Subversion Repositories QNX 8.QNX8 LLVM/Clang compiler suite

Rev

Details | Last modification | View Log | RSS feed

Rev Author Line No. Line
14 pmbaty 1
//===- Cloning.h - Clone various parts of LLVM programs ---------*- C++ -*-===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
// This file defines various functions that are used to clone chunks of LLVM
10
// code for various purposes.  This varies from copying whole modules into new
11
// modules, to cloning functions with different arguments, to inlining
12
// functions, to copying basic blocks to support loop unrolling or superblock
13
// formation, etc.
14
//
15
//===----------------------------------------------------------------------===//
16
 
17
#ifndef LLVM_TRANSFORMS_UTILS_CLONING_H
18
#define LLVM_TRANSFORMS_UTILS_CLONING_H
19
 
20
#include "llvm/ADT/SmallVector.h"
21
#include "llvm/ADT/Twine.h"
22
#include "llvm/Analysis/AssumptionCache.h"
23
#include "llvm/Analysis/InlineCost.h"
24
#include "llvm/IR/ValueHandle.h"
25
#include "llvm/Transforms/Utils/ValueMapper.h"
26
#include <functional>
27
#include <memory>
28
#include <vector>
29
 
30
namespace llvm {
31
 
32
class AAResults;
33
class AllocaInst;
34
class BasicBlock;
35
class BlockFrequencyInfo;
36
class CallGraph;
37
class DebugInfoFinder;
38
class DominatorTree;
39
class Function;
40
class Instruction;
41
class Loop;
42
class LoopInfo;
43
class Module;
44
class ProfileSummaryInfo;
45
class ReturnInst;
46
class DomTreeUpdater;
47
 
48
/// Return an exact copy of the specified module
49
std::unique_ptr<Module> CloneModule(const Module &M);
50
std::unique_ptr<Module> CloneModule(const Module &M, ValueToValueMapTy &VMap);
51
 
52
/// Return a copy of the specified module. The ShouldCloneDefinition function
53
/// controls whether a specific GlobalValue's definition is cloned. If the
54
/// function returns false, the module copy will contain an external reference
55
/// in place of the global definition.
56
std::unique_ptr<Module>
57
CloneModule(const Module &M, ValueToValueMapTy &VMap,
58
            function_ref<bool(const GlobalValue *)> ShouldCloneDefinition);
59
 
60
/// This struct can be used to capture information about code
61
/// being cloned, while it is being cloned.
62
struct ClonedCodeInfo {
63
  /// This is set to true if the cloned code contains a normal call instruction.
64
  bool ContainsCalls = false;
65
 
66
  /// This is set to true if there is memprof related metadata (memprof or
67
  /// callsite metadata) in the cloned code.
68
  bool ContainsMemProfMetadata = false;
69
 
70
  /// This is set to true if the cloned code contains a 'dynamic' alloca.
71
  /// Dynamic allocas are allocas that are either not in the entry block or they
72
  /// are in the entry block but are not a constant size.
73
  bool ContainsDynamicAllocas = false;
74
 
75
  /// All cloned call sites that have operand bundles attached are appended to
76
  /// this vector.  This vector may contain nulls or undefs if some of the
77
  /// originally inserted callsites were DCE'ed after they were cloned.
78
  std::vector<WeakTrackingVH> OperandBundleCallSites;
79
 
80
  /// Like VMap, but maps only unsimplified instructions. Values in the map
81
  /// may be dangling, it is only intended to be used via isSimplified(), to
82
  /// check whether the main VMap mapping involves simplification or not.
83
  DenseMap<const Value *, const Value *> OrigVMap;
84
 
85
  ClonedCodeInfo() = default;
86
 
87
  bool isSimplified(const Value *From, const Value *To) const {
88
    return OrigVMap.lookup(From) != To;
89
  }
90
};
91
 
