Subversion Repositories QNX 8.QNX8 LLVM/Clang compiler suite

Rev

Details | Last modification | View Log | RSS feed

Rev Author Line No. Line
14 pmbaty 1
/*===---- __clang_cuda_math.h - Device-side CUDA math support --------------===
2
 *
3
 * Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
 * See https://llvm.org/LICENSE.txt for license information.
5
 * SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
 *
7
 *===-----------------------------------------------------------------------===
8
 */
9
#ifndef __CLANG_CUDA_MATH_H__
10
#define __CLANG_CUDA_MATH_H__
11
#ifndef __CUDA__
12
#error "This file is for CUDA compilation only."
13
#endif
14
 
15
#ifndef __OPENMP_NVPTX__
16
#if CUDA_VERSION < 9000
17
#error This file is intended to be used with CUDA-9+ only.
18
#endif
19
#endif
20
 
21
// __DEVICE__ is a helper macro with common set of attributes for the wrappers
22
// we implement in this file. We need static in order to avoid emitting unused
23
// functions and __forceinline__ helps inlining these wrappers at -O1.
24
#pragma push_macro("__DEVICE__")
25
#ifdef __OPENMP_NVPTX__
26
#if defined(__cplusplus)
27
#define __DEVICE__ static constexpr __attribute__((always_inline, nothrow))
28
#else
29
#define __DEVICE__ static __attribute__((always_inline, nothrow))
30
#endif
31
#else
32
#define __DEVICE__ static __device__ __forceinline__
33
#endif
34
 
35
// Specialized version of __DEVICE__ for functions with void return type. Needed
36
// because the OpenMP overlay requires constexpr functions here but prior to
37
// c++14 void return functions could not be constexpr.
38
#pragma push_macro("__DEVICE_VOID__")
39
#ifdef __OPENMP_NVPTX__ && defined(__cplusplus) && __cplusplus < 201402L
40
#define __DEVICE_VOID__ static __attribute__((always_inline, nothrow))
41
#else
42
#define __DEVICE_VOID__ __DEVICE__
43
#endif
44
 
45
// libdevice provides fast low precision and slow full-recision implementations
46
// for some functions. Which one gets selected depends on
47
// __CLANG_CUDA_APPROX_TRANSCENDENTALS__ which gets defined by clang if
48
// -ffast-math or -fcuda-approx-transcendentals are in effect.
49
#pragma push_macro("__FAST_OR_SLOW")
50
#if defined(__CLANG_CUDA_APPROX_TRANSCENDENTALS__)
51
#define __FAST_OR_SLOW(fast, slow) fast
52
#else
53
#define __FAST_OR_SLOW(fast, slow) slow
54
#endif
55
 
