Subversion Repositories QNX 8.QNX8 LLVM/Clang compiler suite

Rev

Details | Last modification | View Log | RSS feed

Rev Author Line No. Line
14 pmbaty 1
//===- Local.h - Functions to perform local transformations -----*- C++ -*-===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
// This family of functions perform various local transformations to the
10
// program.
11
//
12
//===----------------------------------------------------------------------===//
13
 
14
#ifndef LLVM_TRANSFORMS_UTILS_LOCAL_H
15
#define LLVM_TRANSFORMS_UTILS_LOCAL_H
16
 
17
#include "llvm/ADT/ArrayRef.h"
18
#include "llvm/IR/Dominators.h"
19
#include "llvm/Support/CommandLine.h"
20
#include "llvm/Transforms/Utils/SimplifyCFGOptions.h"
21
#include <cstdint>
22
 
23
namespace llvm {
24
 
25
class DataLayout;
26
class Value;
27
class WeakTrackingVH;
28
class WeakVH;
29
template <typename T> class SmallVectorImpl;
30
class AAResults;
31
class AllocaInst;
32
class AssumptionCache;
33
class BasicBlock;
34
class BranchInst;
35
class CallBase;
36
class CallInst;
37
class DbgVariableIntrinsic;
38
class DIBuilder;
39
class DomTreeUpdater;
40
class Function;
41
class Instruction;
42
class InvokeInst;
43
class LoadInst;
44
class MDNode;
45
class MemorySSAUpdater;
46
class PHINode;
47
class StoreInst;
48
class TargetLibraryInfo;
49
class TargetTransformInfo;
50
 
51
//===----------------------------------------------------------------------===//
52
//  Local constant propagation.
53
//
54
 
55
/// If a terminator instruction is predicated on a constant value, convert it
56
/// into an unconditional branch to the constant destination.
57
/// This is a nontrivial operation because the successors of this basic block
58
/// must have their PHI nodes updated.
59
/// Also calls RecursivelyDeleteTriviallyDeadInstructions() on any branch/switch
60
/// conditions and indirectbr addresses this might make dead if
61
/// DeleteDeadConditions is true.
62
bool ConstantFoldTerminator(BasicBlock *BB, bool DeleteDeadConditions = false,
63
                            const TargetLibraryInfo *TLI = nullptr,
64
                            DomTreeUpdater *DTU = nullptr);
65
 
66
//===----------------------------------------------------------------------===//
67
//  Local dead code elimination.
68
//
69
 
70
/// Return true if the result produced by the instruction is not used, and the
71
/// instruction will return. Certain side-effecting instructions are also
72
/// considered dead if there are no uses of the instruction.
73
bool isInstructionTriviallyDead(Instruction *I,
74
                                const TargetLibraryInfo *TLI = nullptr);
75
 
76
/// Return true if the result produced by the instruction would have no side
77
/// effects if it was not used. This is equivalent to checking whether
78
/// isInstructionTriviallyDead would be true if the use count was 0.
79
bool wouldInstructionBeTriviallyDead(Instruction *I,
80
                                     const TargetLibraryInfo *TLI = nullptr);
81
 
82
/// Return true if the result produced by the instruction has no side effects on
83
/// any paths other than where it is used. This is less conservative than
84
/// wouldInstructionBeTriviallyDead which is based on the assumption
85
/// that the use count will be 0. An example usage of this API is for
86
/// identifying instructions that can be sunk down to use(s).
87
bool wouldInstructionBeTriviallyDeadOnUnusedPaths(
88
    Instruction *I, const TargetLibraryInfo *TLI = nullptr);
89
 
90
/// If the specified value is a trivially dead instruction, delete it.
91
/// If that makes any of its operands trivially dead, delete them too,
92
/// recursively. Return true if any instructions were deleted.
93
bool RecursivelyDeleteTriviallyDeadInstructions(
94
    Value *V, const TargetLibraryInfo *TLI = nullptr,
95
    MemorySSAUpdater *MSSAU = nullptr,
96
    std::function<void(Value *)> AboutToDeleteCallback =
97
        std::function<void(Value *)>());
98
 
