2623
/// \returns the ZF flag.
2624
static __inline int __DEFAULT_FN_ATTRS128
2625
_mm_testz_ps(__m128 __a, __m128 __b)
2626
{
2627
  return __builtin_ia32_vtestzps((__v4sf)__a, (__v4sf)__b);
2628
}
2629
 
2630
/// Given two 128-bit floating-point vectors of [4 x float], perform an
2631
///    element-by-element comparison of the single-precision element in the
2632
///    first source vector and the corresponding element in the second source
2633
///    vector.
2634
///
2635
///    The EFLAGS register is updated as follows: \n
2636
///    If there is at least one pair of single-precision elements where the
2637
///    sign-bits of both elements are 1, the ZF flag is set to 0. Otherwise the
2638
///    ZF flag is set to 1. \n
2639
///    If there is at least one pair of single-precision elements where the
2640
///    sign-bit of the first element is 0 and the sign-bit of the second element
2641
///    is 1, the CF flag is set to 0. Otherwise the CF flag is set to 1. \n
2642
///    This intrinsic returns the value of the CF flag.
2643
///
2644
/// \headerfile <x86intrin.h>
2645
///
2646
/// This intrinsic corresponds to the <c> VTESTPS </c> instruction.
2647
///
2648
/// \param __a
2649
///    A 128-bit vector of [4 x float].
2650
/// \param __b
2651
///    A 128-bit vector of [4 x float].
2652
/// \returns the CF flag.
2653
static __inline int __DEFAULT_FN_ATTRS128
2654
_mm_testc_ps(__m128 __a, __m128 __b)
2655
{
2656
  return __builtin_ia32_vtestcps((__v4sf)__a, (__v4sf)__b);
2657
}
2658
 
2659
/// Given two 128-bit floating-point vectors of [4 x float], perform an
2660
///    element-by-element comparison of the single-precision element in the
2661
///    first source vector and the corresponding element in the second source
2662
///    vector.
2663
///
2664
///    The EFLAGS register is updated as follows: \n
2665
///    If there is at least one pair of single-precision elements where the
2666
///    sign-bits of both elements are 1, the ZF flag is set to 0. Otherwise the
2667
///    ZF flag is set to 1. \n
2668
///    If there is at least one pair of single-precision elements where the
2669
///    sign-bit of the first element is 0 and the sign-bit of the second element
2670
///    is 1, the CF flag is set to 0. Otherwise the CF flag is set to 1. \n
2671
///    This intrinsic returns 1 if both the ZF and CF flags are set to 0,
2672
///    otherwise it returns 0.
2673
///
2674
/// \headerfile <x86intrin.h>
2675
///
2676
/// This intrinsic corresponds to the <c> VTESTPS </c> instruction.
2677
///
2678
/// \param __a
2679
///    A 128-bit vector of [4 x float].
2680
/// \param __b
2681
///    A 128-bit vector of [4 x float].
2682
/// \returns 1 if both the ZF and CF flags are set to 0, otherwise returns 0.
2683
static __inline int __DEFAULT_FN_ATTRS128
2684
_mm_testnzc_ps(__m128 __a, __m128 __b)
2685
{
2686
  return __builtin_ia32_vtestnzcps((__v4sf)__a, (__v4sf)__b);
2687
}
2688
 
2689
/// Given two 256-bit floating-point vectors of [4 x double], perform an
2690
///    element-by-element comparison of the double-precision elements in the
2691
///    first source vector and the corresponding elements in the second source
2692
///    vector.
2693
///
2694
///    The EFLAGS register is updated as follows: \n
2695
///    If there is at least one pair of double-precision elements where the
2696
///    sign-bits of both elements are 1, the ZF flag is set to 0. Otherwise the
2697
///    ZF flag is set to 1. \n
2698
///    If there is at least one pair of double-precision elements where the
2699
///    sign-bit of the first element is 0 and the sign-bit of the second element
2700
///    is 1, the CF flag is set to 0. Otherwise the CF flag is set to 1. \n
2701
///    This intrinsic returns the value of the ZF flag.
2702
///
2703
/// \headerfile <x86intrin.h>
2704
///
2705
/// This intrinsic corresponds to the <c> VTESTPD </c> instruction.
2706
///
2707
/// \param __a
2708
///    A 256-bit vector of [4 x double].
2709
/// \param __b
2710
///    A 256-bit vector of [4 x double].
2711
/// \returns the ZF flag.
2712
static __inline int __DEFAULT_FN_ATTRS
2713
_mm256_testz_pd(__m256d __a, __m256d __b)
2714
{
2715
  return __builtin_ia32_vtestzpd256((__v4df)__a, (__v4df)__b);
2716
}
2717
 
2718
/// Given two 256-bit floating-point vectors of [4 x double], perform an
2719
///    element-by-element comparison of the double-precision elements in the
2720
///    first source vector and the corresponding elements in the second source
2721
///    vector.
2722
///
2723
///    The EFLAGS register is updated as follows: \n
2724
///    If there is at least one pair of double-precision elements where the
2725
///    sign-bits of both elements are 1, the ZF flag is set to 0. Otherwise the
2726
///    ZF flag is set to 1. \n
2727
///    If there is at least one pair of double-precision elements where the
2728
///    sign-bit of the first element is 0 and the sign-bit of the second element
2729
///    is 1, the CF flag is set to 0. Otherwise the CF flag is set to 1. \n
2730
///    This intrinsic returns the value of the CF flag.
2731
///
2732
/// \headerfile <x86intrin.h>
2733
///
2734
/// This intrinsic corresponds to the <c> VTESTPD </c> instruction.
2735
///
2736
/// \param __a
2737
///    A 256-bit vector of [4 x double].
2738
/// \param __b
2739
///    A 256-bit vector of [4 x double].
2740
/// \returns the CF flag.
2741
static __inline int __DEFAULT_FN_ATTRS
2742
_mm256_testc_pd(__m256d __a, __m256d __b)
2743
{
2744
  return __builtin_ia32_vtestcpd256((__v4df)__a, (__v4df)__b);
2745
}
2746
 
2747
/// Given two 256-bit floating-point vectors of [4 x double], perform an
2748
///    element-by-element comparison of the double-precision elements in the
2749
///    first source vector and the corresponding elements in the second source
2750
///    vector.
2751
///
2752
///    The EFLAGS register is updated as follows: \n
2753
///    If there is at least one pair of double-precision elements where the
2754
///    sign-bits of both elements are 1, the ZF flag is set to 0. Otherwise the
2755
///    ZF flag is set to 1. \n
2756
///    If there is at least one pair of double-precision elements where the
2757
///    sign-bit of the first element is 0 and the sign-bit of the second element
2758
///    is 1, the CF flag is set to 0. Otherwise the CF flag is set to 1. \n
2759
///    This intrinsic returns 1 if both the ZF and CF flags are set to 0,
2760
///    otherwise it returns 0.
2761
///
2762
/// \headerfile <x86intrin.h>
2763
///
2764
/// This intrinsic corresponds to the <c> VTESTPD </c> instruction.
2765
///
2766
/// \param __a
2767
///    A 256-bit vector of [4 x double].
2768
/// \param __b
2769
///    A 256-bit vector of [4 x double].
2770
/// \returns 1 if both the ZF and CF flags are set to 0, otherwise returns 0.
2771
static __inline int __DEFAULT_FN_ATTRS
2772
_mm256_testnzc_pd(__m256d __a, __m256d __b)
2773
{
2774
  return __builtin_ia32_vtestnzcpd256((__v4df)__a, (__v4df)__b);
2775
}
2776
 
2777
/// Given two 256-bit floating-point vectors of [8 x float], perform an
2778
///    element-by-element comparison of the single-precision element in the
2779
///    first source vector and the corresponding element in the second source
2780
///    vector.
2781
///
2782
///    The EFLAGS register is updated as follows: \n
2783
///    If there is at least one pair of single-precision elements where the
2784
///    sign-bits of both elements are 1, the ZF flag is set to 0. Otherwise the
2785
///    ZF flag is set to 1. \n
2786
///    If there is at least one pair of single-precision elements where the
2787
///    sign-bit of the first element is 0 and the sign-bit of the second element
2788
///    is 1, the CF flag is set to 0. Otherwise the CF flag is set to 1. \n
2789
///    This intrinsic returns the value of the ZF flag.
2790
///
2791
/// \headerfile <x86intrin.h>
2792
///
2793
/// This intrinsic corresponds to the <c> VTESTPS </c> instruction.
2794
///
2795
/// \param __a
2796
///    A 256-bit vector of [8 x float].
2797
/// \param __b
2798
///    A 256-bit vector of [8 x float].
2799
/// \returns the ZF flag.
2800
static __inline int __DEFAULT_FN_ATTRS
2801
_mm256_testz_ps(__m256 __a, __m256 __b)
2802
{
2803
  return __builtin_ia32_vtestzps256((__v8sf)__a, (__v8sf)__b);
2804
}
2805
 
2806
/// Given two 256-bit floating-point vectors of [8 x float], perform an
2807
///    element-by-element comparison of the single-precision element in the
2808
///    first source vector and the corresponding element in the second source
2809
///    vector.
2810
///
2811
///    The EFLAGS register is updated as follows: \n
2812
///    If there is at least one pair of single-precision elements where the
2813
///    sign-bits of both elements are 1, the ZF flag is set to 0. Otherwise the
2814
///    ZF flag is set to 1. \n
2815
///    If there is at least one pair of single-precision elements where the
2816
///    sign-bit of the first element is 0 and the sign-bit of the second element
2817
///    is 1, the CF flag is set to 0. Otherwise the CF flag is set to 1. \n
2818
///    This intrinsic returns the value of the CF flag.
2819
///
2820
/// \headerfile <x86intrin.h>
2821
///
2822
/// This intrinsic corresponds to the <c> VTESTPS </c> instruction.
2823
///
2824
/// \param __a
2825
///    A 256-bit vector of [8 x float].
2826
/// \param __b
2827
///    A 256-bit vector of [8 x float].
2828
/// \returns the CF flag.
2829
static __inline int __DEFAULT_FN_ATTRS
2830
_mm256_testc_ps(__m256 __a, __m256 __b)
2831
{
2832
  return __builtin_ia32_vtestcps256((__v8sf)__a, (__v8sf)__b);
2833
}
2834
 
2835
/// Given two 256-bit floating-point vectors of [8 x float], perform an
2836
///    element-by-element comparison of the single-precision elements in the
2837
///    first source vector and the corresponding elements in the second source
2838
///    vector.
2839
///
2840
///    The EFLAGS register is updated as follows: \n
2841
///    If there is at least one pair of single-precision elements where the
2842
///    sign-bits of both elements are 1, the ZF flag is set to 0. Otherwise the
2843
///    ZF flag is set to 1. \n
2844
///    If there is at least one pair of single-precision elements where the
2845
///    sign-bit of the first element is 0 and the sign-bit of the second element
2846
///    is 1, the CF flag is set to 0. Otherwise the CF flag is set to 1. \n
2847
///    This intrinsic returns 1 if both the ZF and CF flags are set to 0,
2848
///    otherwise it returns 0.
2849
///
2850
/// \headerfile <x86intrin.h>
2851
///
2852
/// This intrinsic corresponds to the <c> VTESTPS </c> instruction.
2853
///
2854
/// \param __a
2855
///    A 256-bit vector of [8 x float].
2856
/// \param __b
2857
///    A 256-bit vector of [8 x float].
2858
/// \returns 1 if both the ZF and CF flags are set to 0, otherwise returns 0.
2859
static __inline int __DEFAULT_FN_ATTRS
2860
_mm256_testnzc_ps(__m256 __a, __m256 __b)
2861
{
2862
  return __builtin_ia32_vtestnzcps256((__v8sf)__a, (__v8sf)__b);
2863
}
2864
 
2865
/// Given two 256-bit integer vectors, perform a bit-by-bit comparison
2866
///    of the two source vectors.
2867
///
2868
///    The EFLAGS register is updated as follows: \n
2869
///    If there is at least one pair of bits where both bits are 1, the ZF flag
2870
///    is set to 0. Otherwise the ZF flag is set to 1. \n
2871
///    If there is at least one pair of bits where the bit from the first source
2872
///    vector is 0 and the bit from the second source vector is 1, the CF flag
2873
///    is set to 0. Otherwise the CF flag is set to 1. \n
2874
///    This intrinsic returns the value of the ZF flag.
2875
///
2876
/// \headerfile <x86intrin.h>
2877
///
2878
/// This intrinsic corresponds to the <c> VPTEST </c> instruction.
2879
///
2880
/// \param __a
2881
///    A 256-bit integer vector.
2882
/// \param __b
2883
///    A 256-bit integer vector.
2884
/// \returns the ZF flag.
2885
static __inline int __DEFAULT_FN_ATTRS
2886
_mm256_testz_si256(__m256i __a, __m256i __b)
2887
{
2888
  return __builtin_ia32_ptestz256((__v4di)__a, (__v4di)__b);
2889
}
2890
 
2891
/// Given two 256-bit integer vectors, perform a bit-by-bit comparison
2892
///    of the two source vectors.
2893
///
2894
///    The EFLAGS register is updated as follows: \n
2895
///    If there is at least one pair of bits where both bits are 1, the ZF flag
2896
///    is set to 0. Otherwise the ZF flag is set to 1. \n
2897
///    If there is at least one pair of bits where the bit from the first source
2898
///    vector is 0 and the bit from the second source vector is 1, the CF flag
2899
///    is set to 0. Otherwise the CF flag is set to 1. \n
2900
///    This intrinsic returns the value of the CF flag.
2901
///
2902
/// \headerfile <x86intrin.h>
2903
///
2904
/// This intrinsic corresponds to the <c> VPTEST </c> instruction.
2905
///
2906
/// \param __a
2907
///    A 256-bit integer vector.
2908
/// \param __b
2909
///    A 256-bit integer vector.
2910
/// \returns the CF flag.
2911
static __inline int __DEFAULT_FN_ATTRS
2912
_mm256_testc_si256(__m256i __a, __m256i __b)
2913
{
2914
  return __builtin_ia32_ptestc256((__v4di)__a, (__v4di)__b);
2915
}
2916
 