56
__DEVICE__ int abs(int __a) { return __nv_abs(__a); }
57
__DEVICE__ double fabs(double __a) { return __nv_fabs(__a); }
58
__DEVICE__ double acos(double __a) { return __nv_acos(__a); }
59
__DEVICE__ float acosf(float __a) { return __nv_acosf(__a); }
60
__DEVICE__ double acosh(double __a) { return __nv_acosh(__a); }
61
__DEVICE__ float acoshf(float __a) { return __nv_acoshf(__a); }
62
__DEVICE__ double asin(double __a) { return __nv_asin(__a); }
63
__DEVICE__ float asinf(float __a) { return __nv_asinf(__a); }
64
__DEVICE__ double asinh(double __a) { return __nv_asinh(__a); }
65
__DEVICE__ float asinhf(float __a) { return __nv_asinhf(__a); }
66
__DEVICE__ double atan(double __a) { return __nv_atan(__a); }
67
__DEVICE__ double atan2(double __a, double __b) { return __nv_atan2(__a, __b); }
68
__DEVICE__ float atan2f(float __a, float __b) { return __nv_atan2f(__a, __b); }
69
__DEVICE__ float atanf(float __a) { return __nv_atanf(__a); }
70
__DEVICE__ double atanh(double __a) { return __nv_atanh(__a); }
71
__DEVICE__ float atanhf(float __a) { return __nv_atanhf(__a); }
72
__DEVICE__ double cbrt(double __a) { return __nv_cbrt(__a); }
73
__DEVICE__ float cbrtf(float __a) { return __nv_cbrtf(__a); }
74
__DEVICE__ double ceil(double __a) { return __nv_ceil(__a); }
75
__DEVICE__ float ceilf(float __a) { return __nv_ceilf(__a); }
76
__DEVICE__ double copysign(double __a, double __b) {
77
  return __nv_copysign(__a, __b);
78
}
79
__DEVICE__ float copysignf(float __a, float __b) {
80
  return __nv_copysignf(__a, __b);
81
}
82
__DEVICE__ double cos(double __a) { return __nv_cos(__a); }
83
__DEVICE__ float cosf(float __a) {
84
  return __FAST_OR_SLOW(__nv_fast_cosf, __nv_cosf)(__a);
85
}
86
__DEVICE__ double cosh(double __a) { return __nv_cosh(__a); }
87
__DEVICE__ float coshf(float __a) { return __nv_coshf(__a); }
88
__DEVICE__ double cospi(double __a) { return __nv_cospi(__a); }
89
__DEVICE__ float cospif(float __a) { return __nv_cospif(__a); }
90
__DEVICE__ double cyl_bessel_i0(double __a) { return __nv_cyl_bessel_i0(__a); }
91
__DEVICE__ float cyl_bessel_i0f(float __a) { return __nv_cyl_bessel_i0f(__a); }
92
__DEVICE__ double cyl_bessel_i1(double __a) { return __nv_cyl_bessel_i1(__a); }
93
__DEVICE__ float cyl_bessel_i1f(float __a) { return __nv_cyl_bessel_i1f(__a); }
94
__DEVICE__ double erf(double __a) { return __nv_erf(__a); }
95
__DEVICE__ double erfc(double __a) { return __nv_erfc(__a); }
96
__DEVICE__ float erfcf(float __a) { return __nv_erfcf(__a); }
97
__DEVICE__ double erfcinv(double __a) { return __nv_erfcinv(__a); }
98
__DEVICE__ float erfcinvf(float __a) { return __nv_erfcinvf(__a); }
99
__DEVICE__ double erfcx(double __a) { return __nv_erfcx(__a); }
100
__DEVICE__ float erfcxf(float __a) { return __nv_erfcxf(__a); }
101
__DEVICE__ float erff(float __a) { return __nv_erff(__a); }
102
__DEVICE__ double erfinv(double __a) { return __nv_erfinv(__a); }
103
__DEVICE__ float erfinvf(float __a) { return __nv_erfinvf(__a); }
104
__DEVICE__ double exp(double __a) { return __nv_exp(__a); }
105
__DEVICE__ double exp10(double __a) { return __nv_exp10(__a); }
106
__DEVICE__ float exp10f(float __a) { return __nv_exp10f(__a); }
107
__DEVICE__ double exp2(double __a) { return __nv_exp2(__a); }
108
__DEVICE__ float exp2f(float __a) { return __nv_exp2f(__a); }
109
__DEVICE__ float expf(float __a) { return __nv_expf(__a); }
110
__DEVICE__ double expm1(double __a) { return __nv_expm1(__a); }
111
__DEVICE__ float expm1f(float __a) { return __nv_expm1f(__a); }
112
__DEVICE__ float fabsf(float __a) { return __nv_fabsf(__a); }
113
__DEVICE__ double fdim(double __a, double __b) { return __nv_fdim(__a, __b); }
114
__DEVICE__ float fdimf(float __a, float __b) { return __nv_fdimf(__a, __b); }
115
__DEVICE__ double fdivide(double __a, double __b) { return __a / __b; }
116
__DEVICE__ float fdividef(float __a, float __b) {
117
