Details | Last modification | View Log | RSS feed
| Rev | Author | Line No. | Line | 
|---|---|---|---|
| 14 | pmbaty | 1 | //===------ ZoneAlgo.h ------------------------------------------*- C++ -*-===// | 
| 2 | // | ||
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | ||
| 4 | // See https://llvm.org/LICENSE.txt for license information. | ||
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | ||
| 6 | // | ||
| 7 | //===----------------------------------------------------------------------===// | ||
| 8 | // | ||
| 9 | // Derive information about array elements between statements ("Zones"). | ||
| 10 | // | ||
| 11 | //===----------------------------------------------------------------------===// | ||
| 12 | |||
| 13 | #ifndef POLLY_ZONEALGO_H | ||
| 14 | #define POLLY_ZONEALGO_H | ||
| 15 | |||
| 16 | #include "llvm/ADT/DenseMap.h" | ||
| 17 | #include "llvm/ADT/DenseSet.h" | ||
| 18 | #include "llvm/ADT/SmallPtrSet.h" | ||
| 19 | #include "isl/isl-noexceptions.h" | ||
| 20 | #include <memory> | ||
| 21 | |||
| 22 | namespace llvm { | ||
| 23 | class Value; | ||
| 24 | class LoopInfo; | ||
| 25 | class Loop; | ||
| 26 | class PHINode; | ||
| 27 | class raw_ostream; | ||
| 28 | } // namespace llvm | ||
| 29 | |||
| 30 | namespace polly { | ||
| 31 | class Scop; | ||
| 32 | class ScopStmt; | ||
| 33 | class MemoryAccess; | ||
| 34 | class ScopArrayInfo; | ||
| 35 | |||
| 36 | /// Return only the mappings that map to known values. | ||
| 37 | /// | ||
| 38 | /// @param UMap { [] -> ValInst[] } | ||
| 39 | /// | ||
| 40 | /// @return { [] -> ValInst[] } | ||
| 41 | isl::union_map filterKnownValInst(const isl::union_map &UMap); | ||
| 42 | |||
| 43 | /// Base class for algorithms based on zones, like DeLICM. | ||
| 44 | class ZoneAlgorithm { | ||
| 45 | protected: | ||
| 46 |   /// The name of the pass this is used from. Used for optimization remarks. | ||
| 47 | const char *PassName; | ||
| 48 | |||
| 49 |   /// Hold a reference to the isl_ctx to avoid it being freed before we released | ||
| 50 |   /// all of the isl objects. | ||
| 51 |   /// | ||
| 52 |   /// This must be declared before any other member that holds an isl object. | ||
| 53 |   /// This guarantees that the shared_ptr and its isl_ctx is destructed last, | ||
| 54 |   /// after all other members free'd the isl objects they were holding. | ||
| 55 | std::shared_ptr<isl_ctx> IslCtx; | ||
| 56 | |||
| 57 |   /// Cached reaching definitions for each ScopStmt. | ||
| 58 |   /// | ||
| 59 |   /// Use getScalarReachingDefinition() to get its contents. | ||
| 60 | llvm::DenseMap<ScopStmt *, isl::map> ScalarReachDefZone; | ||
| 61 | |||
| 62 |   /// The analyzed Scop. | ||
| 63 | Scop *S; | ||
| 64 | |||
| 65 |   /// LoopInfo analysis used to determine whether values are synthesizable. | ||
| 66 | llvm::LoopInfo *LI; | ||
| 67 | |||
| 68 |   /// Parameter space that does not need realignment. | ||
| 69 | isl::space ParamSpace; | ||
| 70 | |||
| 71 |   /// Space the schedule maps to. | ||
| 72 | isl::space ScatterSpace; | ||
| 73 | |||
| 74 |   /// Cached version of the schedule and domains. | ||
| 75 | isl::union_map Schedule; | ||
| 76 | |||
| 77 |   /// Combined access relations of all MemoryKind::Array READ accesses. | ||
| 78 |   /// { DomainRead[] -> Element[] } | ||
| 79 | isl::union_map AllReads; | ||
| 80 | |||
| 81 |   /// The loaded values (llvm::LoadInst) of all reads. | ||
