Subversion Repositories QNX 8.QNX8 LLVM/Clang compiler suite

Rev

Details | Last modification | View Log | RSS feed

Rev Author Line No. Line
14 pmbaty 1
//===- ScopDetection.h - Detect Scops ---------------------------*- C++ -*-===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
// Detect the maximal Scops of a function.
10
//
11
// A static control part (Scop) is a subgraph of the control flow graph (CFG)
12
// that only has statically known control flow and can therefore be described
13
// within the polyhedral model.
14
//
15
// Every Scop fulfills these restrictions:
16
//
17
// * It is a single entry single exit region
18
//
19
// * Only affine linear bounds in the loops
20
//
21
// Every natural loop in a Scop must have a number of loop iterations that can
22
// be described as an affine linear function in surrounding loop iterators or
23
// parameters. (A parameter is a scalar that does not change its value during
24
// execution of the Scop).
25
//
26
// * Only comparisons of affine linear expressions in conditions
27
//
28
// * All loops and conditions perfectly nested
29
//
30
// The control flow needs to be structured such that it could be written using
31
// just 'for' and 'if' statements, without the need for any 'goto', 'break' or
32
// 'continue'.
33
//
34
// * Side effect free functions call
35
//
36
// Only function calls and intrinsics that do not have side effects are allowed
37
// (readnone).
38
//
39
// The Scop detection finds the largest Scops by checking if the largest
40
// region is a Scop. If this is not the case, its canonical subregions are
41
// checked until a region is a Scop. It is now tried to extend this Scop by
42
// creating a larger non canonical region.
43
//
44
//===----------------------------------------------------------------------===//
45
 
46
#ifndef POLLY_SCOPDETECTION_H
47
#define POLLY_SCOPDETECTION_H
48
 
49
#include "polly/ScopDetectionDiagnostic.h"
50
#include "polly/Support/ScopHelper.h"
51
#include "llvm/Analysis/AliasAnalysis.h"
52
#include "llvm/Analysis/AliasSetTracker.h"
53
#include "llvm/Analysis/RegionInfo.h"
54
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
55
#include "llvm/Pass.h"
56
#include <set>
57
 
58
namespace polly {
59
using llvm::AAResults;
60
using llvm::AliasSetTracker;
61
using llvm::AnalysisInfoMixin;
62
using llvm::AnalysisKey;
63
using llvm::AnalysisUsage;
64
using llvm::BatchAAResults;
65
using llvm::BranchInst;
66
using llvm::CallInst;
67
using llvm::DenseMap;
68
using llvm::DominatorTree;
69
using llvm::Function;
70
using llvm::FunctionAnalysisManager;
71
using llvm::FunctionPass;
72
using llvm::IntrinsicInst;
73
using llvm::LoopInfo;
74
using llvm::Module;
75
using llvm::OptimizationRemarkEmitter;
76
using llvm::PassInfoMixin;
77
using llvm::PreservedAnalyses;
78
using llvm::RegionInfo;
79
using llvm::ScalarEvolution;
80
using llvm::SCEVUnknown;
81
using llvm::SetVector;
82
using llvm::SmallSetVector;
83
using llvm::SmallVectorImpl;
84
using llvm::StringRef;
85
using llvm::SwitchInst;
86
 
87
using ParamSetType = std::set<const SCEV *>;
88
 
89
// Description of the shape of an array.
90
struct ArrayShape {
91
  // Base pointer identifying all accesses to this array.
92
  const SCEVUnknown *BasePointer;
93
 
94
  // Sizes of each delinearized dimension.
95
  SmallVector<const SCEV *, 4> DelinearizedSizes;
96
 
97
  ArrayShape(const SCEVUnknown *B) : BasePointer(B) {}
98
};
99
 
100
struct MemAcc {
101
  const Instruction *Insn;
102
 
103
  // A pointer to the shape description of the array.
104
  std::shared_ptr<ArrayShape> Shape;
105
 
106
  // Subscripts computed by delinearization.
107
  SmallVector<const SCEV *, 4> DelinearizedSubscripts;
108
 