2917
/// Given two 256-bit integer vectors, perform a bit-by-bit comparison
2918
///    of the two source vectors.
2919
///
2920
///    The EFLAGS register is updated as follows: \n
2921
///    If there is at least one pair of bits where both bits are 1, the ZF flag
2922
///    is set to 0. Otherwise the ZF flag is set to 1. \n
2923
///    If there is at least one pair of bits where the bit from the first source
2924
///    vector is 0 and the bit from the second source vector is 1, the CF flag
2925
///    is set to 0. Otherwise the CF flag is set to 1. \n
2926
///    This intrinsic returns 1 if both the ZF and CF flags are set to 0,
2927
///    otherwise it returns 0.
2928
///
2929
/// \headerfile <x86intrin.h>
2930
///
2931
/// This intrinsic corresponds to the <c> VPTEST </c> instruction.
2932
///
2933
/// \param __a
2934
///    A 256-bit integer vector.
2935
/// \param __b
2936
///    A 256-bit integer vector.
2937
/// \returns 1 if both the ZF and CF flags are set to 0, otherwise returns 0.
2938
static __inline int __DEFAULT_FN_ATTRS
2939
_mm256_testnzc_si256(__m256i __a, __m256i __b)
2940
{
2941
  return __builtin_ia32_ptestnzc256((__v4di)__a, (__v4di)__b);
2942
}
2943
 
2944
/* Vector extract sign mask */
2945
/// Extracts the sign bits of double-precision floating point elements
2946
///    in a 256-bit vector of [4 x double] and writes them to the lower order
2947
///    bits of the return value.
2948
///
2949
/// \headerfile <x86intrin.h>
2950
///
2951
/// This intrinsic corresponds to the <c> VMOVMSKPD </c> instruction.
2952
///
2953
/// \param __a
2954
///    A 256-bit vector of [4 x double] containing the double-precision
2955
///    floating point values with sign bits to be extracted.
2956
/// \returns The sign bits from the operand, written to bits [3:0].
2957
static __inline int __DEFAULT_FN_ATTRS
2958
_mm256_movemask_pd(__m256d __a)
2959
{
2960
  return __builtin_ia32_movmskpd256((__v4df)__a);
2961
}
2962
 
2963
/// Extracts the sign bits of single-precision floating point elements
2964
///    in a 256-bit vector of [8 x float] and writes them to the lower order
2965
///    bits of the return value.
2966
///
2967
/// \headerfile <x86intrin.h>
2968
///
2969
/// This intrinsic corresponds to the <c> VMOVMSKPS </c> instruction.
2970
///
2971
/// \param __a
2972
///    A 256-bit vector of [8 x float] containing the single-precision floating
2973
///    point values with sign bits to be extracted.
2974
/// \returns The sign bits from the operand, written to bits [7:0].
2975
static __inline int __DEFAULT_FN_ATTRS
2976
_mm256_movemask_ps(__m256 __a)
2977
{
2978
  return __builtin_ia32_movmskps256((__v8sf)__a);
2979
}
2980
 
2981
/* Vector __zero */
2982
/// Zeroes the contents of all XMM or YMM registers.
2983
///
2984
/// \headerfile <x86intrin.h>
2985
///
2986
/// This intrinsic corresponds to the <c> VZEROALL </c> instruction.
2987
static __inline void __attribute__((__always_inline__, __nodebug__, __target__("avx")))
2988
_mm256_zeroall(void)
2989
{
2990
  __builtin_ia32_vzeroall();
2991
}
2992
 
2993
/// Zeroes the upper 128 bits (bits 255:128) of all YMM registers.
2994
///
2995
/// \headerfile <x86intrin.h>
2996
///
2997
/// This intrinsic corresponds to the <c> VZEROUPPER </c> instruction.
2998
static __inline void __attribute__((__always_inline__, __nodebug__, __target__("avx")))
2999
_mm256_zeroupper(void)
3000
{
3001
  __builtin_ia32_vzeroupper();
3002
}
3003
 
3004
/* Vector load with broadcast */
3005
/// Loads a scalar single-precision floating point value from the
3006
///    specified address pointed to by \a __a and broadcasts it to the elements
3007
///    of a [4 x float] vector.
3008
///
3009
/// \headerfile <x86intrin.h>
3010
///
3011
/// This intrinsic corresponds to the <c> VBROADCASTSS </c> instruction.
3012
///
3013
/// \param __a
3014
///    The single-precision floating point value to be broadcast.
3015
/// \returns A 128-bit vector of [4 x float] whose 32-bit elements are set
3016
///    equal to the broadcast value.
3017
static __inline __m128 __DEFAULT_FN_ATTRS128
3018
_mm_broadcast_ss(float const *__a)
3019
{
3020
  float __f = *__a;
3021
  return __extension__ (__m128)(__v4sf){ __f, __f, __f, __f };
3022
}
3023
 
3024
/// Loads a scalar double-precision floating point value from the
3025
///    specified address pointed to by \a __a and broadcasts it to the elements
3026
///    of a [4 x double] vector.
3027
///
3028
/// \headerfile <x86intrin.h>
3029
///
3030
/// This intrinsic corresponds to the <c> VBROADCASTSD </c> instruction.
3031
///
3032
/// \param __a
3033
///    The double-precision floating point value to be broadcast.
3034
/// \returns A 256-bit vector of [4 x double] whose 64-bit elements are set
3035
///    equal to the broadcast value.
3036
static __inline __m256d __DEFAULT_FN_ATTRS
3037
_mm256_broadcast_sd(double const *__a)
3038
{
3039
  double __d = *__a;
3040
  return __extension__ (__m256d)(__v4df){ __d, __d, __d, __d };
3041
}
3042
 
3043
/// Loads a scalar single-precision floating point value from the
3044
///    specified address pointed to by \a __a and broadcasts it to the elements
3045
///    of a [8 x float] vector.
3046
///
3047
/// \headerfile <x86intrin.h>
3048
///
3049
/// This intrinsic corresponds to the <c> VBROADCASTSS </c> instruction.
3050
///
3051
/// \param __a
3052
///    The single-precision floating point value to be broadcast.
3053
/// \returns A 256-bit vector of [8 x float] whose 32-bit elements are set
3054
///    equal to the broadcast value.
3055
static __inline __m256 __DEFAULT_FN_ATTRS
3056
_mm256_broadcast_ss(float const *__a)
3057
{
3058
  float __f = *__a;
3059
  return __extension__ (__m256)(__v8sf){ __f, __f, __f, __f, __f, __f, __f, __f };
3060
}
3061
 
3062
/// Loads the data from a 128-bit vector of [2 x double] from the
3063
///    specified address pointed to by \a __a and broadcasts it to 128-bit
3064
///    elements in a 256-bit vector of [4 x double].
3065
///
3066
/// \headerfile <x86intrin.h>
3067
///
3068
/// This intrinsic corresponds to the <c> VBROADCASTF128 </c> instruction.
3069
///
3070
/// \param __a
3071
///    The 128-bit vector of [2 x double] to be broadcast.
3072
/// \returns A 256-bit vector of [4 x double] whose 128-bit elements are set
3073
///    equal to the broadcast value.
3074
static __inline __m256d __DEFAULT_FN_ATTRS
3075
_mm256_broadcast_pd(__m128d const *__a)
3076
{
3077
  __m128d __b = _mm_loadu_pd((const double *)__a);
3078
  return (__m256d)__builtin_shufflevector((__v2df)__b, (__v2df)__b,
3079
                                          0, 1, 0, 1);
3080
}
3081
 
3082
/// Loads the data from a 128-bit vector of [4 x float] from the
3083
///    specified address pointed to by \a __a and broadcasts it to 128-bit
3084
///    elements in a 256-bit vector of [8 x float].
3085
///
3086
/// \headerfile <x86intrin.h>
3087
///
3088
/// This intrinsic corresponds to the <c> VBROADCASTF128 </c> instruction.
3089
///
3090
/// \param __a
3091
///    The 128-bit vector of [4 x float] to be broadcast.
3092
/// \returns A 256-bit vector of [8 x float] whose 128-bit elements are set
3093
///    equal to the broadcast value.
3094
static __inline __m256 __DEFAULT_FN_ATTRS
3095
_mm256_broadcast_ps(__m128 const *__a)
3096
{
3097
  __m128 __b = _mm_loadu_ps((const float *)__a);
3098
  return (__m256)__builtin_shufflevector((__v4sf)__b, (__v4sf)__b,
3099
                                         0, 1, 2, 3, 0, 1, 2, 3);
3100
}
3101
 
3102
/* SIMD load ops */
3103
/// Loads 4 double-precision floating point values from a 32-byte aligned
3104
///    memory location pointed to by \a __p into a vector of [4 x double].
3105
///
3106
/// \headerfile <x86intrin.h>
3107
///
3108
/// This intrinsic corresponds to the <c> VMOVAPD </c> instruction.
3109
///
3110
/// \param __p
3111
///    A 32-byte aligned pointer to a memory location containing
3112
///    double-precision floating point values.
3113
/// \returns A 256-bit vector of [4 x double] containing the moved values.
3114
static __inline __m256d __DEFAULT_FN_ATTRS
3115
_mm256_load_pd(double const *__p)
3116
{
3117
  return *(const __m256d *)__p;
3118
}
3119
 
3120
/// Loads 8 single-precision floating point values from a 32-byte aligned
3121
///    memory location pointed to by \a __p into a vector of [8 x float].
3122
///
3123
/// \headerfile <x86intrin.h>
3124
///
3125
/// This intrinsic corresponds to the <c> VMOVAPS </c> instruction.
3126
///
3127
/// \param __p
3128
///    A 32-byte aligned pointer to a memory location containing float values.
3129
/// \returns A 256-bit vector of [8 x float] containing the moved values.
3130
static __inline __m256 __DEFAULT_FN_ATTRS
3131
_mm256_load_ps(float const *__p)
3132
{
3133
  return *(const __m256 *)__p;
3134
}
3135
 
3136
/// Loads 4 double-precision floating point values from an unaligned
3137
///    memory location pointed to by \a __p into a vector of [4 x double].
3138
///
3139
/// \headerfile <x86intrin.h>
3140
///
3141
/// This intrinsic corresponds to the <c> VMOVUPD </c> instruction.
3142
///
3143
/// \param __p
3144
///    A pointer to a memory location containing double-precision floating
3145
///    point values.
3146
/// \returns A 256-bit vector of [4 x double] containing the moved values.
3147
static __inline __m256d __DEFAULT_FN_ATTRS
3148
_mm256_loadu_pd(double const *__p)
3149
{
3150
  struct __loadu_pd {
3151
    __m256d_u __v;
3152
  } __attribute__((__packed__, __may_alias__));
3153
  return ((const struct __loadu_pd*)__p)->__v;
3154
}
3155
 
3156
/// Loads 8 single-precision floating point values from an unaligned
3157
///    memory location pointed to by \a __p into a vector of [8 x float].
3158
///
3159
/// \headerfile <x86intrin.h>
3160
///
3161
/// This intrinsic corresponds to the <c> VMOVUPS </c> instruction.
3162
///
3163
/// \param __p
3164
///    A pointer to a memory location containing single-precision floating
3165
///    point values.
3166
/// \returns A 256-bit vector of [8 x float] containing the moved values.
3167
static __inline __m256 __DEFAULT_FN_ATTRS
3168
_mm256_loadu_ps(float const *__p)
3169
{
3170
  struct __loadu_ps {
3171
    __m256_u __v;
3172
  } __attribute__((__packed__, __may_alias__));
3173
  return ((const struct __loadu_ps*)__p)->__v;
3174
}
3175
 
3176
/// Loads 256 bits of integer data from a 32-byte aligned memory
3177
///    location pointed to by \a __p into elements of a 256-bit integer vector.
3178
///
3179
/// \headerfile <x86intrin.h>
3180
///
3181
/// This intrinsic corresponds to the <c> VMOVDQA </c> instruction.
3182
///
3183
/// \param __p
3184
///    A 32-byte aligned pointer to a 256-bit integer vector containing integer
3185
///    values.
3186
/// \returns A 256-bit integer vector containing the moved values.
3187
static __inline __m256i __DEFAULT_FN_ATTRS
3188
_mm256_load_si256(__m256i const *__p)
3189
{
3190
  return *__p;
3191
}
3192
 
3193
/// Loads 256 bits of integer data from an unaligned memory location
3194
///    pointed to by \a __p into a 256-bit integer vector.
3195
///
3196
/// \headerfile <x86intrin.h>
3197
///
3198
/// This intrinsic corresponds to the <c> VMOVDQU </c> instruction.
3199
///
3200
/// \param __p
3201
///    A pointer to a 256-bit integer vector containing integer values.
3202
/// \returns A 256-bit integer vector containing the moved values.
3203
static __inline __m256i __DEFAULT_FN_ATTRS
3204
_mm256_loadu_si256(__m256i_u const *__p)
3205
{
3206
  struct __loadu_si256 {
3207
    __m256i_u __v;
3208
  } __attribute__((__packed__, __may_alias__));
3209
  return ((const struct __loadu_si256*)__p)->__v;
3210
}
3211
 
3212
/// Loads 256 bits of integer data from an unaligned memory location
3213
///    pointed to by \a __p into a 256-bit integer vector. This intrinsic may
3214
///    perform better than \c _mm256_loadu_si256 when the data crosses a cache
3215
///    line boundary.
3216
///
3217
/// \headerfile <x86intrin.h>
3218
///
3219
/// This intrinsic corresponds to the <c> VLDDQU </c> instruction.
3220
///
3221
/// \param __p
3222
///    A pointer to a 256-bit integer vector containing integer values.
3223
/// \returns A 256-bit integer vector containing the moved values.
3224
static __inline __m256i __DEFAULT_FN_ATTRS
3225
_mm256_lddqu_si256(__m256i_u const *__p)
3226
{
3227
  return (__m256i)__builtin_ia32_lddqu256((char const *)__p);
3228
}
3229
 
3230
/* SIMD store ops */
3231
/// Stores double-precision floating point values from a 256-bit vector
3232
///    of [4 x double] to a 32-byte aligned memory location pointed to by
3233
///    \a __p.
3234
///
3235
/// \headerfile <x86intrin.h>
3236
///
3237
/// This intrinsic corresponds to the <c> VMOVAPD </c> instruction.
3238
///
3239
/// \param __p
3240
///    A 32-byte aligned pointer to a memory location that will receive the
3241
///    double-precision floaing point values.
3242
/// \param __a
3243
///    A 256-bit vector of [4 x double] containing the values to be moved.
3244
static __inline void __DEFAULT_FN_ATTRS
3245
_mm256_store_pd(double *__p, __m256d __a)
3246
{
3247
  *(__m256d *)__p = __a;
3248
}
3249
 
