Details | Last modification | View Log | RSS feed
| Rev | Author | Line No. | Line | 
|---|---|---|---|
| 14 | pmbaty | 1 | //===- InstCombiner.h - InstCombine implementation --------------*- C++ -*-===// | 
| 2 | // | ||
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | ||
| 4 | // See https://llvm.org/LICENSE.txt for license information. | ||
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | ||
| 6 | // | ||
| 7 | //===----------------------------------------------------------------------===// | ||
| 8 | /// \file | ||
| 9 | /// | ||
| 10 | /// This file provides the interface for the instcombine pass implementation. | ||
| 11 | /// The interface is used for generic transformations in this folder and | ||
| 12 | /// target specific combinations in the targets. | ||
| 13 | /// The visitor implementation is in \c InstCombinerImpl in | ||
| 14 | /// \c InstCombineInternal.h. | ||
| 15 | /// | ||
| 16 | //===----------------------------------------------------------------------===// | ||
| 17 | |||
| 18 | #ifndef LLVM_TRANSFORMS_INSTCOMBINE_INSTCOMBINER_H | ||
| 19 | #define LLVM_TRANSFORMS_INSTCOMBINE_INSTCOMBINER_H | ||
| 20 | |||
| 21 | #include "llvm/Analysis/InstructionSimplify.h" | ||
| 22 | #include "llvm/Analysis/TargetFolder.h" | ||
| 23 | #include "llvm/Analysis/ValueTracking.h" | ||
| 24 | #include "llvm/IR/IRBuilder.h" | ||
| 25 | #include "llvm/IR/PatternMatch.h" | ||
| 26 | #include "llvm/Support/Debug.h" | ||
| 27 | #include "llvm/Support/KnownBits.h" | ||
| 28 | #include <cassert> | ||
| 29 | |||
| 30 | #define DEBUG_TYPE "instcombine" | ||
| 31 | #include "llvm/Transforms/Utils/InstructionWorklist.h" | ||
| 32 | |||
| 33 | namespace llvm { | ||
| 34 | |||
| 35 | class AAResults; | ||
| 36 | class AssumptionCache; | ||
| 37 | class ProfileSummaryInfo; | ||
| 38 | class TargetLibraryInfo; | ||
| 39 | class TargetTransformInfo; | ||
| 40 | |||
| 41 | /// The core instruction combiner logic. | ||
| 42 | /// | ||
| 43 | /// This class provides both the logic to recursively visit instructions and | ||
| 44 | /// combine them. | ||
| 45 | class LLVM_LIBRARY_VISIBILITY InstCombiner { | ||
| 46 |   /// Only used to call target specific intrinsic combining. | ||
| 47 |   /// It must **NOT** be used for any other purpose, as InstCombine is a | ||
| 48 |   /// target-independent canonicalization transform. | ||
| 49 | TargetTransformInfo &TTI; | ||
| 50 | |||
| 51 | public: | ||
| 52 |   /// Maximum size of array considered when transforming. | ||
| 53 | uint64_t MaxArraySizeForCombine = 0; | ||
| 54 | |||
| 55 |   /// An IRBuilder that automatically inserts new instructions into the | ||
| 56 |   /// worklist. | ||
| 57 | using BuilderTy = IRBuilder<TargetFolder, IRBuilderCallbackInserter>; | ||
| 58 | BuilderTy &Builder; | ||
| 59 | |||
| 60 | protected: | ||
| 61 |   /// A worklist of the instructions that need to be simplified. | ||
| 62 | InstructionWorklist &Worklist; | ||
| 63 | |||
| 64 |   // Mode in which we are running the combiner. | ||
| 65 | const bool MinimizeSize; | ||
| 66 | |||
| 67 | AAResults *AA; | ||
| 68 | |||
| 69 |   // Required analyses. | ||
| 70 | AssumptionCache &AC; | ||
| 71 | TargetLibraryInfo &TLI; | ||
| 72 | DominatorTree &DT; | ||