109
  MemAcc(const Instruction *I, std::shared_ptr<ArrayShape> S)
110
      : Insn(I), Shape(S) {}
111
};
112
 
113
using MapInsnToMemAcc = std::map<const Instruction *, MemAcc>;
114
using PairInstSCEV = std::pair<const Instruction *, const SCEV *>;
115
using AFs = std::vector<PairInstSCEV>;
116
using BaseToAFs = std::map<const SCEVUnknown *, AFs>;
117
using BaseToElSize = std::map<const SCEVUnknown *, const SCEV *>;
118
 
119
extern bool PollyTrackFailures;
120
extern bool PollyDelinearize;
121
extern bool PollyUseRuntimeAliasChecks;
122
extern bool PollyProcessUnprofitable;
123
extern bool PollyInvariantLoadHoisting;
124
extern bool PollyAllowUnsignedOperations;
125
extern bool PollyAllowFullFunction;
126
 
127
/// A function attribute which will cause Polly to skip the function
128
extern StringRef PollySkipFnAttr;
129
 
130
//===----------------------------------------------------------------------===//
131
/// Pass to detect the maximal static control parts (Scops) of a
132
/// function.
133
class ScopDetection {
134
public:
135
  using RegionSet = SetVector<const Region *>;
136
 
137
  // Remember the valid regions
138
  RegionSet ValidRegions;
139
 
140
  /// Context variables for SCoP detection.
141
  struct DetectionContext {
142
    Region &CurRegion;   // The region to check.
143
    BatchAAResults BAA;  // The batched alias analysis results.
144
    AliasSetTracker AST; // The AliasSetTracker to hold the alias information.
145
    bool Verifying;      // If we are in the verification phase?
146
 
147
    /// If this flag is set, the SCoP must eventually be rejected, even with
148
    /// KeepGoing.
149
    bool IsInvalid = false;
150
 
151
    /// Container to remember rejection reasons for this region.
152
    RejectLog Log;
153
 
154
    /// Map a base pointer to all access functions accessing it.
155
    ///
156
    /// This map is indexed by the base pointer. Each element of the map
157
    /// is a list of memory accesses that reference this base pointer.
158
    BaseToAFs Accesses;
159
 
160
    /// The set of base pointers with non-affine accesses.
161
    ///
162
    /// This set contains all base pointers and the locations where they are
163
    /// used for memory accesses that can not be detected as affine accesses.
164
    llvm::SetVector<std::pair<const SCEVUnknown *, Loop *>> NonAffineAccesses;
165
    BaseToElSize ElementSize;
166
 
167
    /// The region has at least one load instruction.
168
    bool hasLoads = false;
169
 
170
    /// The region has at least one store instruction.
171
    bool hasStores = false;
172
 
173
    /// Flag to indicate the region has at least one unknown access.
174
    bool HasUnknownAccess = false;
175
 
176
    /// The set of non-affine subregions in the region we analyze.
177
    RegionSet NonAffineSubRegionSet;
178
 
179
    /// The set of loops contained in non-affine regions.
180
    BoxedLoopsSetTy BoxedLoopsSet;
181
 
182
    /// Loads that need to be invariant during execution.
183
    InvariantLoadsSetTy RequiredILS;
184
 
185
    /// Map to memory access description for the corresponding LLVM
186
    ///        instructions.
187
    MapInsnToMemAcc InsnToMemAcc;
188
 
189
    /// Initialize a DetectionContext from scratch.
190
    DetectionContext(Region &R, AAResults &AA, bool Verify)
191
        : CurRegion(R), BAA(AA), AST(BAA), Verifying(Verify), Log(&R) {}
192
  };
193
 
194
  /// Helper data structure to collect statistics about loop counts.
195
  struct LoopStats {
196
    int NumLoops;
197
    int MaxDepth;
198
  };
199
 
200
  int NextScopID = 0;
201
  int getNextID() { return NextScopID++; }
202
 
203
private:
204
  //===--------------------------------------------------------------------===//
205
 