99
/// Delete all of the instructions in `DeadInsts`, and all other instructions
100
/// that deleting these in turn causes to be trivially dead.
101
///
102
/// The initial instructions in the provided vector must all have empty use
103
/// lists and satisfy `isInstructionTriviallyDead`.
104
///
105
/// `DeadInsts` will be used as scratch storage for this routine and will be
106
/// empty afterward.
107
void RecursivelyDeleteTriviallyDeadInstructions(
108
    SmallVectorImpl<WeakTrackingVH> &DeadInsts,
109
    const TargetLibraryInfo *TLI = nullptr, MemorySSAUpdater *MSSAU = nullptr,
110
    std::function<void(Value *)> AboutToDeleteCallback =
111
        std::function<void(Value *)>());
112
 
113
/// Same functionality as RecursivelyDeleteTriviallyDeadInstructions, but allow
114
/// instructions that are not trivially dead. These will be ignored.
115
/// Returns true if any changes were made, i.e. any instructions trivially dead
116
/// were found and deleted.
117
bool RecursivelyDeleteTriviallyDeadInstructionsPermissive(
118
    SmallVectorImpl<WeakTrackingVH> &DeadInsts,
119
    const TargetLibraryInfo *TLI = nullptr, MemorySSAUpdater *MSSAU = nullptr,
120
    std::function<void(Value *)> AboutToDeleteCallback =
121
        std::function<void(Value *)>());
122
 
123
/// If the specified value is an effectively dead PHI node, due to being a
124
/// def-use chain of single-use nodes that either forms a cycle or is terminated
125
/// by a trivially dead instruction, delete it. If that makes any of its
126
/// operands trivially dead, delete them too, recursively. Return true if a
127
/// change was made.
128
bool RecursivelyDeleteDeadPHINode(PHINode *PN,
129
                                  const TargetLibraryInfo *TLI = nullptr,
130
                                  MemorySSAUpdater *MSSAU = nullptr);
131
 
132
/// Scan the specified basic block and try to simplify any instructions in it
133
/// and recursively delete dead instructions.
134
///
135
/// This returns true if it changed the code, note that it can delete
136
/// instructions in other blocks as well in this block.
137
bool SimplifyInstructionsInBlock(BasicBlock *BB,
138
                                 const TargetLibraryInfo *TLI = nullptr);
139
 
140
/// Replace all the uses of an SSA value in @llvm.dbg intrinsics with
141
/// undef. This is useful for signaling that a variable, e.g. has been
142
/// found dead and hence it's unavailable at a given program point.
143
/// Returns true if the dbg values have been changed.
144
bool replaceDbgUsesWithUndef(Instruction *I);
145
 
146
//===----------------------------------------------------------------------===//
147
//  Control Flow Graph Restructuring.
148
//
149
 
150
/// BB is a block with one predecessor and its predecessor is known to have one
151
/// successor (BB!). Eliminate the edge between them, moving the instructions in
152
/// the predecessor into BB. This deletes the predecessor block.
153
void MergeBasicBlockIntoOnlyPred(BasicBlock *BB, DomTreeUpdater *DTU = nullptr);
154
 
155
/// BB is known to contain an unconditional branch, and contains no instructions
156
/// other than PHI nodes, potential debug intrinsics and the branch. If
157
/// possible, eliminate BB by rewriting all the predecessors to branch to the
158
/// successor block and return true. If we can't transform, return false.
159
bool TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB,
160
                                             DomTreeUpdater *DTU = nullptr);
161
 
162
/// Check for and eliminate duplicate PHI nodes in this block. This doesn't try
163
/// to be clever about PHI nodes which differ only in the order of the incoming
164
/// values, but instcombine orders them so it usually won't matter.
165
bool EliminateDuplicatePHINodes(BasicBlock *BB);
166
 
167
/// This function is used to do simplification of a CFG.  For example, it
168
/// adjusts branches to branches to eliminate the extra hop, it eliminates
169
/// unreachable basic blocks, and does other peephole optimization of the CFG.
170
/// It returns true if a modification was made, possibly deleting the basic
171
/// block that was pointed to. LoopHeaders is an optional input parameter
172
/// providing the set of loop headers that SimplifyCFG should not eliminate.
173
extern cl::opt<bool> RequireAndPreserveDomTree;
174
bool simplifyCFG(BasicBlock *BB, const TargetTransformInfo &TTI,
175
                 DomTreeUpdater *DTU = nullptr,
176
                 const SimplifyCFGOptions &Options = {},
177
                 ArrayRef<WeakVH> LoopHeaders = {});
178
 