| 73 | const DataLayout &DL; | ||
| 74 | const SimplifyQuery SQ; | ||
| 75 | OptimizationRemarkEmitter &ORE; | ||
| 76 | BlockFrequencyInfo *BFI; | ||
| 77 | ProfileSummaryInfo *PSI; | ||
| 78 | |||
| 79 |   // Optional analyses. When non-null, these can both be used to do better | ||
| 80 |   // combining and will be updated to reflect any changes. | ||
| 81 | LoopInfo *LI; | ||
| 82 | |||
| 83 | bool MadeIRChange = false; | ||
| 84 | |||
| 85 | public: | ||
| 86 | InstCombiner(InstructionWorklist &Worklist, BuilderTy &Builder, | ||
| 87 | bool MinimizeSize, AAResults *AA, AssumptionCache &AC, | ||
| 88 | TargetLibraryInfo &TLI, TargetTransformInfo &TTI, | ||
| 89 | DominatorTree &DT, OptimizationRemarkEmitter &ORE, | ||
| 90 | BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, | ||
| 91 | const DataLayout &DL, LoopInfo *LI) | ||
| 92 | : TTI(TTI), Builder(Builder), Worklist(Worklist), | ||
| 93 | MinimizeSize(MinimizeSize), AA(AA), AC(AC), TLI(TLI), DT(DT), DL(DL), | ||
| 94 | SQ(DL, &TLI, &DT, &AC), ORE(ORE), BFI(BFI), PSI(PSI), LI(LI) {} | ||
| 95 | |||
| 96 | virtual ~InstCombiner() = default; | ||
| 97 | |||
| 98 |   /// Return the source operand of a potentially bitcasted value while | ||
| 99 |   /// optionally checking if it has one use. If there is no bitcast or the one | ||
| 100 |   /// use check is not met, return the input value itself. | ||
| 101 | static Value *peekThroughBitcast(Value *V, bool OneUseOnly = false) { | ||
| 102 | if (auto *BitCast = dyn_cast<BitCastInst>(V)) | ||
| 103 | if (!OneUseOnly || BitCast->hasOneUse()) | ||
| 104 | return BitCast->getOperand(0); | ||
| 105 | |||
| 106 |     // V is not a bitcast or V has more than one use and OneUseOnly is true. | ||
| 107 | return V; | ||
| 108 |   } | ||
| 109 | |||
| 110 |   /// Assign a complexity or rank value to LLVM Values. This is used to reduce | ||
| 111 |   /// the amount of pattern matching needed for compares and commutative | ||
| 112 |   /// instructions. For example, if we have: | ||
| 113 |   ///   icmp ugt X, Constant | ||
| 114 |   /// or | ||
| 115 |   ///   xor (add X, Constant), cast Z | ||
| 116 |   /// | ||
| 117 |   /// We do not have to consider the commuted variants of these patterns because | ||
| 118 |   /// canonicalization based on complexity guarantees the above ordering. | ||
| 119 |   /// | ||
| 120 |   /// This routine maps IR values to various complexity ranks: | ||
| 121 |   ///   0 -> undef | ||
| 122 |   ///   1 -> Constants | ||
| 123 |   ///   2 -> Other non-instructions | ||
| 124 |   ///   3 -> Arguments | ||
| 125 |   ///   4 -> Cast and (f)neg/not instructions | ||
| 126 |   ///   5 -> Other instructions | ||
| 127 | static unsigned getComplexity(Value *V) { | ||
| 128 | if (isa<Instruction>(V)) { | ||
| 129 | if (isa<CastInst>(V) || match(V, m_Neg(PatternMatch::m_Value())) || | ||
| 130 | match(V, m_Not(PatternMatch::m_Value())) || | ||
| 131 | match(V, m_FNeg(PatternMatch::m_Value()))) | ||
| 132 | return 4; | ||
| 133 | return 5; | ||
| 134 |     } | ||
| 135 | if (isa<Argument>(V)) | ||
| 136 | return 3; | ||
| 137 | return isa<Constant>(V) ? (isa<UndefValue>(V) ? 0 : 1) : 2; | ||
| 138 |   } | ||
| 139 | |||
