Details | Last modification | View Log | RSS feed
Rev | Author | Line No. | Line |
---|---|---|---|
14 | pmbaty | 1 | //===- Transforms/Utils/SampleProfileInference.h ----------*- C++ -*-===// |
2 | // |
||
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
||
4 | // See https://llvm.org/LICENSE.txt for license information. |
||
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
||
6 | // |
||
7 | //===----------------------------------------------------------------------===// |
||
8 | // |
||
9 | /// \file |
||
10 | /// This file provides the interface for the profile inference algorithm, profi. |
||
11 | // |
||
12 | //===----------------------------------------------------------------------===// |
||
13 | |||
14 | #ifndef LLVM_TRANSFORMS_UTILS_SAMPLEPROFILEINFERENCE_H |
||
15 | #define LLVM_TRANSFORMS_UTILS_SAMPLEPROFILEINFERENCE_H |
||
16 | |||
17 | #include "llvm/ADT/DenseMap.h" |
||
18 | #include "llvm/ADT/DepthFirstIterator.h" |
||
19 | #include "llvm/ADT/SmallVector.h" |
||
20 | |||
21 | #include "llvm/IR/BasicBlock.h" |
||
22 | #include "llvm/IR/Instruction.h" |
||
23 | #include "llvm/IR/Instructions.h" |
||
24 | |||
25 | namespace llvm { |
||
26 | |||
27 | class Function; |
||
28 | class MachineBasicBlock; |
||
29 | class MachineFunction; |
||
30 | |||
31 | namespace afdo_detail { |
||
32 | |||
33 | template <class BlockT> struct TypeMap {}; |
||
34 | template <> struct TypeMap<BasicBlock> { |
||
35 | using BasicBlockT = BasicBlock; |
||
36 | using FunctionT = Function; |
||
37 | }; |
||
38 | template <> struct TypeMap<MachineBasicBlock> { |
||
39 | using BasicBlockT = MachineBasicBlock; |
||
40 | using FunctionT = MachineFunction; |
||
41 | }; |
||
42 | |||
43 | } // end namespace afdo_detail |
||
44 | |||
45 | struct FlowJump; |
||
46 | |||
47 | /// A wrapper of a binary basic block. |
||
48 | struct FlowBlock { |
||
49 | uint64_t Index; |
||
50 | uint64_t Weight{0}; |
||
51 | bool HasUnknownWeight{true}; |
||
52 | bool IsUnlikely{false}; |
||
53 | uint64_t Flow{0}; |
||
54 | std::vector<FlowJump *> SuccJumps; |
||
55 | std::vector<FlowJump *> PredJumps; |
||
56 | |||
57 | /// Check if it is the entry block in the function. |
||
58 | bool isEntry() const { return PredJumps.empty(); } |
||
59 | |||
60 | /// Check if it is an exit block in the function. |
||
61 | bool isExit() const { return SuccJumps.empty(); } |
||
62 | }; |
||
63 | |||
64 | /// A wrapper of a jump between two basic blocks. |
||
65 | struct FlowJump { |
||
66 | uint64_t Source; |
||
67 | uint64_t Target; |
||
68 | uint64_t Weight{0}; |
||
69 | bool HasUnknownWeight{true}; |
||
70 | bool IsUnlikely{false}; |
||
71 | uint64_t Flow{0}; |
||
72 | }; |
||
73 | |||
74 | /// A wrapper of binary function with basic blocks and jumps. |
||
75 | struct FlowFunction { |
||
76 | /// Basic blocks in the function. |
||
77 | std::vector<FlowBlock> Blocks; |
||
78 | /// Jumps between the basic blocks. |
||
79 | std::vector<FlowJump> Jumps; |
||
80 | /// The index of the entry block. |
||
81 | uint64_t Entry{0}; |
||
82 | }; |
||
83 | |||
84 | /// Various thresholds and options controlling the behavior of the profile |
||
85 | /// inference algorithm. Default values are tuned for several large-scale |
||
86 | /// applications, and can be modified via corresponding command-line flags. |
||
87 | struct ProfiParams { |
||
88 | /// Evenly distribute flow when there are multiple equally likely options. |
||
89 | bool EvenFlowDistribution{false}; |
||
90 | |||
91 | /// Evenly re-distribute flow among unknown subgraphs. |
||
92 | bool RebalanceUnknown{false}; |
||
93 | |||
94 | /// Join isolated components having positive flow. |
||
95 | bool JoinIslands{false}; |