179
/// This function is used to flatten a CFG. For example, it uses parallel-and
180
/// and parallel-or mode to collapse if-conditions and merge if-regions with
181
/// identical statements.
182
bool FlattenCFG(BasicBlock *BB, AAResults *AA = nullptr);
183
 
184
/// If this basic block is ONLY a setcc and a branch, and if a predecessor
185
/// branches to us and one of our successors, fold the setcc into the
186
/// predecessor and use logical operations to pick the right destination.
187
bool FoldBranchToCommonDest(BranchInst *BI, llvm::DomTreeUpdater *DTU = nullptr,
188
                            MemorySSAUpdater *MSSAU = nullptr,
189
                            const TargetTransformInfo *TTI = nullptr,
190
                            unsigned BonusInstThreshold = 1);
191
 
192
/// This function takes a virtual register computed by an Instruction and
193
/// replaces it with a slot in the stack frame, allocated via alloca.
194
/// This allows the CFG to be changed around without fear of invalidating the
195
/// SSA information for the value. It returns the pointer to the alloca inserted
196
/// to create a stack slot for X.
197
AllocaInst *DemoteRegToStack(Instruction &X,
198
                             bool VolatileLoads = false,
199
                             Instruction *AllocaPoint = nullptr);
200
 
201
/// This function takes a virtual register computed by a phi node and replaces
202
/// it with a slot in the stack frame, allocated via alloca. The phi node is
203
/// deleted and it returns the pointer to the alloca inserted.
204
AllocaInst *DemotePHIToStack(PHINode *P, Instruction *AllocaPoint = nullptr);
205
 
206
/// Try to ensure that the alignment of \p V is at least \p PrefAlign bytes. If
207
/// the owning object can be modified and has an alignment less than \p
208
/// PrefAlign, it will be increased and \p PrefAlign returned. If the alignment
209
/// cannot be increased, the known alignment of the value is returned.
210
///
211
/// It is not always possible to modify the alignment of the underlying object,
212
/// so if alignment is important, a more reliable approach is to simply align
213
/// all global variables and allocation instructions to their preferred
214
/// alignment from the beginning.
215
Align getOrEnforceKnownAlignment(Value *V, MaybeAlign PrefAlign,
216
                                 const DataLayout &DL,
217
                                 const Instruction *CxtI = nullptr,
218
                                 AssumptionCache *AC = nullptr,
219
                                 const DominatorTree *DT = nullptr);
220
 
221
/// Try to infer an alignment for the specified pointer.
222
inline Align getKnownAlignment(Value *V, const DataLayout &DL,
223
                               const Instruction *CxtI = nullptr,
224
                               AssumptionCache *AC = nullptr,
225
                               const DominatorTree *DT = nullptr) {
226
  return getOrEnforceKnownAlignment(V, MaybeAlign(), DL, CxtI, AC, DT);
227
}
228
 
229
/// Create a call that matches the invoke \p II in terms of arguments,
230
/// attributes, debug information, etc. The call is not placed in a block and it
231
/// will not have a name. The invoke instruction is not removed, nor are the
232
/// uses replaced by the new call.
233
CallInst *createCallMatchingInvoke(InvokeInst *II);
234
 
235
/// This function converts the specified invoke into a normal call.
236
CallInst *changeToCall(InvokeInst *II, DomTreeUpdater *DTU = nullptr);
237
 
238
///===---------------------------------------------------------------------===//
239
///  Dbg Intrinsic utilities
240
///
241
 
242
/// Inserts a llvm.dbg.value intrinsic before a store to an alloca'd value
243
/// that has an associated llvm.dbg.declare or llvm.dbg.addr intrinsic.
244
void ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII,
245
                                     StoreInst *SI, DIBuilder &Builder);
246
 
247
/// Inserts a llvm.dbg.value intrinsic before a load of an alloca'd value
248
/// that has an associated llvm.dbg.declare or llvm.dbg.addr intrinsic.
249
void ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII,
250
                                     LoadInst *LI, DIBuilder &Builder);
251
 
