Subversion Repositories QNX 8.QNX8 LLVM/Clang compiler suite

Rev

Details | Last modification | View Log | RSS feed

Rev Author Line No. Line
14 pmbaty 1
////===- SampleProfileLoadBaseImpl.h - Profile loader base impl --*- C++-*-===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
/// \file
10
/// This file provides the interface for the sampled PGO profile loader base
11
/// implementation.
12
//
13
//===----------------------------------------------------------------------===//
14
 
15
#ifndef LLVM_TRANSFORMS_UTILS_SAMPLEPROFILELOADERBASEIMPL_H
16
#define LLVM_TRANSFORMS_UTILS_SAMPLEPROFILELOADERBASEIMPL_H
17
 
18
#include "llvm/ADT/ArrayRef.h"
19
#include "llvm/ADT/DenseMap.h"
20
#include "llvm/ADT/DenseSet.h"
21
#include "llvm/ADT/SmallPtrSet.h"
22
#include "llvm/ADT/SmallSet.h"
23
#include "llvm/ADT/SmallVector.h"
24
#include "llvm/Analysis/LoopInfo.h"
25
#include "llvm/Analysis/OptimizationRemarkEmitter.h"
26
#include "llvm/Analysis/PostDominators.h"
27
#include "llvm/IR/BasicBlock.h"
28
#include "llvm/IR/CFG.h"
29
#include "llvm/IR/DebugInfoMetadata.h"
30
#include "llvm/IR/DebugLoc.h"
31
#include "llvm/IR/Dominators.h"
32
#include "llvm/IR/Function.h"
33
#include "llvm/IR/Instruction.h"
34
#include "llvm/IR/Instructions.h"
35
#include "llvm/IR/Module.h"
36
#include "llvm/ProfileData/SampleProf.h"
37
#include "llvm/ProfileData/SampleProfReader.h"
38
#include "llvm/Support/CommandLine.h"
39
#include "llvm/Support/GenericDomTree.h"
40
#include "llvm/Support/raw_ostream.h"
41
#include "llvm/Transforms/Utils/SampleProfileInference.h"
42
#include "llvm/Transforms/Utils/SampleProfileLoaderBaseUtil.h"
43
 
44
namespace llvm {
45
using namespace sampleprof;
46
using namespace sampleprofutil;
47
using ProfileCount = Function::ProfileCount;
48
 
49
#define DEBUG_TYPE "sample-profile-impl"
50
 
51
namespace afdo_detail {
52
 
53
template <typename BlockT> struct IRTraits;
54
template <> struct IRTraits<BasicBlock> {
55
  using InstructionT = Instruction;
56
  using BasicBlockT = BasicBlock;
57
  using FunctionT = Function;
58
  using BlockFrequencyInfoT = BlockFrequencyInfo;
59
  using LoopT = Loop;
60
  using LoopInfoPtrT = std::unique_ptr<LoopInfo>;
61
  using DominatorTreePtrT = std::unique_ptr<DominatorTree>;
62
  using PostDominatorTreeT = PostDominatorTree;
63
  using PostDominatorTreePtrT = std::unique_ptr<PostDominatorTree>;
64
  using OptRemarkEmitterT = OptimizationRemarkEmitter;
65
  using OptRemarkAnalysisT = OptimizationRemarkAnalysis;
66
  using PredRangeT = pred_range;
67
  using SuccRangeT = succ_range;
68
  static Function &getFunction(Function &F) { return F; }
69
  static const BasicBlock *getEntryBB(const Function *F) {
70
    return &F->getEntryBlock();
71
  }
72
  static pred_range getPredecessors(BasicBlock *BB) { return predecessors(BB); }
73
  static succ_range getSuccessors(BasicBlock *BB) { return successors(BB); }
74
};
75
 
76
} // end namespace afdo_detail
77
 
78
extern cl::opt<bool> SampleProfileUseProfi;
79
 
80
template <typename BT> class SampleProfileLoaderBaseImpl {
81
public:
82
  SampleProfileLoaderBaseImpl(std::string Name, std::string RemapName)
83
      : Filename(Name), RemappingFilename(RemapName) {}
84
  void dump() { Reader->dump(); }
85
 
86
  using InstructionT = typename afdo_detail::IRTraits<BT>::InstructionT;
87
  using BasicBlockT = typename afdo_detail::IRTraits<BT>::BasicBlockT;
88
  using BlockFrequencyInfoT =
89
      typename afdo_detail::IRTraits<BT>::BlockFrequencyInfoT;
90
  using FunctionT = typename afdo_detail::IRTraits<BT>::FunctionT;
91
  using LoopT = typename afdo_detail::IRTraits<BT>::LoopT;
92
  using LoopInfoPtrT = typename afdo_detail::IRTraits<BT>::LoopInfoPtrT;
93
  using DominatorTreePtrT =
94
      typename afdo_detail::IRTraits<BT>::DominatorTreePtrT;
95
  using PostDominatorTreePtrT =
96
      typename afdo_detail::IRTraits<BT>::PostDominatorTreePtrT;
97
  using PostDominatorTreeT =
98
      typename afdo_detail::IRTraits<BT>::PostDominatorTreeT;
99
  using OptRemarkEmitterT =
100
      typename afdo_detail::IRTraits<BT>::OptRemarkEmitterT;
101
  using OptRemarkAnalysisT =
102
      typename afdo_detail::IRTraits<BT>::OptRemarkAnalysisT;
103
  using PredRangeT = typename afdo_detail::IRTraits<BT>::PredRangeT;
104
  using SuccRangeT = typename afdo_detail::IRTraits<BT>::SuccRangeT;
105
 