206
  /// Analyses used
207
  //@{
208
  const DominatorTree &DT;
209
  ScalarEvolution &SE;
210
  LoopInfo &LI;
211
  RegionInfo &RI;
212
  AAResults &AA;
213
  //@}
214
 
215
  /// Map to remember detection contexts for all regions.
216
  using DetectionContextMapTy =
217
      DenseMap<BBPair, std::unique_ptr<DetectionContext>>;
218
  DetectionContextMapTy DetectionContextMap;
219
 
220
  /// Cache for the isErrorBlock function.
221
  DenseMap<std::tuple<const BasicBlock *, const Region *>, bool>
222
      ErrorBlockCache;
223
 
224
  /// Remove cached results for @p R.
225
  void removeCachedResults(const Region &R);
226
 
227
  /// Remove cached results for the children of @p R recursively.
228
  void removeCachedResultsRecursively(const Region &R);
229
 
230
  /// Check if @p S0 and @p S1 do contain multiple possibly aliasing pointers.
231
  ///
232
  /// @param S0    A expression to check.
233
  /// @param S1    Another expression to check or nullptr.
234
  /// @param Scope The loop/scope the expressions are checked in.
235
  ///
236
  /// @returns True, if multiple possibly aliasing pointers are used in @p S0
237
  ///          (and @p S1 if given).
238
  bool involvesMultiplePtrs(const SCEV *S0, const SCEV *S1, Loop *Scope) const;
239
 
240
  /// Add the region @p AR as over approximated sub-region in @p Context.
241
  ///
242
  /// @param AR      The non-affine subregion.
243
  /// @param Context The current detection context.
244
  ///
245
  /// @returns True if the subregion can be over approximated, false otherwise.
246
  bool addOverApproximatedRegion(Region *AR, DetectionContext &Context) const;
247
 
248
  /// Find for a given base pointer terms that hint towards dimension
249
  ///        sizes of a multi-dimensional array.
250
  ///
251
  /// @param Context      The current detection context.
252
  /// @param BasePointer  A base pointer indicating the virtual array we are
253
  ///                     interested in.
254
  SmallVector<const SCEV *, 4>
255
  getDelinearizationTerms(DetectionContext &Context,
256
                          const SCEVUnknown *BasePointer) const;
257
 
258
  /// Check if the dimension size of a delinearized array is valid.
259
  ///
260
  /// @param Context     The current detection context.
261
  /// @param Sizes       The sizes of the different array dimensions.
262
  /// @param BasePointer The base pointer we are interested in.
263
  /// @param Scope       The location where @p BasePointer is being used.
264
  /// @returns True if one or more array sizes could be derived - meaning: we
265
  ///          see this array as multi-dimensional.
266
  bool hasValidArraySizes(DetectionContext &Context,
267
                          SmallVectorImpl<const SCEV *> &Sizes,
268
                          const SCEVUnknown *BasePointer, Loop *Scope) const;
269
 
270
  /// Derive access functions for a given base pointer.
271
  ///
272
  /// @param Context     The current detection context.
273
  /// @param Sizes       The sizes of the different array dimensions.
274
  /// @param BasePointer The base pointer of all the array for which to compute
275
  ///                    access functions.
276
  /// @param Shape       The shape that describes the derived array sizes and
277
  ///                    which should be filled with newly computed access
278
  ///                    functions.
279
  /// @returns True if a set of affine access functions could be derived.
280
  bool computeAccessFunctions(DetectionContext &Context,
281
                              const SCEVUnknown *BasePointer,
282
                              std::shared_ptr<ArrayShape> Shape) const;
283
 
284
  /// Check if all accesses to a given BasePointer are affine.
285
  ///
286
  /// @param Context     The current detection context.
287
  /// @param BasePointer the base pointer we are interested in.
288
  /// @param Scope       The location where @p BasePointer is being used.
289
  /// @param True if consistent (multi-dimensional) array accesses could be
290
  ///        derived for this array.
291
  bool hasBaseAffineAccesses(DetectionContext &Context,
292
                             const SCEVUnknown *BasePointer, Loop *Scope) const;
293
 