252
/// Inserts a llvm.dbg.value intrinsic after a phi that has an associated
253
/// llvm.dbg.declare or llvm.dbg.addr intrinsic.
254
void ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII,
255
                                     PHINode *LI, DIBuilder &Builder);
256
 
257
/// Lowers llvm.dbg.declare intrinsics into appropriate set of
258
/// llvm.dbg.value intrinsics.
259
bool LowerDbgDeclare(Function &F);
260
 
261
/// Propagate dbg.value intrinsics through the newly inserted PHIs.
262
void insertDebugValuesForPHIs(BasicBlock *BB,
263
                              SmallVectorImpl<PHINode *> &InsertedPHIs);
264
 
265
/// Replaces llvm.dbg.declare instruction when the address it
266
/// describes is replaced with a new value. If Deref is true, an
267
/// additional DW_OP_deref is prepended to the expression. If Offset
268
/// is non-zero, a constant displacement is added to the expression
269
/// (between the optional Deref operations). Offset can be negative.
270
bool replaceDbgDeclare(Value *Address, Value *NewAddress, DIBuilder &Builder,
271
                       uint8_t DIExprFlags, int Offset);
272
 
273
/// Replaces multiple llvm.dbg.value instructions when the alloca it describes
274
/// is replaced with a new value. If Offset is non-zero, a constant displacement
275
/// is added to the expression (after the mandatory Deref). Offset can be
276
/// negative. New llvm.dbg.value instructions are inserted at the locations of
277
/// the instructions they replace.
278
void replaceDbgValueForAlloca(AllocaInst *AI, Value *NewAllocaAddress,
279
                              DIBuilder &Builder, int Offset = 0);
280
 
281
/// Assuming the instruction \p I is going to be deleted, attempt to salvage
282
/// debug users of \p I by writing the effect of \p I in a DIExpression. If it
283
/// cannot be salvaged changes its debug uses to undef.
284
void salvageDebugInfo(Instruction &I);
285
 
286
 
287
/// Implementation of salvageDebugInfo, applying only to instructions in
288
/// \p Insns, rather than all debug users from findDbgUsers( \p I).
289
/// Mark undef if salvaging cannot be completed.
290
void salvageDebugInfoForDbgValues(Instruction &I,
291
                                  ArrayRef<DbgVariableIntrinsic *> Insns);
292
 
293
/// Given an instruction \p I and DIExpression \p DIExpr operating on
294
/// it, append the effects of \p I to the DIExpression operand list
295
/// \p Ops, or return \p nullptr if it cannot be salvaged.
296
/// \p CurrentLocOps is the number of SSA values referenced by the
297
/// incoming \p Ops.  \return the first non-constant operand
298
/// implicitly referred to by Ops. If \p I references more than one
299
/// non-constant operand, any additional operands are added to
300
/// \p AdditionalValues.
301
///
302
/// \example
303
////
304
///   I = add %a, i32 1
305
///
306
///   Return = %a
307
///   Ops = llvm::dwarf::DW_OP_lit1 llvm::dwarf::DW_OP_add
308
///
309
///   I = add %a, %b
310
///
311
///   Return = %a
312
///   Ops = llvm::dwarf::DW_OP_LLVM_arg0 llvm::dwarf::DW_OP_add
313
///   AdditionalValues = %b
314
Value *salvageDebugInfoImpl(Instruction &I, uint64_t CurrentLocOps,
315
                            SmallVectorImpl<uint64_t> &Ops,
316
                            SmallVectorImpl<Value *> &AdditionalValues);
317
 
318
/// Point debug users of \p From to \p To or salvage them. Use this function
319
/// only when replacing all uses of \p From with \p To, with a guarantee that
320
/// \p From is going to be deleted.
321
///
322
/// Follow these rules to prevent use-before-def of \p To:
323
///   . If \p To is a linked Instruction, set \p DomPoint to \p To.
324
///   . If \p To is an unlinked Instruction, set \p DomPoint to the Instruction
325
///     \p To will be inserted after.
326
///   . If \p To is not an Instruction (e.g a Constant), the choice of
327
///     \p DomPoint is arbitrary. Pick \p From for simplicity.
328
///
329
/// If a debug user cannot be preserved without reordering variable updates or
330
/// introducing a use-before-def, it is either salvaged (\ref salvageDebugInfo)
331
/// or deleted. Returns true if any debug users were updated.
332
bool replaceAllDbgUsesWith(Instruction &From, Value &To, Instruction &DomPoint,
333
                           DominatorTree &DT);
334
 