3250
/// Stores single-precision floating point values from a 256-bit vector
3251
///    of [8 x float] to a 32-byte aligned memory location pointed to by \a __p.
3252
///
3253
/// \headerfile <x86intrin.h>
3254
///
3255
/// This intrinsic corresponds to the <c> VMOVAPS </c> instruction.
3256
///
3257
/// \param __p
3258
///    A 32-byte aligned pointer to a memory location that will receive the
3259
///    float values.
3260
/// \param __a
3261
///    A 256-bit vector of [8 x float] containing the values to be moved.
3262
static __inline void __DEFAULT_FN_ATTRS
3263
_mm256_store_ps(float *__p, __m256 __a)
3264
{
3265
  *(__m256 *)__p = __a;
3266
}
3267
 
3268
/// Stores double-precision floating point values from a 256-bit vector
3269
///    of [4 x double] to an unaligned memory location pointed to by \a __p.
3270
///
3271
/// \headerfile <x86intrin.h>
3272
///
3273
/// This intrinsic corresponds to the <c> VMOVUPD </c> instruction.
3274
///
3275
/// \param __p
3276
///    A pointer to a memory location that will receive the double-precision
3277
///    floating point values.
3278
/// \param __a
3279
///    A 256-bit vector of [4 x double] containing the values to be moved.
3280
static __inline void __DEFAULT_FN_ATTRS
3281
_mm256_storeu_pd(double *__p, __m256d __a)
3282
{
3283
  struct __storeu_pd {
3284
    __m256d_u __v;
3285
  } __attribute__((__packed__, __may_alias__));
3286
  ((struct __storeu_pd*)__p)->__v = __a;
3287
}
3288
 
3289
/// Stores single-precision floating point values from a 256-bit vector
3290
///    of [8 x float] to an unaligned memory location pointed to by \a __p.
3291
///
3292
/// \headerfile <x86intrin.h>
3293
///
3294
/// This intrinsic corresponds to the <c> VMOVUPS </c> instruction.
3295
///
3296
/// \param __p
3297
///    A pointer to a memory location that will receive the float values.
3298
/// \param __a
3299
///    A 256-bit vector of [8 x float] containing the values to be moved.
3300
static __inline void __DEFAULT_FN_ATTRS
3301
_mm256_storeu_ps(float *__p, __m256 __a)
3302
{
3303
  struct __storeu_ps {
3304
    __m256_u __v;
3305
  } __attribute__((__packed__, __may_alias__));
3306
  ((struct __storeu_ps*)__p)->__v = __a;
3307
}
3308
 
3309
/// Stores integer values from a 256-bit integer vector to a 32-byte
3310
///    aligned memory location pointed to by \a __p.
3311
///
3312
/// \headerfile <x86intrin.h>
3313
///
3314
/// This intrinsic corresponds to the <c> VMOVDQA </c> instruction.
3315
///
3316
/// \param __p
3317
///    A 32-byte aligned pointer to a memory location that will receive the
3318
///    integer values.
3319
/// \param __a
3320
///    A 256-bit integer vector containing the values to be moved.
3321
static __inline void __DEFAULT_FN_ATTRS
3322
_mm256_store_si256(__m256i *__p, __m256i __a)
3323
{
3324
  *__p = __a;
3325
}
3326
 
3327
/// Stores integer values from a 256-bit integer vector to an unaligned
3328
///    memory location pointed to by \a __p.
3329
///
3330
/// \headerfile <x86intrin.h>
3331
///
3332
/// This intrinsic corresponds to the <c> VMOVDQU </c> instruction.
3333
///
3334
/// \param __p
3335
///    A pointer to a memory location that will receive the integer values.
3336
/// \param __a
3337
///    A 256-bit integer vector containing the values to be moved.
3338
static __inline void __DEFAULT_FN_ATTRS
3339
_mm256_storeu_si256(__m256i_u *__p, __m256i __a)
3340
{
3341
  struct __storeu_si256 {
3342
    __m256i_u __v;
3343
  } __attribute__((__packed__, __may_alias__));
3344
  ((struct __storeu_si256*)__p)->__v = __a;
3345
}
3346
 
3347
/* Conditional load ops */
3348
/// Conditionally loads double-precision floating point elements from a
3349
///    memory location pointed to by \a __p into a 128-bit vector of
3350
///    [2 x double], depending on the mask bits associated with each data
3351
///    element.
3352
///
3353
/// \headerfile <x86intrin.h>
3354
///
3355
/// This intrinsic corresponds to the <c> VMASKMOVPD </c> instruction.
3356
///
3357
/// \param __p
3358
///    A pointer to a memory location that contains the double-precision
3359
///    floating point values.
3360
/// \param __m
3361
///    A 128-bit integer vector containing the mask. The most significant bit of
3362
///    each data element represents the mask bits. If a mask bit is zero, the
3363
///    corresponding value in the memory location is not loaded and the
3364
///    corresponding field in the return value is set to zero.
3365
/// \returns A 128-bit vector of [2 x double] containing the loaded values.
3366
static __inline __m128d __DEFAULT_FN_ATTRS128
3367
_mm_maskload_pd(double const *__p, __m128i __m)
3368
{
3369
  return (__m128d)__builtin_ia32_maskloadpd((const __v2df *)__p, (__v2di)__m);
3370
}
3371
 
3372
/// Conditionally loads double-precision floating point elements from a
3373
///    memory location pointed to by \a __p into a 256-bit vector of
3374
///    [4 x double], depending on the mask bits associated with each data
3375
///    element.
3376
///
3377
/// \headerfile <x86intrin.h>
3378
///
3379
/// This intrinsic corresponds to the <c> VMASKMOVPD </c> instruction.
3380
///
3381
/// \param __p
3382
///    A pointer to a memory location that contains the double-precision
3383
///    floating point values.
3384
/// \param __m
3385
///    A 256-bit integer vector of [4 x quadword] containing the mask. The most
3386
///    significant bit of each quadword element represents the mask bits. If a
3387
///    mask bit is zero, the corresponding value in the memory location is not
3388
///    loaded and the corresponding field in the return value is set to zero.
3389
/// \returns A 256-bit vector of [4 x double] containing the loaded values.
3390
static __inline __m256d __DEFAULT_FN_ATTRS
3391
_mm256_maskload_pd(double const *__p, __m256i __m)
3392
{
3393
  return (__m256d)__builtin_ia32_maskloadpd256((const __v4df *)__p,
3394
                                               (__v4di)__m);
3395
}
3396
 
3397
/// Conditionally loads single-precision floating point elements from a
3398
///    memory location pointed to by \a __p into a 128-bit vector of
3399
///    [4 x float], depending on the mask bits associated with each data
3400
///    element.
3401
///
3402
/// \headerfile <x86intrin.h>
3403
///
3404
/// This intrinsic corresponds to the <c> VMASKMOVPS </c> instruction.
3405
///
3406
/// \param __p
3407
///    A pointer to a memory location that contains the single-precision
3408
///    floating point values.
3409
/// \param __m
3410
///    A 128-bit integer vector containing the mask. The most significant bit of
3411
///    each data element represents the mask bits. If a mask bit is zero, the
3412
///    corresponding value in the memory location is not loaded and the
3413
///    corresponding field in the return value is set to zero.
3414
/// \returns A 128-bit vector of [4 x float] containing the loaded values.
3415
static __inline __m128 __DEFAULT_FN_ATTRS128
3416
_mm_maskload_ps(float const *__p, __m128i __m)
3417
{
3418
  return (__m128)__builtin_ia32_maskloadps((const __v4sf *)__p, (__v4si)__m);
3419
}
3420
 
3421
/// Conditionally loads single-precision floating point elements from a
3422
///    memory location pointed to by \a __p into a 256-bit vector of
3423
///    [8 x float], depending on the mask bits associated with each data
3424
///    element.
3425
///
3426
/// \headerfile <x86intrin.h>
3427
///
3428
/// This intrinsic corresponds to the <c> VMASKMOVPS </c> instruction.
3429
///
3430
/// \param __p
3431
///    A pointer to a memory location that contains the single-precision
3432
///    floating point values.
3433
/// \param __m
3434
///    A 256-bit integer vector of [8 x dword] containing the mask. The most
3435
///    significant bit of each dword element represents the mask bits. If a mask
3436
///    bit is zero, the corresponding value in the memory location is not loaded
3437
///    and the corresponding field in the return value is set to zero.
3438
/// \returns A 256-bit vector of [8 x float] containing the loaded values.
3439
static __inline __m256 __DEFAULT_FN_ATTRS
3440
_mm256_maskload_ps(float const *__p, __m256i __m)
3441
{
3442
  return (__m256)__builtin_ia32_maskloadps256((const __v8sf *)__p, (__v8si)__m);
3443
}
3444
 
3445
/* Conditional store ops */
3446
/// Moves single-precision floating point values from a 256-bit vector
3447
///    of [8 x float] to a memory location pointed to by \a __p, according to
3448
///    the specified mask.
3449
///
3450
/// \headerfile <x86intrin.h>
3451
///
3452
/// This intrinsic corresponds to the <c> VMASKMOVPS </c> instruction.
3453
///
3454
/// \param __p
3455
///    A pointer to a memory location that will receive the float values.
3456
/// \param __m
3457
///    A 256-bit integer vector of [8 x dword] containing the mask. The most
3458
///    significant bit of each dword element in the mask vector represents the
3459
///    mask bits. If a mask bit is zero, the corresponding value from vector
3460
///    \a __a is not stored and the corresponding field in the memory location
3461
///    pointed to by \a __p is not changed.
3462
/// \param __a
3463
///    A 256-bit vector of [8 x float] containing the values to be stored.
3464
static __inline void __DEFAULT_FN_ATTRS
3465
_mm256_maskstore_ps(float *__p, __m256i __m, __m256 __a)
3466
{
3467
  __builtin_ia32_maskstoreps256((__v8sf *)__p, (__v8si)__m, (__v8sf)__a);
3468
}
3469
 
3470
/// Moves double-precision values from a 128-bit vector of [2 x double]
3471
///    to a memory location pointed to by \a __p, according to the specified
3472
///    mask.
3473
///
3474
/// \headerfile <x86intrin.h>
3475
///
3476
/// This intrinsic corresponds to the <c> VMASKMOVPD </c> instruction.
3477
///
3478
/// \param __p
3479
///    A pointer to a memory location that will receive the float values.
3480
/// \param __m
3481
///    A 128-bit integer vector containing the mask. The most significant bit of
3482
///    each field in the mask vector represents the mask bits. If a mask bit is
3483
///    zero, the corresponding value from vector \a __a is not stored and the
3484
///    corresponding field in the memory location pointed to by \a __p is not
3485
///    changed.
3486
/// \param __a
3487
///    A 128-bit vector of [2 x double] containing the values to be stored.
3488
static __inline void __DEFAULT_FN_ATTRS128
3489
_mm_maskstore_pd(double *__p, __m128i __m, __m128d __a)
3490
{
3491
  __builtin_ia32_maskstorepd((__v2df *)__p, (__v2di)__m, (__v2df)__a);
3492
}
3493
 
3494
/// Moves double-precision values from a 256-bit vector of [4 x double]
3495
///    to a memory location pointed to by \a __p, according to the specified
3496
///    mask.
3497
///
3498
/// \headerfile <x86intrin.h>
3499
///
3500
/// This intrinsic corresponds to the <c> VMASKMOVPD </c> instruction.
3501
///
3502
/// \param __p
3503
///    A pointer to a memory location that will receive the float values.
3504
/// \param __m
3505
///    A 256-bit integer vector of [4 x quadword] containing the mask. The most
3506
///    significant bit of each quadword element in the mask vector represents
3507
///    the mask bits. If a mask bit is zero, the corresponding value from vector
3508
///    __a is not stored and the corresponding field in the memory location
3509
///    pointed to by \a __p is not changed.
3510
/// \param __a
3511
///    A 256-bit vector of [4 x double] containing the values to be stored.
3512
static __inline void __DEFAULT_FN_ATTRS
3513
_mm256_maskstore_pd(double *__p, __m256i __m, __m256d __a)
3514
{
3515
  __builtin_ia32_maskstorepd256((__v4df *)__p, (__v4di)__m, (__v4df)__a);
3516
}
3517
 
3518
/// Moves single-precision floating point values from a 128-bit vector
3519
///    of [4 x float] to a memory location pointed to by \a __p, according to
3520
///    the specified mask.
3521
///
3522
/// \headerfile <x86intrin.h>
3523
///
3524
/// This intrinsic corresponds to the <c> VMASKMOVPS </c> instruction.
3525
///
3526
/// \param __p
3527
///    A pointer to a memory location that will receive the float values.
3528
/// \param __m
3529
///    A 128-bit integer vector containing the mask. The most significant bit of
3530
///    each field in the mask vector represents the mask bits. If a mask bit is
3531
///    zero, the corresponding value from vector __a is not stored and the
3532
///    corresponding field in the memory location pointed to by \a __p is not
3533
///    changed.
3534
/// \param __a
3535
///    A 128-bit vector of [4 x float] containing the values to be stored.
3536
static __inline void __DEFAULT_FN_ATTRS128
3537
_mm_maskstore_ps(float *__p, __m128i __m, __m128 __a)
3538
{
3539
  __builtin_ia32_maskstoreps((__v4sf *)__p, (__v4si)__m, (__v4sf)__a);
3540
}
3541
 
3542
/* Cacheability support ops */
3543
/// Moves integer data from a 256-bit integer vector to a 32-byte
3544
///    aligned memory location. To minimize caching, the data is flagged as
3545
///    non-temporal (unlikely to be used again soon).
3546
///
3547
/// \headerfile <x86intrin.h>
3548
///
3549
/// This intrinsic corresponds to the <c> VMOVNTDQ </c> instruction.
3550
///
3551
/// \param __a
3552
///    A pointer to a 32-byte aligned memory location that will receive the
3553
///    integer values.
3554
/// \param __b
3555
///    A 256-bit integer vector containing the values to be moved.
3556
static __inline void __DEFAULT_FN_ATTRS
3557
_mm256_stream_si256(__m256i *__a, __m256i __b)
3558
{
3559
  typedef __v4di __v4di_aligned __attribute__((aligned(32)));
3560
  __builtin_nontemporal_store((__v4di_aligned)__b, (__v4di_aligned*)__a);
3561
}
3562
 
