Details | Last modification | View Log | RSS feed
Rev | Author | Line No. | Line |
---|---|---|---|
14 | pmbaty | 1 | ////===- SampleProfileLoadBaseImpl.h - Profile loader base impl --*- C++-*-===// |
2 | // |
||
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
||
4 | // See https://llvm.org/LICENSE.txt for license information. |
||
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
||
6 | // |
||
7 | //===----------------------------------------------------------------------===// |
||
8 | // |
||
9 | /// \file |
||
10 | /// This file provides the interface for the sampled PGO profile loader base |
||
11 | /// implementation. |
||
12 | // |
||
13 | //===----------------------------------------------------------------------===// |
||
14 | |||
15 | #ifndef LLVM_TRANSFORMS_UTILS_SAMPLEPROFILELOADERBASEIMPL_H |
||
16 | #define LLVM_TRANSFORMS_UTILS_SAMPLEPROFILELOADERBASEIMPL_H |
||
17 | |||
18 | #include "llvm/ADT/ArrayRef.h" |
||
19 | #include "llvm/ADT/DenseMap.h" |
||
20 | #include "llvm/ADT/DenseSet.h" |
||
21 | #include "llvm/ADT/SmallPtrSet.h" |
||
22 | #include "llvm/ADT/SmallSet.h" |
||
23 | #include "llvm/ADT/SmallVector.h" |
||
24 | #include "llvm/Analysis/LoopInfo.h" |
||
25 | #include "llvm/Analysis/OptimizationRemarkEmitter.h" |
||
26 | #include "llvm/Analysis/PostDominators.h" |
||
27 | #include "llvm/IR/BasicBlock.h" |
||
28 | #include "llvm/IR/CFG.h" |
||
29 | #include "llvm/IR/DebugInfoMetadata.h" |
||
30 | #include "llvm/IR/DebugLoc.h" |
||
31 | #include "llvm/IR/Dominators.h" |
||
32 | #include "llvm/IR/Function.h" |
||
33 | #include "llvm/IR/Instruction.h" |
||
34 | #include "llvm/IR/Instructions.h" |
||
35 | #include "llvm/IR/Module.h" |
||
36 | #include "llvm/ProfileData/SampleProf.h" |
||
37 | #include "llvm/ProfileData/SampleProfReader.h" |
||
38 | #include "llvm/Support/CommandLine.h" |
||
39 | #include "llvm/Support/GenericDomTree.h" |
||
40 | #include "llvm/Support/raw_ostream.h" |
||
41 | #include "llvm/Transforms/Utils/SampleProfileInference.h" |
||
42 | #include "llvm/Transforms/Utils/SampleProfileLoaderBaseUtil.h" |
||
43 | |||
44 | namespace llvm { |
||
45 | using namespace sampleprof; |
||
46 | using namespace sampleprofutil; |
||
47 | using ProfileCount = Function::ProfileCount; |
||
48 | |||
49 | #define DEBUG_TYPE "sample-profile-impl" |
||
50 | |||
51 | namespace afdo_detail { |
||
52 | |||
53 | template <typename BlockT> struct IRTraits; |
||
54 | template <> struct IRTraits<BasicBlock> { |
||
55 | using InstructionT = Instruction; |
||
56 | using BasicBlockT = BasicBlock; |
||
57 | using FunctionT = Function; |
||
58 | using BlockFrequencyInfoT = BlockFrequencyInfo; |
||
59 | using LoopT = Loop; |
||
60 | using LoopInfoPtrT = std::unique_ptr<LoopInfo>; |
||
61 | using DominatorTreePtrT = std::unique_ptr<DominatorTree>; |
||
62 | using PostDominatorTreeT = PostDominatorTree; |
||
63 | using PostDominatorTreePtrT = std::unique_ptr<PostDominatorTree>; |
||
64 | using OptRemarkEmitterT = OptimizationRemarkEmitter; |
||
65 | using OptRemarkAnalysisT = OptimizationRemarkAnalysis; |
||
66 | using PredRangeT = pred_range; |
||
67 | using SuccRangeT = succ_range; |
||
68 | static Function &getFunction(Function &F) { return F; } |
||
69 | static const BasicBlock *getEntryBB(const Function *F) { |
||
70 | return &F->getEntryBlock(); |
||
71 | } |
||
72 | static pred_range getPredecessors(BasicBlock *BB) { return predecessors(BB); } |
||
73 | static succ_range getSuccessors(BasicBlock *BB) { return successors(BB); } |
||
74 | }; |
||
75 | |||
76 | } // end namespace afdo_detail |
||
77 | |||
78 | extern cl::opt<bool> SampleProfileUseProfi; |
||
79 | |||
80 | template <typename BT> class SampleProfileLoaderBaseImpl { |
||
81 | public: |
||
82 | SampleProfileLoaderBaseImpl(std::string Name, std::string RemapName) |
||
83 | : Filename(Name), RemappingFilename(RemapName) {} |
||
84 | void dump() { Reader->dump(); } |
||
85 | |||
86 | using InstructionT = typename afdo_detail::IRTraits<BT>::InstructionT; |
||
87 | using BasicBlockT = typename afdo_detail::IRTraits<BT>::BasicBlockT; |
||
88 | using BlockFrequencyInfoT = |
||
89 | typename afdo_detail::IRTraits<BT>::BlockFrequencyInfoT; |
||
90 | using FunctionT = typename afdo_detail::IRTraits<BT>::FunctionT; |
||
91 | using LoopT = typename afdo_detail::IRTraits<BT>::LoopT; |
||
92 | using LoopInfoPtrT = typename afdo_detail::IRTraits<BT>::LoopInfoPtrT; |
||
93 | using DominatorTreePtrT = |
||
94 | typename afdo_detail::IRTraits<BT>::DominatorTreePtrT; |
||
95 | using PostDominatorTreePtrT = |
||
96 | typename afdo_detail::IRTraits<BT>::PostDominatorTreePtrT; |
||
97 | using PostDominatorTreeT = |
||
98 | typename afdo_detail::IRTraits<BT>::PostDominatorTreeT; |
||
99 | using OptRemarkEmitterT = |
||
100 | typename afdo_detail::IRTraits<BT>::OptRemarkEmitterT; |
||
101 | using OptRemarkAnalysisT = |
||
102 | typename afdo_detail::IRTraits<BT>::OptRemarkAnalysisT; |
||
103 | using PredRangeT = typename afdo_detail::IRTraits<BT>::PredRangeT; |
||
104 | using SuccRangeT = typename afdo_detail::IRTraits<BT>::SuccRangeT; |
||
105 | |||
106 | using BlockWeightMap = DenseMap<const BasicBlockT *, uint64_t>; |
||
107 | using EquivalenceClassMap = |
||
108 | DenseMap<const BasicBlockT *, const BasicBlockT *>; |
||
109 | using Edge = std::pair<const BasicBlockT *, const BasicBlockT *>; |
||
110 | using EdgeWeightMap = DenseMap<Edge, uint64_t>; |
||
111 | using BlockEdgeMap = |
||
112 | DenseMap<const BasicBlockT *, SmallVector<const BasicBlockT *, 8>>; |
||
113 | |||
114 | protected: |
||
115 | ~SampleProfileLoaderBaseImpl() = default; |
||
116 | friend class SampleCoverageTracker; |
||
117 | |||
118 | Function &getFunction(FunctionT &F) { |