| 140 |   /// Predicate canonicalization reduces the number of patterns that need to be | ||
| 141 |   /// matched by other transforms. For example, we may swap the operands of a | ||
| 142 |   /// conditional branch or select to create a compare with a canonical | ||
| 143 |   /// (inverted) predicate which is then more likely to be matched with other | ||
| 144 |   /// values. | ||
| 145 | static bool isCanonicalPredicate(CmpInst::Predicate Pred) { | ||
| 146 | switch (Pred) { | ||
| 147 | case CmpInst::ICMP_NE: | ||
| 148 | case CmpInst::ICMP_ULE: | ||
| 149 | case CmpInst::ICMP_SLE: | ||
| 150 | case CmpInst::ICMP_UGE: | ||
| 151 | case CmpInst::ICMP_SGE: | ||
| 152 |     // TODO: There are 16 FCMP predicates. Should others be (not) canonical? | ||
| 153 | case CmpInst::FCMP_ONE: | ||
| 154 | case CmpInst::FCMP_OLE: | ||
| 155 | case CmpInst::FCMP_OGE: | ||
| 156 | return false; | ||
| 157 | default: | ||
| 158 | return true; | ||
| 159 |     } | ||
| 160 |   } | ||
| 161 | |||
| 162 |   /// Given an exploded icmp instruction, return true if the comparison only | ||
| 163 |   /// checks the sign bit. If it only checks the sign bit, set TrueIfSigned if | ||
| 164 |   /// the result of the comparison is true when the input value is signed. | ||
| 165 | static bool isSignBitCheck(ICmpInst::Predicate Pred, const APInt &RHS, | ||
| 166 | bool &TrueIfSigned) { | ||
| 167 | switch (Pred) { | ||
| 168 | case ICmpInst::ICMP_SLT: // True if LHS s< 0 | ||
| 169 | TrueIfSigned = true; | ||
| 170 | return RHS.isZero(); | ||
| 171 | case ICmpInst::ICMP_SLE: // True if LHS s<= -1 | ||
| 172 | TrueIfSigned = true; | ||
| 173 | return RHS.isAllOnes(); | ||
| 174 | case ICmpInst::ICMP_SGT: // True if LHS s> -1 | ||
| 175 | TrueIfSigned = false; | ||
| 176 | return RHS.isAllOnes(); | ||
| 177 | case ICmpInst::ICMP_SGE: // True if LHS s>= 0 | ||
| 178 | TrueIfSigned = false; | ||
| 179 | return RHS.isZero(); | ||
| 180 | case ICmpInst::ICMP_UGT: | ||
| 181 |       // True if LHS u> RHS and RHS == sign-bit-mask - 1 | ||
| 182 | TrueIfSigned = true; | ||
| 183 | return RHS.isMaxSignedValue(); | ||
| 184 | case ICmpInst::ICMP_UGE: | ||
| 185 |       // True if LHS u>= RHS and RHS == sign-bit-mask (2^7, 2^15, 2^31, etc) | ||
| 186 | TrueIfSigned = true; | ||
| 187 | return RHS.isMinSignedValue(); | ||
| 188 | case ICmpInst::ICMP_ULT: | ||
| 189 |       // True if LHS u< RHS and RHS == sign-bit-mask (2^7, 2^15, 2^31, etc) | ||
| 190 | TrueIfSigned = false; | ||
| 191 | return RHS.isMinSignedValue(); | ||
| 192 | case ICmpInst::ICMP_ULE: | ||
| 193 |       // True if LHS u<= RHS and RHS == sign-bit-mask - 1 | ||
| 194 | TrueIfSigned = false; | ||
| 195 | return RHS.isMaxSignedValue(); | ||
| 196 | default: | ||
| 197 | return false; | ||
| 198 |     } | ||
| 199 |   } | ||
| 200 | |||
| 201 |   /// Add one to a Constant | ||
| 202 | static Constant *AddOne(Constant *C) { | ||
| 203 | return ConstantExpr::getAdd(C, ConstantInt::get(C->getType(), 1)); | ||
| 204 |   } | ||
| 205 | |||
| 206 |   /// Subtract one from a Constant | ||
| 207 | static Constant *SubOne(Constant *C) { | ||
| 208 | return ConstantExpr::getSub(C, ConstantInt::get(C->getType(), 1)); | ||
| 209 |   } | ||
| 210 | |||
| 211 | std::optional<std::pair< | ||
| 212 | CmpInst::Predicate, | ||