3563
/// Moves double-precision values from a 256-bit vector of [4 x double]
3564
///    to a 32-byte aligned memory location. To minimize caching, the data is
3565
///    flagged as non-temporal (unlikely to be used again soon).
3566
///
3567
/// \headerfile <x86intrin.h>
3568
///
3569
/// This intrinsic corresponds to the <c> VMOVNTPD </c> instruction.
3570
///
3571
/// \param __a
3572
///    A pointer to a 32-byte aligned memory location that will receive the
3573
///    double-precision floating-point values.
3574
/// \param __b
3575
///    A 256-bit vector of [4 x double] containing the values to be moved.
3576
static __inline void __DEFAULT_FN_ATTRS
3577
_mm256_stream_pd(double *__a, __m256d __b)
3578
{
3579
  typedef __v4df __v4df_aligned __attribute__((aligned(32)));
3580
  __builtin_nontemporal_store((__v4df_aligned)__b, (__v4df_aligned*)__a);
3581
}
3582
 
3583
/// Moves single-precision floating point values from a 256-bit vector
3584
///    of [8 x float] to a 32-byte aligned memory location. To minimize
3585
///    caching, the data is flagged as non-temporal (unlikely to be used again
3586
///    soon).
3587
///
3588
/// \headerfile <x86intrin.h>
3589
///
3590
/// This intrinsic corresponds to the <c> VMOVNTPS </c> instruction.
3591
///
3592
/// \param __p
3593
///    A pointer to a 32-byte aligned memory location that will receive the
3594
///    single-precision floating point values.
3595
/// \param __a
3596
///    A 256-bit vector of [8 x float] containing the values to be moved.
3597
static __inline void __DEFAULT_FN_ATTRS
3598
_mm256_stream_ps(float *__p, __m256 __a)
3599
{
3600
  typedef __v8sf __v8sf_aligned __attribute__((aligned(32)));
3601
  __builtin_nontemporal_store((__v8sf_aligned)__a, (__v8sf_aligned*)__p);
3602
}
3603
 
3604
/* Create vectors */
3605
/// Create a 256-bit vector of [4 x double] with undefined values.
3606
///
3607
/// \headerfile <x86intrin.h>
3608
///
3609
/// This intrinsic has no corresponding instruction.
3610
///
3611
/// \returns A 256-bit vector of [4 x double] containing undefined values.
3612
static __inline__ __m256d __DEFAULT_FN_ATTRS
3613
_mm256_undefined_pd(void)
3614
{
3615
  return (__m256d)__builtin_ia32_undef256();
3616
}
3617
 
3618
/// Create a 256-bit vector of [8 x float] with undefined values.
3619
///
3620
/// \headerfile <x86intrin.h>
3621
///
3622
/// This intrinsic has no corresponding instruction.
3623
///
3624
/// \returns A 256-bit vector of [8 x float] containing undefined values.
3625
static __inline__ __m256 __DEFAULT_FN_ATTRS
3626
_mm256_undefined_ps(void)
3627
{
3628
  return (__m256)__builtin_ia32_undef256();
3629
}
3630
 
3631
/// Create a 256-bit integer vector with undefined values.
3632
///
3633
/// \headerfile <x86intrin.h>
3634
///
3635
/// This intrinsic has no corresponding instruction.
3636
///
3637
/// \returns A 256-bit integer vector containing undefined values.
3638
static __inline__ __m256i __DEFAULT_FN_ATTRS
3639
_mm256_undefined_si256(void)
3640
{
3641
  return (__m256i)__builtin_ia32_undef256();
3642
}
3643
 
3644
/// Constructs a 256-bit floating-point vector of [4 x double]
3645
///    initialized with the specified double-precision floating-point values.
3646
///
3647
/// \headerfile <x86intrin.h>
3648
///
3649
/// This intrinsic corresponds to the <c> VUNPCKLPD+VINSERTF128 </c>
3650
///   instruction.
3651
///
3652
/// \param __a
3653
///    A double-precision floating-point value used to initialize bits [255:192]
3654
///    of the result.
3655
/// \param __b
3656
///    A double-precision floating-point value used to initialize bits [191:128]
3657
///    of the result.
3658
/// \param __c
3659
///    A double-precision floating-point value used to initialize bits [127:64]
3660
///    of the result.
3661
/// \param __d
3662
///    A double-precision floating-point value used to initialize bits [63:0]
3663
///    of the result.
3664
/// \returns An initialized 256-bit floating-point vector of [4 x double].
3665
static __inline __m256d __DEFAULT_FN_ATTRS
3666
_mm256_set_pd(double __a, double __b, double __c, double __d)
3667
{
3668
  return __extension__ (__m256d){ __d, __c, __b, __a };
3669
}
3670
 
3671
/// Constructs a 256-bit floating-point vector of [8 x float] initialized
3672
///    with the specified single-precision floating-point values.
3673
///
3674
/// \headerfile <x86intrin.h>
3675
///
3676
/// This intrinsic is a utility function and does not correspond to a specific
3677
///   instruction.
3678
///
3679
/// \param __a
3680
///    A single-precision floating-point value used to initialize bits [255:224]
3681
///    of the result.
3682
/// \param __b
3683
///    A single-precision floating-point value used to initialize bits [223:192]
3684
///    of the result.
3685
/// \param __c
3686
///    A single-precision floating-point value used to initialize bits [191:160]
3687
///    of the result.
3688
/// \param __d
3689
///    A single-precision floating-point value used to initialize bits [159:128]
3690
///    of the result.
3691
/// \param __e
3692
///    A single-precision floating-point value used to initialize bits [127:96]
3693
///    of the result.
3694
/// \param __f
3695
///    A single-precision floating-point value used to initialize bits [95:64]
3696
///    of the result.
3697
/// \param __g
3698
///    A single-precision floating-point value used to initialize bits [63:32]
3699
///    of the result.
3700
/// \param __h
3701
///    A single-precision floating-point value used to initialize bits [31:0]
3702
///    of the result.
3703
/// \returns An initialized 256-bit floating-point vector of [8 x float].
3704
static __inline __m256 __DEFAULT_FN_ATTRS
3705
_mm256_set_ps(float __a, float __b, float __c, float __d,
3706
              float __e, float __f, float __g, float __h)
3707
{
3708
  return __extension__ (__m256){ __h, __g, __f, __e, __d, __c, __b, __a };
3709
}
3710
 
3711
/// Constructs a 256-bit integer vector initialized with the specified
3712
///    32-bit integral values.
3713
///
3714
/// \headerfile <x86intrin.h>
3715
///
3716
/// This intrinsic is a utility function and does not correspond to a specific
3717
///   instruction.
3718
///
3719
/// \param __i0
3720
///    A 32-bit integral value used to initialize bits [255:224] of the result.
3721
/// \param __i1
3722
///    A 32-bit integral value used to initialize bits [223:192] of the result.
3723
/// \param __i2
3724
///    A 32-bit integral value used to initialize bits [191:160] of the result.
3725
/// \param __i3
3726
///    A 32-bit integral value used to initialize bits [159:128] of the result.
3727
/// \param __i4
3728
///    A 32-bit integral value used to initialize bits [127:96] of the result.
3729
/// \param __i5
3730
///    A 32-bit integral value used to initialize bits [95:64] of the result.
3731
/// \param __i6
3732
///    A 32-bit integral value used to initialize bits [63:32] of the result.
3733
/// \param __i7
3734
///    A 32-bit integral value used to initialize bits [31:0] of the result.
3735
/// \returns An initialized 256-bit integer vector.
3736
static __inline __m256i __DEFAULT_FN_ATTRS
3737
_mm256_set_epi32(int __i0, int __i1, int __i2, int __i3,
3738
                 int __i4, int __i5, int __i6, int __i7)
3739
{
3740
  return __extension__ (__m256i)(__v8si){ __i7, __i6, __i5, __i4, __i3, __i2, __i1, __i0 };
3741
}
3742
 
3743
/// Constructs a 256-bit integer vector initialized with the specified
3744
///    16-bit integral values.
3745
///
3746
/// \headerfile <x86intrin.h>
3747
///
3748
/// This intrinsic is a utility function and does not correspond to a specific
3749
///   instruction.
3750
///
3751
/// \param __w15
3752
///    A 16-bit integral value used to initialize bits [255:240] of the result.
3753
/// \param __w14
3754
///    A 16-bit integral value used to initialize bits [239:224] of the result.
3755
/// \param __w13
3756
///    A 16-bit integral value used to initialize bits [223:208] of the result.
3757
/// \param __w12
3758
///    A 16-bit integral value used to initialize bits [207:192] of the result.
3759
/// \param __w11
3760
///    A 16-bit integral value used to initialize bits [191:176] of the result.
3761
/// \param __w10
3762
///    A 16-bit integral value used to initialize bits [175:160] of the result.
3763
/// \param __w09
3764
///    A 16-bit integral value used to initialize bits [159:144] of the result.
3765
/// \param __w08
3766
///    A 16-bit integral value used to initialize bits [143:128] of the result.
3767
/// \param __w07
3768
///    A 16-bit integral value used to initialize bits [127:112] of the result.
3769
/// \param __w06
3770
///    A 16-bit integral value used to initialize bits [111:96] of the result.
3771
/// \param __w05
3772
///    A 16-bit integral value used to initialize bits [95:80] of the result.
3773
/// \param __w04
3774
///    A 16-bit integral value used to initialize bits [79:64] of the result.
3775
/// \param __w03
3776
///    A 16-bit integral value used to initialize bits [63:48] of the result.
3777
/// \param __w02
3778
///    A 16-bit integral value used to initialize bits [47:32] of the result.
3779
/// \param __w01
3780
///    A 16-bit integral value used to initialize bits [31:16] of the result.
3781
/// \param __w00
3782
///    A 16-bit integral value used to initialize bits [15:0] of the result.
3783
/// \returns An initialized 256-bit integer vector.
3784
static __inline __m256i __DEFAULT_FN_ATTRS
3785
_mm256_set_epi16(short __w15, short __w14, short __w13, short __w12,
3786
                 short __w11, short __w10, short __w09, short __w08,
3787
                 short __w07, short __w06, short __w05, short __w04,
3788
                 short __w03, short __w02, short __w01, short __w00)
3789
{
3790
  return __extension__ (__m256i)(__v16hi){ __w00, __w01, __w02, __w03, __w04, __w05, __w06,
3791
    __w07, __w08, __w09, __w10, __w11, __w12, __w13, __w14, __w15 };
3792
}
3793
 
3794
/// Constructs a 256-bit integer vector initialized with the specified
3795
///    8-bit integral values.
3796
///
3797
/// \headerfile <x86intrin.h>
3798
///
3799
/// This intrinsic is a utility function and does not correspond to a specific
3800
///   instruction.
3801
///
3802
/// \param __b31
3803
///    An 8-bit integral value used to initialize bits [255:248] of the result.
3804
/// \param __b30
3805
///    An 8-bit integral value used to initialize bits [247:240] of the result.
3806
/// \param __b29
3807
///    An 8-bit integral value used to initialize bits [239:232] of the result.
3808
/// \param __b28
3809
///    An 8-bit integral value used to initialize bits [231:224] of the result.
3810
/// \param __b27
3811
///    An 8-bit integral value used to initialize bits [223:216] of the result.
3812
/// \param __b26
3813
///    An 8-bit integral value used to initialize bits [215:208] of the result.
3814
/// \param __b25
3815
///    An 8-bit integral value used to initialize bits [207:200] of the result.
3816
/// \param __b24
3817
///    An 8-bit integral value used to initialize bits [199:192] of the result.
3818
/// \param __b23
3819
///    An 8-bit integral value used to initialize bits [191:184] of the result.
3820
/// \param __b22
3821
///    An 8-bit integral value used to initialize bits [183:176] of the result.
3822
/// \param __b21
3823
///    An 8-bit integral value used to initialize bits [175:168] of the result.
3824
/// \param __b20
3825
///    An 8-bit integral value used to initialize bits [167:160] of the result.
3826
/// \param __b19
3827
///    An 8-bit integral value used to initialize bits [159:152] of the result.
3828
/// \param __b18
3829
///    An 8-bit integral value used to initialize bits [151:144] of the result.
3830
/// \param __b17
3831
///    An 8-bit integral value used to initialize bits [143:136] of the result.
3832
/// \param __b16
3833
///    An 8-bit integral value used to initialize bits [135:128] of the result.
3834
/// \param __b15
3835
///    An 8-bit integral value used to initialize bits [127:120] of the result.
3836
/// \param __b14
3837
///    An 8-bit integral value used to initialize bits [119:112] of the result.
3838
/// \param __b13
3839
///    An 8-bit integral value used to initialize bits [111:104] of the result.
3840
/// \param __b12
3841
///    An 8-bit integral value used to initialize bits [103:96] of the result.
3842
/// \param __b11
3843
///    An 8-bit integral value used to initialize bits [95:88] of the result.
3844
/// \param __b10
3845
///    An 8-bit integral value used to initialize bits [87:80] of the result.
3846
/// \param __b09
3847
///    An 8-bit integral value used to initialize bits [79:72] of the result.
3848
/// \param __b08
3849
///    An 8-bit integral value used to initialize bits [71:64] of the result.
3850
/// \param __b07
3851
///    An 8-bit integral value used to initialize bits [63:56] of the result.
3852
/// \param __b06
3853
///    An 8-bit integral value used to initialize bits [55:48] of the result.
3854
/// \param __b05
3855
///    An 8-bit integral value used to initialize bits [47:40] of the result.
3856
/// \param __b04
3857
///    An 8-bit integral value used to initialize bits [39:32] of the result.
3858
/// \param __b03
3859
///    An 8-bit integral value used to initialize bits [31:24] of the result.
3860
/// \param __b02
3861
///    An 8-bit integral value used to initialize bits [23:16] of the result.
3862
/// \param __b01
3863
///    An 8-bit integral value used to initialize bits [15:8] of the result.
3864
/// \param __b00
3865
///    An 8-bit integral value used to initialize bits [7:0] of the result.
3866
/// \returns An initialized 256-bit integer vector.
3867
static __inline __m256i __DEFAULT_FN_ATTRS
3868
_mm256_set_epi8(char __b31, char __b30, char __b29, char __b28,
3869
                char __b27, char __b26, char __b25, char __b24,
3870
                char __b23, char __b22, char __b21, char __b20,
3871
                char __b19, char __b18, char __b17, char __b16,
3872
                char __b15, char __b14, char __b13, char __b12,
3873
                char __b11, char __b10, char __b09, char __b08,
3874
                char __b07, char __b06, char __b05, char __b04,
3875
                char __b03, char __b02, char __b01, char __b00)
3876
{
3877
  return __extension__ (__m256i)(__v32qi){
3878
    __b00, __b01, __b02, __b03, __b04, __b05, __b06, __b07,
3879
    __b08, __b09, __b10, __b11, __b12, __b13, __b14, __b15,
3880
    __b16, __b17, __b18, __b19, __b20, __b21, __b22, __b23,
3881
    __b24, __b25, __b26, __b27, __b28, __b29, __b30, __b31
3882
  };
3883
}
3884
 