||
119 | return afdo_detail::IRTraits<BT>::getFunction(F); |
||
120 | } |
||
121 | const BasicBlockT *getEntryBB(const FunctionT *F) { |
||
122 | return afdo_detail::IRTraits<BT>::getEntryBB(F); |
||
123 | } |
||
124 | PredRangeT getPredecessors(BasicBlockT *BB) { |
||
125 | return afdo_detail::IRTraits<BT>::getPredecessors(BB); |
||
126 | } |
||
127 | SuccRangeT getSuccessors(BasicBlockT *BB) { |
||
128 | return afdo_detail::IRTraits<BT>::getSuccessors(BB); |
||
129 | } |
||
130 | |||
131 | unsigned getFunctionLoc(FunctionT &Func); |
||
132 | virtual ErrorOr<uint64_t> getInstWeight(const InstructionT &Inst); |
||
133 | ErrorOr<uint64_t> getInstWeightImpl(const InstructionT &Inst); |
||
134 | ErrorOr<uint64_t> getBlockWeight(const BasicBlockT *BB); |
||
135 | mutable DenseMap<const DILocation *, const FunctionSamples *> |
||
136 | DILocation2SampleMap; |
||
137 | virtual const FunctionSamples * |
||
138 | findFunctionSamples(const InstructionT &I) const; |
||
139 | void printEdgeWeight(raw_ostream &OS, Edge E); |
||
140 | void printBlockWeight(raw_ostream &OS, const BasicBlockT *BB) const; |
||
141 | void printBlockEquivalence(raw_ostream &OS, const BasicBlockT *BB); |
||
142 | bool computeBlockWeights(FunctionT &F); |
||
143 | void findEquivalenceClasses(FunctionT &F); |
||
144 | void findEquivalencesFor(BasicBlockT *BB1, |
||
145 | ArrayRef<BasicBlockT *> Descendants, |
||
146 | PostDominatorTreeT *DomTree); |
||
147 | void propagateWeights(FunctionT &F); |
||
148 | void applyProfi(FunctionT &F, BlockEdgeMap &Successors, |
||
149 | BlockWeightMap &SampleBlockWeights, |
||
150 | BlockWeightMap &BlockWeights, EdgeWeightMap &EdgeWeights); |
||
151 | uint64_t visitEdge(Edge E, unsigned *NumUnknownEdges, Edge *UnknownEdge); |
||
152 | void buildEdges(FunctionT &F); |
||
153 | bool propagateThroughEdges(FunctionT &F, bool UpdateBlockCount); |
||
154 | void clearFunctionData(bool ResetDT = true); |
||
155 | void computeDominanceAndLoopInfo(FunctionT &F); |
||
156 | bool |
||
157 | computeAndPropagateWeights(FunctionT &F, |
||
158 | const DenseSet<GlobalValue::GUID> &InlinedGUIDs); |
||
159 | void initWeightPropagation(FunctionT &F, |
||
160 | const DenseSet<GlobalValue::GUID> &InlinedGUIDs); |
||
161 | void |
||
162 | finalizeWeightPropagation(FunctionT &F, |
||
163 | const DenseSet<GlobalValue::GUID> &InlinedGUIDs); |
||
164 | void emitCoverageRemarks(FunctionT &F); |
||
165 | |||
166 | /// Map basic blocks to their computed weights. |
||
167 | /// |
||
168 | /// The weight of a basic block is defined to be the maximum |
||
169 | /// of all the instruction weights in that block. |
||
170 | BlockWeightMap BlockWeights; |
||
171 | |||
172 | /// Map edges to their computed weights. |
||
173 | /// |
||
174 | /// Edge weights are computed by propagating basic block weights in |
||
175 | /// SampleProfile::propagateWeights. |
||
176 | EdgeWeightMap EdgeWeights; |
||
177 | |||
178 | /// Set of visited blocks during propagation. |
||
179 | SmallPtrSet<const BasicBlockT *, 32> VisitedBlocks; |
||
180 | |||
181 | /// Set of visited edges during propagation. |
||
182 | SmallSet<Edge, 32> VisitedEdges; |
||
183 | |||
184 | /// Equivalence classes for block weights. |
||
185 | /// |
||
186 | /// Two blocks BB1 and BB2 are in the same equivalence class if they |
||
187 | /// dominate and post-dominate each other, and they are in the same loop |
||
188 | /// nest. When this happens, the two blocks are guaranteed to execute |
||
189 | /// the same number of times. |
||
190 | EquivalenceClassMap EquivalenceClass; |
||
191 | |||
192 | /// Dominance, post-dominance and loop information. |
||
193 | DominatorTreePtrT DT; |
||
194 | PostDominatorTreePtrT PDT; |
||
195 | LoopInfoPtrT LI; |
||
196 | |||
197 | /// Predecessors for each basic block in the CFG. |
||
198 | BlockEdgeMap Predecessors; |
||
199 | |||
200 | /// Successors for each basic block in the CFG. |
||
201 | BlockEdgeMap Successors; |
||
202 | |||
203 | /// Profile coverage tracker. |
||
204 | SampleCoverageTracker CoverageTracker; |
||
205 | |||
206 | /// Profile reader object. |
||
207 | std::unique_ptr<SampleProfileReader> Reader; |
||
208 | |||
209 | /// Samples collected for the body of this function. |
||
210 | FunctionSamples *Samples = nullptr; |
||
211 | |||
212 | /// Name of the profile file to load. |
||
213 | std::string Filename; |
||
214 | |||
215 | /// Name of the profile remapping file to load. |
||
216 | std::string RemappingFilename; |
||
217 | |||
218 | /// Profile Summary Info computed from sample profile. |
||
219 | ProfileSummaryInfo *PSI = nullptr; |
||
220 | |||
221 | /// Optimization Remark Emitter used to emit diagnostic remarks. |
||
222 | OptRemarkEmitterT *ORE = nullptr; |
||
223 | }; |
||
224 | |||
225 | /// Clear all the per-function data used to load samples and propagate weights. |
||
226 | template <typename BT> |
||
227 | void SampleProfileLoaderBaseImpl<BT>::clearFunctionData(bool ResetDT) { |
||
228 | BlockWeights.clear(); |
||
229 | EdgeWeights.clear(); |
||
230 | VisitedBlocks.clear(); |
||
231 | VisitedEdges.clear(); |
||
232 | EquivalenceClass.clear(); |
||
233 | if (ResetDT) { |
||
234 | DT = nullptr; |
||
235 | PDT = nullptr; |
||
236 | LI = nullptr; |
||
237 | } |
||
238 | Predecessors.clear(); |
||
239 | Successors.clear(); |
||
240 | CoverageTracker.clear(); |
||
241 | } |
||
242 | |||
243 | #ifndef NDEBUG |
||
244 | /// Print the weight of edge \p E on stream \p OS. |
||
245 | /// |
||
246 | /// \param OS Stream to emit the output to. |
||
247 | /// \param E Edge to print. |
||
248 | template <typename BT> |
||
249 | void SampleProfileLoaderBaseImpl<BT>::printEdgeWeight(raw_ostream &OS, Edge E) { |
||