#if __FAST_MATH__ && !__CUDA_PREC_DIV
118
  return __nv_fast_fdividef(__a, __b);
119
#else
120
  return __a / __b;
121
#endif
122
}
123
__DEVICE__ double floor(double __f) { return __nv_floor(__f); }
124
__DEVICE__ float floorf(float __f) { return __nv_floorf(__f); }
125
__DEVICE__ double fma(double __a, double __b, double __c) {
126
  return __nv_fma(__a, __b, __c);
127
}
128
__DEVICE__ float fmaf(float __a, float __b, float __c) {
129
  return __nv_fmaf(__a, __b, __c);
130
}
131
__DEVICE__ double fmax(double __a, double __b) { return __nv_fmax(__a, __b); }
132
__DEVICE__ float fmaxf(float __a, float __b) { return __nv_fmaxf(__a, __b); }
133
__DEVICE__ double fmin(double __a, double __b) { return __nv_fmin(__a, __b); }
134
__DEVICE__ float fminf(float __a, float __b) { return __nv_fminf(__a, __b); }
135
__DEVICE__ double fmod(double __a, double __b) { return __nv_fmod(__a, __b); }
136
__DEVICE__ float fmodf(float __a, float __b) { return __nv_fmodf(__a, __b); }
137
__DEVICE__ double frexp(double __a, int *__b) { return __nv_frexp(__a, __b); }
138
__DEVICE__ float frexpf(float __a, int *__b) { return __nv_frexpf(__a, __b); }
139
__DEVICE__ double hypot(double __a, double __b) { return __nv_hypot(__a, __b); }
140
__DEVICE__ float hypotf(float __a, float __b) { return __nv_hypotf(__a, __b); }
141
__DEVICE__ int ilogb(double __a) { return __nv_ilogb(__a); }
142
__DEVICE__ int ilogbf(float __a) { return __nv_ilogbf(__a); }
143
__DEVICE__ double j0(double __a) { return __nv_j0(__a); }
144
__DEVICE__ float j0f(float __a) { return __nv_j0f(__a); }
145
__DEVICE__ double j1(double __a) { return __nv_j1(__a); }
146
__DEVICE__ float j1f(float __a) { return __nv_j1f(__a); }
147
__DEVICE__ double jn(int __n, double __a) { return __nv_jn(__n, __a); }
148
__DEVICE__ float jnf(int __n, float __a) { return __nv_jnf(__n, __a); }
149
#if defined(__LP64__) || defined(_WIN64)
150
__DEVICE__ long labs(long __a) { return __nv_llabs(__a); };
151
#else
152
__DEVICE__ long labs(long __a) { return __nv_abs(__a); };
153
#endif
154
__DEVICE__ double ldexp(double __a, int __b) { return __nv_ldexp(__a, __b); }
155
__DEVICE__ float ldexpf(float __a, int __b) { return __nv_ldexpf(__a, __b); }
156
__DEVICE__ double lgamma(double __a) { return __nv_lgamma(__a); }
157
__DEVICE__ float lgammaf(float __a) { return __nv_lgammaf(__a); }
158
__DEVICE__ long long llabs(long long __a) { return __nv_llabs(__a); }
159
__DEVICE__ long long llmax(long long __a, long long __b) {
160
  return __nv_llmax(__a, __b);
161
}
162
__DEVICE__ long long llmin(long long __a, long long __b) {
163
  return __nv_llmin(__a, __b);
164
}
165
__DEVICE__ long long llrint(double __a) { return __nv_llrint(__a); }
166
__DEVICE__ long long llrintf(float __a) { return __nv_llrintf(__a); }
167
__DEVICE__ long long llround(double __a) { return __nv_llround(__a); }
168
__DEVICE__ long long llroundf(float __a) { return __nv_llroundf(__a); }
169
__DEVICE__ double round(double __a) { return __nv_round(__a); }
170
__DEVICE__ float roundf(float __a) { return __nv_roundf(__a); }
171
__DEVICE__ double log(double __a) { return __nv_log(__a); }
172
__DEVICE__ double log10(double __a) { return __nv_log10(__a); }
173
__DEVICE__ float log10f(float __a) { return __nv_log10f(__a); }
174
__DEVICE__ double log1p(double __a) { return __nv_log1p(__a); }
175
__DEVICE__ float log1pf(float __a) { return __nv_log1pf(__a); }
176
__DEVICE__ double log2(double __a) { return __nv_log2(__a); }
177
__DEVICE__ float log2f(float __a) {
178
  return __FAST_OR_SLOW(__nv_fast_log2f, __nv_log2f)(__a);
179
}
180
__DEVICE__ double logb(double __a) { return __nv_logb(__a); }
181
__DEVICE__ float logbf(float __a) { return __nv_logbf(__a); }
182
__DEVICE__ float logf(float __a) {
183
  return __FAST_OR_SLOW(__nv_fast_logf, __nv_logf)(__a);
184
}
185
#if defined(__LP64__) || defined(_WIN64)