92
/// Return a copy of the specified basic block, but without
93
/// embedding the block into a particular function.  The block returned is an
94
/// exact copy of the specified basic block, without any remapping having been
95
/// performed.  Because of this, this is only suitable for applications where
96
/// the basic block will be inserted into the same function that it was cloned
97
/// from (loop unrolling would use this, for example).
98
///
99
/// Also, note that this function makes a direct copy of the basic block, and
100
/// can thus produce illegal LLVM code.  In particular, it will copy any PHI
101
/// nodes from the original block, even though there are no predecessors for the
102
/// newly cloned block (thus, phi nodes will have to be updated).  Also, this
103
/// block will branch to the old successors of the original block: these
104
/// successors will have to have any PHI nodes updated to account for the new
105
/// incoming edges.
106
///
107
/// The correlation between instructions in the source and result basic blocks
108
/// is recorded in the VMap map.
109
///
110
/// If you have a particular suffix you'd like to use to add to any cloned
111
/// names, specify it as the optional third parameter.
112
///
113
/// If you would like the basic block to be auto-inserted into the end of a
114
/// function, you can specify it as the optional fourth parameter.
115
///
116
/// If you would like to collect additional information about the cloned
117
/// function, you can specify a ClonedCodeInfo object with the optional fifth
118
/// parameter.
119
BasicBlock *CloneBasicBlock(const BasicBlock *BB, ValueToValueMapTy &VMap,
120
                            const Twine &NameSuffix = "", Function *F = nullptr,
121
                            ClonedCodeInfo *CodeInfo = nullptr,
122
                            DebugInfoFinder *DIFinder = nullptr);
123
 
124
/// Return a copy of the specified function and add it to that
125
/// function's module.  Also, any references specified in the VMap are changed
126
/// to refer to their mapped value instead of the original one.  If any of the
127
/// arguments to the function are in the VMap, the arguments are deleted from
128
/// the resultant function.  The VMap is updated to include mappings from all of
129
/// the instructions and basicblocks in the function from their old to new
130
/// values.  The final argument captures information about the cloned code if
131
/// non-null.
132
///
133
/// \pre VMap contains no non-identity GlobalValue mappings.
134
///
135
Function *CloneFunction(Function *F, ValueToValueMapTy &VMap,
136
                        ClonedCodeInfo *CodeInfo = nullptr);
137
 
138
enum class CloneFunctionChangeType {
139
  LocalChangesOnly,
140
  GlobalChanges,
141
  DifferentModule,
142
  ClonedModule,
143
};
144
 
145
/// Clone OldFunc into NewFunc, transforming the old arguments into references
146
/// to VMap values.  Note that if NewFunc already has basic blocks, the ones
147
/// cloned into it will be added to the end of the function.  This function
148
/// fills in a list of return instructions, and can optionally remap types
149
/// and/or append the specified suffix to all values cloned.
150
///
151
/// If \p Changes is \a CloneFunctionChangeType::LocalChangesOnly, VMap is
152
/// required to contain no non-identity GlobalValue mappings. Otherwise,
153
/// referenced metadata will be cloned.
154
///
155
/// If \p Changes is less than \a CloneFunctionChangeType::DifferentModule
156
/// indicating cloning into the same module (even if it's LocalChangesOnly), if
157
/// debug info metadata transitively references a \a DISubprogram, it will be
158
/// cloned, effectively upgrading \p Changes to GlobalChanges while suppressing
159
/// cloning of types and compile units.
160
///
161
/// If \p Changes is \a CloneFunctionChangeType::DifferentModule, the new
162
/// module's \c !llvm.dbg.cu will get updated with any newly created compile
163
/// units. (\a CloneFunctionChangeType::ClonedModule leaves that work for the
164
/// caller.)
165
///
166
/// FIXME: Consider simplifying this function by splitting out \a
167
/// CloneFunctionMetadataInto() and expecting / updating callers to call it
168
/// first when / how it's needed.
169
void CloneFunctionInto(Function *NewFunc, const Function *OldFunc,
170
                       ValueToValueMapTy &VMap, CloneFunctionChangeType Changes,
171
                       SmallVectorImpl<ReturnInst *> &Returns,
172
                       const char *NameSuffix = "",
173
                       ClonedCodeInfo *CodeInfo = nullptr,
174
                       ValueMapTypeRemapper *TypeMapper = nullptr,
175
                       ValueMaterializer *Materializer = nullptr);
176
 
177
void CloneAndPruneIntoFromInst(Function *NewFunc, const Function *OldFunc,
178
                               const Instruction *StartingInst,
179
                               ValueToValueMapTy &VMap, bool ModuleLevelChanges,
180
                               SmallVectorImpl<ReturnInst *> &Returns,
181
                               const char *NameSuffix = "",
182
                               ClonedCodeInfo *CodeInfo = nullptr);
183
 