250 | OS << "weight[" << E.first->getName() << "->" << E.second->getName() |
||
251 | << "]: " << EdgeWeights[E] << "\n"; |
||
252 | } |
||
253 | |||
254 | /// Print the equivalence class of block \p BB on stream \p OS. |
||
255 | /// |
||
256 | /// \param OS Stream to emit the output to. |
||
257 | /// \param BB Block to print. |
||
258 | template <typename BT> |
||
259 | void SampleProfileLoaderBaseImpl<BT>::printBlockEquivalence( |
||
260 | raw_ostream &OS, const BasicBlockT *BB) { |
||
261 | const BasicBlockT *Equiv = EquivalenceClass[BB]; |
||
262 | OS << "equivalence[" << BB->getName() |
||
263 | << "]: " << ((Equiv) ? EquivalenceClass[BB]->getName() : "NONE") << "\n"; |
||
264 | } |
||
265 | |||
266 | /// Print the weight of block \p BB on stream \p OS. |
||
267 | /// |
||
268 | /// \param OS Stream to emit the output to. |
||
269 | /// \param BB Block to print. |
||
270 | template <typename BT> |
||
271 | void SampleProfileLoaderBaseImpl<BT>::printBlockWeight( |
||
272 | raw_ostream &OS, const BasicBlockT *BB) const { |
||
273 | const auto &I = BlockWeights.find(BB); |
||
274 | uint64_t W = (I == BlockWeights.end() ? 0 : I->second); |
||
275 | OS << "weight[" << BB->getName() << "]: " << W << "\n"; |
||
276 | } |
||
277 | #endif |
||
278 | |||
279 | /// Get the weight for an instruction. |
||
280 | /// |
||
281 | /// The "weight" of an instruction \p Inst is the number of samples |
||
282 | /// collected on that instruction at runtime. To retrieve it, we |
||
283 | /// need to compute the line number of \p Inst relative to the start of its |
||
284 | /// function. We use HeaderLineno to compute the offset. We then |
||
285 | /// look up the samples collected for \p Inst using BodySamples. |
||
286 | /// |
||
287 | /// \param Inst Instruction to query. |
||
288 | /// |
||
289 | /// \returns the weight of \p Inst. |
||
290 | template <typename BT> |
||
291 | ErrorOr<uint64_t> |
||
292 | SampleProfileLoaderBaseImpl<BT>::getInstWeight(const InstructionT &Inst) { |
||
293 | return getInstWeightImpl(Inst); |
||
294 | } |
||
295 | |||
296 | template <typename BT> |
||
297 | ErrorOr<uint64_t> |
||
298 | SampleProfileLoaderBaseImpl<BT>::getInstWeightImpl(const InstructionT &Inst) { |
||
299 | const FunctionSamples *FS = findFunctionSamples(Inst); |
||
300 | if (!FS) |
||
301 | return std::error_code(); |
||
302 | |||
303 | const DebugLoc &DLoc = Inst.getDebugLoc(); |
||
304 | if (!DLoc) |
||
305 | return std::error_code(); |
||
306 | |||
307 | const DILocation *DIL = DLoc; |
||
308 | uint32_t LineOffset = FunctionSamples::getOffset(DIL); |
||
309 | uint32_t Discriminator; |
||
310 | if (EnableFSDiscriminator) |
||
311 | Discriminator = DIL->getDiscriminator(); |
||
312 | else |
||
313 | Discriminator = DIL->getBaseDiscriminator(); |
||
314 | |||
315 | ErrorOr<uint64_t> R = FS->findSamplesAt(LineOffset, Discriminator); |
||
316 | if (R) { |
||
317 | bool FirstMark = |
||
318 | CoverageTracker.markSamplesUsed(FS, LineOffset, Discriminator, R.get()); |
||
319 | if (FirstMark) { |
||
320 | ORE->emit([&]() { |
||
321 | OptRemarkAnalysisT Remark(DEBUG_TYPE, "AppliedSamples", &Inst); |
||
322 | Remark << "Applied " << ore::NV("NumSamples", *R); |
||
323 | Remark << " samples from profile (offset: "; |
||
324 | Remark << ore::NV("LineOffset", LineOffset); |
||
325 | if (Discriminator) { |
||
326 | Remark << "."; |
||
327 | Remark << ore::NV("Discriminator", Discriminator); |
||
328 | } |
||
329 | Remark << ")"; |
||
330 | return Remark; |
||
331 | }); |
||
332 | } |
||
333 | LLVM_DEBUG(dbgs() << " " << DLoc.getLine() << "." << Discriminator << ":" |
||
334 | << Inst << " (line offset: " << LineOffset << "." |
||
335 | << Discriminator << " - weight: " << R.get() << ")\n"); |
||
336 | } |
||
337 | return R; |
||
338 | } |
||
339 | |||
340 | /// Compute the weight of a basic block. |
||
341 | /// |
||
342 | /// The weight of basic block \p BB is the maximum weight of all the |
||
343 | /// instructions in BB. |
||
344 | /// |
||
345 | /// \param BB The basic block to query. |
||
346 | /// |
||
347 | /// \returns the weight for \p BB. |
||
348 | template <typename BT> |
||
349 | ErrorOr<uint64_t> |
||
350 | SampleProfileLoaderBaseImpl<BT>::getBlockWeight(const BasicBlockT *BB) { |
||
351 | uint64_t Max = 0; |
||
352 | bool HasWeight = false; |
||
353 | for (auto &I : *BB) { |
||
354 | const ErrorOr<uint64_t> &R = getInstWeight(I); |
||
355 | if (R) { |
||
356 | Max = std::max(Max, R.get()); |
||
357 | HasWeight = true; |
||
358 | } |
||
359 | } |
||
360 | return HasWeight ? ErrorOr<uint64_t>(Max) : std::error_code(); |
||
361 | } |
||
362 | |||
363 | /// Compute and store the weights of every basic block. |
||
364 | /// |
||
365 | /// This populates the BlockWeights map by computing |
||
366 | /// the weights of every basic block in the CFG. |
||
367 | /// |
||
368 | /// \param F The function to query. |
||
369 | template <typename BT> |
||
370 | bool SampleProfileLoaderBaseImpl<BT>::computeBlockWeights(FunctionT &F) { |
||
371 | bool Changed = false; |
||
372 | LLVM_DEBUG(dbgs() << "Block weights\n"); |
||
373 | for (const auto &BB : F) { |
||
374 | ErrorOr<uint64_t> Weight = getBlockWeight(&BB); |
||
375 | if (Weight) { |
||
376 | BlockWeights[&BB] = Weight.get(); |
||
377 | VisitedBlocks.insert(&BB); |
||
378 | Changed = true; |
||
379 | } |
||
380 | LLVM_DEBUG(printBlockWeight(dbgs(), &BB)); |
||
381 | } |
||
382 | |||
383 | return Changed; |
||
384 | } |
||
385 | |||
386 | /// Get the FunctionSamples for an instruction. |
||
387 | /// |
||
388 | /// The FunctionSamples of an instruction \p Inst is the inlined instance |
||
389 | /// in which that instruction is coming from. We traverse the inline stack |
||