| 82 |   /// { [Element[] -> DomainRead[]] -> ValInst[] } | ||
| 83 | isl::union_map AllReadValInst; | ||
| 84 | |||
| 85 |   /// Combined access relations of all MemoryKind::Array, MAY_WRITE accesses. | ||
| 86 |   /// { DomainMayWrite[] -> Element[] } | ||
| 87 | isl::union_map AllMayWrites; | ||
| 88 | |||
| 89 |   /// Combined access relations of all MemoryKind::Array, MUST_WRITE accesses. | ||
| 90 |   /// { DomainMustWrite[] -> Element[] } | ||
| 91 | isl::union_map AllMustWrites; | ||
| 92 | |||
| 93 |   /// Combined access relations of all MK_Array write accesses (union of | ||
| 94 |   /// AllMayWrites and AllMustWrites). | ||
| 95 |   /// { DomainWrite[] -> Element[] } | ||
| 96 | isl::union_map AllWrites; | ||
| 97 | |||
| 98 |   /// The value instances written to array elements of all write accesses. | ||
| 99 |   /// { [Element[] -> DomainWrite[]] -> ValInst[] } | ||
| 100 | isl::union_map AllWriteValInst; | ||
| 101 | |||
| 102 |   /// All reaching definitions for  MemoryKind::Array writes. | ||
| 103 |   /// { [Element[] -> Zone[]] -> DomainWrite[] } | ||
| 104 | isl::union_map WriteReachDefZone; | ||
| 105 | |||
| 106 |   /// Map llvm::Values to an isl identifier. | ||
| 107 |   /// Used with -polly-use-llvm-names=false as an alternative method to get | ||
| 108 |   /// unique ids that do not depend on pointer values. | ||
| 109 | llvm::DenseMap<llvm::Value *, isl::id> ValueIds; | ||
| 110 | |||
| 111 |   /// Set of array elements that can be reliably used for zone analysis. | ||
| 112 |   /// { Element[] } | ||
| 113 | isl::union_set CompatibleElts; | ||
| 114 | |||
| 115 |   /// List of PHIs that may transitively refer to themselves. | ||
| 116 |   /// | ||
| 117 |   /// Computing them would require a polyhedral transitive closure operation, | ||
| 118 |   /// for which isl may only return an approximation. For correctness, we always | ||
| 119 |   /// require an exact result. Hence, we exclude such PHIs. | ||
| 120 | llvm::SmallPtrSet<llvm::PHINode *, 4> RecursivePHIs; | ||
| 121 | |||
| 122 |   /// PHIs that have been computed. | ||
| 123 |   /// | ||
| 124 |   /// Computed PHIs are replaced by their incoming values using #NormalizeMap. | ||
| 125 | llvm::DenseSet<llvm::PHINode *> ComputedPHIs; | ||
| 126 | |||
| 127 |   /// For computed PHIs, contains the ValInst they stand for. | ||
| 128 |   /// | ||
| 129 |   /// To show an example, assume the following PHINode: | ||
| 130 |   /// | ||
| 131 |   ///   Stmt: | ||
| 132 |   ///     %phi = phi double [%val1, %bb1], [%val2, %bb2] | ||
| 133 |   /// | ||
| 134 |   /// It's ValInst is: | ||
| 135 |   /// | ||
| 136 |   ///   { [Stmt[i] -> phi[]] } | ||
| 137 |   /// | ||
| 138 |   /// The value %phi will be either %val1 or %val2, depending on whether in | ||
| 139 |   /// iteration i %bb1 or %bb2 has been executed before. In SCoPs, this can be | ||
| 140 |   /// determined at compile-time, and the result stored in #NormalizeMap. For | ||
| 141 |   /// the previous example, it could be: | ||
| 142 |   /// | ||
| 143 |   ///   { [Stmt[i] -> phi[]] -> [Stmt[0] -> val1[]]; | ||
| 144 |   ///     [Stmt[i] -> phi[]] -> [Stmt[i] -> val2[]] : i > 0 } | ||
| 145 |   /// | ||
| 146 |   /// Only ValInsts in #ComputedPHIs are present in this map. Other values are | ||
| 147 |   /// assumed to represent themselves. This is to avoid adding lots of identity | ||