186
__DEVICE__ long lrint(double __a) { return llrint(__a); }
187
__DEVICE__ long lrintf(float __a) { return __float2ll_rn(__a); }
188
__DEVICE__ long lround(double __a) { return llround(__a); }
189
__DEVICE__ long lroundf(float __a) { return llroundf(__a); }
190
#else
191
__DEVICE__ long lrint(double __a) { return (long)rint(__a); }
192
__DEVICE__ long lrintf(float __a) { return __float2int_rn(__a); }
193
__DEVICE__ long lround(double __a) { return round(__a); }
194
__DEVICE__ long lroundf(float __a) { return roundf(__a); }
195
#endif
196
__DEVICE__ int max(int __a, int __b) { return __nv_max(__a, __b); }
197
__DEVICE__ int min(int __a, int __b) { return __nv_min(__a, __b); }
198
__DEVICE__ double modf(double __a, double *__b) { return __nv_modf(__a, __b); }
199
__DEVICE__ float modff(float __a, float *__b) { return __nv_modff(__a, __b); }
200
__DEVICE__ double nearbyint(double __a) { return __builtin_nearbyint(__a); }
201
__DEVICE__ float nearbyintf(float __a) { return __builtin_nearbyintf(__a); }
202
__DEVICE__ double nextafter(double __a, double __b) {
203
  return __nv_nextafter(__a, __b);
204
}
205
__DEVICE__ float nextafterf(float __a, float __b) {
206
  return __nv_nextafterf(__a, __b);
207
}
208
__DEVICE__ double norm(int __dim, const double *__t) {
209
  return __nv_norm(__dim, __t);
210
}
211
__DEVICE__ double norm3d(double __a, double __b, double __c) {
212
  return __nv_norm3d(__a, __b, __c);
213
}
214
__DEVICE__ float norm3df(float __a, float __b, float __c) {
215
  return __nv_norm3df(__a, __b, __c);
216
}
217
__DEVICE__ double norm4d(double __a, double __b, double __c, double __d) {
218
  return __nv_norm4d(__a, __b, __c, __d);
219
}
220
__DEVICE__ float norm4df(float __a, float __b, float __c, float __d) {
221
  return __nv_norm4df(__a, __b, __c, __d);
222
}
223
__DEVICE__ double normcdf(double __a) { return __nv_normcdf(__a); }
224
__DEVICE__ float normcdff(float __a) { return __nv_normcdff(__a); }
225
__DEVICE__ double normcdfinv(double __a) { return __nv_normcdfinv(__a); }
226
__DEVICE__ float normcdfinvf(float __a) { return __nv_normcdfinvf(__a); }
227
__DEVICE__ float normf(int __dim, const float *__t) {
228
  return __nv_normf(__dim, __t);
229
}
230
__DEVICE__ double pow(double __a, double __b) { return __nv_pow(__a, __b); }
231
__DEVICE__ float powf(float __a, float __b) { return __nv_powf(__a, __b); }
232
__DEVICE__ double powi(double __a, int __b) { return __nv_powi(__a, __b); }
233
__DEVICE__ float powif(float __a, int __b) { return __nv_powif(__a, __b); }
234
__DEVICE__ double rcbrt(double __a) { return __nv_rcbrt(__a); }
235
__DEVICE__ float rcbrtf(float __a) { return __nv_rcbrtf(__a); }
236
__DEVICE__ double remainder(double __a, double __b) {
237
  return __nv_remainder(__a, __b);
238
}
239
__DEVICE__ float remainderf(float __a, float __b) {
240
  return __nv_remainderf(__a, __b);
241
}
242
__DEVICE__ double remquo(double __a, double __b, int *__c) {
243
  return __nv_remquo(__a, __b, __c);
244
}
245
__DEVICE__ float remquof(float __a, float __b, int *__c) {
246
  return __nv_remquof(__a, __b, __c);
247
}
248
__DEVICE__ double rhypot(double __a, double __b) {
249
  return __nv_rhypot(__a, __b);
250
}
251
__DEVICE__ float rhypotf(float __a, float __b) {
252
  return __nv_rhypotf(__a, __b);
253
}
254
// __nv_rint* in libdevice is buggy and produces incorrect results.
255
__DEVICE__ double rint(double __a) { return __builtin_rint(__a); }
256
__DEVICE__ float rintf(float __a) { return __builtin_rintf(__a); }
257
__DEVICE__ double rnorm(int __a, const double *__b) {
258
  return __nv_rnorm(__a, __b);
259
}
260
__DEVICE__ double rnorm3d(double __a, double __b, double __c) {
261
  return __nv_rnorm3d(__a, __b, __c);
262
}
263
__DEVICE__ float rnorm3df(float __a, float __b, float __c) {
264
  return __nv_rnorm3df(__a, __b, __c);
265
}
266