294
  /// Delinearize all non affine memory accesses and return false when there
295
  /// exists a non affine memory access that cannot be delinearized. Return true
296
  /// when all array accesses are affine after delinearization.
297
  bool hasAffineMemoryAccesses(DetectionContext &Context) const;
298
 
299
  /// Try to expand the region R. If R can be expanded return the expanded
300
  /// region, NULL otherwise.
301
  Region *expandRegion(Region &R);
302
 
303
  /// Find the Scops in this region tree.
304
  ///
305
  /// @param The region tree to scan for scops.
306
  void findScops(Region &R);
307
 
308
  /// Check if all basic block in the region are valid.
309
  ///
310
  /// @param Context The context of scop detection.
311
  bool allBlocksValid(DetectionContext &Context);
312
 
313
  /// Check if a region has sufficient compute instructions.
314
  ///
315
  /// This function checks if a region has a non-trivial number of instructions
316
  /// in each loop. This can be used as an indicator whether a loop is worth
317
  /// optimizing.
318
  ///
319
  /// @param Context  The context of scop detection.
320
  /// @param NumLoops The number of loops in the region.
321
  ///
322
  /// @return True if region is has sufficient compute instructions,
323
  ///         false otherwise.
324
  bool hasSufficientCompute(DetectionContext &Context,
325
                            int NumAffineLoops) const;
326
 
327
  /// Check if the unique affine loop might be amendable to distribution.
328
  ///
329
  /// This function checks if the number of non-trivial blocks in the unique
330
  /// affine loop in Context.CurRegion is at least two, thus if the loop might
331
  /// be amendable to distribution.
332
  ///
333
  /// @param Context  The context of scop detection.
334
  ///
335
  /// @return True only if the affine loop might be amendable to distributable.
336
  bool hasPossiblyDistributableLoop(DetectionContext &Context) const;
337
 
338
  /// Check if a region is profitable to optimize.
339
  ///
340
  /// Regions that are unlikely to expose interesting optimization opportunities
341
  /// are called 'unprofitable' and may be skipped during scop detection.
342
  ///
343
  /// @param Context The context of scop detection.
344
  ///
345
  /// @return True if region is profitable to optimize, false otherwise.
346
  bool isProfitableRegion(DetectionContext &Context) const;
347
 
348
  /// Check if a region is a Scop.
349
  ///
350
  /// @param Context The context of scop detection.
351
  ///
352
  /// @return If we short-circuited early to not waste time on known-invalid
353
  ///         SCoPs. Use Context.IsInvalid to determine whether the region is a
354
  ///         valid SCoP.
355
  bool isValidRegion(DetectionContext &Context);
356
 
357
  /// Check if an intrinsic call can be part of a Scop.
358
  ///
359
  /// @param II      The intrinsic call instruction to check.
360
  /// @param Context The current detection context.
361
  bool isValidIntrinsicInst(IntrinsicInst &II, DetectionContext &Context) const;
362
 
363
  /// Check if a call instruction can be part of a Scop.
364
  ///
365
  /// @param CI      The call instruction to check.
366
  /// @param Context The current detection context.
367
  bool isValidCallInst(CallInst &CI, DetectionContext &Context) const;
368
 
369
  /// Check if the given loads could be invariant and can be hoisted.
370
  ///
371
  /// If true is returned the loads are added to the required invariant loads
372
  /// contained in the @p Context.
373
  ///
374
  /// @param RequiredILS The loads to check.
375
  /// @param Context     The current detection context.
376
  ///
377
  /// @return True if all loads can be assumed invariant.
378
  bool onlyValidRequiredInvariantLoads(InvariantLoadsSetTy &RequiredILS,
379
                                       DetectionContext &Context) const;
380
 