106
  using BlockWeightMap = DenseMap<const BasicBlockT *, uint64_t>;
107
  using EquivalenceClassMap =
108
      DenseMap<const BasicBlockT *, const BasicBlockT *>;
109
  using Edge = std::pair<const BasicBlockT *, const BasicBlockT *>;
110
  using EdgeWeightMap = DenseMap<Edge, uint64_t>;
111
  using BlockEdgeMap =
112
      DenseMap<const BasicBlockT *, SmallVector<const BasicBlockT *, 8>>;
113
 
114
protected:
115
  ~SampleProfileLoaderBaseImpl() = default;
116
  friend class SampleCoverageTracker;
117
 
118
  Function &getFunction(FunctionT &F) {
119
    return afdo_detail::IRTraits<BT>::getFunction(F);
120
  }
121
  const BasicBlockT *getEntryBB(const FunctionT *F) {
122
    return afdo_detail::IRTraits<BT>::getEntryBB(F);
123
  }
124
  PredRangeT getPredecessors(BasicBlockT *BB) {
125
    return afdo_detail::IRTraits<BT>::getPredecessors(BB);
126
  }
127
  SuccRangeT getSuccessors(BasicBlockT *BB) {
128
    return afdo_detail::IRTraits<BT>::getSuccessors(BB);
129
  }
130
 
131
  unsigned getFunctionLoc(FunctionT &Func);
132
  virtual ErrorOr<uint64_t> getInstWeight(const InstructionT &Inst);
133
  ErrorOr<uint64_t> getInstWeightImpl(const InstructionT &Inst);
134
  ErrorOr<uint64_t> getBlockWeight(const BasicBlockT *BB);
135
  mutable DenseMap<const DILocation *, const FunctionSamples *>
136
      DILocation2SampleMap;
137
  virtual const FunctionSamples *
138
  findFunctionSamples(const InstructionT &I) const;
139
  void printEdgeWeight(raw_ostream &OS, Edge E);
140
  void printBlockWeight(raw_ostream &OS, const BasicBlockT *BB) const;
141
  void printBlockEquivalence(raw_ostream &OS, const BasicBlockT *BB);
142
  bool computeBlockWeights(FunctionT &F);
143
  void findEquivalenceClasses(FunctionT &F);
144
  void findEquivalencesFor(BasicBlockT *BB1,
145
                           ArrayRef<BasicBlockT *> Descendants,
146
                           PostDominatorTreeT *DomTree);
147
  void propagateWeights(FunctionT &F);
148
  void applyProfi(FunctionT &F, BlockEdgeMap &Successors,
149
                  BlockWeightMap &SampleBlockWeights,
150
                  BlockWeightMap &BlockWeights, EdgeWeightMap &EdgeWeights);
151
  uint64_t visitEdge(Edge E, unsigned *NumUnknownEdges, Edge *UnknownEdge);
152
  void buildEdges(FunctionT &F);
153
  bool propagateThroughEdges(FunctionT &F, bool UpdateBlockCount);
154
  void clearFunctionData(bool ResetDT = true);
155
  void computeDominanceAndLoopInfo(FunctionT &F);
156
  bool
157
  computeAndPropagateWeights(FunctionT &F,
158
                             const DenseSet<GlobalValue::GUID> &InlinedGUIDs);
159
  void initWeightPropagation(FunctionT &F,
160
                             const DenseSet<GlobalValue::GUID> &InlinedGUIDs);
161
  void
162
  finalizeWeightPropagation(FunctionT &F,
163
                            const DenseSet<GlobalValue::GUID> &InlinedGUIDs);
164
  void emitCoverageRemarks(FunctionT &F);
165
 
166
  /// Map basic blocks to their computed weights.
167
  ///
168
  /// The weight of a basic block is defined to be the maximum
169
  /// of all the instruction weights in that block.
170
  BlockWeightMap BlockWeights;
171
 
172
  /// Map edges to their computed weights.
173
  ///
174
  /// Edge weights are computed by propagating basic block weights in
175
  /// SampleProfile::propagateWeights.
176
  EdgeWeightMap EdgeWeights;
177
 
178
  /// Set of visited blocks during propagation.
179
  SmallPtrSet<const BasicBlockT *, 32> VisitedBlocks;
180
 
181
  /// Set of visited edges during propagation.
182
  SmallSet<Edge, 32> VisitedEdges;
183
 
184
  /// Equivalence classes for block weights.
185
  ///
186
  /// Two blocks BB1 and BB2 are in the same equivalence class if they
187
  /// dominate and post-dominate each other, and they are in the same loop
188
  /// nest. When this happens, the two blocks are guaranteed to execute
189
  /// the same number of times.
190
  EquivalenceClassMap EquivalenceClass;
191
 
192
  /// Dominance, post-dominance and loop information.
193
  DominatorTreePtrT DT;
194
  PostDominatorTreePtrT PDT;
195
  LoopInfoPtrT LI;
196
 
197
  /// Predecessors for each basic block in the CFG.
198
  BlockEdgeMap Predecessors;
199
 
200
  /// Successors for each basic block in the CFG.
201
  BlockEdgeMap Successors;
202
 
203
  /// Profile coverage tracker.
204
  SampleCoverageTracker CoverageTracker;
205
 
206
  /// Profile reader object.
207
  std::unique_ptr<SampleProfileReader> Reader;
208
 
209
  /// Samples collected for the body of this function.
210
  FunctionSamples *Samples = nullptr;
211
 
212
  /// Name of the profile file to load.
213
  std::string Filename;
214
 
215
  /// Name of the profile remapping file to load.
216
  std::string RemappingFilename;
217
 
218
  /// Profile Summary Info computed from sample profile.
219
  ProfileSummaryInfo *PSI = nullptr;
220
 
221
  /// Optimization Remark Emitter used to emit diagnostic remarks.
222
  OptRemarkEmitterT *ORE = nullptr;
223
};
224
 