| 148 |   /// entries to this map. | ||
| 149 |   /// | ||
| 150 |   /// { PHIValInst[] -> IncomingValInst[] } | ||
| 151 | isl::union_map NormalizeMap; | ||
| 152 | |||
| 153 |   /// Cache for computePerPHI(const ScopArrayInfo *) | ||
| 154 | llvm::SmallDenseMap<llvm::PHINode *, isl::union_map> PerPHIMaps; | ||
| 155 | |||
| 156 |   /// A cache for getDefToTarget(). | ||
| 157 | llvm::DenseMap<std::pair<ScopStmt *, ScopStmt *>, isl::map> DefToTargetCache; | ||
| 158 | |||
| 159 |   /// Prepare the object before computing the zones of @p S. | ||
| 160 |   /// | ||
| 161 |   /// @param PassName Name of the pass using this analysis. | ||
| 162 |   /// @param S        The SCoP to process. | ||
| 163 |   /// @param LI       LoopInfo analysis used to determine synthesizable values. | ||
| 164 | ZoneAlgorithm(const char *PassName, Scop *S, llvm::LoopInfo *LI); | ||
| 165 | |||
| 166 | private: | ||
| 167 |   /// Find the array elements that violate the zone analysis assumptions. | ||
| 168 |   /// | ||
| 169 |   /// What violates our assumptions: | ||
| 170 |   /// - A load after a write of the same location; we assume that all reads | ||
| 171 |   ///   occur before the writes. | ||
| 172 |   /// - Two writes to the same location; we cannot model the order in which | ||
| 173 |   ///   these occur. | ||
| 174 |   /// | ||
| 175 |   /// Scalar reads implicitly always occur before other accesses therefore never | ||
| 176 |   /// violate the first condition. There is also at most one write to a scalar, | ||
| 177 |   /// satisfying the second condition. | ||
| 178 |   /// | ||
| 179 |   /// @param Stmt                  The statement to be analyzed. | ||
| 180 |   /// @param[out] IncompatibleElts Receives the elements that are not | ||
| 181 |   ///                              zone-analysis compatible. | ||
| 182 |   /// @param[out]                  AllElts receives all encountered elements. | ||
| 183 | void collectIncompatibleElts(ScopStmt *Stmt, isl::union_set &IncompatibleElts, | ||
| 184 | isl::union_set &AllElts); | ||
| 185 | |||
| 186 | void addArrayReadAccess(MemoryAccess *MA); | ||
| 187 | |||
| 188 |   /// Return the ValInst write by a (must-)write access. Returns the 'unknown' | ||
| 189 |   /// ValInst if there is no single ValInst[] the array element written to will | ||
| 190 |   /// have. | ||
| 191 |   /// | ||
| 192 |   /// @return { ValInst[] } | ||
| 193 | isl::union_map getWrittenValue(MemoryAccess *MA, isl::map AccRel); | ||
| 194 | |||
| 195 | void addArrayWriteAccess(MemoryAccess *MA); | ||
| 196 | |||
| 197 |   /// For an llvm::Value defined in @p DefStmt, compute the RAW dependency for a | ||
| 198 |   /// use in every instance of @p UseStmt. | ||
| 199 |   /// | ||
| 200 |   /// @param UseStmt Statement a scalar is used in. | ||
| 201 |   /// @param DefStmt Statement a scalar is defined in. | ||
| 202 |   /// | ||
| 203 |   /// @return { DomainUse[] -> DomainDef[] } | ||
| 204 | isl::map computeUseToDefFlowDependency(ScopStmt *UseStmt, ScopStmt *DefStmt); | ||
| 205 | |||
| 206 | protected: | ||
| 207 | isl::union_set makeEmptyUnionSet() const; | ||
| 208 | |||
| 209 | isl::union_map makeEmptyUnionMap() const; | ||
| 210 | |||
| 211 |   /// For each 'execution' of a PHINode, get the incoming block that was | ||
| 212 |   /// executed before. | ||
| 213 |   /// | ||