381
  /// Check if a value is invariant in the region Reg.
382
  ///
383
  /// @param Val Value to check for invariance.
384
  /// @param Reg The region to consider for the invariance of Val.
385
  /// @param Ctx The current detection context.
386
  ///
387
  /// @return True if the value represented by Val is invariant in the region
388
  ///         identified by Reg.
389
  bool isInvariant(Value &Val, const Region &Reg, DetectionContext &Ctx) const;
390
 
391
  /// Check if the memory access caused by @p Inst is valid.
392
  ///
393
  /// @param Inst    The access instruction.
394
  /// @param AF      The access function.
395
  /// @param BP      The access base pointer.
396
  /// @param Context The current detection context.
397
  bool isValidAccess(Instruction *Inst, const SCEV *AF, const SCEVUnknown *BP,
398
                     DetectionContext &Context) const;
399
 
400
  /// Check if a memory access can be part of a Scop.
401
  ///
402
  /// @param Inst The instruction accessing the memory.
403
  /// @param Context The context of scop detection.
404
  bool isValidMemoryAccess(MemAccInst Inst, DetectionContext &Context) const;
405
 
406
  /// Check if an instruction can be part of a Scop.
407
  ///
408
  /// @param Inst The instruction to check.
409
  /// @param Context The context of scop detection.
410
  bool isValidInstruction(Instruction &Inst, DetectionContext &Context);
411
 
412
  /// Check if the switch @p SI with condition @p Condition is valid.
413
  ///
414
  /// @param BB           The block to check.
415
  /// @param SI           The switch to check.
416
  /// @param Condition    The switch condition.
417
  /// @param IsLoopBranch Flag to indicate the branch is a loop exit/latch.
418
  /// @param Context      The context of scop detection.
419
  bool isValidSwitch(BasicBlock &BB, SwitchInst *SI, Value *Condition,
420
                     bool IsLoopBranch, DetectionContext &Context) const;
421
 
422
  /// Check if the branch @p BI with condition @p Condition is valid.
423
  ///
424
  /// @param BB           The block to check.
425
  /// @param BI           The branch to check.
426
  /// @param Condition    The branch condition.
427
  /// @param IsLoopBranch Flag to indicate the branch is a loop exit/latch.
428
  /// @param Context      The context of scop detection.
429
  bool isValidBranch(BasicBlock &BB, BranchInst *BI, Value *Condition,
430
                     bool IsLoopBranch, DetectionContext &Context);
431
 
432
  /// Check if the SCEV @p S is affine in the current @p Context.
433
  ///
434
  /// This will also use a heuristic to decide if we want to require loads to be
435
  /// invariant to make the expression affine or if we want to treat is as
436
  /// non-affine.
437
  ///
438
  /// @param S           The expression to be checked.
439
  /// @param Scope       The loop nest in which @p S is used.
440
  /// @param Context     The context of scop detection.
441
  bool isAffine(const SCEV *S, Loop *Scope, DetectionContext &Context) const;
442
 
443
  /// Check if the control flow in a basic block is valid.
444
  ///
445
  /// This function checks if a certain basic block is terminated by a
446
  /// Terminator instruction we can handle or, if this is not the case,
447
  /// registers this basic block as the start of a non-affine region.
448
  ///
449
  /// This function optionally allows unreachable statements.
450
  ///
451
  /// @param BB               The BB to check the control flow.
452
  /// @param IsLoopBranch     Flag to indicate the branch is a loop exit/latch.
453
  ///  @param AllowUnreachable Allow unreachable statements.
454
  /// @param Context          The context of scop detection.
455
  bool isValidCFG(BasicBlock &BB, bool IsLoopBranch, bool AllowUnreachable,
456
                  DetectionContext &Context);
457
 
458
  /// Is a loop valid with respect to a given region.
459
  ///
460
  /// @param L The loop to check.
461
  /// @param Context The context of scop detection.
462
  bool isValidLoop(Loop *L, DetectionContext &Context);
463
 