3885
/// Constructs a 256-bit integer vector initialized with the specified
3886
///    64-bit integral values.
3887
///
3888
/// \headerfile <x86intrin.h>
3889
///
3890
/// This intrinsic corresponds to the <c> VPUNPCKLQDQ+VINSERTF128 </c>
3891
///   instruction.
3892
///
3893
/// \param __a
3894
///    A 64-bit integral value used to initialize bits [255:192] of the result.
3895
/// \param __b
3896
///    A 64-bit integral value used to initialize bits [191:128] of the result.
3897
/// \param __c
3898
///    A 64-bit integral value used to initialize bits [127:64] of the result.
3899
/// \param __d
3900
///    A 64-bit integral value used to initialize bits [63:0] of the result.
3901
/// \returns An initialized 256-bit integer vector.
3902
static __inline __m256i __DEFAULT_FN_ATTRS
3903
_mm256_set_epi64x(long long __a, long long __b, long long __c, long long __d)
3904
{
3905
  return __extension__ (__m256i)(__v4di){ __d, __c, __b, __a };
3906
}
3907
 
3908
/* Create vectors with elements in reverse order */
3909
/// Constructs a 256-bit floating-point vector of [4 x double],
3910
///    initialized in reverse order with the specified double-precision
3911
///    floating-point values.
3912
///
3913
/// \headerfile <x86intrin.h>
3914
///
3915
/// This intrinsic corresponds to the <c> VUNPCKLPD+VINSERTF128 </c>
3916
///   instruction.
3917
///
3918
/// \param __a
3919
///    A double-precision floating-point value used to initialize bits [63:0]
3920
///    of the result.
3921
/// \param __b
3922
///    A double-precision floating-point value used to initialize bits [127:64]
3923
///    of the result.
3924
/// \param __c
3925
///    A double-precision floating-point value used to initialize bits [191:128]
3926
///    of the result.
3927
/// \param __d
3928
///    A double-precision floating-point value used to initialize bits [255:192]
3929
///    of the result.
3930
/// \returns An initialized 256-bit floating-point vector of [4 x double].
3931
static __inline __m256d __DEFAULT_FN_ATTRS
3932
_mm256_setr_pd(double __a, double __b, double __c, double __d)
3933
{
3934
  return _mm256_set_pd(__d, __c, __b, __a);
3935
}
3936
 
3937
/// Constructs a 256-bit floating-point vector of [8 x float],
3938
///    initialized in reverse order with the specified single-precision
3939
///    float-point values.
3940
///
3941
/// \headerfile <x86intrin.h>
3942
///
3943
/// This intrinsic is a utility function and does not correspond to a specific
3944
///   instruction.
3945
///
3946
/// \param __a
3947
///    A single-precision floating-point value used to initialize bits [31:0]
3948
///    of the result.
3949
/// \param __b
3950
///    A single-precision floating-point value used to initialize bits [63:32]
3951
///    of the result.
3952
/// \param __c
3953
///    A single-precision floating-point value used to initialize bits [95:64]
3954
///    of the result.
3955
/// \param __d
3956
///    A single-precision floating-point value used to initialize bits [127:96]
3957
///    of the result.
3958
/// \param __e
3959
///    A single-precision floating-point value used to initialize bits [159:128]
3960
///    of the result.
3961
/// \param __f
3962
///    A single-precision floating-point value used to initialize bits [191:160]
3963
///    of the result.
3964
/// \param __g
3965
///    A single-precision floating-point value used to initialize bits [223:192]
3966
///    of the result.
3967
/// \param __h
3968
///    A single-precision floating-point value used to initialize bits [255:224]
3969
///    of the result.
3970
/// \returns An initialized 256-bit floating-point vector of [8 x float].
3971
static __inline __m256 __DEFAULT_FN_ATTRS
3972
_mm256_setr_ps(float __a, float __b, float __c, float __d,
3973
               float __e, float __f, float __g, float __h)
3974
{
3975
  return _mm256_set_ps(__h, __g, __f, __e, __d, __c, __b, __a);
3976
}
3977
 
3978
/// Constructs a 256-bit integer vector, initialized in reverse order
3979
///    with the specified 32-bit integral values.
3980
///
3981
/// \headerfile <x86intrin.h>
3982
///
3983
/// This intrinsic is a utility function and does not correspond to a specific
3984
///   instruction.
3985
///
3986
/// \param __i0
3987
///    A 32-bit integral value used to initialize bits [31:0] of the result.
3988
/// \param __i1
3989
///    A 32-bit integral value used to initialize bits [63:32] of the result.
3990
/// \param __i2
3991
///    A 32-bit integral value used to initialize bits [95:64] of the result.
3992
/// \param __i3
3993
///    A 32-bit integral value used to initialize bits [127:96] of the result.
3994
/// \param __i4
3995
///    A 32-bit integral value used to initialize bits [159:128] of the result.
3996
/// \param __i5
3997
///    A 32-bit integral value used to initialize bits [191:160] of the result.
3998
/// \param __i6
3999
///    A 32-bit integral value used to initialize bits [223:192] of the result.
4000
/// \param __i7
4001
///    A 32-bit integral value used to initialize bits [255:224] of the result.
4002
/// \returns An initialized 256-bit integer vector.
4003
static __inline __m256i __DEFAULT_FN_ATTRS
4004
_mm256_setr_epi32(int __i0, int __i1, int __i2, int __i3,
4005
                  int __i4, int __i5, int __i6, int __i7)
4006
{
4007
  return _mm256_set_epi32(__i7, __i6, __i5, __i4, __i3, __i2, __i1, __i0);
4008
}
4009
 
4010
/// Constructs a 256-bit integer vector, initialized in reverse order
4011
///    with the specified 16-bit integral values.
4012
///
4013
/// \headerfile <x86intrin.h>
4014
///
4015
/// This intrinsic is a utility function and does not correspond to a specific
4016
///   instruction.
4017
///
4018
/// \param __w15
4019
///    A 16-bit integral value used to initialize bits [15:0] of the result.
4020
/// \param __w14
4021
///    A 16-bit integral value used to initialize bits [31:16] of the result.
4022
/// \param __w13
4023
///    A 16-bit integral value used to initialize bits [47:32] of the result.
4024
/// \param __w12
4025
///    A 16-bit integral value used to initialize bits [63:48] of the result.
4026
/// \param __w11
4027
///    A 16-bit integral value used to initialize bits [79:64] of the result.
4028
/// \param __w10
4029
///    A 16-bit integral value used to initialize bits [95:80] of the result.
4030
/// \param __w09
4031
///    A 16-bit integral value used to initialize bits [111:96] of the result.
4032
/// \param __w08
4033
///    A 16-bit integral value used to initialize bits [127:112] of the result.
4034
/// \param __w07
4035
///    A 16-bit integral value used to initialize bits [143:128] of the result.
4036
/// \param __w06
4037
///    A 16-bit integral value used to initialize bits [159:144] of the result.
4038
/// \param __w05
4039
///    A 16-bit integral value used to initialize bits [175:160] of the result.
4040
/// \param __w04
4041
///    A 16-bit integral value used to initialize bits [191:176] of the result.
4042
/// \param __w03
4043
///    A 16-bit integral value used to initialize bits [207:192] of the result.
4044
/// \param __w02
4045
///    A 16-bit integral value used to initialize bits [223:208] of the result.
4046
/// \param __w01
4047
///    A 16-bit integral value used to initialize bits [239:224] of the result.
4048
/// \param __w00
4049
///    A 16-bit integral value used to initialize bits [255:240] of the result.
4050
/// \returns An initialized 256-bit integer vector.
4051
static __inline __m256i __DEFAULT_FN_ATTRS
4052
_mm256_setr_epi16(short __w15, short __w14, short __w13, short __w12,
4053
       short __w11, short __w10, short __w09, short __w08,
4054
       short __w07, short __w06, short __w05, short __w04,
4055
       short __w03, short __w02, short __w01, short __w00)
4056
{
4057
  return _mm256_set_epi16(__w00, __w01, __w02, __w03,
4058
                          __w04, __w05, __w06, __w07,
4059
                          __w08, __w09, __w10, __w11,
4060
                          __w12, __w13, __w14, __w15);
4061
}
4062
 
4063
/// Constructs a 256-bit integer vector, initialized in reverse order
4064
///    with the specified 8-bit integral values.
4065
///
4066
/// \headerfile <x86intrin.h>
4067
///
4068
/// This intrinsic is a utility function and does not correspond to a specific
4069
///   instruction.
4070
///
4071
/// \param __b31
4072
///    An 8-bit integral value used to initialize bits [7:0] of the result.
4073
/// \param __b30
4074
///    An 8-bit integral value used to initialize bits [15:8] of the result.
4075
/// \param __b29
4076
///    An 8-bit integral value used to initialize bits [23:16] of the result.
4077
/// \param __b28
4078
///    An 8-bit integral value used to initialize bits [31:24] of the result.
4079
/// \param __b27
4080
///    An 8-bit integral value used to initialize bits [39:32] of the result.
4081
/// \param __b26
4082
///    An 8-bit integral value used to initialize bits [47:40] of the result.
4083
/// \param __b25
4084
///    An 8-bit integral value used to initialize bits [55:48] of the result.
4085
/// \param __b24
4086
///    An 8-bit integral value used to initialize bits [63:56] of the result.
4087
/// \param __b23
4088
///    An 8-bit integral value used to initialize bits [71:64] of the result.
4089
/// \param __b22
4090
///    An 8-bit integral value used to initialize bits [79:72] of the result.
4091
/// \param __b21
4092
///    An 8-bit integral value used to initialize bits [87:80] of the result.
4093
/// \param __b20
4094
///    An 8-bit integral value used to initialize bits [95:88] of the result.
4095
/// \param __b19
4096
///    An 8-bit integral value used to initialize bits [103:96] of the result.
4097
/// \param __b18
4098
///    An 8-bit integral value used to initialize bits [111:104] of the result.
4099
/// \param __b17
4100
///    An 8-bit integral value used to initialize bits [119:112] of the result.
4101
/// \param __b16
4102
///    An 8-bit integral value used to initialize bits [127:120] of the result.
4103
/// \param __b15
4104
///    An 8-bit integral value used to initialize bits [135:128] of the result.
4105
/// \param __b14
4106
///    An 8-bit integral value used to initialize bits [143:136] of the result.
4107
/// \param __b13
4108
///    An 8-bit integral value used to initialize bits [151:144] of the result.
4109
/// \param __b12
4110
///    An 8-bit integral value used to initialize bits [159:152] of the result.
4111
/// \param __b11
4112
///    An 8-bit integral value used to initialize bits [167:160] of the result.
4113
/// \param __b10
4114
///    An 8-bit integral value used to initialize bits [175:168] of the result.
4115
/// \param __b09
4116
///    An 8-bit integral value used to initialize bits [183:176] of the result.
4117
/// \param __b08
4118
///    An 8-bit integral value used to initialize bits [191:184] of the result.
4119
/// \param __b07
4120
///    An 8-bit integral value used to initialize bits [199:192] of the result.
4121
/// \param __b06
4122
///    An 8-bit integral value used to initialize bits [207:200] of the result.
4123
/// \param __b05
4124
///    An 8-bit integral value used to initialize bits [215:208] of the result.
4125
/// \param __b04
4126
///    An 8-bit integral value used to initialize bits [223:216] of the result.
4127
/// \param __b03
4128
///    An 8-bit integral value used to initialize bits [231:224] of the result.
4129
/// \param __b02
4130
///    An 8-bit integral value used to initialize bits [239:232] of the result.
4131
/// \param __b01
4132
///    An 8-bit integral value used to initialize bits [247:240] of the result.
4133
/// \param __b00
4134
///    An 8-bit integral value used to initialize bits [255:248] of the result.
4135
/// \returns An initialized 256-bit integer vector.
4136
static __inline __m256i __DEFAULT_FN_ATTRS
4137
_mm256_setr_epi8(char __b31, char __b30, char __b29, char __b28,
4138
                 char __b27, char __b26, char __b25, char __b24,
4139
                 char __b23, char __b22, char __b21, char __b20,
4140
                 char __b19, char __b18, char __b17, char __b16,
4141
                 char __b15, char __b14, char __b13, char __b12,
4142
                 char __b11, char __b10, char __b09, char __b08,
4143
                 char __b07, char __b06, char __b05, char __b04,
4144
                 char __b03, char __b02, char __b01, char __b00)
4145
{
4146
  return _mm256_set_epi8(__b00, __b01, __b02, __b03, __b04, __b05, __b06, __b07,
4147
                         __b08, __b09, __b10, __b11, __b12, __b13, __b14, __b15,
4148
                         __b16, __b17, __b18, __b19, __b20, __b21, __b22, __b23,
4149
                         __b24, __b25, __b26, __b27, __b28, __b29, __b30, __b31);
4150
}
4151
 
4152
/// Constructs a 256-bit integer vector, initialized in reverse order
4153
///    with the specified 64-bit integral values.
4154
///
4155
/// \headerfile <x86intrin.h>
4156
///
4157
/// This intrinsic corresponds to the <c> VPUNPCKLQDQ+VINSERTF128 </c>
4158
///   instruction.
4159
///
4160
/// \param __a
4161
///    A 64-bit integral value used to initialize bits [63:0] of the result.
4162
/// \param __b
4163
///    A 64-bit integral value used to initialize bits [127:64] of the result.
4164
/// \param __c
4165
///    A 64-bit integral value used to initialize bits [191:128] of the result.
4166
/// \param __d
4167
///    A 64-bit integral value used to initialize bits [255:192] of the result.
4168
/// \returns An initialized 256-bit integer vector.
4169
static __inline __m256i __DEFAULT_FN_ATTRS
4170
_mm256_setr_epi64x(long long __a, long long __b, long long __c, long long __d)
4171
{
4172
  return _mm256_set_epi64x(__d, __c, __b, __a);
4173
}
4174
 