390 | /// of that instruction, and match it with the tree nodes in the profile. |
||
391 | /// |
||
392 | /// \param Inst Instruction to query. |
||
393 | /// |
||
394 | /// \returns the FunctionSamples pointer to the inlined instance. |
||
395 | template <typename BT> |
||
396 | const FunctionSamples *SampleProfileLoaderBaseImpl<BT>::findFunctionSamples( |
||
397 | const InstructionT &Inst) const { |
||
398 | const DILocation *DIL = Inst.getDebugLoc(); |
||
399 | if (!DIL) |
||
400 | return Samples; |
||
401 | |||
402 | auto it = DILocation2SampleMap.try_emplace(DIL, nullptr); |
||
403 | if (it.second) { |
||
404 | it.first->second = Samples->findFunctionSamples(DIL, Reader->getRemapper()); |
||
405 | } |
||
406 | return it.first->second; |
||
407 | } |
||
408 | |||
409 | /// Find equivalence classes for the given block. |
||
410 | /// |
||
411 | /// This finds all the blocks that are guaranteed to execute the same |
||
412 | /// number of times as \p BB1. To do this, it traverses all the |
||
413 | /// descendants of \p BB1 in the dominator or post-dominator tree. |
||
414 | /// |
||
415 | /// A block BB2 will be in the same equivalence class as \p BB1 if |
||
416 | /// the following holds: |
||
417 | /// |
||
418 | /// 1- \p BB1 is a descendant of BB2 in the opposite tree. So, if BB2 |
||
419 | /// is a descendant of \p BB1 in the dominator tree, then BB2 should |
||
420 | /// dominate BB1 in the post-dominator tree. |
||
421 | /// |
||
422 | /// 2- Both BB2 and \p BB1 must be in the same loop. |
||
423 | /// |
||
424 | /// For every block BB2 that meets those two requirements, we set BB2's |
||
425 | /// equivalence class to \p BB1. |
||
426 | /// |
||
427 | /// \param BB1 Block to check. |
||
428 | /// \param Descendants Descendants of \p BB1 in either the dom or pdom tree. |
||
429 | /// \param DomTree Opposite dominator tree. If \p Descendants is filled |
||
430 | /// with blocks from \p BB1's dominator tree, then |
||
431 | /// this is the post-dominator tree, and vice versa. |
||
432 | template <typename BT> |
||
433 | void SampleProfileLoaderBaseImpl<BT>::findEquivalencesFor( |
||
434 | BasicBlockT *BB1, ArrayRef<BasicBlockT *> Descendants, |
||
435 | PostDominatorTreeT *DomTree) { |
||
436 | const BasicBlockT *EC = EquivalenceClass[BB1]; |
||
437 | uint64_t Weight = BlockWeights[EC]; |
||
438 | for (const auto *BB2 : Descendants) { |
||
439 | bool IsDomParent = DomTree->dominates(BB2, BB1); |
||
440 | bool IsInSameLoop = LI->getLoopFor(BB1) == LI->getLoopFor(BB2); |
||
441 | if (BB1 != BB2 && IsDomParent && IsInSameLoop) { |
||
442 | EquivalenceClass[BB2] = EC; |
||
443 | // If BB2 is visited, then the entire EC should be marked as visited. |
||
444 | if (VisitedBlocks.count(BB2)) { |
||
445 | VisitedBlocks.insert(EC); |
||
446 | } |
||
447 | |||
448 | // If BB2 is heavier than BB1, make BB2 have the same weight |
||
449 | // as BB1. |
||
450 | // |
||
451 | // Note that we don't worry about the opposite situation here |
||
452 | // (when BB2 is lighter than BB1). We will deal with this |
||
453 | // during the propagation phase. Right now, we just want to |
||
454 | // make sure that BB1 has the largest weight of all the |
||
455 | // members of its equivalence set. |
||
456 | Weight = std::max(Weight, BlockWeights[BB2]); |
||
457 | } |
||
458 | } |
||
459 | const BasicBlockT *EntryBB = getEntryBB(EC->getParent()); |
||
460 | if (EC == EntryBB) { |
||
461 | BlockWeights[EC] = Samples->getHeadSamples() + 1; |
||
462 | } else { |
||
463 | BlockWeights[EC] = Weight; |
||
464 | } |
||
465 | } |
||
466 | |||
467 | /// Find equivalence classes. |
||
468 | /// |
||
469 | /// Since samples may be missing from blocks, we can fill in the gaps by setting |
||
470 | /// the weights of all the blocks in the same equivalence class to the same |
||
471 | /// weight. To compute the concept of equivalence, we use dominance and loop |
||
472 | /// information. Two blocks B1 and B2 are in the same equivalence class if B1 |
||
473 | /// dominates B2, B2 post-dominates B1 and both are in the same loop. |
||
474 | /// |
||
475 | /// \param F The function to query. |
||
476 | template <typename BT> |
||
477 | void SampleProfileLoaderBaseImpl<BT>::findEquivalenceClasses(FunctionT &F) { |
||
478 | SmallVector<BasicBlockT *, 8> DominatedBBs; |
||
479 | LLVM_DEBUG(dbgs() << "\nBlock equivalence classes\n"); |
||
480 | // Find equivalence sets based on dominance and post-dominance information. |
||
481 | for (auto &BB : F) { |
||
482 | BasicBlockT *BB1 = &BB; |
||
483 | |||
484 | // Compute BB1's equivalence class once. |
||
485 | if (EquivalenceClass.count(BB1)) { |
||
486 | LLVM_DEBUG(printBlockEquivalence(dbgs(), BB1)); |
||
487 | continue; |
||
488 | } |
||
489 | |||
490 | // By default, blocks are in their own equivalence class. |
||
491 | EquivalenceClass[BB1] = BB1; |
||
492 | |||
493 | // Traverse all the blocks dominated by BB1. We are looking for |
||
494 | // every basic block BB2 such that: |
||
495 | // |
||
496 | // 1- BB1 dominates BB2. |
||
497 | // 2- BB2 post-dominates BB1. |
||
498 | // 3- BB1 and BB2 are in the same loop nest. |
||
499 | // |
||
500 | // If all those conditions hold, it means that BB2 is executed |
||
501 | // as many times as BB1, so they are placed in the same equivalence |
||
502 | // class by making BB2's equivalence class be BB1. |
||
503 | DominatedBBs.clear(); |
||
504 | DT->getDescendants(BB1, DominatedBBs); |
||
505 | findEquivalencesFor(BB1, DominatedBBs, &*PDT); |
||
506 | |||
507 | LLVM_DEBUG(printBlockEquivalence(dbgs(), BB1)); |
||
508 | } |
||
509 | |||
510 | // Assign weights to equivalence classes. |
||
511 | // |
||
512 | // All the basic blocks in the same equivalence class will execute |
||