||
96 | |||
97 | /// The cost of increasing a block's count by one. |
||
98 | unsigned CostBlockInc{0}; |
||
99 | |||
100 | /// The cost of decreasing a block's count by one. |
||
101 | unsigned CostBlockDec{0}; |
||
102 | |||
103 | /// The cost of increasing a count of zero-weight block by one. |
||
104 | unsigned CostBlockZeroInc{0}; |
||
105 | |||
106 | /// The cost of increasing the entry block's count by one. |
||
107 | unsigned CostBlockEntryInc{0}; |
||
108 | |||
109 | /// The cost of decreasing the entry block's count by one. |
||
110 | unsigned CostBlockEntryDec{0}; |
||
111 | |||
112 | /// The cost of increasing an unknown block's count by one. |
||
113 | unsigned CostBlockUnknownInc{0}; |
||
114 | |||
115 | /// The cost of increasing a jump's count by one. |
||
116 | unsigned CostJumpInc{0}; |
||
117 | |||
118 | /// The cost of increasing a fall-through jump's count by one. |
||
119 | unsigned CostJumpFTInc{0}; |
||
120 | |||
121 | /// The cost of decreasing a jump's count by one. |
||
122 | unsigned CostJumpDec{0}; |
||
123 | |||
124 | /// The cost of decreasing a fall-through jump's count by one. |
||
125 | unsigned CostJumpFTDec{0}; |
||
126 | |||
127 | /// The cost of increasing an unknown jump's count by one. |
||
128 | unsigned CostJumpUnknownInc{0}; |
||
129 | |||
130 | /// The cost of increasing an unknown fall-through jump's count by one. |
||
131 | unsigned CostJumpUnknownFTInc{0}; |
||
132 | |||
133 | /// The cost of taking an unlikely block/jump. |
||
134 | const int64_t CostUnlikely = ((int64_t)1) << 30; |
||
135 | }; |
||
136 | |||
137 | void applyFlowInference(const ProfiParams &Params, FlowFunction &Func); |
||
138 | void applyFlowInference(FlowFunction &Func); |
||
139 | |||
140 | /// Sample profile inference pass. |
||
141 | template <typename BT> class SampleProfileInference { |
||
142 | public: |
||
143 | using BasicBlockT = typename afdo_detail::TypeMap<BT>::BasicBlockT; |
||
144 | using FunctionT = typename afdo_detail::TypeMap<BT>::FunctionT; |
||
145 | using Edge = std::pair<const BasicBlockT *, const BasicBlockT *>; |
||
146 | using BlockWeightMap = DenseMap<const BasicBlockT *, uint64_t>; |
||
147 | using EdgeWeightMap = DenseMap<Edge, uint64_t>; |
||
148 | using BlockEdgeMap = |
||
149 | DenseMap<const BasicBlockT *, SmallVector<const BasicBlockT *, 8>>; |
||
150 | |||
151 | SampleProfileInference(FunctionT &F, BlockEdgeMap &Successors, |
||
152 | BlockWeightMap &SampleBlockWeights) |
||
153 | : F(F), Successors(Successors), SampleBlockWeights(SampleBlockWeights) {} |
||
154 | |||
155 | /// Apply the profile inference algorithm for a given function |
||
156 | void apply(BlockWeightMap &BlockWeights, EdgeWeightMap &EdgeWeights); |
||
157 | |||
158 | private: |
||
159 | /// Initialize flow function blocks, jumps and misc metadata. |
||
160 | void initFunction(FlowFunction &Func, |
||
161 | const std::vector<const BasicBlockT *> &BasicBlocks, |
||
162 | DenseMap<const BasicBlockT *, uint64_t> &BlockIndex); |
||
163 | |||
164 | /// Try to infer branch probabilities mimicking implementation of |
||
165 | /// BranchProbabilityInfo. Unlikely taken branches are marked so that the |
||
166 | /// inference algorithm can avoid sending flow along corresponding edges. |
||
167 | void findUnlikelyJumps(const std::vector<const BasicBlockT *> &BasicBlocks, |
||
168 | BlockEdgeMap &Successors, FlowFunction &Func); |
||
169 | |||
170 | /// Determine whether the block is an exit in the CFG. |
||
171 | bool isExit(const BasicBlockT *BB); |
||
172 | |||
173 | /// Function. |
||
174 | const FunctionT &F; |
||
175 | |||
176 | /// Successors for each basic block in the CFG. |
||
177 | BlockEdgeMap &Successors; |