4175
/* Create vectors with repeated elements */
4176
/// Constructs a 256-bit floating-point vector of [4 x double], with each
4177
///    of the four double-precision floating-point vector elements set to the
4178
///    specified double-precision floating-point value.
4179
///
4180
/// \headerfile <x86intrin.h>
4181
///
4182
/// This intrinsic corresponds to the <c> VMOVDDUP+VINSERTF128 </c> instruction.
4183
///
4184
/// \param __w
4185
///    A double-precision floating-point value used to initialize each vector
4186
///    element of the result.
4187
/// \returns An initialized 256-bit floating-point vector of [4 x double].
4188
static __inline __m256d __DEFAULT_FN_ATTRS
4189
_mm256_set1_pd(double __w)
4190
{
4191
  return _mm256_set_pd(__w, __w, __w, __w);
4192
}
4193
 
4194
/// Constructs a 256-bit floating-point vector of [8 x float], with each
4195
///    of the eight single-precision floating-point vector elements set to the
4196
///    specified single-precision floating-point value.
4197
///
4198
/// \headerfile <x86intrin.h>
4199
///
4200
/// This intrinsic corresponds to the <c> VPERMILPS+VINSERTF128 </c>
4201
///   instruction.
4202
///
4203
/// \param __w
4204
///    A single-precision floating-point value used to initialize each vector
4205
///    element of the result.
4206
/// \returns An initialized 256-bit floating-point vector of [8 x float].
4207
static __inline __m256 __DEFAULT_FN_ATTRS
4208
_mm256_set1_ps(float __w)
4209
{
4210
  return _mm256_set_ps(__w, __w, __w, __w, __w, __w, __w, __w);
4211
}
4212
 
4213
/// Constructs a 256-bit integer vector of [8 x i32], with each of the
4214
///    32-bit integral vector elements set to the specified 32-bit integral
4215
///    value.
4216
///
4217
/// \headerfile <x86intrin.h>
4218
///
4219
/// This intrinsic corresponds to the <c> VPERMILPS+VINSERTF128 </c>
4220
///   instruction.
4221
///
4222
/// \param __i
4223
///    A 32-bit integral value used to initialize each vector element of the
4224
///    result.
4225
/// \returns An initialized 256-bit integer vector of [8 x i32].
4226
static __inline __m256i __DEFAULT_FN_ATTRS
4227
_mm256_set1_epi32(int __i)
4228
{
4229
  return _mm256_set_epi32(__i, __i, __i, __i, __i, __i, __i, __i);
4230
}
4231
 
4232
/// Constructs a 256-bit integer vector of [16 x i16], with each of the
4233
///    16-bit integral vector elements set to the specified 16-bit integral
4234
///    value.
4235
///
4236
/// \headerfile <x86intrin.h>
4237
///
4238
/// This intrinsic corresponds to the <c> VPSHUFB+VINSERTF128 </c> instruction.
4239
///
4240
/// \param __w
4241
///    A 16-bit integral value used to initialize each vector element of the
4242
///    result.
4243
/// \returns An initialized 256-bit integer vector of [16 x i16].
4244
static __inline __m256i __DEFAULT_FN_ATTRS
4245
_mm256_set1_epi16(short __w)
4246
{
4247
  return _mm256_set_epi16(__w, __w, __w, __w, __w, __w, __w, __w,
4248
                          __w, __w, __w, __w, __w, __w, __w, __w);
4249
}
4250
 
4251
/// Constructs a 256-bit integer vector of [32 x i8], with each of the
4252
///    8-bit integral vector elements set to the specified 8-bit integral value.
4253
///
4254
/// \headerfile <x86intrin.h>
4255
///
4256
/// This intrinsic corresponds to the <c> VPSHUFB+VINSERTF128 </c> instruction.
4257
///
4258
/// \param __b
4259
///    An 8-bit integral value used to initialize each vector element of the
4260
///    result.
4261
/// \returns An initialized 256-bit integer vector of [32 x i8].
4262
static __inline __m256i __DEFAULT_FN_ATTRS
4263
_mm256_set1_epi8(char __b)
4264
{
4265
  return _mm256_set_epi8(__b, __b, __b, __b, __b, __b, __b, __b,
4266
                         __b, __b, __b, __b, __b, __b, __b, __b,
4267
                         __b, __b, __b, __b, __b, __b, __b, __b,
4268
                         __b, __b, __b, __b, __b, __b, __b, __b);
4269
}
4270
 
4271
/// Constructs a 256-bit integer vector of [4 x i64], with each of the
4272
///    64-bit integral vector elements set to the specified 64-bit integral
4273
///    value.
4274
///
4275
/// \headerfile <x86intrin.h>
4276
///
4277
/// This intrinsic corresponds to the <c> VMOVDDUP+VINSERTF128 </c> instruction.
4278
///
4279
/// \param __q
4280
///    A 64-bit integral value used to initialize each vector element of the
4281
///    result.
4282
/// \returns An initialized 256-bit integer vector of [4 x i64].
4283
static __inline __m256i __DEFAULT_FN_ATTRS
4284
_mm256_set1_epi64x(long long __q)
4285
{
4286
  return _mm256_set_epi64x(__q, __q, __q, __q);
4287
}
4288
 
4289
/* Create __zeroed vectors */
4290
/// Constructs a 256-bit floating-point vector of [4 x double] with all
4291
///    vector elements initialized to zero.
4292
///
4293
/// \headerfile <x86intrin.h>
4294
///
4295
/// This intrinsic corresponds to the <c> VXORPS </c> instruction.
4296
///
4297
/// \returns A 256-bit vector of [4 x double] with all elements set to zero.
4298
static __inline __m256d __DEFAULT_FN_ATTRS
4299
_mm256_setzero_pd(void)
4300
{
4301
  return __extension__ (__m256d){ 0.0, 0.0, 0.0, 0.0 };
4302
}
4303
 
4304
/// Constructs a 256-bit floating-point vector of [8 x float] with all
4305
///    vector elements initialized to zero.
4306
///
4307
/// \headerfile <x86intrin.h>
4308
///
4309
/// This intrinsic corresponds to the <c> VXORPS </c> instruction.
4310
///
4311
/// \returns A 256-bit vector of [8 x float] with all elements set to zero.
4312
static __inline __m256 __DEFAULT_FN_ATTRS
4313
_mm256_setzero_ps(void)
4314
{
4315
  return __extension__ (__m256){ 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f };
4316
}
4317
 
4318
/// Constructs a 256-bit integer vector initialized to zero.
4319
///
4320
/// \headerfile <x86intrin.h>
4321
///
4322
/// This intrinsic corresponds to the <c> VXORPS </c> instruction.
4323
///
4324
/// \returns A 256-bit integer vector initialized to zero.
4325
static __inline __m256i __DEFAULT_FN_ATTRS
4326
_mm256_setzero_si256(void)
4327
{
4328
  return __extension__ (__m256i)(__v4di){ 0, 0, 0, 0 };
4329
}
4330
 
4331
/* Cast between vector types */
4332
/// Casts a 256-bit floating-point vector of [4 x double] into a 256-bit
4333
///    floating-point vector of [8 x float].
4334
///
4335
/// \headerfile <x86intrin.h>
4336
///
4337
/// This intrinsic has no corresponding instruction.
4338
///
4339
/// \param __a
4340
///    A 256-bit floating-point vector of [4 x double].
4341
/// \returns A 256-bit floating-point vector of [8 x float] containing the same
4342
///    bitwise pattern as the parameter.
4343
static __inline __m256 __DEFAULT_FN_ATTRS
4344
_mm256_castpd_ps(__m256d __a)
4345
{
4346
  return (__m256)__a;
4347
}
4348
 
4349
/// Casts a 256-bit floating-point vector of [4 x double] into a 256-bit
4350
///    integer vector.
4351
///
4352
/// \headerfile <x86intrin.h>
4353
///
4354
/// This intrinsic has no corresponding instruction.
4355
///
4356
/// \param __a
4357
///    A 256-bit floating-point vector of [4 x double].
4358
/// \returns A 256-bit integer vector containing the same bitwise pattern as the
4359
///    parameter.
4360
static __inline __m256i __DEFAULT_FN_ATTRS
4361
_mm256_castpd_si256(__m256d __a)
4362
{
4363
  return (__m256i)__a;
4364
}
4365
 
4366
/// Casts a 256-bit floating-point vector of [8 x float] into a 256-bit
4367
///    floating-point vector of [4 x double].
4368
///
4369
/// \headerfile <x86intrin.h>
4370
///
4371
/// This intrinsic has no corresponding instruction.
4372
///
4373
/// \param __a
4374
///    A 256-bit floating-point vector of [8 x float].
4375
/// \returns A 256-bit floating-point vector of [4 x double] containing the same
4376
///    bitwise pattern as the parameter.
4377
static __inline __m256d __DEFAULT_FN_ATTRS
4378
_mm256_castps_pd(__m256 __a)
4379
{
4380
  return (__m256d)__a;
4381
}
4382
 
4383
/// Casts a 256-bit floating-point vector of [8 x float] into a 256-bit
4384
///    integer vector.
4385
///
4386
/// \headerfile <x86intrin.h>
4387
///
4388
/// This intrinsic has no corresponding instruction.
4389
///
4390
/// \param __a
4391
///    A 256-bit floating-point vector of [8 x float].
4392
/// \returns A 256-bit integer vector containing the same bitwise pattern as the
4393
///    parameter.
4394
static __inline __m256i __DEFAULT_FN_ATTRS
4395
_mm256_castps_si256(__m256 __a)
4396
{
4397
  return (__m256i)__a;
4398
}
4399
 
4400
/// Casts a 256-bit integer vector into a 256-bit floating-point vector
4401
///    of [8 x float].
4402
///
4403
/// \headerfile <x86intrin.h>
4404
///
4405
/// This intrinsic has no corresponding instruction.
4406
///
4407
/// \param __a
4408
///    A 256-bit integer vector.
4409
/// \returns A 256-bit floating-point vector of [8 x float] containing the same
4410
///    bitwise pattern as the parameter.
4411
static __inline __m256 __DEFAULT_FN_ATTRS
4412
_mm256_castsi256_ps(__m256i __a)
4413
{
4414
  return (__m256)__a;
4415
}
4416
 
4417
/// Casts a 256-bit integer vector into a 256-bit floating-point vector
4418
///    of [4 x double].
4419
///
4420
/// \headerfile <x86intrin.h>
4421
///
4422
/// This intrinsic has no corresponding instruction.
4423
///
4424
/// \param __a
4425
///    A 256-bit integer vector.
4426
/// \returns A 256-bit floating-point vector of [4 x double] containing the same
4427
///    bitwise pattern as the parameter.
4428
static __inline __m256d __DEFAULT_FN_ATTRS
4429
_mm256_castsi256_pd(__m256i __a)
4430
{
4431
  return (__m256d)__a;
4432
}
4433
 
4434
/// Returns the lower 128 bits of a 256-bit floating-point vector of
4435
///    [4 x double] as a 128-bit floating-point vector of [2 x double].
4436
///
4437
/// \headerfile <x86intrin.h>
4438
///
4439
/// This intrinsic has no corresponding instruction.
4440
///
4441
/// \param __a
4442
///    A 256-bit floating-point vector of [4 x double].
4443
/// \returns A 128-bit floating-point vector of [2 x double] containing the
4444
///    lower 128 bits of the parameter.
4445
static __inline __m128d __DEFAULT_FN_ATTRS
4446
_mm256_castpd256_pd128(__m256d __a)
4447
{
4448
  return __builtin_shufflevector((__v4df)__a, (__v4df)__a, 0, 1);
4449
}
4450
 
4451
/// Returns the lower 128 bits of a 256-bit floating-point vector of
4452
///    [8 x float] as a 128-bit floating-point vector of [4 x float].
4453
///
4454
/// \headerfile <x86intrin.h>
4455
///
4456
/// This intrinsic has no corresponding instruction.
4457
///
4458
/// \param __a
4459
///    A 256-bit floating-point vector of [8 x float].
4460
/// \returns A 128-bit floating-point vector of [4 x float] containing the
4461
///    lower 128 bits of the parameter.
4462
static __inline __m128 __DEFAULT_FN_ATTRS
4463
_mm256_castps256_ps128(__m256 __a)
4464
{
4465
  return __builtin_shufflevector((__v8sf)__a, (__v8sf)__a, 0, 1, 2, 3);
4466
}
4467
 
4468
/// Truncates a 256-bit integer vector into a 128-bit integer vector.
4469
///
4470
/// \headerfile <x86intrin.h>
4471
///
4472
/// This intrinsic has no corresponding instruction.
4473
///
4474
/// \param __a
4475
///    A 256-bit integer vector.
4476
/// \returns A 128-bit integer vector containing the lower 128 bits of the
4477
///    parameter.
4478
static __inline __m128i __DEFAULT_FN_ATTRS
4479
_mm256_castsi256_si128(__m256i __a)
4480
{
4481
  return __builtin_shufflevector((__v4di)__a, (__v4di)__a, 0, 1);
4482
}
4483
 
4484
/// Constructs a 256-bit floating-point vector of [4 x double] from a
4485
///    128-bit floating-point vector of [2 x double].
4486
///
4487
///    The lower 128 bits contain the value of the source vector. The contents
4488
///    of the upper 128 bits are undefined.
4489
///
4490
/// \headerfile <x86intrin.h>
4491
///
4492
/// This intrinsic has no corresponding instruction.
4493
///
4494
/// \param __a
4495
///    A 128-bit vector of [2 x double].
4496
/// \returns A 256-bit floating-point vector of [4 x double]. The lower 128 bits
4497
///    contain the value of the parameter. The contents of the upper 128 bits
4498
///    are undefined.
4499
static __inline __m256d __DEFAULT_FN_ATTRS
4500
_mm256_castpd128_pd256(__m128d __a)
4501
{
4502
  return __builtin_shufflevector((__v2df)__a, (__v2df)__a, 0, 1, -1, -1);
4503
}
4504
 