464
  /// Count the number of loops and the maximal loop depth in @p L.
465
  ///
466
  /// @param L The loop to check.
467
  /// @param SE The scalar evolution analysis.
468
  /// @param MinProfitableTrips The minimum number of trip counts from which
469
  ///                           a loop is assumed to be profitable and
470
  ///                           consequently is counted.
471
  /// returns A tuple of number of loops and their maximal depth.
472
  static ScopDetection::LoopStats
473
  countBeneficialSubLoops(Loop *L, ScalarEvolution &SE,
474
                          unsigned MinProfitableTrips);
475
 
476
  /// Check if the function @p F is marked as invalid.
477
  ///
478
  /// @note An OpenMP subfunction will be marked as invalid.
479
  static bool isValidFunction(Function &F);
480
 
481
  /// Can ISL compute the trip count of a loop.
482
  ///
483
  /// @param L The loop to check.
484
  /// @param Context The context of scop detection.
485
  ///
486
  /// @return True if ISL can compute the trip count of the loop.
487
  bool canUseISLTripCount(Loop *L, DetectionContext &Context);
488
 
489
  /// Print the locations of all detected scops.
490
  void printLocations(Function &F);
491
 
492
  /// Check if a region is reducible or not.
493
  ///
494
  /// @param Region The region to check.
495
  /// @param DbgLoc Parameter to save the location of instruction that
496
  ///               causes irregular control flow if the region is irreducible.
497
  ///
498
  /// @return True if R is reducible, false otherwise.
499
  bool isReducibleRegion(Region &R, DebugLoc &DbgLoc) const;
500
 
501
  /// Track diagnostics for invalid scops.
502
  ///
503
  /// @param Context The context of scop detection.
504
  /// @param Assert Throw an assert in verify mode or not.
505
  /// @param Args Argument list that gets passed to the constructor of RR.
506
  template <class RR, typename... Args>
507
  inline bool invalid(DetectionContext &Context, bool Assert,
508
                      Args &&...Arguments) const;
509
 
510
public:
511
  ScopDetection(const DominatorTree &DT, ScalarEvolution &SE, LoopInfo &LI,
512
                RegionInfo &RI, AAResults &AA, OptimizationRemarkEmitter &ORE);
513
 
514
  void detect(Function &F);
515
 
516
  /// Get the RegionInfo stored in this pass.
517
  ///
518
  /// This was added to give the DOT printer easy access to this information.
519
  RegionInfo *getRI() const { return &RI; }
520
 
521
  /// Get the LoopInfo stored in this pass.
522
  LoopInfo *getLI() const { return &LI; }
523
 
524
  /// Is the region is the maximum region of a Scop?
525
  ///
526
  /// @param R The Region to test if it is maximum.
527
  /// @param Verify Rerun the scop detection to verify SCoP was not invalidated
528
  ///               meanwhile. Do not use if the region's DetectionContect is
529
  ///               referenced by a Scop that is still to be processed.
530
  ///
531
  /// @return Return true if R is the maximum Region in a Scop, false otherwise.
532
  bool isMaxRegionInScop(const Region &R, bool Verify = true);
533
 
534
  /// Return the detection context for @p R, nullptr if @p R was invalid.
535
  DetectionContext *getDetectionContext(const Region *R) const;
536
 
537
  /// Return the set of rejection causes for @p R.
538
  const RejectLog *lookupRejectionLog(const Region *R) const;
539
 
540
  /// Get a message why a region is invalid
541
  ///
542
  /// @param R The region for which we get the error message
543
  ///
544
  /// @return The error or "" if no error appeared.
545
  std::string regionIsInvalidBecause(const Region *R) const;
546
 
547
  /// @name Maximum Region In Scops Iterators
548
  ///
549
  /// These iterators iterator over all maximum region in Scops of this
550
  /// function.
551
  //@{
552
  using iterator = RegionSet::iterator;
553
  using const_iterator = RegionSet::const_iterator;
554
 
555
  iterator begin() { return ValidRegions.begin(); }
556
  iterator end() { return ValidRegions.end(); }
557
 
558
  const_iterator begin() const { return ValidRegions.begin(); }
559
  const_iterator end() const { return ValidRegions.end(); }
560
  //@}
561
 