| 213 | Constant *>> static getFlippedStrictnessPredicateAndConstant(CmpInst:: | ||
| 214 |                                                                        Predicate | ||
| 215 | Pred, | ||
| 216 | Constant *C); | ||
| 217 | |||
| 218 | static bool shouldAvoidAbsorbingNotIntoSelect(const SelectInst &SI) { | ||
| 219 |     // a ? b : false and a ? true : b are the canonical form of logical and/or. | ||
| 220 |     // This includes !a ? b : false and !a ? true : b. Absorbing the not into | ||
| 221 |     // the select by swapping operands would break recognition of this pattern | ||
| 222 |     // in other analyses, so don't do that. | ||
| 223 | return match(&SI, PatternMatch::m_LogicalAnd(PatternMatch::m_Value(), | ||
| 224 | PatternMatch::m_Value())) || | ||
| 225 | match(&SI, PatternMatch::m_LogicalOr(PatternMatch::m_Value(), | ||
| 226 | PatternMatch::m_Value())); | ||
| 227 |   } | ||
| 228 | |||
| 229 |   /// Return true if the specified value is free to invert (apply ~ to). | ||
| 230 |   /// This happens in cases where the ~ can be eliminated.  If WillInvertAllUses | ||
| 231 |   /// is true, work under the assumption that the caller intends to remove all | ||
| 232 |   /// uses of V and only keep uses of ~V. | ||
| 233 |   /// | ||
| 234 |   /// See also: canFreelyInvertAllUsersOf() | ||
| 235 | static bool isFreeToInvert(Value *V, bool WillInvertAllUses) { | ||
| 236 |     // ~(~(X)) -> X. | ||
| 237 | if (match(V, m_Not(PatternMatch::m_Value()))) | ||
| 238 | return true; | ||
| 239 | |||
| 240 |     // Constants can be considered to be not'ed values. | ||
| 241 | if (match(V, PatternMatch::m_AnyIntegralConstant())) | ||
| 242 | return true; | ||
| 243 | |||
| 244 |     // Compares can be inverted if all of their uses are being modified to use | ||
| 245 |     // the ~V. | ||
| 246 | if (isa<CmpInst>(V)) | ||
| 247 | return WillInvertAllUses; | ||
| 248 | |||
| 249 |     // If `V` is of the form `A + Constant` then `-1 - V` can be folded into | ||
| 250 |     // `(-1 - Constant) - A` if we are willing to invert all of the uses. | ||
| 251 | if (match(V, m_Add(PatternMatch::m_Value(), PatternMatch::m_ImmConstant()))) | ||
| 252 | return WillInvertAllUses; | ||
| 253 | |||
| 254 |     // If `V` is of the form `Constant - A` then `-1 - V` can be folded into | ||
| 255 |     // `A + (-1 - Constant)` if we are willing to invert all of the uses. | ||
| 256 | if (match(V, m_Sub(PatternMatch::m_ImmConstant(), PatternMatch::m_Value()))) | ||
| 257 | return WillInvertAllUses; | ||
| 258 | |||
| 259 |     // Selects with invertible operands are freely invertible | ||
| 260 | if (match(V, | ||
| 261 | m_Select(PatternMatch::m_Value(), m_Not(PatternMatch::m_Value()), | ||
| 262 | m_Not(PatternMatch::m_Value())))) | ||
| 263 | return WillInvertAllUses; | ||
| 264 | |||
| 265 |     // Min/max may be in the form of intrinsics, so handle those identically | ||
| 266 |     // to select patterns. | ||
| 267 | if (match(V, m_MaxOrMin(m_Not(PatternMatch::m_Value()), | ||
| 268 | m_Not(PatternMatch::m_Value())))) | ||
| 269 | return WillInvertAllUses; | ||
| 270 | |||
| 271 | return false; | ||
| 272 |   } | ||
| 273 | |||