4505
/// Constructs a 256-bit floating-point vector of [8 x float] from a
4506
///    128-bit floating-point vector of [4 x float].
4507
///
4508
///    The lower 128 bits contain the value of the source vector. The contents
4509
///    of the upper 128 bits are undefined.
4510
///
4511
/// \headerfile <x86intrin.h>
4512
///
4513
/// This intrinsic has no corresponding instruction.
4514
///
4515
/// \param __a
4516
///    A 128-bit vector of [4 x float].
4517
/// \returns A 256-bit floating-point vector of [8 x float]. The lower 128 bits
4518
///    contain the value of the parameter. The contents of the upper 128 bits
4519
///    are undefined.
4520
static __inline __m256 __DEFAULT_FN_ATTRS
4521
_mm256_castps128_ps256(__m128 __a)
4522
{
4523
  return __builtin_shufflevector((__v4sf)__a, (__v4sf)__a, 0, 1, 2, 3, -1, -1, -1, -1);
4524
}
4525
 
4526
/// Constructs a 256-bit integer vector from a 128-bit integer vector.
4527
///
4528
///    The lower 128 bits contain the value of the source vector. The contents
4529
///    of the upper 128 bits are undefined.
4530
///
4531
/// \headerfile <x86intrin.h>
4532
///
4533
/// This intrinsic has no corresponding instruction.
4534
///
4535
/// \param __a
4536
///    A 128-bit integer vector.
4537
/// \returns A 256-bit integer vector. The lower 128 bits contain the value of
4538
///    the parameter. The contents of the upper 128 bits are undefined.
4539
static __inline __m256i __DEFAULT_FN_ATTRS
4540
_mm256_castsi128_si256(__m128i __a)
4541
{
4542
  return __builtin_shufflevector((__v2di)__a, (__v2di)__a, 0, 1, -1, -1);
4543
}
4544
 
4545
/// Constructs a 256-bit floating-point vector of [4 x double] from a
4546
///    128-bit floating-point vector of [2 x double]. The lower 128 bits
4547
///    contain the value of the source vector. The upper 128 bits are set
4548
///    to zero.
4549
///
4550
/// \headerfile <x86intrin.h>
4551
///
4552
/// This intrinsic has no corresponding instruction.
4553
///
4554
/// \param __a
4555
///    A 128-bit vector of [2 x double].
4556
/// \returns A 256-bit floating-point vector of [4 x double]. The lower 128 bits
4557
///    contain the value of the parameter. The upper 128 bits are set to zero.
4558
static __inline __m256d __DEFAULT_FN_ATTRS
4559
_mm256_zextpd128_pd256(__m128d __a)
4560
{
4561
  return __builtin_shufflevector((__v2df)__a, (__v2df)_mm_setzero_pd(), 0, 1, 2, 3);
4562
}
4563
 
4564
/// Constructs a 256-bit floating-point vector of [8 x float] from a
4565
///    128-bit floating-point vector of [4 x float]. The lower 128 bits contain
4566
///    the value of the source vector. The upper 128 bits are set to zero.
4567
///
4568
/// \headerfile <x86intrin.h>
4569
///
4570
/// This intrinsic has no corresponding instruction.
4571
///
4572
/// \param __a
4573
///    A 128-bit vector of [4 x float].
4574
/// \returns A 256-bit floating-point vector of [8 x float]. The lower 128 bits
4575
///    contain the value of the parameter. The upper 128 bits are set to zero.
4576
static __inline __m256 __DEFAULT_FN_ATTRS
4577
_mm256_zextps128_ps256(__m128 __a)
4578
{
4579
  return __builtin_shufflevector((__v4sf)__a, (__v4sf)_mm_setzero_ps(), 0, 1, 2, 3, 4, 5, 6, 7);
4580
}
4581
 
4582
/// Constructs a 256-bit integer vector from a 128-bit integer vector.
4583
///    The lower 128 bits contain the value of the source vector. The upper
4584
///    128 bits are set to zero.
4585
///
4586
/// \headerfile <x86intrin.h>
4587
///
4588
/// This intrinsic has no corresponding instruction.
4589
///
4590
/// \param __a
4591
///    A 128-bit integer vector.
4592
/// \returns A 256-bit integer vector. The lower 128 bits contain the value of
4593
///    the parameter. The upper 128 bits are set to zero.
4594
static __inline __m256i __DEFAULT_FN_ATTRS
4595
_mm256_zextsi128_si256(__m128i __a)
4596
{
4597
  return __builtin_shufflevector((__v2di)__a, (__v2di)_mm_setzero_si128(), 0, 1, 2, 3);
4598
}
4599
 
4600
/*
4601
   Vector insert.
4602
   We use macros rather than inlines because we only want to accept
4603
   invocations where the immediate M is a constant expression.
4604
*/
4605
/// Constructs a new 256-bit vector of [8 x float] by first duplicating
4606
///    a 256-bit vector of [8 x float] given in the first parameter, and then
4607
///    replacing either the upper or the lower 128 bits with the contents of a
4608
///    128-bit vector of [4 x float] in the second parameter.
4609
///
4610
///    The immediate integer parameter determines between the upper or the lower
4611
///    128 bits.
4612
///
4613
/// \headerfile <x86intrin.h>
4614
///
4615
/// \code
4616
/// __m256 _mm256_insertf128_ps(__m256 V1, __m128 V2, const int M);
4617
/// \endcode
4618
///
4619
/// This intrinsic corresponds to the <c> VINSERTF128 </c> instruction.
4620
///
4621
/// \param V1
4622
///    A 256-bit vector of [8 x float]. This vector is copied to the result
4623
///    first, and then either the upper or the lower 128 bits of the result will
4624
///    be replaced by the contents of \a V2.
4625
/// \param V2
4626
///    A 128-bit vector of [4 x float]. The contents of this parameter are
4627
///    written to either the upper or the lower 128 bits of the result depending
4628
///    on the value of parameter \a M.
4629
/// \param M
4630
///    An immediate integer. The least significant bit determines how the values
4631
///    from the two parameters are interleaved: \n
4632
///    If bit [0] of \a M is 0, \a V2 are copied to bits [127:0] of the result,
4633
///    and bits [255:128] of \a V1 are copied to bits [255:128] of the
4634
///    result. \n
4635
///    If bit [0] of \a M is 1, \a V2 are copied to bits [255:128] of the
4636
///    result, and bits [127:0] of \a V1 are copied to bits [127:0] of the
4637
///    result.
4638
/// \returns A 256-bit vector of [8 x float] containing the interleaved values.
4639
#define _mm256_insertf128_ps(V1, V2, M) \
4640
  ((__m256)__builtin_ia32_vinsertf128_ps256((__v8sf)(__m256)(V1), \
4641
                                            (__v4sf)(__m128)(V2), (int)(M)))
4642
 
4643
/// Constructs a new 256-bit vector of [4 x double] by first duplicating
4644
///    a 256-bit vector of [4 x double] given in the first parameter, and then
4645
///    replacing either the upper or the lower 128 bits with the contents of a
4646
///    128-bit vector of [2 x double] in the second parameter.
4647
///
4648
///    The immediate integer parameter determines between the upper or the lower
4649
///    128 bits.
4650
///
4651
/// \headerfile <x86intrin.h>
4652
///
4653
/// \code
4654
/// __m256d _mm256_insertf128_pd(__m256d V1, __m128d V2, const int M);
4655
/// \endcode
4656
///
4657
/// This intrinsic corresponds to the <c> VINSERTF128 </c> instruction.
4658
///
4659
/// \param V1
4660
///    A 256-bit vector of [4 x double]. This vector is copied to the result
4661
///    first, and then either the upper or the lower 128 bits of the result will
4662
///    be replaced by the contents of \a V2.
4663
/// \param V2
4664
///    A 128-bit vector of [2 x double]. The contents of this parameter are
4665
///    written to either the upper or the lower 128 bits of the result depending
4666
///    on the value of parameter \a M.
4667
/// \param M
4668
///    An immediate integer. The least significant bit determines how the values
4669
///    from the two parameters are interleaved: \n
4670
///    If bit [0] of \a M is 0, \a V2 are copied to bits [127:0] of the result,
4671
///    and bits [255:128] of \a V1 are copied to bits [255:128] of the
4672
///    result. \n
4673
///    If bit [0] of \a M is 1, \a V2 are copied to bits [255:128] of the
4674
///    result, and bits [127:0] of \a V1 are copied to bits [127:0] of the
4675
///    result.
4676
/// \returns A 256-bit vector of [4 x double] containing the interleaved values.
4677
#define _mm256_insertf128_pd(V1, V2, M) \
4678
  ((__m256d)__builtin_ia32_vinsertf128_pd256((__v4df)(__m256d)(V1), \
4679
                                             (__v2df)(__m128d)(V2), (int)(M)))
4680
 
4681
/// Constructs a new 256-bit integer vector by first duplicating a
4682
///    256-bit integer vector given in the first parameter, and then replacing
4683
///    either the upper or the lower 128 bits with the contents of a 128-bit
4684
///    integer vector in the second parameter.
4685
///
4686
///    The immediate integer parameter determines between the upper or the lower
4687
///    128 bits.
4688
///
4689
/// \headerfile <x86intrin.h>
4690
///
4691
/// \code
4692
/// __m256i _mm256_insertf128_si256(__m256i V1, __m128i V2, const int M);
4693
/// \endcode
4694
///
4695
/// This intrinsic corresponds to the <c> VINSERTF128 </c> instruction.
4696
///
4697
/// \param V1
4698
///    A 256-bit integer vector. This vector is copied to the result first, and
4699
///    then either the upper or the lower 128 bits of the result will be
4700
///    replaced by the contents of \a V2.
4701
/// \param V2
4702
///    A 128-bit integer vector. The contents of this parameter are written to
4703
///    either the upper or the lower 128 bits of the result depending on the
4704
///     value of parameter \a M.
4705
/// \param M
4706
///    An immediate integer. The least significant bit determines how the values
4707
///    from the two parameters are interleaved: \n
4708
///    If bit [0] of \a M is 0, \a V2 are copied to bits [127:0] of the result,
4709
///    and bits [255:128] of \a V1 are copied to bits [255:128] of the
4710
///    result. \n
4711
///    If bit [0] of \a M is 1, \a V2 are copied to bits [255:128] of the
4712
///    result, and bits [127:0] of \a V1 are copied to bits [127:0] of the
4713
///    result.
4714
/// \returns A 256-bit integer vector containing the interleaved values.
4715
#define _mm256_insertf128_si256(V1, V2, M) \
4716
  ((__m256i)__builtin_ia32_vinsertf128_si256((__v8si)(__m256i)(V1), \
4717
                                             (__v4si)(__m128i)(V2), (int)(M)))
4718
 
4719
/*
4720
   Vector extract.
4721
   We use macros rather than inlines because we only want to accept
4722
   invocations where the immediate M is a constant expression.
4723
*/
4724
/// Extracts either the upper or the lower 128 bits from a 256-bit vector
4725
///    of [8 x float], as determined by the immediate integer parameter, and
4726
///    returns the extracted bits as a 128-bit vector of [4 x float].
4727
///
4728
/// \headerfile <x86intrin.h>
4729
///
4730
/// \code
4731
/// __m128 _mm256_extractf128_ps(__m256 V, const int M);
4732
/// \endcode
4733
///
4734
/// This intrinsic corresponds to the <c> VEXTRACTF128 </c> instruction.
4735
///
4736
/// \param V
4737
///    A 256-bit vector of [8 x float].
4738
/// \param M
4739
///    An immediate integer. The least significant bit determines which bits are
4740
///    extracted from the first parameter: \n
4741
///    If bit [0] of \a M is 0, bits [127:0] of \a V are copied to the
4742
///    result. \n
4743
///    If bit [0] of \a M is 1, bits [255:128] of \a V are copied to the result.
4744
/// \returns A 128-bit vector of [4 x float] containing the extracted bits.
4745
#define _mm256_extractf128_ps(V, M) \
4746
  ((__m128)__builtin_ia32_vextractf128_ps256((__v8sf)(__m256)(V), (int)(M)))
4747
 
4748
/// Extracts either the upper or the lower 128 bits from a 256-bit vector
4749
///    of [4 x double], as determined by the immediate integer parameter, and
4750
///    returns the extracted bits as a 128-bit vector of [2 x double].
4751
///
4752
/// \headerfile <x86intrin.h>
4753
///
4754
/// \code
4755
/// __m128d _mm256_extractf128_pd(__m256d V, const int M);
4756
/// \endcode
4757
///
4758
/// This intrinsic corresponds to the <c> VEXTRACTF128 </c> instruction.
4759
///
4760
/// \param V
4761
///    A 256-bit vector of [4 x double].
4762
/// \param M
4763
///    An immediate integer. The least significant bit determines which bits are
4764
///    extracted from the first parameter: \n
4765
///    If bit [0] of \a M is 0, bits [127:0] of \a V are copied to the
4766
///    result. \n
4767
///    If bit [0] of \a M is 1, bits [255:128] of \a V are copied to the result.
4768
/// \returns A 128-bit vector of [2 x double] containing the extracted bits.
4769
#define _mm256_extractf128_pd(V, M) \
4770
  ((__m128d)__builtin_ia32_vextractf128_pd256((__v4df)(__m256d)(V), (int)(M)))
4771
 
4772
/// Extracts either the upper or the lower 128 bits from a 256-bit
4773
///    integer vector, as determined by the immediate integer parameter, and
4774
///    returns the extracted bits as a 128-bit integer vector.
4775
///
4776
/// \headerfile <x86intrin.h>
4777
///
4778
/// \code
4779
/// __m128i _mm256_extractf128_si256(__m256i V, const int M);
4780
/// \endcode
4781
///
4782
/// This intrinsic corresponds to the <c> VEXTRACTF128 </c> instruction.
4783
///
4784
/// \param V
4785
///    A 256-bit integer vector.
4786
/// \param M
4787
///    An immediate integer. The least significant bit determines which bits are
4788
///    extracted from the first parameter:  \n
4789
///    If bit [0] of \a M is 0, bits [127:0] of \a V are copied to the
4790
///    result. \n
4791
///    If bit [0] of \a M is 1, bits [255:128] of \a V are copied to the result.
4792
/// \returns A 128-bit integer vector containing the extracted bits.
4793
#define _mm256_extractf128_si256(V, M) \
4794
  ((__m128i)__builtin_ia32_vextractf128_si256((__v8si)(__m256i)(V), (int)(M)))
4795
 