184
/// This works exactly like CloneFunctionInto,
185
/// except that it does some simple constant prop and DCE on the fly.  The
186
/// effect of this is to copy significantly less code in cases where (for
187
/// example) a function call with constant arguments is inlined, and those
188
/// constant arguments cause a significant amount of code in the callee to be
189
/// dead.  Since this doesn't produce an exactly copy of the input, it can't be
190
/// used for things like CloneFunction or CloneModule.
191
///
192
/// If ModuleLevelChanges is false, VMap contains no non-identity GlobalValue
193
/// mappings.
194
///
195
void CloneAndPruneFunctionInto(Function *NewFunc, const Function *OldFunc,
196
                               ValueToValueMapTy &VMap, bool ModuleLevelChanges,
197
                               SmallVectorImpl<ReturnInst*> &Returns,
198
                               const char *NameSuffix = "",
199
                               ClonedCodeInfo *CodeInfo = nullptr);
200
 
201
/// This class captures the data input to the InlineFunction call, and records
202
/// the auxiliary results produced by it.
203
class InlineFunctionInfo {
204
public:
205
  explicit InlineFunctionInfo(
206
      CallGraph *cg = nullptr,
207
      function_ref<AssumptionCache &(Function &)> GetAssumptionCache = nullptr,
208
      ProfileSummaryInfo *PSI = nullptr,
209
      BlockFrequencyInfo *CallerBFI = nullptr,
210
      BlockFrequencyInfo *CalleeBFI = nullptr, bool UpdateProfile = true)
211
      : CG(cg), GetAssumptionCache(GetAssumptionCache), PSI(PSI),
212
        CallerBFI(CallerBFI), CalleeBFI(CalleeBFI),
213
        UpdateProfile(UpdateProfile) {}
214
 
215
  /// If non-null, InlineFunction will update the callgraph to reflect the
216
  /// changes it makes.
217
  CallGraph *CG;
218
  function_ref<AssumptionCache &(Function &)> GetAssumptionCache;
219
  ProfileSummaryInfo *PSI;
220
  BlockFrequencyInfo *CallerBFI, *CalleeBFI;
221
 
222
  /// InlineFunction fills this in with all static allocas that get copied into
223
  /// the caller.
224
  SmallVector<AllocaInst *, 4> StaticAllocas;
225
 
226
  /// InlineFunction fills this in with callsites that were inlined from the
227
  /// callee. This is only filled in if CG is non-null.
228
  SmallVector<WeakTrackingVH, 8> InlinedCalls;
229
 
230
  /// All of the new call sites inlined into the caller.
231
  ///
232
  /// 'InlineFunction' fills this in by scanning the inlined instructions, and
233
  /// only if CG is null. If CG is non-null, instead the value handle
234
  /// `InlinedCalls` above is used.
235
  SmallVector<CallBase *, 8> InlinedCallSites;
236
 
237
  /// Update profile for callee as well as cloned version. We need to do this
238
  /// for regular inlining, but not for inlining from sample profile loader.
239
  bool UpdateProfile;
240
 
241
  void reset() {
242
    StaticAllocas.clear();
243
    InlinedCalls.clear();
244
    InlinedCallSites.clear();
245
  }
246
};
247
 
248
/// This function inlines the called function into the basic
249
/// block of the caller.  This returns false if it is not possible to inline
250
/// this call.  The program is still in a well defined state if this occurs
251
/// though.
252
///
253
/// Note that this only does one level of inlining.  For example, if the
254
/// instruction 'call B' is inlined, and 'B' calls 'C', then the call to 'C' now
255
/// exists in the instruction stream.  Similarly this will inline a recursive
256
/// function by one level.
257
///
258
/// Note that while this routine is allowed to cleanup and optimize the
259
/// *inlined* code to minimize the actual inserted code, it must not delete
260
/// code in the caller as users of this routine may have pointers to
261
/// instructions in the caller that need to remain stable.
262
///
263
/// If ForwardVarArgsTo is passed, inlining a function with varargs is allowed
264
/// and all varargs at the callsite will be passed to any calls to
265
/// ForwardVarArgsTo. The caller of InlineFunction has to make sure any varargs
266
/// are only used by ForwardVarArgsTo.
267
///
268
/// The callee's function attributes are merged into the callers' if
269
/// MergeAttributes is set to true.
270
InlineResult InlineFunction(CallBase &CB, InlineFunctionInfo &IFI,
271
                            bool MergeAttributes = false,
272
                            AAResults *CalleeAAR = nullptr,
273
                            bool InsertLifetime = true,
274
                            Function *ForwardVarArgsTo = nullptr);
275
 