513 | // the same number of times. Since we know that the head block in |
||
514 | // each equivalence class has the largest weight, assign that weight |
||
515 | // to all the blocks in that equivalence class. |
||
516 | LLVM_DEBUG( |
||
517 | dbgs() << "\nAssign the same weight to all blocks in the same class\n"); |
||
518 | for (auto &BI : F) { |
||
519 | const BasicBlockT *BB = &BI; |
||
520 | const BasicBlockT *EquivBB = EquivalenceClass[BB]; |
||
521 | if (BB != EquivBB) |
||
522 | BlockWeights[BB] = BlockWeights[EquivBB]; |
||
523 | LLVM_DEBUG(printBlockWeight(dbgs(), BB)); |
||
524 | } |
||
525 | } |
||
526 | |||
527 | /// Visit the given edge to decide if it has a valid weight. |
||
528 | /// |
||
529 | /// If \p E has not been visited before, we copy to \p UnknownEdge |
||
530 | /// and increment the count of unknown edges. |
||
531 | /// |
||
532 | /// \param E Edge to visit. |
||
533 | /// \param NumUnknownEdges Current number of unknown edges. |
||
534 | /// \param UnknownEdge Set if E has not been visited before. |
||
535 | /// |
||
536 | /// \returns E's weight, if known. Otherwise, return 0. |
||
537 | template <typename BT> |
||
538 | uint64_t SampleProfileLoaderBaseImpl<BT>::visitEdge(Edge E, |
||
539 | unsigned *NumUnknownEdges, |
||
540 | Edge *UnknownEdge) { |
||
541 | if (!VisitedEdges.count(E)) { |
||
542 | (*NumUnknownEdges)++; |
||
543 | *UnknownEdge = E; |
||
544 | return 0; |
||
545 | } |
||
546 | |||
547 | return EdgeWeights[E]; |
||
548 | } |
||
549 | |||
550 | /// Propagate weights through incoming/outgoing edges. |
||
551 | /// |
||
552 | /// If the weight of a basic block is known, and there is only one edge |
||
553 | /// with an unknown weight, we can calculate the weight of that edge. |
||
554 | /// |
||
555 | /// Similarly, if all the edges have a known count, we can calculate the |
||
556 | /// count of the basic block, if needed. |
||
557 | /// |
||
558 | /// \param F Function to process. |
||
559 | /// \param UpdateBlockCount Whether we should update basic block counts that |
||
560 | /// has already been annotated. |
||
561 | /// |
||
562 | /// \returns True if new weights were assigned to edges or blocks. |
||
563 | template <typename BT> |
||
564 | bool SampleProfileLoaderBaseImpl<BT>::propagateThroughEdges( |
||
565 | FunctionT &F, bool UpdateBlockCount) { |
||
566 | bool Changed = false; |
||
567 | LLVM_DEBUG(dbgs() << "\nPropagation through edges\n"); |
||
568 | for (const auto &BI : F) { |
||
569 | const BasicBlockT *BB = &BI; |
||
570 | const BasicBlockT *EC = EquivalenceClass[BB]; |
||
571 | |||
572 | // Visit all the predecessor and successor edges to determine |
||
573 | // which ones have a weight assigned already. Note that it doesn't |
||
574 | // matter that we only keep track of a single unknown edge. The |
||
575 | // only case we are interested in handling is when only a single |
||
576 | // edge is unknown (see setEdgeOrBlockWeight). |
||
577 | for (unsigned i = 0; i < 2; i++) { |
||
578 | uint64_t TotalWeight = 0; |
||
579 | unsigned NumUnknownEdges = 0, NumTotalEdges = 0; |
||
580 | Edge UnknownEdge, SelfReferentialEdge, SingleEdge; |
||
581 | |||
582 | if (i == 0) { |
||
583 | // First, visit all predecessor edges. |
||
584 | NumTotalEdges = Predecessors[BB].size(); |
||
585 | for (auto *Pred : Predecessors[BB]) { |
||
586 | Edge E = std::make_pair(Pred, BB); |
||
587 | TotalWeight += visitEdge(E, &NumUnknownEdges, &UnknownEdge); |
||
588 | if (E.first == E.second) |
||
589 | SelfReferentialEdge = E; |
||
590 | } |
||
591 | if (NumTotalEdges == 1) { |
||
592 | SingleEdge = std::make_pair(Predecessors[BB][0], BB); |
||
593 | } |
||
594 | } else { |
||
595 | // On the second round, visit all successor edges. |
||
596 | NumTotalEdges = Successors[BB].size(); |
||
597 | for (auto *Succ : Successors[BB]) { |
||
598 | Edge E = std::make_pair(BB, Succ); |
||
599 | TotalWeight += visitEdge(E, &NumUnknownEdges, &UnknownEdge); |
||
600 | } |
||
601 | if (NumTotalEdges == 1) { |
||
602 | SingleEdge = std::make_pair(BB, Successors[BB][0]); |
||
603 | } |
||
604 | } |
||
605 | |||
606 | // After visiting all the edges, there are three cases that we |
||
607 | // can handle immediately: |
||
608 | // |
||
609 | // - All the edge weights are known (i.e., NumUnknownEdges == 0). |
||
610 | // In this case, we simply check that the sum of all the edges |
||
611 | // is the same as BB's weight. If not, we change BB's weight |
||
612 | // to match. Additionally, if BB had not been visited before, |
||
613 | // we mark it visited. |
||
614 | // |
||
615 | // - Only one edge is unknown and BB has already been visited. |
||
616 | // In this case, we can compute the weight of the edge by |
||
617 | // subtracting the total block weight from all the known |
||
618 | // edge weights. If the edges weight more than BB, then the |
||
619 | // edge of the last remaining edge is set to zero. |
||
620 | // |
||
621 | // - There exists a self-referential edge and the weight of BB is |
||
622 | // known. In this case, this edge can be based on BB's weight. |
||
623 | // We add up all the other known edges and set the weight on |
||
624 | // the self-referential edge as we did in the previous case. |
||
625 | // |
||
626 | // In any other case, we must continue iterating. Eventually, |
||
627 | // all edges will get a weight, or iteration will stop when |
||
628 | // it reaches SampleProfileMaxPropagateIterations. |
||
629 | if (NumUnknownEdges <= 1) { |
||
630 | uint64_t &BBWeight = BlockWeights[EC]; |
||
631 | if (NumUnknownEdges == 0) { |
||
632 | if (!VisitedBlocks.count(EC)) { |
||
633 | // If we already know the weight of all edges, the weight of the |
||