4796
/// Constructs a 256-bit floating-point vector of [8 x float] by
4797
///    concatenating two 128-bit floating-point vectors of [4 x float].
4798
///
4799
/// \headerfile <x86intrin.h>
4800
///
4801
/// This intrinsic corresponds to the <c> VINSERTF128 </c> instruction.
4802
///
4803
/// \param __hi
4804
///    A 128-bit floating-point vector of [4 x float] to be copied to the upper
4805
///    128 bits of the result.
4806
/// \param __lo
4807
///    A 128-bit floating-point vector of [4 x float] to be copied to the lower
4808
///    128 bits of the result.
4809
/// \returns A 256-bit floating-point vector of [8 x float] containing the
4810
///    concatenated result.
4811
static __inline __m256 __DEFAULT_FN_ATTRS
4812
_mm256_set_m128 (__m128 __hi, __m128 __lo)
4813
{
4814
  return (__m256) __builtin_shufflevector((__v4sf)__lo, (__v4sf)__hi, 0, 1, 2, 3, 4, 5, 6, 7);
4815
}
4816
 
4817
/// Constructs a 256-bit floating-point vector of [4 x double] by
4818
///    concatenating two 128-bit floating-point vectors of [2 x double].
4819
///
4820
/// \headerfile <x86intrin.h>
4821
///
4822
/// This intrinsic corresponds to the <c> VINSERTF128 </c> instruction.
4823
///
4824
/// \param __hi
4825
///    A 128-bit floating-point vector of [2 x double] to be copied to the upper
4826
///    128 bits of the result.
4827
/// \param __lo
4828
///    A 128-bit floating-point vector of [2 x double] to be copied to the lower
4829
///    128 bits of the result.
4830
/// \returns A 256-bit floating-point vector of [4 x double] containing the
4831
///    concatenated result.
4832
static __inline __m256d __DEFAULT_FN_ATTRS
4833
_mm256_set_m128d (__m128d __hi, __m128d __lo)
4834
{
4835
  return (__m256d) __builtin_shufflevector((__v2df)__lo, (__v2df)__hi, 0, 1, 2, 3);
4836
}
4837
 
4838
/// Constructs a 256-bit integer vector by concatenating two 128-bit
4839
///    integer vectors.
4840
///
4841
/// \headerfile <x86intrin.h>
4842
///
4843
/// This intrinsic corresponds to the <c> VINSERTF128 </c> instruction.
4844
///
4845
/// \param __hi
4846
///    A 128-bit integer vector to be copied to the upper 128 bits of the
4847
///    result.
4848
/// \param __lo
4849
///    A 128-bit integer vector to be copied to the lower 128 bits of the
4850
///    result.
4851
/// \returns A 256-bit integer vector containing the concatenated result.
4852
static __inline __m256i __DEFAULT_FN_ATTRS
4853
_mm256_set_m128i (__m128i __hi, __m128i __lo)
4854
{
4855
  return (__m256i) __builtin_shufflevector((__v2di)__lo, (__v2di)__hi, 0, 1, 2, 3);
4856
}
4857
 
4858
/// Constructs a 256-bit floating-point vector of [8 x float] by
4859
///    concatenating two 128-bit floating-point vectors of [4 x float]. This is
4860
///    similar to _mm256_set_m128, but the order of the input parameters is
4861
///    swapped.
4862
///
4863
/// \headerfile <x86intrin.h>
4864
///
4865
/// This intrinsic corresponds to the <c> VINSERTF128 </c> instruction.
4866
///
4867
/// \param __lo
4868
///    A 128-bit floating-point vector of [4 x float] to be copied to the lower
4869
///    128 bits of the result.
4870
/// \param __hi
4871
///    A 128-bit floating-point vector of [4 x float] to be copied to the upper
4872
///    128 bits of the result.
4873
/// \returns A 256-bit floating-point vector of [8 x float] containing the
4874
///    concatenated result.
4875
static __inline __m256 __DEFAULT_FN_ATTRS
4876
_mm256_setr_m128 (__m128 __lo, __m128 __hi)
4877
{
4878
  return _mm256_set_m128(__hi, __lo);
4879
}
4880
 
4881
/// Constructs a 256-bit floating-point vector of [4 x double] by
4882
///    concatenating two 128-bit floating-point vectors of [2 x double]. This is
4883
///    similar to _mm256_set_m128d, but the order of the input parameters is
4884
///    swapped.
4885
///
4886
/// \headerfile <x86intrin.h>
4887
///
4888
/// This intrinsic corresponds to the <c> VINSERTF128 </c> instruction.
4889
///
4890
/// \param __lo
4891
///    A 128-bit floating-point vector of [2 x double] to be copied to the lower
4892
///    128 bits of the result.
4893
/// \param __hi
4894
///    A 128-bit floating-point vector of [2 x double] to be copied to the upper
4895
///    128 bits of the result.
4896
/// \returns A 256-bit floating-point vector of [4 x double] containing the
4897
///    concatenated result.
4898
static __inline __m256d __DEFAULT_FN_ATTRS
4899
_mm256_setr_m128d (__m128d __lo, __m128d __hi)
4900
{
4901
  return (__m256d)_mm256_set_m128d(__hi, __lo);
4902
}
4903
 
4904
/// Constructs a 256-bit integer vector by concatenating two 128-bit
4905
///    integer vectors. This is similar to _mm256_set_m128i, but the order of
4906
///    the input parameters is swapped.
4907
///
4908
/// \headerfile <x86intrin.h>
4909
///
4910
/// This intrinsic corresponds to the <c> VINSERTF128 </c> instruction.
4911
///
4912
/// \param __lo
4913
///    A 128-bit integer vector to be copied to the lower 128 bits of the
4914
///    result.
4915
/// \param __hi
4916
///    A 128-bit integer vector to be copied to the upper 128 bits of the
4917
///    result.
4918
/// \returns A 256-bit integer vector containing the concatenated result.
4919
static __inline __m256i __DEFAULT_FN_ATTRS
4920
_mm256_setr_m128i (__m128i __lo, __m128i __hi)
4921
{
4922
  return (__m256i)_mm256_set_m128i(__hi, __lo);
4923
}
4924
 
4925
/* SIMD load ops (unaligned) */
4926
/// Loads two 128-bit floating-point vectors of [4 x float] from
4927
///    unaligned memory locations and constructs a 256-bit floating-point vector
4928
///    of [8 x float] by concatenating the two 128-bit vectors.
4929
///
4930
/// \headerfile <x86intrin.h>
4931
///
4932
/// This intrinsic corresponds to load instructions followed by the
4933
///   <c> VINSERTF128 </c> instruction.
4934
///
4935
/// \param __addr_hi
4936
///    A pointer to a 128-bit memory location containing 4 consecutive
4937
///    single-precision floating-point values. These values are to be copied to
4938
///    bits[255:128] of the result. The address of the memory location does not
4939
///    have to be aligned.
4940
/// \param __addr_lo
4941
///    A pointer to a 128-bit memory location containing 4 consecutive
4942
///    single-precision floating-point values. These values are to be copied to
4943
///    bits[127:0] of the result. The address of the memory location does not
4944
///    have to be aligned.
4945
/// \returns A 256-bit floating-point vector of [8 x float] containing the
4946
///    concatenated result.
4947
static __inline __m256 __DEFAULT_FN_ATTRS
4948
_mm256_loadu2_m128(float const *__addr_hi, float const *__addr_lo)
4949
{
4950
  return _mm256_set_m128(_mm_loadu_ps(__addr_hi), _mm_loadu_ps(__addr_lo));
4951
}
4952
 
4953
/// Loads two 128-bit floating-point vectors of [2 x double] from
4954
///    unaligned memory locations and constructs a 256-bit floating-point vector
4955
///    of [4 x double] by concatenating the two 128-bit vectors.
4956
///
4957
/// \headerfile <x86intrin.h>
4958
///
4959
/// This intrinsic corresponds to load instructions followed by the
4960
///   <c> VINSERTF128 </c> instruction.
4961
///
4962
/// \param __addr_hi
4963
///    A pointer to a 128-bit memory location containing two consecutive
4964
///    double-precision floating-point values. These values are to be copied to
4965
///    bits[255:128] of the result. The address of the memory location does not
4966
///    have to be aligned.
4967
/// \param __addr_lo
4968
///    A pointer to a 128-bit memory location containing two consecutive
4969
///    double-precision floating-point values. These values are to be copied to
4970
///    bits[127:0] of the result. The address of the memory location does not
4971
///    have to be aligned.
4972
/// \returns A 256-bit floating-point vector of [4 x double] containing the
4973
///    concatenated result.
4974
static __inline __m256d __DEFAULT_FN_ATTRS
4975
_mm256_loadu2_m128d(double const *__addr_hi, double const *__addr_lo)
4976
{
4977
  return _mm256_set_m128d(_mm_loadu_pd(__addr_hi), _mm_loadu_pd(__addr_lo));
4978
}
4979
 
4980
/// Loads two 128-bit integer vectors from unaligned memory locations and
4981
///    constructs a 256-bit integer vector by concatenating the two 128-bit
4982
///    vectors.
4983
///
4984
/// \headerfile <x86intrin.h>
4985
///
4986
/// This intrinsic corresponds to load instructions followed by the
4987
///   <c> VINSERTF128 </c> instruction.
4988
///
4989
/// \param __addr_hi
4990
///    A pointer to a 128-bit memory location containing a 128-bit integer
4991
///    vector. This vector is to be copied to bits[255:128] of the result. The
4992
///    address of the memory location does not have to be aligned.
4993
/// \param __addr_lo
4994
///    A pointer to a 128-bit memory location containing a 128-bit integer
4995
///    vector. This vector is to be copied to bits[127:0] of the result. The
4996
///    address of the memory location does not have to be aligned.
4997
/// \returns A 256-bit integer vector containing the concatenated result.
4998
static __inline __m256i __DEFAULT_FN_ATTRS
4999
_mm256_loadu2_m128i(__m128i_u const *__addr_hi, __m128i_u const *__addr_lo)
5000
{
5001
   return _mm256_set_m128i(_mm_loadu_si128(__addr_hi), _mm_loadu_si128(__addr_lo));
5002
}
5003
 
5004
/* SIMD store ops (unaligned) */
5005
/// Stores the upper and lower 128 bits of a 256-bit floating-point
5006
///    vector of [8 x float] into two different unaligned memory locations.
5007
///
5008
/// \headerfile <x86intrin.h>
5009
///
5010
/// This intrinsic corresponds to the <c> VEXTRACTF128 </c> instruction and the
5011
///   store instructions.
5012
///
5013
/// \param __addr_hi
5014
///    A pointer to a 128-bit memory location. Bits[255:128] of \a __a are to be
5015
///    copied to this memory location. The address of this memory location does
5016
///    not have to be aligned.
5017
/// \param __addr_lo
5018
///    A pointer to a 128-bit memory location. Bits[127:0] of \a __a are to be
5019
///    copied to this memory location. The address of this memory location does
5020
///    not have to be aligned.
5021
/// \param __a
5022
///    A 256-bit floating-point vector of [8 x float].
5023
static __inline void __DEFAULT_FN_ATTRS
5024
_mm256_storeu2_m128(float *__addr_hi, float *__addr_lo, __m256 __a)
5025
{
5026
  __m128 __v128;
5027
 
5028
  __v128 = _mm256_castps256_ps128(__a);
5029
  _mm_storeu_ps(__addr_lo, __v128);
5030
  __v128 = _mm256_extractf128_ps(__a, 1);
5031
  _mm_storeu_ps(__addr_hi, __v128);
5032
}
5033
 
5034
/// Stores the upper and lower 128 bits of a 256-bit floating-point
5035
///    vector of [4 x double] into two different unaligned memory locations.
5036
///
5037
/// \headerfile <x86intrin.h>
5038
///
5039
/// This intrinsic corresponds to the <c> VEXTRACTF128 </c> instruction and the
5040
///   store instructions.
5041
///
5042
/// \param __addr_hi
5043
///    A pointer to a 128-bit memory location. Bits[255:128] of \a __a are to be
5044
///    copied to this memory location. The address of this memory location does
5045
///    not have to be aligned.
5046
/// \param __addr_lo
5047
///    A pointer to a 128-bit memory location. Bits[127:0] of \a __a are to be
5048
///    copied to this memory location. The address of this memory location does
5049
///    not have to be aligned.
5050
/// \param __a
5051
///    A 256-bit floating-point vector of [4 x double].
5052
static __inline void __DEFAULT_FN_ATTRS
5053
_mm256_storeu2_m128d(double *__addr_hi, double *__addr_lo, __m256d __a)
5054
{
5055
  __m128d __v128;
5056
 
5057
  __v128 = _mm256_castpd256_pd128(__a);
5058
  _mm_storeu_pd(__addr_lo, __v128);
5059
  __v128 = _mm256_extractf128_pd(__a, 1);
5060
  _mm_storeu_pd(__addr_hi, __v128);
5061
}
5062
 
5063
/// Stores the upper and lower 128 bits of a 256-bit integer vector into
5064
///    two different unaligned memory locations.
5065
///
5066
/// \headerfile <x86intrin.h>
5067
///
5068
/// This intrinsic corresponds to the <c> VEXTRACTF128 </c> instruction and the
5069
///   store instructions.
5070
///
5071
/// \param __addr_hi
5072
///    A pointer to a 128-bit memory location. Bits[255:128] of \a __a are to be
5073
///    copied to this memory location. The address of this memory location does
5074
///    not have to be aligned.
5075
/// \param __addr_lo
5076
///    A pointer to a 128-bit memory location. Bits[127:0] of \a __a are to be
5077
///    copied to this memory location. The address of this memory location does
5078
///    not have to be aligned.
5079
/// \param __a
5080
///    A 256-bit integer vector.
5081
static __inline void __DEFAULT_FN_ATTRS
5082
_mm256_storeu2_m128i(__m128i_u *__addr_hi, __m128i_u *__addr_lo, __m256i __a)
5083
{
5084
  __m128i __v128;
5085
 
5086
  __v128 = _mm256_castsi256_si128(__a);
5087
  _mm_storeu_si128(__addr_lo, __v128);
5088
  __v128 = _mm256_extractf128_si256(__a, 1);
5089
  _mm_storeu_si128(__addr_hi, __v128);
5090
}
5091
 
5092
#undef __DEFAULT_FN_ATTRS
5093
#undef __DEFAULT_FN_ATTRS128
5094
 
5095
#endif /* __AVXINTRIN_H */