Details | Last modification | View Log | RSS feed
Rev | Author | Line No. | Line |
---|---|---|---|
14 | pmbaty | 1 | //===- WholeProgramDevirt.h - Whole-program devirt pass ---------*- C++ -*-===// |
2 | // |
||
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
||
4 | // See https://llvm.org/LICENSE.txt for license information. |
||
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
||
6 | // |
||
7 | //===----------------------------------------------------------------------===// |
||
8 | // |
||
9 | // This file defines parts of the whole-program devirtualization pass |
||
10 | // implementation that may be usefully unit tested. |
||
11 | // |
||
12 | //===----------------------------------------------------------------------===// |
||
13 | |||
14 | #ifndef LLVM_TRANSFORMS_IPO_WHOLEPROGRAMDEVIRT_H |
||
15 | #define LLVM_TRANSFORMS_IPO_WHOLEPROGRAMDEVIRT_H |
||
16 | |||
17 | #include "llvm/IR/GlobalValue.h" |
||
18 | #include "llvm/IR/PassManager.h" |
||
19 | #include <cassert> |
||
20 | #include <cstdint> |
||
21 | #include <map> |
||
22 | #include <set> |
||
23 | #include <utility> |
||
24 | #include <vector> |
||
25 | |||
26 | namespace llvm { |
||
27 | class Module; |
||
28 | |||
29 | template <typename T> class ArrayRef; |
||
30 | template <typename T> class MutableArrayRef; |
||
31 | class Function; |
||
32 | class GlobalVariable; |
||
33 | class ModuleSummaryIndex; |
||
34 | struct ValueInfo; |
||
35 | |||
36 | namespace wholeprogramdevirt { |
||
37 | |||
38 | // A bit vector that keeps track of which bits are used. We use this to |
||
39 | // pack constant values compactly before and after each virtual table. |
||
40 | struct AccumBitVector { |
||
41 | std::vector<uint8_t> Bytes; |
||
42 | |||
43 | // Bits in BytesUsed[I] are 1 if matching bit in Bytes[I] is used, 0 if not. |
||
44 | std::vector<uint8_t> BytesUsed; |
||
45 | |||
46 | std::pair<uint8_t *, uint8_t *> getPtrToData(uint64_t Pos, uint8_t Size) { |
||
47 | if (Bytes.size() < Pos + Size) { |
||
48 | Bytes.resize(Pos + Size); |
||
49 | BytesUsed.resize(Pos + Size); |
||
50 | } |
||
51 | return std::make_pair(Bytes.data() + Pos, BytesUsed.data() + Pos); |
||
52 | } |
||
53 | |||
54 | // Set little-endian value Val with size Size at bit position Pos, |
||
55 | // and mark bytes as used. |
||
56 | void setLE(uint64_t Pos, uint64_t Val, uint8_t Size) { |
||
57 | assert(Pos % 8 == 0); |
||
58 | auto DataUsed = getPtrToData(Pos / 8, Size); |
||
59 | for (unsigned I = 0; I != Size; ++I) { |
||
60 | DataUsed.first[I] = Val >> (I * 8); |
||
61 | assert(!DataUsed.second[I]); |
||
62 | DataUsed.second[I] = 0xff; |
||
63 | } |
||
64 | } |
||
65 | |||
66 | // Set big-endian value Val with size Size at bit position Pos, |
||
67 | // and mark bytes as used. |
||
68 | void setBE(uint64_t Pos, uint64_t Val, uint8_t Size) { |
||
69 | assert(Pos % 8 == 0); |
||
70 | auto DataUsed = getPtrToData(Pos / 8, Size); |
||
71 | for (unsigned I = 0; I != Size; ++I) { |
||
72 | DataUsed.first[Size - I - 1] = Val >> (I * 8); |
||
73 | assert(!DataUsed.second[Size - I - 1]); |
||
74 | DataUsed.second[Size - I - 1] = 0xff; |
||
75 | } |
||
76 | } |
||
77 | |||
78 | // Set bit at bit position Pos to b and mark bit as used. |
||
79 | void setBit(uint64_t Pos, bool b) { |
||
80 | auto DataUsed = getPtrToData(Pos / 8, 1); |
||
81 | if (b) |
||
82 | *DataUsed.first |= 1 << (Pos % 8); |
||
83 | assert(!(*DataUsed.second & (1 << Pos % 8))); |
||
84 | *DataUsed.second |= 1 << (Pos % 8); |
||
85 | } |
||
86 | }; |
||
87 | |||
88 | // The bits that will be stored before and after a particular vtable. |
||
89 | struct VTableBits { |
||
90 | // The vtable global. |
||
91 | GlobalVariable *GV; |
||
92 | |||
93 | // Cache of the vtable's size in bytes. |
||
94 | uint64_t ObjectSize = 0; |
||
95 | |||