634 | // basic block can be computed. It should be no larger than the sum |
||
635 | // of all edge weights. |
||
636 | if (TotalWeight > BBWeight) { |
||
637 | BBWeight = TotalWeight; |
||
638 | Changed = true; |
||
639 | LLVM_DEBUG(dbgs() << "All edge weights for " << BB->getName() |
||
640 | << " known. Set weight for block: "; |
||
641 | printBlockWeight(dbgs(), BB);); |
||
642 | } |
||
643 | } else if (NumTotalEdges == 1 && |
||
644 | EdgeWeights[SingleEdge] < BlockWeights[EC]) { |
||
645 | // If there is only one edge for the visited basic block, use the |
||
646 | // block weight to adjust edge weight if edge weight is smaller. |
||
647 | EdgeWeights[SingleEdge] = BlockWeights[EC]; |
||
648 | Changed = true; |
||
649 | } |
||
650 | } else if (NumUnknownEdges == 1 && VisitedBlocks.count(EC)) { |
||
651 | // If there is a single unknown edge and the block has been |
||
652 | // visited, then we can compute E's weight. |
||
653 | if (BBWeight >= TotalWeight) |
||
654 | EdgeWeights[UnknownEdge] = BBWeight - TotalWeight; |
||
655 | else |
||
656 | EdgeWeights[UnknownEdge] = 0; |
||
657 | const BasicBlockT *OtherEC; |
||
658 | if (i == 0) |
||
659 | OtherEC = EquivalenceClass[UnknownEdge.first]; |
||
660 | else |
||
661 | OtherEC = EquivalenceClass[UnknownEdge.second]; |
||
662 | // Edge weights should never exceed the BB weights it connects. |
||
663 | if (VisitedBlocks.count(OtherEC) && |
||
664 | EdgeWeights[UnknownEdge] > BlockWeights[OtherEC]) |
||
665 | EdgeWeights[UnknownEdge] = BlockWeights[OtherEC]; |
||
666 | VisitedEdges.insert(UnknownEdge); |
||
667 | Changed = true; |
||
668 | LLVM_DEBUG(dbgs() << "Set weight for edge: "; |
||
669 | printEdgeWeight(dbgs(), UnknownEdge)); |
||
670 | } |
||
671 | } else if (VisitedBlocks.count(EC) && BlockWeights[EC] == 0) { |
||
672 | // If a block Weights 0, all its in/out edges should weight 0. |
||
673 | if (i == 0) { |
||
674 | for (auto *Pred : Predecessors[BB]) { |
||
675 | Edge E = std::make_pair(Pred, BB); |
||
676 | EdgeWeights[E] = 0; |
||
677 | VisitedEdges.insert(E); |
||
678 | } |
||
679 | } else { |
||
680 | for (auto *Succ : Successors[BB]) { |
||
681 | Edge E = std::make_pair(BB, Succ); |
||
682 | EdgeWeights[E] = 0; |
||
683 | VisitedEdges.insert(E); |
||
684 | } |
||
685 | } |
||
686 | } else if (SelfReferentialEdge.first && VisitedBlocks.count(EC)) { |
||
687 | uint64_t &BBWeight = BlockWeights[BB]; |
||
688 | // We have a self-referential edge and the weight of BB is known. |
||
689 | if (BBWeight >= TotalWeight) |
||
690 | EdgeWeights[SelfReferentialEdge] = BBWeight - TotalWeight; |
||
691 | else |
||
692 | EdgeWeights[SelfReferentialEdge] = 0; |
||
693 | VisitedEdges.insert(SelfReferentialEdge); |
||
694 | Changed = true; |
||
695 | LLVM_DEBUG(dbgs() << "Set self-referential edge weight to: "; |
||
696 | printEdgeWeight(dbgs(), SelfReferentialEdge)); |
||
697 | } |
||
698 | if (UpdateBlockCount && !VisitedBlocks.count(EC) && TotalWeight > 0) { |
||
699 | BlockWeights[EC] = TotalWeight; |
||
700 | VisitedBlocks.insert(EC); |
||
701 | Changed = true; |
||
702 | } |
||
703 | } |
||
704 | } |
||
705 | |||
706 | return Changed; |
||
707 | } |
||
708 | |||
709 | /// Build in/out edge lists for each basic block in the CFG. |
||
710 | /// |
||
711 | /// We are interested in unique edges. If a block B1 has multiple |
||
712 | /// edges to another block B2, we only add a single B1->B2 edge. |
||
713 | template <typename BT> |
||
714 | void SampleProfileLoaderBaseImpl<BT>::buildEdges(FunctionT &F) { |
||
715 | for (auto &BI : F) { |
||
716 | BasicBlockT *B1 = &BI; |
||
717 | |||
718 | // Add predecessors for B1. |
||
719 | SmallPtrSet<BasicBlockT *, 16> Visited; |
||
720 | if (!Predecessors[B1].empty()) |
||
721 | llvm_unreachable("Found a stale predecessors list in a basic block."); |
||
722 | for (auto *B2 : getPredecessors(B1)) |
||
723 | if (Visited.insert(B2).second) |
||
724 | Predecessors[B1].push_back(B2); |
||
725 | |||
726 | // Add successors for B1. |
||
727 | Visited.clear(); |
||
728 | if (!Successors[B1].empty()) |
||
729 | llvm_unreachable("Found a stale successors list in a basic block."); |
||
730 | for (auto *B2 : getSuccessors(B1)) |
||
731 | if (Visited.insert(B2).second) |
||
732 | Successors[B1].push_back(B2); |
||
733 | } |
||
734 | } |
||
735 | |||
736 | /// Propagate weights into edges |
||
737 | /// |
||
738 | /// The following rules are applied to every block BB in the CFG: |
||
739 | /// |
||
740 | /// - If BB has a single predecessor/successor, then the weight |
||
741 | /// of that edge is the weight of the block. |
||
742 | /// |
||
743 | /// - If all incoming or outgoing edges are known except one, and the |
||
744 | /// weight of the block is already known, the weight of the unknown |
||
745 | /// edge will be the weight of the block minus the sum of all the known |
||
746 | /// edges. If the sum of all the known edges is larger than BB's weight, |
||
747 | /// we set the unknown edge weight to zero. |
||
748 | /// |
||
749 | /// - If there is a self-referential edge, and the weight of the block is |
||
750 | /// known, the weight for that edge is set to the weight of the block |
||
751 | /// minus the weight of the other incoming edges to that block (if |
||
752 | /// known). |
||
753 | template <typename BT> |
||
754 | void SampleProfileLoaderBaseImpl<BT>::propagateWeights(FunctionT &F) { |
||
755 | // Flow-based profile inference is only usable with BasicBlock instantiation |
||
756 | // of SampleProfileLoaderBaseImpl. |
||
757 | if (SampleProfileUseProfi) { |
||
758 | // Prepare block sample counts for inference. |
||
759 | BlockWeightMap SampleBlockWeights; |
||
760 | for (const auto &BI : F) { |
||
761 | ErrorOr<uint64_t> Weight = getBlockWeight(&BI); |