| 214 |   /// For each PHI instance we can directly determine which was the incoming | ||
| 215 |   /// block, and hence derive which value the PHI has. | ||
| 216 |   /// | ||
| 217 |   /// @param SAI The ScopArrayInfo representing the PHI's storage. | ||
| 218 |   /// | ||
| 219 |   /// @return { DomainPHIRead[] -> DomainPHIWrite[] } | ||
| 220 | isl::union_map computePerPHI(const polly::ScopArrayInfo *SAI); | ||
| 221 | |||
| 222 |   /// Find the array elements that can be used for zone analysis. | ||
| 223 | void collectCompatibleElts(); | ||
| 224 | |||
| 225 |   /// Get the schedule for @p Stmt. | ||
| 226 |   /// | ||
| 227 |   /// The domain of the result is as narrow as possible. | ||
| 228 | isl::map getScatterFor(ScopStmt *Stmt) const; | ||
| 229 | |||
| 230 |   /// Get the schedule of @p MA's parent statement. | ||
| 231 | isl::map getScatterFor(MemoryAccess *MA) const; | ||
| 232 | |||
| 233 |   /// Get the schedule for the statement instances of @p Domain. | ||
| 234 | isl::union_map getScatterFor(isl::union_set Domain) const; | ||
| 235 | |||
| 236 |   /// Get the schedule for the statement instances of @p Domain. | ||
| 237 | isl::map getScatterFor(isl::set Domain) const; | ||
| 238 | |||
| 239 |   /// Get the domain of @p Stmt. | ||
| 240 | isl::set getDomainFor(ScopStmt *Stmt) const; | ||
| 241 | |||
| 242 |   /// Get the domain @p MA's parent statement. | ||
| 243 | isl::set getDomainFor(MemoryAccess *MA) const; | ||
| 244 | |||
| 245 |   /// Get the access relation of @p MA. | ||
| 246 |   /// | ||
| 247 |   /// The domain of the result is as narrow as possible. | ||
| 248 | isl::map getAccessRelationFor(MemoryAccess *MA) const; | ||
| 249 | |||
| 250 |   /// Get a domain translation map from a (scalar) definition to the statement | ||
| 251 |   /// where the definition is being moved to. | ||
| 252 |   /// | ||
| 253 |   /// @p TargetStmt can also be seen at an llvm::Use of an llvm::Value in | ||
| 254 |   /// @p DefStmt. In addition, we allow transitive uses: | ||
| 255 |   /// | ||
| 256 |   /// DefStmt -> MiddleStmt -> TargetStmt | ||
| 257 |   /// | ||
| 258 |   /// where an operand tree of instructions in DefStmt and MiddleStmt are to be | ||
| 259 |   /// moved to TargetStmt. To be generally correct, we also need to know all the | ||
| 260 |   /// intermediate statements. However, we make use of the fact that | ||
| 261 |   /// ForwardOpTree currently does not support a move from a loop body across | ||
| 262 |   /// its header such that only the first definition and the target statement | ||
| 263 |   /// are relevant. | ||
| 264 |   /// | ||
| 265 |   /// @param DefStmt    Statement from where a definition might be moved from. | ||
| 266 |   /// @param TargetStmt Statement where the definition is potentially being | ||
| 267 |   ///                   moved to (should contain a use of that definition). | ||
| 268 |   /// | ||
| 269 |   /// @return { DomainDef[] -> DomainTarget[] } | ||
| 270 | isl::map getDefToTarget(ScopStmt *DefStmt, ScopStmt *TargetStmt); | ||
| 271 | |||
| 272 |   /// Get the reaching definition of a scalar defined in @p Stmt. | ||
| 273 |   /// | ||
| 274 |   /// Note that this does not depend on the llvm::Instruction, only on the | ||
| 275 |   /// statement it is defined in. Therefore the same computation can be reused. | ||
| 276 |   /// | ||