||
178 | |||
179 | /// Map basic blocks to their sampled weights. |
||
180 | BlockWeightMap &SampleBlockWeights; |
||
181 | }; |
||
182 | |||
183 | template <typename BT> |
||
184 | void SampleProfileInference<BT>::apply(BlockWeightMap &BlockWeights, |
||
185 | EdgeWeightMap &EdgeWeights) { |
||
186 | // Find all forwards reachable blocks which the inference algorithm will be |
||
187 | // applied on. |
||
188 | df_iterator_default_set<const BasicBlockT *> Reachable; |
||
189 | for (auto *BB : depth_first_ext(&F, Reachable)) |
||
190 | (void)BB /* Mark all reachable blocks */; |
||
191 | |||
192 | // Find all backwards reachable blocks which the inference algorithm will be |
||
193 | // applied on. |
||
194 | df_iterator_default_set<const BasicBlockT *> InverseReachable; |
||
195 | for (const auto &BB : F) { |
||
196 | // An exit block is a block without any successors. |
||
197 | if (isExit(&BB)) { |
||
198 | for (auto *RBB : inverse_depth_first_ext(&BB, InverseReachable)) |
||
199 | (void)RBB; |
||
200 | } |
||
201 | } |
||
202 | |||
203 | // Keep a stable order for reachable blocks |
||
204 | DenseMap<const BasicBlockT *, uint64_t> BlockIndex; |
||
205 | std::vector<const BasicBlockT *> BasicBlocks; |
||
206 | BlockIndex.reserve(Reachable.size()); |
||
207 | BasicBlocks.reserve(Reachable.size()); |
||
208 | for (const auto &BB : F) { |
||
209 | if (Reachable.count(&BB) && InverseReachable.count(&BB)) { |
||
210 | BlockIndex[&BB] = BasicBlocks.size(); |
||
211 | BasicBlocks.push_back(&BB); |
||
212 | } |
||
213 | } |
||
214 | |||
215 | BlockWeights.clear(); |
||
216 | EdgeWeights.clear(); |
||
217 | bool HasSamples = false; |
||
218 | for (const auto *BB : BasicBlocks) { |
||
219 | auto It = SampleBlockWeights.find(BB); |
||
220 | if (It != SampleBlockWeights.end() && It->second > 0) { |
||
221 | HasSamples = true; |
||
222 | BlockWeights[BB] = It->second; |
||
223 | } |
||
224 | } |
||
225 | // Quit early for functions with a single block or ones w/o samples |
||
226 | if (BasicBlocks.size() <= 1 || !HasSamples) { |
||
227 | return; |
||
228 | } |
||
229 | |||
230 | // Create necessary objects |
||
231 | FlowFunction Func; |
||
232 | initFunction(Func, BasicBlocks, BlockIndex); |
||
233 | |||
234 | // Create and apply the inference network model. |
||
235 | applyFlowInference(Func); |
||
236 | |||
237 | // Extract the resulting weights from the control flow |
||
238 | // All weights are increased by one to avoid propagation errors introduced by |
||
239 | // zero weights. |
||
240 | for (const auto *BB : BasicBlocks) { |
||
241 | BlockWeights[BB] = Func.Blocks[BlockIndex[BB]].Flow; |
||
242 | } |
||
243 | for (auto &Jump : Func.Jumps) { |
||
244 | Edge E = std::make_pair(BasicBlocks[Jump.Source], BasicBlocks[Jump.Target]); |
||
245 | EdgeWeights[E] = Jump.Flow; |
||
246 | } |
||
247 | |||
248 | #ifndef NDEBUG |
||
249 | // Unreachable blocks and edges should not have a weight. |
||
250 | for (auto &I : BlockWeights) { |
||
251 | assert(Reachable.contains(I.first)); |
||
252 | assert(InverseReachable.contains(I.first)); |
||
253 | } |
||
254 | for (auto &I : EdgeWeights) { |
||
255 | assert(Reachable.contains(I.first.first) && |
||
256 | Reachable.contains(I.first.second)); |
||
257 | assert(InverseReachable.contains(I.first.first) && |
||
258 | InverseReachable.contains(I.first.second)); |
||
259 | } |
||
260 | #endif |
||
261 | } |
||
262 | |||
263 | template <typename BT> |
||
264 | void SampleProfileInference<BT>::initFunction( |
||
265 | FlowFunction &Func, const std::vector<const BasicBlockT *> &BasicBlocks, |
||
266 | DenseMap<const BasicBlockT *, uint64_t> &BlockIndex) { |
||