335
/// Remove all instructions from a basic block other than its terminator
336
/// and any present EH pad instructions. Returns a pair where the first element
337
/// is the number of instructions (excluding debug info intrinsics) that have
338
/// been removed, and the second element is the number of debug info intrinsics
339
/// that have been removed.
340
std::pair<unsigned, unsigned>
341
removeAllNonTerminatorAndEHPadInstructions(BasicBlock *BB);
342
 
343
/// Insert an unreachable instruction before the specified
344
/// instruction, making it and the rest of the code in the block dead.
345
unsigned changeToUnreachable(Instruction *I, bool PreserveLCSSA = false,
346
                             DomTreeUpdater *DTU = nullptr,
347
                             MemorySSAUpdater *MSSAU = nullptr);
348
 
349
/// Convert the CallInst to InvokeInst with the specified unwind edge basic
350
/// block.  This also splits the basic block where CI is located, because
351
/// InvokeInst is a terminator instruction.  Returns the newly split basic
352
/// block.
353
BasicBlock *changeToInvokeAndSplitBasicBlock(CallInst *CI,
354
                                             BasicBlock *UnwindEdge,
355
                                             DomTreeUpdater *DTU = nullptr);
356
 
357
/// Replace 'BB's terminator with one that does not have an unwind successor
358
/// block. Rewrites `invoke` to `call`, etc. Updates any PHIs in unwind
359
/// successor. Returns the instruction that replaced the original terminator,
360
/// which might be a call in case the original terminator was an invoke.
361
///
362
/// \param BB  Block whose terminator will be replaced.  Its terminator must
363
///            have an unwind successor.
364
Instruction *removeUnwindEdge(BasicBlock *BB, DomTreeUpdater *DTU = nullptr);
365
 
366
/// Remove all blocks that can not be reached from the function's entry.
367
///
368
/// Returns true if any basic block was removed.
369
bool removeUnreachableBlocks(Function &F, DomTreeUpdater *DTU = nullptr,
370
                             MemorySSAUpdater *MSSAU = nullptr);
371
 
372
/// Combine the metadata of two instructions so that K can replace J. Some
373
/// metadata kinds can only be kept if K does not move, meaning it dominated
374
/// J in the original IR.
375
///
376
/// Metadata not listed as known via KnownIDs is removed
377
void combineMetadata(Instruction *K, const Instruction *J,
378
                     ArrayRef<unsigned> KnownIDs, bool DoesKMove);
379
 
380
/// Combine the metadata of two instructions so that K can replace J. This
381
/// specifically handles the case of CSE-like transformations. Some
382
/// metadata can only be kept if K dominates J. For this to be correct,
383
/// K cannot be hoisted.
384
///
385
/// Unknown metadata is removed.
386
void combineMetadataForCSE(Instruction *K, const Instruction *J,
387
                           bool DoesKMove);
388
 
389
/// Copy the metadata from the source instruction to the destination (the
390
/// replacement for the source instruction).
391
void copyMetadataForLoad(LoadInst &Dest, const LoadInst &Source);
392
 
393
/// Patch the replacement so that it is not more restrictive than the value
394
/// being replaced. It assumes that the replacement does not get moved from
395
/// its original position.
396
void patchReplacementInstruction(Instruction *I, Value *Repl);
397
 
398
// Replace each use of 'From' with 'To', if that use does not belong to basic
399
// block where 'From' is defined. Returns the number of replacements made.
400
unsigned replaceNonLocalUsesWith(Instruction *From, Value *To);
401
 
402
/// Replace each use of 'From' with 'To' if that use is dominated by
403
/// the given edge.  Returns the number of replacements made.
404
unsigned replaceDominatedUsesWith(Value *From, Value *To, DominatorTree &DT,
405
                                  const BasicBlockEdge &Edge);
406
/// Replace each use of 'From' with 'To' if that use is dominated by
407
/// the end of the given BasicBlock. Returns the number of replacements made.
408
unsigned replaceDominatedUsesWith(Value *From, Value *To, DominatorTree &DT,
409
                                  const BasicBlock *BB);
410
 