225
/// Clear all the per-function data used to load samples and propagate weights.
226
template <typename BT>
227
void SampleProfileLoaderBaseImpl<BT>::clearFunctionData(bool ResetDT) {
228
  BlockWeights.clear();
229
  EdgeWeights.clear();
230
  VisitedBlocks.clear();
231
  VisitedEdges.clear();
232
  EquivalenceClass.clear();
233
  if (ResetDT) {
234
    DT = nullptr;
235
    PDT = nullptr;
236
    LI = nullptr;
237
  }
238
  Predecessors.clear();
239
  Successors.clear();
240
  CoverageTracker.clear();
241
}
242
 
243
#ifndef NDEBUG
244
/// Print the weight of edge \p E on stream \p OS.
245
///
246
/// \param OS  Stream to emit the output to.
247
/// \param E  Edge to print.
248
template <typename BT>
249
void SampleProfileLoaderBaseImpl<BT>::printEdgeWeight(raw_ostream &OS, Edge E) {
250
  OS << "weight[" << E.first->getName() << "->" << E.second->getName()
251
     << "]: " << EdgeWeights[E] << "\n";
252
}
253
 
254
/// Print the equivalence class of block \p BB on stream \p OS.
255
///
256
/// \param OS  Stream to emit the output to.
257
/// \param BB  Block to print.
258
template <typename BT>
259
void SampleProfileLoaderBaseImpl<BT>::printBlockEquivalence(
260
    raw_ostream &OS, const BasicBlockT *BB) {
261
  const BasicBlockT *Equiv = EquivalenceClass[BB];
262
  OS << "equivalence[" << BB->getName()
263
     << "]: " << ((Equiv) ? EquivalenceClass[BB]->getName() : "NONE") << "\n";
264
}
265
 
266
/// Print the weight of block \p BB on stream \p OS.
267
///
268
/// \param OS  Stream to emit the output to.
269
/// \param BB  Block to print.
270
template <typename BT>
271
void SampleProfileLoaderBaseImpl<BT>::printBlockWeight(
272
    raw_ostream &OS, const BasicBlockT *BB) const {
273
  const auto &I = BlockWeights.find(BB);
274
  uint64_t W = (I == BlockWeights.end() ? 0 : I->second);
275
  OS << "weight[" << BB->getName() << "]: " << W << "\n";
276
}
277
#endif
278
 
279
/// Get the weight for an instruction.
280
///
281
/// The "weight" of an instruction \p Inst is the number of samples
282
/// collected on that instruction at runtime. To retrieve it, we
283
/// need to compute the line number of \p Inst relative to the start of its
284
/// function. We use HeaderLineno to compute the offset. We then
285
/// look up the samples collected for \p Inst using BodySamples.
286
///
287
/// \param Inst Instruction to query.
288
///
289
/// \returns the weight of \p Inst.
290
template <typename BT>
291
ErrorOr<uint64_t>
292
SampleProfileLoaderBaseImpl<BT>::getInstWeight(const InstructionT &Inst) {
293
  return getInstWeightImpl(Inst);
294
}
295
 
296
template <typename BT>
297
ErrorOr<uint64_t>
298
SampleProfileLoaderBaseImpl<BT>::getInstWeightImpl(const InstructionT &Inst) {
299
  const FunctionSamples *FS = findFunctionSamples(Inst);
300
  if (!FS)
301
    return std::error_code();
302
 
303
  const DebugLoc &DLoc = Inst.getDebugLoc();
304
  if (!DLoc)
305
    return std::error_code();
306
 
307
  const DILocation *DIL = DLoc;
308
  uint32_t LineOffset = FunctionSamples::getOffset(DIL);
309
  uint32_t Discriminator;
310
  if (EnableFSDiscriminator)
311
    Discriminator = DIL->getDiscriminator();
312
  else
313
    Discriminator = DIL->getBaseDiscriminator();
314
 
315
  ErrorOr<uint64_t> R = FS->findSamplesAt(LineOffset, Discriminator);
316
  if (R) {
317
    bool FirstMark =
318
        CoverageTracker.markSamplesUsed(FS, LineOffset, Discriminator, R.get());
319
    if (FirstMark) {
320
      ORE->emit([&]() {
321
        OptRemarkAnalysisT Remark(DEBUG_TYPE, "AppliedSamples", &Inst);
322
        Remark << "Applied " << ore::NV("NumSamples", *R);
323
        Remark << " samples from profile (offset: ";
324
        Remark << ore::NV("LineOffset", LineOffset);
325
        if (Discriminator) {
326
          Remark << ".";
327
          Remark << ore::NV("Discriminator", Discriminator);
328
        }
329
        Remark << ")";
330
        return Remark;
331
      });
332
    }
333
    LLVM_DEBUG(dbgs() << "    " << DLoc.getLine() << "." << Discriminator << ":"
334
                      << Inst << " (line offset: " << LineOffset << "."
335
                      << Discriminator << " - weight: " << R.get() << ")\n");
336
  }
337
  return R;
338
}
339
 
340
/// Compute the weight of a basic block.
341
///
342
/// The weight of basic block \p BB is the maximum weight of all the
343
/// instructions in BB.
344
///
345
/// \param BB The basic block to query.
346
///
347
/// \returns the weight for \p BB.
348
template <typename BT>
349
ErrorOr<uint64_t>
350
SampleProfileLoaderBaseImpl<BT>::getBlockWeight(const BasicBlockT *BB) {
351
  uint64_t Max = 0;
352
  bool HasWeight = false;
353
  for (auto &I : *BB) {
354
    const ErrorOr<uint64_t> &R = getInstWeight(I);
355
    if (R) {
356
      Max = std::max(Max, R.get());
357
      HasWeight = true;
358
    }
359
  }
360
  return HasWeight ? ErrorOr<uint64_t>(Max) : std::error_code();
361
}
362
 