__DEVICE__ double rnorm4d(double __a, double __b, double __c, double __d) {
267
  return __nv_rnorm4d(__a, __b, __c, __d);
268
}
269
__DEVICE__ float rnorm4df(float __a, float __b, float __c, float __d) {
270
  return __nv_rnorm4df(__a, __b, __c, __d);
271
}
272
__DEVICE__ float rnormf(int __dim, const float *__t) {
273
  return __nv_rnormf(__dim, __t);
274
}
275
__DEVICE__ double rsqrt(double __a) { return __nv_rsqrt(__a); }
276
__DEVICE__ float rsqrtf(float __a) { return __nv_rsqrtf(__a); }
277
__DEVICE__ double scalbn(double __a, int __b) { return __nv_scalbn(__a, __b); }
278
__DEVICE__ float scalbnf(float __a, int __b) { return __nv_scalbnf(__a, __b); }
279
__DEVICE__ double scalbln(double __a, long __b) {
280
  if (__b > INT_MAX)
281
    return __a > 0 ? HUGE_VAL : -HUGE_VAL;
282
  if (__b < INT_MIN)
283
    return __a > 0 ? 0.0 : -0.0;
284
  return scalbn(__a, (int)__b);
285
}
286
__DEVICE__ float scalblnf(float __a, long __b) {
287
  if (__b > INT_MAX)
288
    return __a > 0 ? HUGE_VALF : -HUGE_VALF;
289
  if (__b < INT_MIN)
290
    return __a > 0 ? 0.f : -0.f;
291
  return scalbnf(__a, (int)__b);
292
}
293
__DEVICE__ double sin(double __a) { return __nv_sin(__a); }
294
__DEVICE_VOID__ void sincos(double __a, double *__s, double *__c) {
295
  return __nv_sincos(__a, __s, __c);
296
}
297
__DEVICE_VOID__ void sincosf(float __a, float *__s, float *__c) {
298
  return __FAST_OR_SLOW(__nv_fast_sincosf, __nv_sincosf)(__a, __s, __c);
299
}
300
__DEVICE_VOID__ void sincospi(double __a, double *__s, double *__c) {
301
  return __nv_sincospi(__a, __s, __c);
302
}
303
__DEVICE_VOID__ void sincospif(float __a, float *__s, float *__c) {
304
  return __nv_sincospif(__a, __s, __c);
305
}
306
__DEVICE__ float sinf(float __a) {
307
  return __FAST_OR_SLOW(__nv_fast_sinf, __nv_sinf)(__a);
308
}
309
__DEVICE__ double sinh(double __a) { return __nv_sinh(__a); }
310
__DEVICE__ float sinhf(float __a) { return __nv_sinhf(__a); }
311
__DEVICE__ double sinpi(double __a) { return __nv_sinpi(__a); }
312
__DEVICE__ float sinpif(float __a) { return __nv_sinpif(__a); }
313
__DEVICE__ double sqrt(double __a) { return __nv_sqrt(__a); }
314
__DEVICE__ float sqrtf(float __a) { return __nv_sqrtf(__a); }
315
__DEVICE__ double tan(double __a) { return __nv_tan(__a); }
316
__DEVICE__ float tanf(float __a) { return __nv_tanf(__a); }
317
__DEVICE__ double tanh(double __a) { return __nv_tanh(__a); }
318
__DEVICE__ float tanhf(float __a) { return __nv_tanhf(__a); }
319
__DEVICE__ double tgamma(double __a) { return __nv_tgamma(__a); }
320
__DEVICE__ float tgammaf(float __a) { return __nv_tgammaf(__a); }
321
__DEVICE__ double trunc(double __a) { return __nv_trunc(__a); }
322
__DEVICE__ float truncf(float __a) { return __nv_truncf(__a); }
323
__DEVICE__ unsigned long long ullmax(unsigned long long __a,
324
                                     unsigned long long __b) {
325
  return __nv_ullmax(__a, __b);
326
}
327
__DEVICE__ unsigned long long ullmin(unsigned long long __a,
328
                                     unsigned long long __b) {
329
  return __nv_ullmin(__a, __b);
330
}
331
__DEVICE__ unsigned int umax(unsigned int __a, unsigned int __b) {
332
  return __nv_umax(__a, __b);
333
}
334
__DEVICE__ unsigned int umin(unsigned int __a, unsigned int __b) {
335
  return __nv_umin(__a, __b);
336
}
337
__DEVICE__ double y0(double __a) { return __nv_y0(__a); }
338
__DEVICE__ float y0f(float __a) { return __nv_y0f(__a); }
339
__DEVICE__ double y1(double __a) { return __nv_y1(__a); }
340
__DEVICE__ float y1f(float __a) { return __nv_y1f(__a); }
341
__DEVICE__ double yn(int __a, double __b) { return __nv_yn(__a, __b); }
342
__DEVICE__ float ynf(int __a, float __b) { return __nv_ynf(__a, __b); }
343
 
344
#pragma pop_macro("__DEVICE__")
345
#pragma pop_macro("__DEVICE_VOID__")
346
#pragma pop_macro("__FAST_OR_SLOW")
347
 
348
#endif // __CLANG_CUDA_MATH_H__