||
762 | if (Weight) |
||
763 | SampleBlockWeights[&BI] = Weight.get(); |
||
764 | } |
||
765 | // Fill in BlockWeights and EdgeWeights using an inference algorithm. |
||
766 | applyProfi(F, Successors, SampleBlockWeights, BlockWeights, EdgeWeights); |
||
767 | } else { |
||
768 | bool Changed = true; |
||
769 | unsigned I = 0; |
||
770 | |||
771 | // If BB weight is larger than its corresponding loop's header BB weight, |
||
772 | // use the BB weight to replace the loop header BB weight. |
||
773 | for (auto &BI : F) { |
||
774 | BasicBlockT *BB = &BI; |
||
775 | LoopT *L = LI->getLoopFor(BB); |
||
776 | if (!L) { |
||
777 | continue; |
||
778 | } |
||
779 | BasicBlockT *Header = L->getHeader(); |
||
780 | if (Header && BlockWeights[BB] > BlockWeights[Header]) { |
||
781 | BlockWeights[Header] = BlockWeights[BB]; |
||
782 | } |
||
783 | } |
||
784 | |||
785 | // Propagate until we converge or we go past the iteration limit. |
||
786 | while (Changed && I++ < SampleProfileMaxPropagateIterations) { |
||
787 | Changed = propagateThroughEdges(F, false); |
||
788 | } |
||
789 | |||
790 | // The first propagation propagates BB counts from annotated BBs to unknown |
||
791 | // BBs. The 2nd propagation pass resets edges weights, and use all BB |
||
792 | // weights to propagate edge weights. |
||
793 | VisitedEdges.clear(); |
||
794 | Changed = true; |
||
795 | while (Changed && I++ < SampleProfileMaxPropagateIterations) { |
||
796 | Changed = propagateThroughEdges(F, false); |
||
797 | } |
||
798 | |||
799 | // The 3rd propagation pass allows adjust annotated BB weights that are |
||
800 | // obviously wrong. |
||
801 | Changed = true; |
||
802 | while (Changed && I++ < SampleProfileMaxPropagateIterations) { |
||
803 | Changed = propagateThroughEdges(F, true); |
||
804 | } |
||
805 | } |
||
806 | } |
||
807 | |||
808 | template <typename BT> |
||
809 | void SampleProfileLoaderBaseImpl<BT>::applyProfi( |
||
810 | FunctionT &F, BlockEdgeMap &Successors, BlockWeightMap &SampleBlockWeights, |
||
811 | BlockWeightMap &BlockWeights, EdgeWeightMap &EdgeWeights) { |
||
812 | auto Infer = SampleProfileInference<BT>(F, Successors, SampleBlockWeights); |
||
813 | Infer.apply(BlockWeights, EdgeWeights); |
||
814 | } |
||
815 | |||
816 | /// Generate branch weight metadata for all branches in \p F. |
||
817 | /// |
||
818 | /// Branch weights are computed out of instruction samples using a |
||
819 | /// propagation heuristic. Propagation proceeds in 3 phases: |
||
820 | /// |
||
821 | /// 1- Assignment of block weights. All the basic blocks in the function |
||
822 | /// are initial assigned the same weight as their most frequently |
||
823 | /// executed instruction. |
||
824 | /// |
||
825 | /// 2- Creation of equivalence classes. Since samples may be missing from |
||
826 | /// blocks, we can fill in the gaps by setting the weights of all the |
||
827 | /// blocks in the same equivalence class to the same weight. To compute |
||
828 | /// the concept of equivalence, we use dominance and loop information. |
||
829 | /// Two blocks B1 and B2 are in the same equivalence class if B1 |
||
830 | /// dominates B2, B2 post-dominates B1 and both are in the same loop. |
||
831 | /// |
||
832 | /// 3- Propagation of block weights into edges. This uses a simple |
||
833 | /// propagation heuristic. The following rules are applied to every |
||
834 | /// block BB in the CFG: |
||
835 | /// |
||
836 | /// - If BB has a single predecessor/successor, then the weight |
||
837 | /// of that edge is the weight of the block. |
||
838 | /// |
||
839 | /// - If all the edges are known except one, and the weight of the |
||
840 | /// block is already known, the weight of the unknown edge will |
||
841 | /// be the weight of the block minus the sum of all the known |
||
842 | /// edges. If the sum of all the known edges is larger than BB's weight, |
||
843 | /// we set the unknown edge weight to zero. |
||
844 | /// |
||
845 | /// - If there is a self-referential edge, and the weight of the block is |
||
846 | /// known, the weight for that edge is set to the weight of the block |
||
847 | /// minus the weight of the other incoming edges to that block (if |
||
848 | /// known). |
||
849 | /// |
||
850 | /// Since this propagation is not guaranteed to finalize for every CFG, we |
||
851 | /// only allow it to proceed for a limited number of iterations (controlled |
||
852 | /// by -sample-profile-max-propagate-iterations). |
||
853 | /// |
||
854 | /// FIXME: Try to replace this propagation heuristic with a scheme |
||
855 | /// that is guaranteed to finalize. A work-list approach similar to |
||
856 | /// the standard value propagation algorithm used by SSA-CCP might |
||
857 | /// work here. |
||
858 | /// |
||
859 | /// \param F The function to query. |
||
860 | /// |
||
861 | /// \returns true if \p F was modified. Returns false, otherwise. |
||
862 | template <typename BT> |
||
863 | bool SampleProfileLoaderBaseImpl<BT>::computeAndPropagateWeights( |
||
864 | FunctionT &F, const DenseSet<GlobalValue::GUID> &InlinedGUIDs) { |
||
865 | bool Changed = (InlinedGUIDs.size() != 0); |
||
866 | |||
867 | // Compute basic block weights. |
||
868 | Changed |= computeBlockWeights(F); |
||
869 | |||
870 | if (Changed) { |
||
871 | // Initialize propagation. |
||
872 | initWeightPropagation(F, InlinedGUIDs); |
||
873 | |||
874 | // Propagate weights to all edges. |
||
875 | propagateWeights(F); |
||
876 | |||
877 | // Post-process propagated weights. |
||
878 | finalizeWeightPropagation(F, InlinedGUIDs); |
||
879 | } |
||
880 | |||
881 | return Changed; |
||
882 | } |
||
883 | |||
884 | template <typename BT> |
||