363
/// Compute and store the weights of every basic block.
364
///
365
/// This populates the BlockWeights map by computing
366
/// the weights of every basic block in the CFG.
367
///
368
/// \param F The function to query.
369
template <typename BT>
370
bool SampleProfileLoaderBaseImpl<BT>::computeBlockWeights(FunctionT &F) {
371
  bool Changed = false;
372
  LLVM_DEBUG(dbgs() << "Block weights\n");
373
  for (const auto &BB : F) {
374
    ErrorOr<uint64_t> Weight = getBlockWeight(&BB);
375
    if (Weight) {
376
      BlockWeights[&BB] = Weight.get();
377
      VisitedBlocks.insert(&BB);
378
      Changed = true;
379
    }
380
    LLVM_DEBUG(printBlockWeight(dbgs(), &BB));
381
  }
382
 
383
  return Changed;
384
}
385
 
386
/// Get the FunctionSamples for an instruction.
387
///
388
/// The FunctionSamples of an instruction \p Inst is the inlined instance
389
/// in which that instruction is coming from. We traverse the inline stack
390
/// of that instruction, and match it with the tree nodes in the profile.
391
///
392
/// \param Inst Instruction to query.
393
///
394
/// \returns the FunctionSamples pointer to the inlined instance.
395
template <typename BT>
396
const FunctionSamples *SampleProfileLoaderBaseImpl<BT>::findFunctionSamples(
397
    const InstructionT &Inst) const {
398
  const DILocation *DIL = Inst.getDebugLoc();
399
  if (!DIL)
400
    return Samples;
401
 
402
  auto it = DILocation2SampleMap.try_emplace(DIL, nullptr);
403
  if (it.second) {
404
    it.first->second = Samples->findFunctionSamples(DIL, Reader->getRemapper());
405
  }
406
  return it.first->second;
407
}
408
 
409
/// Find equivalence classes for the given block.
410
///
411
/// This finds all the blocks that are guaranteed to execute the same
412
/// number of times as \p BB1. To do this, it traverses all the
413
/// descendants of \p BB1 in the dominator or post-dominator tree.
414
///
415
/// A block BB2 will be in the same equivalence class as \p BB1 if
416
/// the following holds:
417
///
418
/// 1- \p BB1 is a descendant of BB2 in the opposite tree. So, if BB2
419
///    is a descendant of \p BB1 in the dominator tree, then BB2 should
420
///    dominate BB1 in the post-dominator tree.
421
///
422
/// 2- Both BB2 and \p BB1 must be in the same loop.
423
///
424
/// For every block BB2 that meets those two requirements, we set BB2's
425
/// equivalence class to \p BB1.
426
///
427
/// \param BB1  Block to check.
428
/// \param Descendants  Descendants of \p BB1 in either the dom or pdom tree.
429
/// \param DomTree  Opposite dominator tree. If \p Descendants is filled
430
///                 with blocks from \p BB1's dominator tree, then
431
///                 this is the post-dominator tree, and vice versa.
432
template <typename BT>
433
void SampleProfileLoaderBaseImpl<BT>::findEquivalencesFor(
434
    BasicBlockT *BB1, ArrayRef<BasicBlockT *> Descendants,
435
    PostDominatorTreeT *DomTree) {
436
  const BasicBlockT *EC = EquivalenceClass[BB1];
437
  uint64_t Weight = BlockWeights[EC];
438
  for (const auto *BB2 : Descendants) {
439
    bool IsDomParent = DomTree->dominates(BB2, BB1);
440
    bool IsInSameLoop = LI->getLoopFor(BB1) == LI->getLoopFor(BB2);
441
    if (BB1 != BB2 && IsDomParent && IsInSameLoop) {
442
      EquivalenceClass[BB2] = EC;
443
      // If BB2 is visited, then the entire EC should be marked as visited.
444
      if (VisitedBlocks.count(BB2)) {
445
        VisitedBlocks.insert(EC);
446
      }
447
 
448
      // If BB2 is heavier than BB1, make BB2 have the same weight
449
      // as BB1.
450
      //
451
      // Note that we don't worry about the opposite situation here
452
      // (when BB2 is lighter than BB1). We will deal with this
453
      // during the propagation phase. Right now, we just want to
454
      // make sure that BB1 has the largest weight of all the
455
      // members of its equivalence set.
456
      Weight = std::max(Weight, BlockWeights[BB2]);
457
    }
458
  }
459
  const BasicBlockT *EntryBB = getEntryBB(EC->getParent());
460
  if (EC == EntryBB) {
461
    BlockWeights[EC] = Samples->getHeadSamples() + 1;
462
  } else {
463
    BlockWeights[EC] = Weight;
464
  }
465
}
466
 
467
/// Find equivalence classes.
468
///
469
/// Since samples may be missing from blocks, we can fill in the gaps by setting
470
/// the weights of all the blocks in the same equivalence class to the same
471
/// weight. To compute the concept of equivalence, we use dominance and loop
472
/// information. Two blocks B1 and B2 are in the same equivalence class if B1
473
/// dominates B2, B2 post-dominates B1 and both are in the same loop.
474
///
475
/// \param F The function to query.
476
template <typename BT>
477
void SampleProfileLoaderBaseImpl<BT>::findEquivalenceClasses(FunctionT &F) {
478
  SmallVector<BasicBlockT *, 8> DominatedBBs;
479
  LLVM_DEBUG(dbgs() << "\nBlock equivalence classes\n");
480
  // Find equivalence sets based on dominance and post-dominance information.
481
  for (auto &BB : F) {
482
    BasicBlockT *BB1 = &BB;
483
 
484
    // Compute BB1's equivalence class once.
485
    if (EquivalenceClass.count(BB1)) {
486
      LLVM_DEBUG(printBlockEquivalence(dbgs(), BB1));
487
      continue;
488
    }
489
 
490
    // By default, blocks are in their own equivalence class.
491
    EquivalenceClass[BB1] = BB1;
492
 