276
/// Clones a loop \p OrigLoop.  Returns the loop and the blocks in \p
277
/// Blocks.
278
///
279
/// Updates LoopInfo and DominatorTree assuming the loop is dominated by block
280
/// \p LoopDomBB.  Insert the new blocks before block specified in \p Before.
281
/// Note: Only innermost loops are supported.
282
Loop *cloneLoopWithPreheader(BasicBlock *Before, BasicBlock *LoopDomBB,
283
                             Loop *OrigLoop, ValueToValueMapTy &VMap,
284
                             const Twine &NameSuffix, LoopInfo *LI,
285
                             DominatorTree *DT,
286
                             SmallVectorImpl<BasicBlock *> &Blocks);
287
 
288
/// Remaps instructions in \p Blocks using the mapping in \p VMap.
289
void remapInstructionsInBlocks(const SmallVectorImpl<BasicBlock *> &Blocks,
290
                               ValueToValueMapTy &VMap);
291
 
292
/// Split edge between BB and PredBB and duplicate all non-Phi instructions
293
/// from BB between its beginning and the StopAt instruction into the split
294
/// block. Phi nodes are not duplicated, but their uses are handled correctly:
295
/// we replace them with the uses of corresponding Phi inputs. ValueMapping
296
/// is used to map the original instructions from BB to their newly-created
297
/// copies. Returns the split block.
298
BasicBlock *DuplicateInstructionsInSplitBetween(BasicBlock *BB,
299
                                                BasicBlock *PredBB,
300
                                                Instruction *StopAt,
301
                                                ValueToValueMapTy &ValueMapping,
302
                                                DomTreeUpdater &DTU);
303
 
304
/// Updates profile information by adjusting the entry count by adding
305
/// EntryDelta then scaling callsite information by the new count divided by the
306
/// old count. VMap is used during inlinng to also update the new clone
307
void updateProfileCallee(
308
    Function *Callee, int64_t EntryDelta,
309
    const ValueMap<const Value *, WeakTrackingVH> *VMap = nullptr);
310
 
311
/// Find the 'llvm.experimental.noalias.scope.decl' intrinsics in the specified
312
/// basic blocks and extract their scope. These are candidates for duplication
313
/// when cloning.
314
void identifyNoAliasScopesToClone(
315
    ArrayRef<BasicBlock *> BBs, SmallVectorImpl<MDNode *> &NoAliasDeclScopes);
316
 
317
/// Find the 'llvm.experimental.noalias.scope.decl' intrinsics in the specified
318
/// instruction range and extract their scope. These are candidates for
319
/// duplication when cloning.
320
void identifyNoAliasScopesToClone(
321
    BasicBlock::iterator Start, BasicBlock::iterator End,
322
    SmallVectorImpl<MDNode *> &NoAliasDeclScopes);
323
 
324
/// Duplicate the specified list of noalias decl scopes.
325
/// The 'Ext' string is added as an extension to the name.
326
/// Afterwards, the ClonedScopes contains the mapping of the original scope
327
/// MDNode onto the cloned scope.
328
/// Be aware that the cloned scopes are still part of the original scope domain.
329
void cloneNoAliasScopes(
330
    ArrayRef<MDNode *> NoAliasDeclScopes,
331
    DenseMap<MDNode *, MDNode *> &ClonedScopes,
332
    StringRef Ext, LLVMContext &Context);
333
 
334
/// Adapt the metadata for the specified instruction according to the
335
/// provided mapping. This is normally used after cloning an instruction, when
336
/// some noalias scopes needed to be cloned.
337
void adaptNoAliasScopes(
338
    llvm::Instruction *I, const DenseMap<MDNode *, MDNode *> &ClonedScopes,
339
    LLVMContext &Context);
340
 
341
/// Clone the specified noalias decl scopes. Then adapt all instructions in the
342
/// NewBlocks basicblocks to the cloned versions.
343
/// 'Ext' will be added to the duplicate scope names.
344
void cloneAndAdaptNoAliasScopes(ArrayRef<MDNode *> NoAliasDeclScopes,
345
                                ArrayRef<BasicBlock *> NewBlocks,
346
                                LLVMContext &Context, StringRef Ext);
347
 
348
/// Clone the specified noalias decl scopes. Then adapt all instructions in the
349
/// [IStart, IEnd] (IEnd included !) range to the cloned versions. 'Ext' will be
350
/// added to the duplicate scope names.
351
void cloneAndAdaptNoAliasScopes(ArrayRef<MDNode *> NoAliasDeclScopes,
352
                                Instruction *IStart, Instruction *IEnd,
353
                                LLVMContext &Context, StringRef Ext);
354
} // end namespace llvm
355
 
356
#endif // LLVM_TRANSFORMS_UTILS_CLONING_H