| 274 |   /// Given i1 V, can every user of V be freely adapted if V is changed to !V ? | ||
| 275 |   /// InstCombine's freelyInvertAllUsersOf() must be kept in sync with this fn. | ||
| 276 |   /// NOTE: for Instructions only! | ||
| 277 |   /// | ||
| 278 |   /// See also: isFreeToInvert() | ||
| 279 | static bool canFreelyInvertAllUsersOf(Instruction *V, Value *IgnoredUser) { | ||
| 280 |     // Look at every user of V. | ||
| 281 | for (Use &U : V->uses()) { | ||
| 282 | if (U.getUser() == IgnoredUser) | ||
| 283 | continue; // Don't consider this user. | ||
| 284 | |||
| 285 | auto *I = cast<Instruction>(U.getUser()); | ||
| 286 | switch (I->getOpcode()) { | ||
| 287 | case Instruction::Select: | ||
| 288 | if (U.getOperandNo() != 0) // Only if the value is used as select cond. | ||
| 289 | return false; | ||
| 290 | if (shouldAvoidAbsorbingNotIntoSelect(*cast<SelectInst>(I))) | ||
| 291 | return false; | ||
| 292 | break; | ||
| 293 | case Instruction::Br: | ||
| 294 | assert(U.getOperandNo() == 0 && "Must be branching on that value."); | ||
| 295 | break; // Free to invert by swapping true/false values/destinations. | ||
| 296 | case Instruction::Xor: // Can invert 'xor' if it's a 'not', by ignoring | ||
| 297 |                              // it. | ||
| 298 | if (!match(I, m_Not(PatternMatch::m_Value()))) | ||
| 299 | return false; // Not a 'not'. | ||
| 300 | break; | ||
| 301 | default: | ||
| 302 | return false; // Don't know, likely not freely invertible. | ||
| 303 |       } | ||
| 304 |       // So far all users were free to invert... | ||
| 305 |     } | ||
| 306 | return true; // Can freely invert all users! | ||
| 307 |   } | ||
| 308 | |||
| 309 |   /// Some binary operators require special handling to avoid poison and | ||
| 310 |   /// undefined behavior. If a constant vector has undef elements, replace those | ||
| 311 |   /// undefs with identity constants if possible because those are always safe | ||
| 312 |   /// to execute. If no identity constant exists, replace undef with some other | ||
| 313 |   /// safe constant. | ||
| 314 | static Constant * | ||
| 315 | getSafeVectorConstantForBinop(BinaryOperator::BinaryOps Opcode, Constant *In, | ||
| 316 | bool IsRHSConstant) { | ||
| 317 | auto *InVTy = cast<FixedVectorType>(In->getType()); | ||
| 318 | |||
| 319 | Type *EltTy = InVTy->getElementType(); | ||
| 320 | auto *SafeC = ConstantExpr::getBinOpIdentity(Opcode, EltTy, IsRHSConstant); | ||
| 321 | if (!SafeC) { | ||
| 322 |       // TODO: Should this be available as a constant utility function? It is | ||
| 323 |       // similar to getBinOpAbsorber(). | ||
| 324 | if (IsRHSConstant) { | ||
| 325 | switch (Opcode) { | ||
| 326 | case Instruction::SRem: // X % 1 = 0 | ||
| 327 | case Instruction::URem: // X %u 1 = 0 | ||
| 328 | SafeC = ConstantInt::get(EltTy, 1); | ||
| 329 | break; | ||
| 330 | case Instruction::FRem: // X % 1.0 (doesn't simplify, but it is safe) | ||
| 331 | SafeC = ConstantFP::get(EltTy, 1.0); | ||
| 332 | break; | ||
| 333 | default: | ||
| 334 |           llvm_unreachable( | ||
| 335 | "Only rem opcodes have no identity constant for RHS"); | ||
| 336 |         } | ||
| 337 | } else { | ||
| 338 | switch (Opcode) { | ||
| 339 | case Instruction::Shl: // 0 << X = 0 | ||