493
    // Traverse all the blocks dominated by BB1. We are looking for
494
    // every basic block BB2 such that:
495
    //
496
    // 1- BB1 dominates BB2.
497
    // 2- BB2 post-dominates BB1.
498
    // 3- BB1 and BB2 are in the same loop nest.
499
    //
500
    // If all those conditions hold, it means that BB2 is executed
501
    // as many times as BB1, so they are placed in the same equivalence
502
    // class by making BB2's equivalence class be BB1.
503
    DominatedBBs.clear();
504
    DT->getDescendants(BB1, DominatedBBs);
505
    findEquivalencesFor(BB1, DominatedBBs, &*PDT);
506
 
507
    LLVM_DEBUG(printBlockEquivalence(dbgs(), BB1));
508
  }
509
 
510
  // Assign weights to equivalence classes.
511
  //
512
  // All the basic blocks in the same equivalence class will execute
513
  // the same number of times. Since we know that the head block in
514
  // each equivalence class has the largest weight, assign that weight
515
  // to all the blocks in that equivalence class.
516
  LLVM_DEBUG(
517
      dbgs() << "\nAssign the same weight to all blocks in the same class\n");
518
  for (auto &BI : F) {
519
    const BasicBlockT *BB = &BI;
520
    const BasicBlockT *EquivBB = EquivalenceClass[BB];
521
    if (BB != EquivBB)
522
      BlockWeights[BB] = BlockWeights[EquivBB];
523
    LLVM_DEBUG(printBlockWeight(dbgs(), BB));
524
  }
525
}
526
 
527
/// Visit the given edge to decide if it has a valid weight.
528
///
529
/// If \p E has not been visited before, we copy to \p UnknownEdge
530
/// and increment the count of unknown edges.
531
///
532
/// \param E  Edge to visit.
533
/// \param NumUnknownEdges  Current number of unknown edges.
534
/// \param UnknownEdge  Set if E has not been visited before.
535
///
536
/// \returns E's weight, if known. Otherwise, return 0.
537
template <typename BT>
538
uint64_t SampleProfileLoaderBaseImpl<BT>::visitEdge(Edge E,
539
                                                    unsigned *NumUnknownEdges,
540
                                                    Edge *UnknownEdge) {
541
  if (!VisitedEdges.count(E)) {
542
    (*NumUnknownEdges)++;
543
    *UnknownEdge = E;
544
    return 0;
545
  }
546
 
547
  return EdgeWeights[E];
548
}
549
 
550
/// Propagate weights through incoming/outgoing edges.
551
///
552
/// If the weight of a basic block is known, and there is only one edge
553
/// with an unknown weight, we can calculate the weight of that edge.
554
///
555
/// Similarly, if all the edges have a known count, we can calculate the
556
/// count of the basic block, if needed.
557
///
558
/// \param F  Function to process.
559
/// \param UpdateBlockCount  Whether we should update basic block counts that
560
///                          has already been annotated.
561
///
562
/// \returns  True if new weights were assigned to edges or blocks.
563
template <typename BT>
564
bool SampleProfileLoaderBaseImpl<BT>::propagateThroughEdges(
565
    FunctionT &F, bool UpdateBlockCount) {
566
  bool Changed = false;
567
  LLVM_DEBUG(dbgs() << "\nPropagation through edges\n");
568
  for (const auto &BI : F) {
569
    const BasicBlockT *BB = &BI;
570
    const BasicBlockT *EC = EquivalenceClass[BB];
571
 
572
    // Visit all the predecessor and successor edges to determine
573
    // which ones have a weight assigned already. Note that it doesn't
574
    // matter that we only keep track of a single unknown edge. The
575
    // only case we are interested in handling is when only a single
576
    // edge is unknown (see setEdgeOrBlockWeight).
577
    for (unsigned i = 0; i < 2; i++) {
578
      uint64_t TotalWeight = 0;
579
      unsigned NumUnknownEdges = 0, NumTotalEdges = 0;
580
      Edge UnknownEdge, SelfReferentialEdge, SingleEdge;
581
 
582
      if (i == 0) {
583
        // First, visit all predecessor edges.
584
        NumTotalEdges = Predecessors[BB].size();
585
        for (auto *Pred : Predecessors[BB]) {
586
          Edge E = std::make_pair(Pred, BB);
587
          TotalWeight += visitEdge(E, &NumUnknownEdges, &UnknownEdge);
588
          if (E.first == E.second)
589
            SelfReferentialEdge = E;
590
        }
591
        if (NumTotalEdges == 1) {
592
          SingleEdge = std::make_pair(Predecessors[BB][0], BB);
593
        }
594
      } else {
595
        // On the second round, visit all successor edges.
596
        NumTotalEdges = Successors[BB].size();
597
        for (auto *Succ : Successors[BB]) {
598
          Edge E = std::make_pair(BB, Succ);
599
          TotalWeight += visitEdge(E, &NumUnknownEdges, &UnknownEdge);
600
        }
601
        if (NumTotalEdges == 1) {
602
          SingleEdge = std::make_pair(BB, Successors[BB][0]);
603
        }
604
      }
605
 