| 277 |   /// @param Stmt The statement in which a scalar is defined. | ||
| 278 |   /// | ||
| 279 |   /// @return { Scatter[] -> DomainDef[] } | ||
| 280 | isl::map getScalarReachingDefinition(ScopStmt *Stmt); | ||
| 281 | |||
| 282 |   /// Get the reaching definition of a scalar defined in @p DefDomain. | ||
| 283 |   /// | ||
| 284 |   /// @param DomainDef { DomainDef[] } | ||
| 285 |   ///              The write statements to get the reaching definition for. | ||
| 286 |   /// | ||
| 287 |   /// @return { Scatter[] -> DomainDef[] } | ||
| 288 | isl::map getScalarReachingDefinition(isl::set DomainDef); | ||
| 289 | |||
| 290 |   /// Create a statement-to-unknown value mapping. | ||
| 291 |   /// | ||
| 292 |   /// @param Stmt The statement whose instances are mapped to unknown. | ||
| 293 |   /// | ||
| 294 |   /// @return { Domain[] -> ValInst[] } | ||
| 295 | isl::map makeUnknownForDomain(ScopStmt *Stmt) const; | ||
| 296 | |||
| 297 |   /// Create an isl_id that represents @p V. | ||
| 298 | isl::id makeValueId(llvm::Value *V); | ||
| 299 | |||
| 300 |   /// Create the space for an llvm::Value that is available everywhere. | ||
| 301 | isl::space makeValueSpace(llvm::Value *V); | ||
| 302 | |||
| 303 |   /// Create a set with the llvm::Value @p V which is available everywhere. | ||
| 304 | isl::set makeValueSet(llvm::Value *V); | ||
| 305 | |||
| 306 |   /// Create a mapping from a statement instance to the instance of an | ||
| 307 |   /// llvm::Value that can be used in there. | ||
| 308 |   /// | ||
| 309 |   /// Although LLVM IR uses single static assignment, llvm::Values can have | ||
| 310 |   /// different contents in loops, when they get redefined in the last | ||
| 311 |   /// iteration. This function tries to get the statement instance of the | ||
| 312 |   /// previous definition, relative to a user. | ||
| 313 |   /// | ||
| 314 |   /// Example: | ||
| 315 |   /// for (int i = 0; i < N; i += 1) { | ||
| 316 |   /// DEF: | ||
| 317 |   ///    int v = A[i]; | ||
| 318 |   /// USE: | ||
| 319 |   ///    use(v); | ||
| 320 |   ///  } | ||
| 321 |   /// | ||
| 322 |   /// The value instance used by statement instance USE[i] is DEF[i]. Hence, | ||
| 323 |   /// makeValInst returns: | ||
| 324 |   /// | ||
| 325 |   /// { USE[i] -> [DEF[i] -> v[]] : 0 <= i < N } | ||
| 326 |   /// | ||
| 327 |   /// @param Val       The value to get the instance of. | ||
| 328 |   /// @param UserStmt  The statement that uses @p Val. Can be nullptr. | ||
| 329 |   /// @param Scope     Loop the using instruction resides in. | ||
| 330 |   /// @param IsCertain Pass true if the definition of @p Val is a | ||
| 331 |   ///                  MUST_WRITE or false if the write is conditional. | ||
| 332 |   /// | ||
| 333 |   /// @return { DomainUse[] -> ValInst[] } | ||
| 334 | isl::map makeValInst(llvm::Value *Val, ScopStmt *UserStmt, llvm::Loop *Scope, | ||
| 335 | bool IsCertain = true); | ||
| 336 | |||
| 337 |   /// Create and normalize a ValInst. | ||
| 338 |   /// | ||
| 339 |   /// @see makeValInst | ||
| 340 |   /// @see normalizeValInst | ||
| 341 |   /// @see #NormalizedPHI | ||
| 342 | isl::union_map makeNormalizedValInst(llvm::Value *Val, ScopStmt *UserStmt, | ||
| 343 | llvm::Loop *Scope, | ||
| 344 | bool IsCertain = true); | ||
| 345 | |||
| 346 |   /// Return whether @p MA can be used for transformations (e.g. OpTree load | ||