411
/// Return true if this call calls a gc leaf function.
412
///
413
/// A leaf function is a function that does not safepoint the thread during its
414
/// execution.  During a call or invoke to such a function, the callers stack
415
/// does not have to be made parseable.
416
///
417
/// Most passes can and should ignore this information, and it is only used
418
/// during lowering by the GC infrastructure.
419
bool callsGCLeafFunction(const CallBase *Call, const TargetLibraryInfo &TLI);
420
 
421
/// Copy a nonnull metadata node to a new load instruction.
422
///
423
/// This handles mapping it to range metadata if the new load is an integer
424
/// load instead of a pointer load.
425
void copyNonnullMetadata(const LoadInst &OldLI, MDNode *N, LoadInst &NewLI);
426
 
427
/// Copy a range metadata node to a new load instruction.
428
///
429
/// This handles mapping it to nonnull metadata if the new load is a pointer
430
/// load instead of an integer load and the range doesn't cover null.
431
void copyRangeMetadata(const DataLayout &DL, const LoadInst &OldLI, MDNode *N,
432
                       LoadInst &NewLI);
433
 
434
/// Remove the debug intrinsic instructions for the given instruction.
435
void dropDebugUsers(Instruction &I);
436
 
437
/// Hoist all of the instructions in the \p IfBlock to the dominant block
438
/// \p DomBlock, by moving its instructions to the insertion point \p InsertPt.
439
///
440
/// The moved instructions receive the insertion point debug location values
441
/// (DILocations) and their debug intrinsic instructions are removed.
442
void hoistAllInstructionsInto(BasicBlock *DomBlock, Instruction *InsertPt,
443
                              BasicBlock *BB);
444
 
445
//===----------------------------------------------------------------------===//
446
//  Intrinsic pattern matching
447
//
448
 
449
/// Try to match a bswap or bitreverse idiom.
450
///
451
/// If an idiom is matched, an intrinsic call is inserted before \c I. Any added
452
/// instructions are returned in \c InsertedInsts. They will all have been added
453
/// to a basic block.
454
///
455
/// A bitreverse idiom normally requires around 2*BW nodes to be searched (where
456
/// BW is the bitwidth of the integer type). A bswap idiom requires anywhere up
457
/// to BW / 4 nodes to be searched, so is significantly faster.
458
///
459
/// This function returns true on a successful match or false otherwise.
460
bool recognizeBSwapOrBitReverseIdiom(
461
    Instruction *I, bool MatchBSwaps, bool MatchBitReversals,
462
    SmallVectorImpl<Instruction *> &InsertedInsts);
463
 
464
//===----------------------------------------------------------------------===//
465
//  Sanitizer utilities
466
//
467
 
468
/// Given a CallInst, check if it calls a string function known to CodeGen,
469
/// and mark it with NoBuiltin if so.  To be used by sanitizers that intend
470
/// to intercept string functions and want to avoid converting them to target
471
/// specific instructions.
472
void maybeMarkSanitizerLibraryCallNoBuiltin(CallInst *CI,
473
                                            const TargetLibraryInfo *TLI);
474
 
475
//===----------------------------------------------------------------------===//
476
//  Transform predicates
477
//
478
 
479
/// Given an instruction, is it legal to set operand OpIdx to a non-constant
480
/// value?
481
bool canReplaceOperandWithVariable(const Instruction *I, unsigned OpIdx);
482
 
483
//===----------------------------------------------------------------------===//
484
//  Value helper functions
485
//
486
 
487
/// Invert the given true/false value, possibly reusing an existing copy.
488
Value *invertCondition(Value *Condition);
489
 
490
 
491
//===----------------------------------------------------------------------===//
492
//  Assorted
493
//
494
 
495
/// If we can infer one attribute from another on the declaration of a
496
/// function, explicitly materialize the maximal set in the IR.
497
bool inferAttributesFromOthers(Function &F);
498
 
499
} // end namespace llvm
500
 
501
#endif // LLVM_TRANSFORMS_UTILS_LOCAL_H