885 | void SampleProfileLoaderBaseImpl<BT>::initWeightPropagation( |
||
886 | FunctionT &F, const DenseSet<GlobalValue::GUID> &InlinedGUIDs) { |
||
887 | // Add an entry count to the function using the samples gathered at the |
||
888 | // function entry. |
||
889 | // Sets the GUIDs that are inlined in the profiled binary. This is used |
||
890 | // for ThinLink to make correct liveness analysis, and also make the IR |
||
891 | // match the profiled binary before annotation. |
||
892 | getFunction(F).setEntryCount( |
||
893 | ProfileCount(Samples->getHeadSamples() + 1, Function::PCT_Real), |
||
894 | &InlinedGUIDs); |
||
895 | |||
896 | if (!SampleProfileUseProfi) { |
||
897 | // Compute dominance and loop info needed for propagation. |
||
898 | computeDominanceAndLoopInfo(F); |
||
899 | |||
900 | // Find equivalence classes. |
||
901 | findEquivalenceClasses(F); |
||
902 | } |
||
903 | |||
904 | // Before propagation starts, build, for each block, a list of |
||
905 | // unique predecessors and successors. This is necessary to handle |
||
906 | // identical edges in multiway branches. Since we visit all blocks and all |
||
907 | // edges of the CFG, it is cleaner to build these lists once at the start |
||
908 | // of the pass. |
||
909 | buildEdges(F); |
||
910 | } |
||
911 | |||
912 | template <typename BT> |
||
913 | void SampleProfileLoaderBaseImpl<BT>::finalizeWeightPropagation( |
||
914 | FunctionT &F, const DenseSet<GlobalValue::GUID> &InlinedGUIDs) { |
||
915 | // If we utilize a flow-based count inference, then we trust the computed |
||
916 | // counts and set the entry count as computed by the algorithm. This is |
||
917 | // primarily done to sync the counts produced by profi and BFI inference, |
||
918 | // which uses the entry count for mass propagation. |
||
919 | // If profi produces a zero-value for the entry count, we fallback to |
||
920 | // Samples->getHeadSamples() + 1 to avoid functions with zero count. |
||
921 | if (SampleProfileUseProfi) { |
||
922 | const BasicBlockT *EntryBB = getEntryBB(&F); |
||
923 | ErrorOr<uint64_t> EntryWeight = getBlockWeight(EntryBB); |
||
924 | if (BlockWeights[EntryBB] > 0) { |
||
925 | getFunction(F).setEntryCount( |
||
926 | ProfileCount(BlockWeights[EntryBB], Function::PCT_Real), |
||
927 | &InlinedGUIDs); |
||
928 | } |
||
929 | } |
||
930 | } |
||
931 | |||
932 | template <typename BT> |
||
933 | void SampleProfileLoaderBaseImpl<BT>::emitCoverageRemarks(FunctionT &F) { |
||
934 | // If coverage checking was requested, compute it now. |
||
935 | const Function &Func = getFunction(F); |
||
936 | if (SampleProfileRecordCoverage) { |
||
937 | unsigned Used = CoverageTracker.countUsedRecords(Samples, PSI); |
||
938 | unsigned Total = CoverageTracker.countBodyRecords(Samples, PSI); |
||
939 | unsigned Coverage = CoverageTracker.computeCoverage(Used, Total); |
||
940 | if (Coverage < SampleProfileRecordCoverage) { |
||
941 | Func.getContext().diagnose(DiagnosticInfoSampleProfile( |
||
942 | Func.getSubprogram()->getFilename(), getFunctionLoc(F), |
||
943 | Twine(Used) + " of " + Twine(Total) + " available profile records (" + |
||
944 | Twine(Coverage) + "%) were applied", |
||
945 | DS_Warning)); |
||
946 | } |
||
947 | } |
||
948 | |||
949 | if (SampleProfileSampleCoverage) { |
||
950 | uint64_t Used = CoverageTracker.getTotalUsedSamples(); |
||
951 | uint64_t Total = CoverageTracker.countBodySamples(Samples, PSI); |
||
952 | unsigned Coverage = CoverageTracker.computeCoverage(Used, Total); |
||
953 | if (Coverage < SampleProfileSampleCoverage) { |
||
954 | Func.getContext().diagnose(DiagnosticInfoSampleProfile( |
||
955 | Func.getSubprogram()->getFilename(), getFunctionLoc(F), |
||
956 | Twine(Used) + " of " + Twine(Total) + " available profile samples (" + |
||
957 | Twine(Coverage) + "%) were applied", |
||
958 | DS_Warning)); |
||
959 | } |
||
960 | } |
||
961 | } |
||
962 | |||
963 | /// Get the line number for the function header. |
||
964 | /// |
||
965 | /// This looks up function \p F in the current compilation unit and |
||
966 | /// retrieves the line number where the function is defined. This is |
||
967 | /// line 0 for all the samples read from the profile file. Every line |
||
968 | /// number is relative to this line. |
||
969 | /// |
||
970 | /// \param F Function object to query. |
||
971 | /// |
||
972 | /// \returns the line number where \p F is defined. If it returns 0, |
||
973 | /// it means that there is no debug information available for \p F. |
||
974 | template <typename BT> |
||
975 | unsigned SampleProfileLoaderBaseImpl<BT>::getFunctionLoc(FunctionT &F) { |
||
976 | const Function &Func = getFunction(F); |
||
977 | if (DISubprogram *S = Func.getSubprogram()) |
||
978 | return S->getLine(); |
||
979 | |||
980 | if (NoWarnSampleUnused) |
||
981 | return 0; |
||
982 | |||
983 | // If the start of \p F is missing, emit a diagnostic to inform the user |
||
984 | // about the missed opportunity. |
||
985 | Func.getContext().diagnose(DiagnosticInfoSampleProfile( |
||
986 | "No debug information found in function " + Func.getName() + |
||
987 | ": Function profile not used", |
||
988 | DS_Warning)); |
||
989 | return 0; |
||
990 | } |
||
991 | |||
992 | template <typename BT> |
||
993 | void SampleProfileLoaderBaseImpl<BT>::computeDominanceAndLoopInfo( |
||
994 | FunctionT &F) { |
||
995 | DT.reset(new DominatorTree); |
||
996 | DT->recalculate(F); |
||
997 | |||
998 | PDT.reset(new PostDominatorTree(F)); |
||
999 | |||
1000 | LI.reset(new LoopInfo); |
||
1001 | LI->analyze(*DT); |
||
1002 | } |
||
1003 | |||
1004 | #undef DEBUG_TYPE |
||
1005 | |||
1006 | } // namespace llvm |
||
1007 | #endif // LLVM_TRANSFORMS_UTILS_SAMPLEPROFILELOADERBASEIMPL_H |