| 347 |   /// forwarding, DeLICM mapping). | ||
| 348 | bool isCompatibleAccess(MemoryAccess *MA); | ||
| 349 | |||
| 350 |   /// Compute the different zones. | ||
| 351 | void computeCommon(); | ||
| 352 | |||
| 353 |   ///  Compute the normalization map that replaces PHIs by their incoming | ||
| 354 |   ///  values. | ||
| 355 |   /// | ||
| 356 |   /// @see #NormalizeMap | ||
| 357 | void computeNormalizedPHIs(); | ||
| 358 | |||
| 359 |   /// Print the current state of all MemoryAccesses to @p. | ||
| 360 | void printAccesses(llvm::raw_ostream &OS, int Indent = 0) const; | ||
| 361 | |||
| 362 |   /// Is @p MA a PHI READ access that can be normalized? | ||
| 363 |   /// | ||
| 364 |   /// @see #NormalizeMap | ||
| 365 | bool isNormalizable(MemoryAccess *MA); | ||
| 366 | |||
| 367 |   /// @{ | ||
| 368 |   /// Determine whether the argument does not map to any computed PHI. Those | ||
| 369 |   /// should have been replaced by their incoming values. | ||
| 370 |   /// | ||
| 371 |   /// @see #NormalizedPHI | ||
| 372 | isl::boolean isNormalized(isl::map Map); | ||
| 373 | isl::boolean isNormalized(isl::union_map Map); | ||
| 374 |   /// @} | ||
| 375 | |||
| 376 | public: | ||
| 377 |   /// Return the SCoP this object is analyzing. | ||
| 378 | Scop *getScop() const { return S; } | ||
| 379 | |||
| 380 |   /// A reaching definition zone is known to have the definition's written value | ||
| 381 |   /// if the definition is a MUST_WRITE. | ||
| 382 |   /// | ||
| 383 |   /// @return { [Element[] -> Zone[]] -> ValInst[] } | ||
| 384 | isl::union_map computeKnownFromMustWrites() const; | ||
| 385 | |||
| 386 |   /// A reaching definition zone is known to be the same value as any load that | ||
| 387 |   /// reads from that array element in that period. | ||
| 388 |   /// | ||
| 389 |   /// @return { [Element[] -> Zone[]] -> ValInst[] } | ||
| 390 | isl::union_map computeKnownFromLoad() const; | ||
| 391 | |||
| 392 |   /// Compute which value an array element stores at every instant. | ||
| 393 |   /// | ||
| 394 |   /// @param FromWrite Use stores as source of information. | ||
| 395 |   /// @param FromRead  Use loads as source of information. | ||
| 396 |   /// | ||
| 397 |   /// @return { [Element[] -> Zone[]] -> ValInst[] } | ||
| 398 | isl::union_map computeKnown(bool FromWrite, bool FromRead) const; | ||
| 399 | }; | ||
| 400 | |||
| 401 | /// Create a domain-to-unknown value mapping. | ||
| 402 | /// | ||
| 403 | /// Value instances that do not represent a specific value are represented by an | ||
| 404 | /// unnamed tuple of 0 dimensions. Its meaning depends on the context. It can | ||
| 405 | /// either mean a specific but unknown value which cannot be represented by | ||
| 406 | /// other means. It conflicts with itself because those two unknown ValInsts may | ||
| 407 | /// have different concrete values at runtime. | ||
| 408 | /// | ||
| 409 | /// The other meaning is an arbitrary or wildcard value that can be chosen | ||
| 410 | /// freely, like LLVM's undef. If matched with an unknown ValInst, there is no | ||
| 411 | /// conflict. | ||
| 412 | /// | ||
| 413 | /// @param Domain { Domain[] } | ||
| 414 | /// | ||
| 415 | /// @return { Domain[] -> ValInst[] } | ||
| 416 | isl::union_map makeUnknownForDomain(isl::union_set Domain); | ||
| 417 | } // namespace polly | ||
| 418 | |||
| 419 | #endif /* POLLY_ZONEALGO_H */ |