562
  /// Emit rejection remarks for all rejected regions.
563
  ///
564
  /// @param F The function to emit remarks for.
565
  void emitMissedRemarks(const Function &F);
566
 
567
  /// Mark the function as invalid so we will not extract any scop from
568
  ///        the function.
569
  ///
570
  /// @param F The function to mark as invalid.
571
  static void markFunctionAsInvalid(Function *F);
572
 
573
  /// Verify if all valid Regions in this Function are still valid
574
  /// after some transformations.
575
  void verifyAnalysis();
576
 
577
  /// Verify if R is still a valid part of Scop after some transformations.
578
  ///
579
  /// @param R The Region to verify.
580
  void verifyRegion(const Region &R);
581
 
582
  /// Count the number of loops and the maximal loop depth in @p R.
583
  ///
584
  /// @param R The region to check
585
  /// @param SE The scalar evolution analysis.
586
  /// @param MinProfitableTrips The minimum number of trip counts from which
587
  ///                           a loop is assumed to be profitable and
588
  ///                           consequently is counted.
589
  /// returns A tuple of number of loops and their maximal depth.
590
  static ScopDetection::LoopStats
591
  countBeneficialLoops(Region *R, ScalarEvolution &SE, LoopInfo &LI,
592
                       unsigned MinProfitableTrips);
593
 
594
  /// Check if the block is a error block.
595
  ///
596
  /// A error block is currently any block that fulfills at least one of
597
  /// the following conditions:
598
  ///
599
  ///  - It is terminated by an unreachable instruction
600
  ///  - It contains a call to a non-pure function that is not immediately
601
  ///    dominated by a loop header and that does not dominate the region exit.
602
  ///    This is a heuristic to pick only error blocks that are conditionally
603
  ///    executed and can be assumed to be not executed at all without the
604
  ///    domains being available.
605
  ///
606
  /// @param BB The block to check.
607
  /// @param R  The analyzed region.
608
  ///
609
  /// @return True if the block is a error block, false otherwise.
610
  bool isErrorBlock(llvm::BasicBlock &BB, const llvm::Region &R);
611
 
612
private:
613
  /// OptimizationRemarkEmitter object used to emit diagnostic remarks
614
  OptimizationRemarkEmitter &ORE;
615
};
616
 
617
struct ScopAnalysis : AnalysisInfoMixin<ScopAnalysis> {
618
  static AnalysisKey Key;
619
 
620
  using Result = ScopDetection;
621
 
622
  ScopAnalysis();
623
 
624
  Result run(Function &F, FunctionAnalysisManager &FAM);
625
};
626
 
627
struct ScopAnalysisPrinterPass final : PassInfoMixin<ScopAnalysisPrinterPass> {
628
  ScopAnalysisPrinterPass(raw_ostream &OS) : OS(OS) {}
629
 
630
  PreservedAnalyses run(Function &F, FunctionAnalysisManager &FAM);
631
 
632
  raw_ostream &OS;
633
};
634
 
635
class ScopDetectionWrapperPass final : public FunctionPass {
636
  std::unique_ptr<ScopDetection> Result;
637
 
638
public:
639
  ScopDetectionWrapperPass();
640
 
641
  /// @name FunctionPass interface
642
  ///@{
643
  static char ID;
644
  void getAnalysisUsage(AnalysisUsage &AU) const override;
645
  void releaseMemory() override;
646
  bool runOnFunction(Function &F) override;
647
  void print(raw_ostream &OS, const Module *M = nullptr) const override;
648
  ///@}
649
 
650
  ScopDetection &getSD() const { return *Result; }
651
};
652
 
653
llvm::Pass *createScopDetectionPrinterLegacyPass(llvm::raw_ostream &OS);
654
} // namespace polly
655
 
656
namespace llvm {
657
void initializeScopDetectionWrapperPassPass(llvm::PassRegistry &);
658
void initializeScopDetectionPrinterLegacyPassPass(llvm::PassRegistry &);
659
} // namespace llvm
660
 
661
#endif // POLLY_SCOPDETECTION_H