606
      // After visiting all the edges, there are three cases that we
607
      // can handle immediately:
608
      //
609
      // - All the edge weights are known (i.e., NumUnknownEdges == 0).
610
      //   In this case, we simply check that the sum of all the edges
611
      //   is the same as BB's weight. If not, we change BB's weight
612
      //   to match. Additionally, if BB had not been visited before,
613
      //   we mark it visited.
614
      //
615
      // - Only one edge is unknown and BB has already been visited.
616
      //   In this case, we can compute the weight of the edge by
617
      //   subtracting the total block weight from all the known
618
      //   edge weights. If the edges weight more than BB, then the
619
      //   edge of the last remaining edge is set to zero.
620
      //
621
      // - There exists a self-referential edge and the weight of BB is
622
      //   known. In this case, this edge can be based on BB's weight.
623
      //   We add up all the other known edges and set the weight on
624
      //   the self-referential edge as we did in the previous case.
625
      //
626
      // In any other case, we must continue iterating. Eventually,
627
      // all edges will get a weight, or iteration will stop when
628
      // it reaches SampleProfileMaxPropagateIterations.
629
      if (NumUnknownEdges <= 1) {
630
        uint64_t &BBWeight = BlockWeights[EC];
631
        if (NumUnknownEdges == 0) {
632
          if (!VisitedBlocks.count(EC)) {
633
            // If we already know the weight of all edges, the weight of the
634
            // basic block can be computed. It should be no larger than the sum
635
            // of all edge weights.
636
            if (TotalWeight > BBWeight) {
637
              BBWeight = TotalWeight;
638
              Changed = true;
639
              LLVM_DEBUG(dbgs() << "All edge weights for " << BB->getName()
640
                                << " known. Set weight for block: ";
641
                         printBlockWeight(dbgs(), BB););
642
            }
643
          } else if (NumTotalEdges == 1 &&
644
                     EdgeWeights[SingleEdge] < BlockWeights[EC]) {
645
            // If there is only one edge for the visited basic block, use the
646
            // block weight to adjust edge weight if edge weight is smaller.
647
            EdgeWeights[SingleEdge] = BlockWeights[EC];
648
            Changed = true;
649
          }
650
        } else if (NumUnknownEdges == 1 && VisitedBlocks.count(EC)) {
651
          // If there is a single unknown edge and the block has been
652
          // visited, then we can compute E's weight.
653
          if (BBWeight >= TotalWeight)
654
            EdgeWeights[UnknownEdge] = BBWeight - TotalWeight;
655
          else
656
            EdgeWeights[UnknownEdge] = 0;
657
          const BasicBlockT *OtherEC;
658
          if (i == 0)
659
            OtherEC = EquivalenceClass[UnknownEdge.first];
660
          else
661
            OtherEC = EquivalenceClass[UnknownEdge.second];
662
          // Edge weights should never exceed the BB weights it connects.
663
          if (VisitedBlocks.count(OtherEC) &&
664
              EdgeWeights[UnknownEdge] > BlockWeights[OtherEC])
665
            EdgeWeights[UnknownEdge] = BlockWeights[OtherEC];
666
          VisitedEdges.insert(UnknownEdge);
667
          Changed = true;
668
          LLVM_DEBUG(dbgs() << "Set weight for edge: ";
669
                     printEdgeWeight(dbgs(), UnknownEdge));
670
        }
671
      } else if (VisitedBlocks.count(EC) && BlockWeights[EC] == 0) {
672
        // If a block Weights 0, all its in/out edges should weight 0.
673
        if (i == 0) {
674
          for (auto *Pred : Predecessors[BB]) {
675
            Edge E = std::make_pair(Pred, BB);
676
            EdgeWeights[E] = 0;
677
            VisitedEdges.insert(E);
678
          }
679
        } else {
680
          for (auto *Succ : Successors[BB]) {
681
            Edge E = std::make_pair(BB, Succ);
682
            EdgeWeights[E] = 0;
683
            VisitedEdges.insert(E);
684
          }
685
        }
686
      } else if (SelfReferentialEdge.first && VisitedBlocks.count(EC)) {
687
        uint64_t &BBWeight = BlockWeights[BB];
688
        // We have a self-referential edge and the weight of BB is known.
689
        if (BBWeight >= TotalWeight)
690
          EdgeWeights[SelfReferentialEdge] = BBWeight - TotalWeight;
691
        else
692
          EdgeWeights[SelfReferentialEdge] = 0;
693
        VisitedEdges.insert(SelfReferentialEdge);
694
        Changed = true;
695
        LLVM_DEBUG(dbgs() << "Set self-referential edge weight to: ";
696
                   printEdgeWeight(dbgs(), SelfReferentialEdge));
697
      }
698
      if (UpdateBlockCount && !VisitedBlocks.count(EC) && TotalWeight > 0) {
699
        BlockWeights[EC] = TotalWeight;
700
        VisitedBlocks.insert(EC);
701
        Changed = true;
702
      }
703
    }
704
  }
705
 
706
  return Changed;
707
}
708
 
709
/// Build in/out edge lists for each basic block in the CFG.
710
///
711
/// We are interested in unique edges. If a block B1 has multiple
712
/// edges to another block B2, we only add a single B1->B2 edge.
713
template <typename BT>
714
void SampleProfileLoaderBaseImpl<BT>::buildEdges(FunctionT &F) {
715
  for (auto &BI : F) {
716
    BasicBlockT *B1 = &BI;
717
 
718
    // Add predecessors for B1.
719
    SmallPtrSet<BasicBlockT *, 16> Visited;
720
    if (!Predecessors[B1].empty())
721
      llvm_unreachable("Found a stale predecessors list in a basic block.");
722
    for (auto *B2 : getPredecessors(B1))
723
      if (Visited.insert(B2).second)
724
        Predecessors[B1].push_back(B2);
725
 
726
    // Add successors for B1.
727
    Visited.clear();
728
    if (!Successors[B1].empty())
729
      llvm_unreachable("Found a stale successors list in a basic block.");
730
    for (auto *B2 : getSuccessors(B1))
731
      if (Visited.insert(B2).second)
732
        Successors[B1].push_back(B2);
733
  }
734
}
735
 