| 340 | case Instruction::LShr: // 0 >>u X = 0 | ||
| 341 | case Instruction::AShr: // 0 >> X = 0 | ||
| 342 | case Instruction::SDiv: // 0 / X = 0 | ||
| 343 | case Instruction::UDiv: // 0 /u X = 0 | ||
| 344 | case Instruction::SRem: // 0 % X = 0 | ||
| 345 | case Instruction::URem: // 0 %u X = 0 | ||
| 346 | case Instruction::Sub: // 0 - X (doesn't simplify, but it is safe) | ||
| 347 | case Instruction::FSub: // 0.0 - X (doesn't simplify, but it is safe) | ||
| 348 | case Instruction::FDiv: // 0.0 / X (doesn't simplify, but it is safe) | ||
| 349 | case Instruction::FRem: // 0.0 % X = 0 | ||
| 350 | SafeC = Constant::getNullValue(EltTy); | ||
| 351 | break; | ||
| 352 | default: | ||
| 353 | llvm_unreachable("Expected to find identity constant for opcode"); | ||
| 354 |         } | ||
| 355 |       } | ||
| 356 |     } | ||
| 357 | assert(SafeC && "Must have safe constant for binop"); | ||
| 358 | unsigned NumElts = InVTy->getNumElements(); | ||
| 359 | SmallVector<Constant *, 16> Out(NumElts); | ||
| 360 | for (unsigned i = 0; i != NumElts; ++i) { | ||
| 361 | Constant *C = In->getAggregateElement(i); | ||
| 362 | Out[i] = isa<UndefValue>(C) ? SafeC : C; | ||
| 363 |     } | ||
| 364 | return ConstantVector::get(Out); | ||
| 365 |   } | ||
| 366 | |||
| 367 | void addToWorklist(Instruction *I) { Worklist.push(I); } | ||
| 368 | |||
| 369 | AssumptionCache &getAssumptionCache() const { return AC; } | ||
| 370 | TargetLibraryInfo &getTargetLibraryInfo() const { return TLI; } | ||
| 371 | DominatorTree &getDominatorTree() const { return DT; } | ||
| 372 | const DataLayout &getDataLayout() const { return DL; } | ||
| 373 | const SimplifyQuery &getSimplifyQuery() const { return SQ; } | ||
| 374 | OptimizationRemarkEmitter &getOptimizationRemarkEmitter() const { | ||
| 375 | return ORE; | ||
| 376 |   } | ||
| 377 | BlockFrequencyInfo *getBlockFrequencyInfo() const { return BFI; } | ||
| 378 | ProfileSummaryInfo *getProfileSummaryInfo() const { return PSI; } | ||
| 379 | LoopInfo *getLoopInfo() const { return LI; } | ||
| 380 | |||
| 381 |   // Call target specific combiners | ||
| 382 | std::optional<Instruction *> targetInstCombineIntrinsic(IntrinsicInst &II); | ||
| 383 | std::optional<Value *> | ||
| 384 | targetSimplifyDemandedUseBitsIntrinsic(IntrinsicInst &II, APInt DemandedMask, | ||
| 385 |                                          KnownBits &Known, | ||
| 386 | bool &KnownBitsComputed); | ||
| 387 | std::optional<Value *> targetSimplifyDemandedVectorEltsIntrinsic( | ||
| 388 | IntrinsicInst &II, APInt DemandedElts, APInt &UndefElts, | ||
| 389 | APInt &UndefElts2, APInt &UndefElts3, | ||
| 390 | std::function<void(Instruction *, unsigned, APInt, APInt &)> | ||
| 391 | SimplifyAndSetOp); | ||
| 392 | |||
| 393 |   /// Inserts an instruction \p New before instruction \p Old | ||
| 394 |   /// | ||
| 395 |   /// Also adds the new instruction to the worklist and returns \p New so that | ||
| 396 |   /// it is suitable for use as the return from the visitation patterns. | ||
| 397 | Instruction *InsertNewInstBefore(Instruction *New, Instruction &Old) { | ||
| 398 | assert(New && !New->getParent() && | ||
| 399 | "New instruction already inserted into a basic block!"); | ||