267 | Func.Blocks.reserve(BasicBlocks.size()); |
||
268 | // Create FlowBlocks |
||
269 | for (const auto *BB : BasicBlocks) { |
||
270 | FlowBlock Block; |
||
271 | if (SampleBlockWeights.find(BB) != SampleBlockWeights.end()) { |
||
272 | Block.HasUnknownWeight = false; |
||
273 | Block.Weight = SampleBlockWeights[BB]; |
||
274 | } else { |
||
275 | Block.HasUnknownWeight = true; |
||
276 | Block.Weight = 0; |
||
277 | } |
||
278 | Block.Index = Func.Blocks.size(); |
||
279 | Func.Blocks.push_back(Block); |
||
280 | } |
||
281 | // Create FlowEdges |
||
282 | for (const auto *BB : BasicBlocks) { |
||
283 | for (auto *Succ : Successors[BB]) { |
||
284 | if (!BlockIndex.count(Succ)) |
||
285 | continue; |
||
286 | FlowJump Jump; |
||
287 | Jump.Source = BlockIndex[BB]; |
||
288 | Jump.Target = BlockIndex[Succ]; |
||
289 | Func.Jumps.push_back(Jump); |
||
290 | } |
||
291 | } |
||
292 | for (auto &Jump : Func.Jumps) { |
||
293 | uint64_t Src = Jump.Source; |
||
294 | uint64_t Dst = Jump.Target; |
||
295 | Func.Blocks[Src].SuccJumps.push_back(&Jump); |
||
296 | Func.Blocks[Dst].PredJumps.push_back(&Jump); |
||
297 | } |
||
298 | |||
299 | // Try to infer probabilities of jumps based on the content of basic block |
||
300 | findUnlikelyJumps(BasicBlocks, Successors, Func); |
||
301 | |||
302 | // Find the entry block |
||
303 | for (size_t I = 0; I < Func.Blocks.size(); I++) { |
||
304 | if (Func.Blocks[I].isEntry()) { |
||
305 | Func.Entry = I; |
||
306 | break; |
||
307 | } |
||
308 | } |
||
309 | assert(Func.Entry == 0 && "incorrect index of the entry block"); |
||
310 | |||
311 | // Pre-process data: make sure the entry weight is at least 1 |
||
312 | auto &EntryBlock = Func.Blocks[Func.Entry]; |
||
313 | if (EntryBlock.Weight == 0 && !EntryBlock.HasUnknownWeight) { |
||
314 | EntryBlock.Weight = 1; |
||
315 | EntryBlock.HasUnknownWeight = false; |
||
316 | } |
||
317 | } |
||
318 | |||
319 | template <typename BT> |
||
320 | inline void SampleProfileInference<BT>::findUnlikelyJumps( |
||
321 | const std::vector<const BasicBlockT *> &BasicBlocks, |
||
322 | BlockEdgeMap &Successors, FlowFunction &Func) {} |
||
323 | |||
324 | template <> |
||
325 | inline void SampleProfileInference<BasicBlock>::findUnlikelyJumps( |
||
326 | const std::vector<const BasicBlockT *> &BasicBlocks, |
||
327 | BlockEdgeMap &Successors, FlowFunction &Func) { |
||
328 | for (auto &Jump : Func.Jumps) { |
||
329 | const auto *BB = BasicBlocks[Jump.Source]; |
||
330 | const auto *Succ = BasicBlocks[Jump.Target]; |
||
331 | const Instruction *TI = BB->getTerminator(); |
||
332 | // Check if a block ends with InvokeInst and mark non-taken branch unlikely. |
||
333 | // In that case block Succ should be a landing pad |
||
334 | if (Successors[BB].size() == 2 && Successors[BB].back() == Succ) { |
||
335 | if (isa<InvokeInst>(TI)) { |
||
336 | Jump.IsUnlikely = true; |
||
337 | } |
||
338 | } |
||
339 | const Instruction *SuccTI = Succ->getTerminator(); |
||
340 | // Check if the target block contains UnreachableInst and mark it unlikely |
||
341 | if (SuccTI->getNumSuccessors() == 0) { |
||
342 | if (isa<UnreachableInst>(SuccTI)) { |
||
343 | Jump.IsUnlikely = true; |
||
344 | } |
||
345 | } |
||
346 | } |
||
347 | } |
||
348 | |||
349 | template <typename BT> |
||
350 | inline bool SampleProfileInference<BT>::isExit(const BasicBlockT *BB) { |
||
351 | return BB->succ_empty(); |
||
352 | } |
||
353 | |||
354 | template <> |
||
355 | inline bool SampleProfileInference<BasicBlock>::isExit(const BasicBlock *BB) { |
||
356 | return succ_empty(BB); |
||
357 | } |
||
358 | |||
359 | } // end namespace llvm |
||
360 | #endif // LLVM_TRANSFORMS_UTILS_SAMPLEPROFILEINFERENCE_H |