736
/// Propagate weights into edges
737
///
738
/// The following rules are applied to every block BB in the CFG:
739
///
740
/// - If BB has a single predecessor/successor, then the weight
741
///   of that edge is the weight of the block.
742
///
743
/// - If all incoming or outgoing edges are known except one, and the
744
///   weight of the block is already known, the weight of the unknown
745
///   edge will be the weight of the block minus the sum of all the known
746
///   edges. If the sum of all the known edges is larger than BB's weight,
747
///   we set the unknown edge weight to zero.
748
///
749
/// - If there is a self-referential edge, and the weight of the block is
750
///   known, the weight for that edge is set to the weight of the block
751
///   minus the weight of the other incoming edges to that block (if
752
///   known).
753
template <typename BT>
754
void SampleProfileLoaderBaseImpl<BT>::propagateWeights(FunctionT &F) {
755
  // Flow-based profile inference is only usable with BasicBlock instantiation
756
  // of SampleProfileLoaderBaseImpl.
757
  if (SampleProfileUseProfi) {
758
    // Prepare block sample counts for inference.
759
    BlockWeightMap SampleBlockWeights;
760
    for (const auto &BI : F) {
761
      ErrorOr<uint64_t> Weight = getBlockWeight(&BI);
762
      if (Weight)
763
        SampleBlockWeights[&BI] = Weight.get();
764
    }
765
    // Fill in BlockWeights and EdgeWeights using an inference algorithm.
766
    applyProfi(F, Successors, SampleBlockWeights, BlockWeights, EdgeWeights);
767
  } else {
768
    bool Changed = true;
769
    unsigned I = 0;
770
 
771
    // If BB weight is larger than its corresponding loop's header BB weight,
772
    // use the BB weight to replace the loop header BB weight.
773
    for (auto &BI : F) {
774
      BasicBlockT *BB = &BI;
775
      LoopT *L = LI->getLoopFor(BB);
776
      if (!L) {
777
        continue;
778
      }
779
      BasicBlockT *Header = L->getHeader();
780
      if (Header && BlockWeights[BB] > BlockWeights[Header]) {
781
        BlockWeights[Header] = BlockWeights[BB];
782
      }
783
    }
784
 
785
    // Propagate until we converge or we go past the iteration limit.
786
    while (Changed && I++ < SampleProfileMaxPropagateIterations) {
787
      Changed = propagateThroughEdges(F, false);
788
    }
789
 
790
    // The first propagation propagates BB counts from annotated BBs to unknown
791
    // BBs. The 2nd propagation pass resets edges weights, and use all BB
792
    // weights to propagate edge weights.
793
    VisitedEdges.clear();
794
    Changed = true;
795
    while (Changed && I++ < SampleProfileMaxPropagateIterations) {
796
      Changed = propagateThroughEdges(F, false);
797
    }
798
 
799
    // The 3rd propagation pass allows adjust annotated BB weights that are
800
    // obviously wrong.
801
    Changed = true;
802
    while (Changed && I++ < SampleProfileMaxPropagateIterations) {
803
      Changed = propagateThroughEdges(F, true);
804
    }
805
  }
806
}
807
 
808
template <typename BT>
809
void SampleProfileLoaderBaseImpl<BT>::applyProfi(
810
    FunctionT &F, BlockEdgeMap &Successors, BlockWeightMap &SampleBlockWeights,
811
    BlockWeightMap &BlockWeights, EdgeWeightMap &EdgeWeights) {
812
  auto Infer = SampleProfileInference<BT>(F, Successors, SampleBlockWeights);
813
  Infer.apply(BlockWeights, EdgeWeights);
814
}
815
 
816
/// Generate branch weight metadata for all branches in \p F.
817
///
818
/// Branch weights are computed out of instruction samples using a
819
/// propagation heuristic. Propagation proceeds in 3 phases:
820
///
821
/// 1- Assignment of block weights. All the basic blocks in the function
822
///    are initial assigned the same weight as their most frequently
823
///    executed instruction.
824
///
825
/// 2- Creation of equivalence classes. Since samples may be missing from
826
///    blocks, we can fill in the gaps by setting the weights of all the
827
///    blocks in the same equivalence class to the same weight. To compute
828
///    the concept of equivalence, we use dominance and loop information.
829
///    Two blocks B1 and B2 are in the same equivalence class if B1
830
///    dominates B2, B2 post-dominates B1 and both are in the same loop.
831
///
832
/// 3- Propagation of block weights into edges. This uses a simple
833
///    propagation heuristic. The following rules are applied to every
834
///    block BB in the CFG:
835
///
836
///    - If BB has a single predecessor/successor, then the weight
837
///      of that edge is the weight of the block.
838
///
839
///    - If all the edges are known except one, and the weight of the
840
///      block is already known, the weight of the unknown edge will
841
///      be the weight of the block minus the sum of all the known
842
///      edges. If the sum of all the known edges is larger than BB's weight,
843
///      we set the unknown edge weight to zero.
844
///
845
///    - If there is a self-referential edge, and the weight of the block is
846
///      known, the weight for that edge is set to the weight of the block
847
///      minus the weight of the other incoming edges to that block (if
848
///      known).
849
///
850
/// Since this propagation is not guaranteed to finalize for every CFG, we
851
/// only allow it to proceed for a limited number of iterations (controlled
852
/// by -sample-profile-max-propagate-iterations).
853
///
854
/// FIXME: Try to replace this propagation heuristic with a scheme
855
/// that is guaranteed to finalize. A work-list approach similar to
856
/// the standard value propagation algorithm used by SSA-CCP might
857
/// work here.
858
///
859
/// \param F The function to query.
860
///
861
/// \returns true if \p F was modified. Returns false, otherwise.
862
template <typename BT>
863
bool SampleProfileLoaderBaseImpl<BT>::computeAndPropagateWeights(
864
    FunctionT &F, const DenseSet<GlobalValue::GUID> &InlinedGUIDs) {
865
  bool Changed = (InlinedGUIDs.size() != 0);
866
 
867
  // Compute basic block weights.
868
  Changed |= computeBlockWeights(F);
869
 
870
  if (Changed) {
871
    // Initialize propagation.
872
    initWeightPropagation(F, InlinedGUIDs);
873
 
874
    // Propagate weights to all edges.
875
    propagateWeights(F);
876
 
877
    // Post-process propagated weights.
878
    finalizeWeightPropagation(F, InlinedGUIDs);
879
  }
880
 