| 400 | BasicBlock *BB = Old.getParent(); | ||
| 401 | New->insertInto(BB, Old.getIterator()); // Insert inst | ||
| 402 | Worklist.add(New); | ||
| 403 | return New; | ||
| 404 |   } | ||
| 405 | |||
| 406 |   /// Same as InsertNewInstBefore, but also sets the debug loc. | ||
| 407 | Instruction *InsertNewInstWith(Instruction *New, Instruction &Old) { | ||
| 408 | New->setDebugLoc(Old.getDebugLoc()); | ||
| 409 | return InsertNewInstBefore(New, Old); | ||
| 410 |   } | ||
| 411 | |||
| 412 |   /// A combiner-aware RAUW-like routine. | ||
| 413 |   /// | ||
| 414 |   /// This method is to be used when an instruction is found to be dead, | ||
| 415 |   /// replaceable with another preexisting expression. Here we add all uses of | ||
| 416 |   /// I to the worklist, replace all uses of I with the new value, then return | ||
| 417 |   /// I, so that the inst combiner will know that I was modified. | ||
| 418 | Instruction *replaceInstUsesWith(Instruction &I, Value *V) { | ||
| 419 |     // If there are no uses to replace, then we return nullptr to indicate that | ||
| 420 |     // no changes were made to the program. | ||
| 421 | if (I.use_empty()) return nullptr; | ||
| 422 | |||
| 423 | Worklist.pushUsersToWorkList(I); // Add all modified instrs to worklist. | ||
| 424 | |||
| 425 |     // If we are replacing the instruction with itself, this must be in a | ||
| 426 |     // segment of unreachable code, so just clobber the instruction. | ||
| 427 | if (&I == V) | ||
| 428 | V = PoisonValue::get(I.getType()); | ||
| 429 | |||
| 430 | LLVM_DEBUG(dbgs() << "IC: Replacing " << I << "\n" | ||
| 431 | << " with " << *V << '\n'); | ||
| 432 | |||
| 433 |     // If V is a new unnamed instruction, take the name from the old one. | ||
| 434 | if (V->use_empty() && isa<Instruction>(V) && !V->hasName() && I.hasName()) | ||
| 435 | V->takeName(&I); | ||
| 436 | |||
| 437 | I.replaceAllUsesWith(V); | ||
| 438 | return &I; | ||
| 439 |   } | ||
| 440 | |||
| 441 |   /// Replace operand of instruction and add old operand to the worklist. | ||
| 442 | Instruction *replaceOperand(Instruction &I, unsigned OpNum, Value *V) { | ||
| 443 | Worklist.addValue(I.getOperand(OpNum)); | ||
| 444 | I.setOperand(OpNum, V); | ||
| 445 | return &I; | ||
| 446 |   } | ||
| 447 | |||
| 448 |   /// Replace use and add the previously used value to the worklist. | ||
| 449 | void replaceUse(Use &U, Value *NewValue) { | ||
| 450 | Worklist.addValue(U); | ||
| 451 | U = NewValue; | ||
| 452 |   } | ||
| 453 | |||
| 454 |   /// Combiner aware instruction erasure. | ||
| 455 |   /// | ||
| 456 |   /// When dealing with an instruction that has side effects or produces a void | ||
| 457 |   /// value, we can't rely on DCE to delete the instruction. Instead, visit | ||
| 458 |   /// methods should return the value returned by this function. | ||
| 459 | virtual Instruction *eraseInstFromFunction(Instruction &I) = 0; | ||
| 460 | |||
| 461 | void computeKnownBits(const Value *V, KnownBits &Known, unsigned Depth, | ||
| 462 | const Instruction *CxtI) const { | ||
| 463 | llvm::computeKnownBits(V, Known, DL, Depth, &AC, CxtI, &DT); | ||
| 464 |   } | ||
| 465 | |||
| 466 | KnownBits computeKnownBits(const Value *V, unsigned Depth, | ||
| 467 | const Instruction *CxtI) const { | ||
| 468 | return llvm::computeKnownBits(V, DL, Depth, &AC, CxtI, &DT); | ||
| 469 |   } | ||
| 470 | |||
| 471 | bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero = false, | ||
| 472 | unsigned Depth = 0, | ||
| 473 | const Instruction *CxtI = nullptr) { | ||
| 474 | return llvm::isKnownToBeAPowerOfTwo(V, DL, OrZero, Depth, &AC, CxtI, &DT); | ||
| 475 |   } | ||
| 476 | |||
| 477 | bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth = 0, | ||
| 478 | const Instruction *CxtI = nullptr) const { | ||
| 479 | return llvm::MaskedValueIsZero(V, Mask, DL, Depth, &AC, CxtI, &DT); | ||
| 480 |   } | ||
| 481 | |||
| 482 | unsigned ComputeNumSignBits(const Value *Op, unsigned Depth = 0, | ||
| 483 | const Instruction *CxtI = nullptr) const { | ||
| 484 | return llvm::ComputeNumSignBits(Op, DL, Depth, &AC, CxtI, &DT); | ||
| 485 |   } | ||
| 486 | |||
| 487 | unsigned ComputeMaxSignificantBits(const Value *Op, unsigned Depth = 0, | ||
| 488 | const Instruction *CxtI = nullptr) const { | ||
| 489 | return llvm::ComputeMaxSignificantBits(Op, DL, Depth, &AC, CxtI, &DT); | ||
| 490 |   } | ||
| 491 | |||
| 492 | OverflowResult computeOverflowForUnsignedMul(const Value *LHS, | ||
| 493 | const Value *RHS, | ||
| 494 | const Instruction *CxtI) const { | ||
| 495 | return llvm::computeOverflowForUnsignedMul(LHS, RHS, DL, &AC, CxtI, &DT); | ||
| 496 |   } | ||
| 497 | |||
| 498 | OverflowResult computeOverflowForSignedMul(const Value *LHS, const Value *RHS, | ||
| 499 | const Instruction *CxtI) const { | ||
| 500 | return llvm::computeOverflowForSignedMul(LHS, RHS, DL, &AC, CxtI, &DT); | ||
| 501 |   } | ||
| 502 | |||
| 503 | OverflowResult computeOverflowForUnsignedAdd(const Value *LHS, | ||
| 504 | const Value *RHS, | ||
| 505 | const Instruction *CxtI) const { | ||
| 506 | return llvm::computeOverflowForUnsignedAdd(LHS, RHS, DL, &AC, CxtI, &DT); | ||
| 507 |   } | ||
| 508 | |||
| 509 | OverflowResult computeOverflowForSignedAdd(const Value *LHS, const Value *RHS, | ||
| 510 | const Instruction *CxtI) const { | ||
| 511 | return llvm::computeOverflowForSignedAdd(LHS, RHS, DL, &AC, CxtI, &DT); | ||
| 512 |   } | ||
| 513 | |||
| 514 | OverflowResult computeOverflowForUnsignedSub(const Value *LHS, | ||
| 515 | const Value *RHS, | ||
| 516 | const Instruction *CxtI) const { | ||
| 517 | return llvm::computeOverflowForUnsignedSub(LHS, RHS, DL, &AC, CxtI, &DT); | ||
| 518 |   } | ||
| 519 | |||
| 520 | OverflowResult computeOverflowForSignedSub(const Value *LHS, const Value *RHS, | ||
| 521 | const Instruction *CxtI) const { | ||
| 522 | return llvm::computeOverflowForSignedSub(LHS, RHS, DL, &AC, CxtI, &DT); | ||
| 523 |   } | ||
| 524 | |||
| 525 | virtual bool SimplifyDemandedBits(Instruction *I, unsigned OpNo, | ||
| 526 | const APInt &DemandedMask, KnownBits &Known, | ||
| 527 | unsigned Depth = 0) = 0; | ||
| 528 | virtual Value * | ||
| 529 | SimplifyDemandedVectorElts(Value *V, APInt DemandedElts, APInt &UndefElts, | ||
| 530 | unsigned Depth = 0, | ||
| 531 | bool AllowMultipleUsers = false) = 0; | ||
| 532 | }; | ||
| 533 | |||
| 534 | } // namespace llvm | ||
| 535 | |||
| 536 | #undef DEBUG_TYPE | ||
| 537 | |||
| 538 | #endif |