881
  return Changed;
882
}
883
 
884
template <typename BT>
885
void SampleProfileLoaderBaseImpl<BT>::initWeightPropagation(
886
    FunctionT &F, const DenseSet<GlobalValue::GUID> &InlinedGUIDs) {
887
  // Add an entry count to the function using the samples gathered at the
888
  // function entry.
889
  // Sets the GUIDs that are inlined in the profiled binary. This is used
890
  // for ThinLink to make correct liveness analysis, and also make the IR
891
  // match the profiled binary before annotation.
892
  getFunction(F).setEntryCount(
893
      ProfileCount(Samples->getHeadSamples() + 1, Function::PCT_Real),
894
      &InlinedGUIDs);
895
 
896
  if (!SampleProfileUseProfi) {
897
    // Compute dominance and loop info needed for propagation.
898
    computeDominanceAndLoopInfo(F);
899
 
900
    // Find equivalence classes.
901
    findEquivalenceClasses(F);
902
  }
903
 
904
  // Before propagation starts, build, for each block, a list of
905
  // unique predecessors and successors. This is necessary to handle
906
  // identical edges in multiway branches. Since we visit all blocks and all
907
  // edges of the CFG, it is cleaner to build these lists once at the start
908
  // of the pass.
909
  buildEdges(F);
910
}
911
 
912
template <typename BT>
913
void SampleProfileLoaderBaseImpl<BT>::finalizeWeightPropagation(
914
    FunctionT &F, const DenseSet<GlobalValue::GUID> &InlinedGUIDs) {
915
  // If we utilize a flow-based count inference, then we trust the computed
916
  // counts and set the entry count as computed by the algorithm. This is
917
  // primarily done to sync the counts produced by profi and BFI inference,
918
  // which uses the entry count for mass propagation.
919
  // If profi produces a zero-value for the entry count, we fallback to
920
  // Samples->getHeadSamples() + 1 to avoid functions with zero count.
921
  if (SampleProfileUseProfi) {
922
    const BasicBlockT *EntryBB = getEntryBB(&F);
923
    ErrorOr<uint64_t> EntryWeight = getBlockWeight(EntryBB);
924
    if (BlockWeights[EntryBB] > 0) {
925
      getFunction(F).setEntryCount(
926
          ProfileCount(BlockWeights[EntryBB], Function::PCT_Real),
927
          &InlinedGUIDs);
928
    }
929
  }
930
}
931
 
932
template <typename BT>
933
void SampleProfileLoaderBaseImpl<BT>::emitCoverageRemarks(FunctionT &F) {
934
  // If coverage checking was requested, compute it now.
935
  const Function &Func = getFunction(F);
936
  if (SampleProfileRecordCoverage) {
937
    unsigned Used = CoverageTracker.countUsedRecords(Samples, PSI);
938
    unsigned Total = CoverageTracker.countBodyRecords(Samples, PSI);
939
    unsigned Coverage = CoverageTracker.computeCoverage(Used, Total);
940
    if (Coverage < SampleProfileRecordCoverage) {
941
      Func.getContext().diagnose(DiagnosticInfoSampleProfile(
942
          Func.getSubprogram()->getFilename(), getFunctionLoc(F),
943
          Twine(Used) + " of " + Twine(Total) + " available profile records (" +
944
              Twine(Coverage) + "%) were applied",
945
          DS_Warning));
946
    }
947
  }
948
 
949
  if (SampleProfileSampleCoverage) {
950
    uint64_t Used = CoverageTracker.getTotalUsedSamples();
951
    uint64_t Total = CoverageTracker.countBodySamples(Samples, PSI);
952
    unsigned Coverage = CoverageTracker.computeCoverage(Used, Total);
953
    if (Coverage < SampleProfileSampleCoverage) {
954
      Func.getContext().diagnose(DiagnosticInfoSampleProfile(
955
          Func.getSubprogram()->getFilename(), getFunctionLoc(F),
956
          Twine(Used) + " of " + Twine(Total) + " available profile samples (" +
957
              Twine(Coverage) + "%) were applied",
958
          DS_Warning));
959
    }
960
  }
961
}
962
 
963
/// Get the line number for the function header.
964
///
965
/// This looks up function \p F in the current compilation unit and
966
/// retrieves the line number where the function is defined. This is
967
/// line 0 for all the samples read from the profile file. Every line
968
/// number is relative to this line.
969
///
970
/// \param F  Function object to query.
971
///
972
/// \returns the line number where \p F is defined. If it returns 0,
973
///          it means that there is no debug information available for \p F.
974
template <typename BT>
975
unsigned SampleProfileLoaderBaseImpl<BT>::getFunctionLoc(FunctionT &F) {
976
  const Function &Func = getFunction(F);
977
  if (DISubprogram *S = Func.getSubprogram())
978
    return S->getLine();
979
 
980
  if (NoWarnSampleUnused)
981
    return 0;
982
 
983
  // If the start of \p F is missing, emit a diagnostic to inform the user
984
  // about the missed opportunity.
985
  Func.getContext().diagnose(DiagnosticInfoSampleProfile(
986
      "No debug information found in function " + Func.getName() +
987
          ": Function profile not used",
988
      DS_Warning));
989
  return 0;
990
}
991
 
992
template <typename BT>
993
void SampleProfileLoaderBaseImpl<BT>::computeDominanceAndLoopInfo(
994
    FunctionT &F) {
995
  DT.reset(new DominatorTree);
996
  DT->recalculate(F);
997
 
998
  PDT.reset(new PostDominatorTree(F));
999
 
1000
  LI.reset(new LoopInfo);
1001
  LI->analyze(*DT);
1002
}
1003
 
1004
#undef DEBUG_TYPE
1005
 
1006
} // namespace llvm
1007
#endif // LLVM_TRANSFORMS_UTILS_SAMPLEPROFILELOADERBASEIMPL_H