96 | // The bit vector that will be laid out before the vtable. Note that these |
||
97 | // bytes are stored in reverse order until the globals are rebuilt. This means |
||
98 | // that any values in the array must be stored using the opposite endianness |
||
99 | // from the target. |
||
100 | AccumBitVector Before; |
||
101 | |||
102 | // The bit vector that will be laid out after the vtable. |
||
103 | AccumBitVector After; |
||
104 | }; |
||
105 | |||
106 | // Information about a member of a particular type identifier. |
||
107 | struct TypeMemberInfo { |
||
108 | // The VTableBits for the vtable. |
||
109 | VTableBits *Bits; |
||
110 | |||
111 | // The offset in bytes from the start of the vtable (i.e. the address point). |
||
112 | uint64_t Offset; |
||
113 | |||
114 | bool operator<(const TypeMemberInfo &other) const { |
||
115 | return Bits < other.Bits || (Bits == other.Bits && Offset < other.Offset); |
||
116 | } |
||
117 | }; |
||
118 | |||
119 | // A virtual call target, i.e. an entry in a particular vtable. |
||
120 | struct VirtualCallTarget { |
||
121 | VirtualCallTarget(Function *Fn, const TypeMemberInfo *TM); |
||
122 | |||
123 | // For testing only. |
||
124 | VirtualCallTarget(const TypeMemberInfo *TM, bool IsBigEndian) |
||
125 | : Fn(nullptr), TM(TM), IsBigEndian(IsBigEndian), WasDevirt(false) {} |
||
126 | |||
127 | // The function stored in the vtable. |
||
128 | Function *Fn; |
||
129 | |||
130 | // A pointer to the type identifier member through which the pointer to Fn is |
||
131 | // accessed. |
||
132 | const TypeMemberInfo *TM; |
||
133 | |||
134 | // When doing virtual constant propagation, this stores the return value for |
||
135 | // the function when passed the currently considered argument list. |
||
136 | uint64_t RetVal; |
||
137 | |||
138 | // Whether the target is big endian. |
||
139 | bool IsBigEndian; |
||
140 | |||
141 | // Whether at least one call site to the target was devirtualized. |
||
142 | bool WasDevirt; |
||
143 | |||
144 | // The minimum byte offset before the address point. This covers the bytes in |
||
145 | // the vtable object before the address point (e.g. RTTI, access-to-top, |
||
146 | // vtables for other base classes) and is equal to the offset from the start |
||
147 | // of the vtable object to the address point. |
||
148 | uint64_t minBeforeBytes() const { return TM->Offset; } |
||
149 | |||
150 | // The minimum byte offset after the address point. This covers the bytes in |
||
151 | // the vtable object after the address point (e.g. the vtable for the current |
||
152 | // class and any later base classes) and is equal to the size of the vtable |
||
153 | // object minus the offset from the start of the vtable object to the address |
||
154 | // point. |
||
155 | uint64_t minAfterBytes() const { return TM->Bits->ObjectSize - TM->Offset; } |
||
156 | |||
157 | // The number of bytes allocated (for the vtable plus the byte array) before |
||
158 | // the address point. |
||
159 | uint64_t allocatedBeforeBytes() const { |
||
160 | return minBeforeBytes() + TM->Bits->Before.Bytes.size(); |
||
161 | } |
||
162 | |||
163 | // The number of bytes allocated (for the vtable plus the byte array) after |
||
164 | // the address point. |
||
165 | uint64_t allocatedAfterBytes() const { |
||
166 | return minAfterBytes() + TM->Bits->After.Bytes.size(); |
||
167 | } |
||
168 | |||
169 | // Set the bit at position Pos before the address point to RetVal. |
||
170 | void setBeforeBit(uint64_t Pos) { |
||
171 | assert(Pos >= 8 * minBeforeBytes()); |
||
172 | TM->Bits->Before.setBit(Pos - 8 * minBeforeBytes(), RetVal); |
||
173 | } |
||
174 | |||
175 | // Set the bit at position Pos after the address point to RetVal. |
||
176 | void setAfterBit(uint64_t Pos) { |
||
177 | assert(Pos >= 8 * minAfterBytes()); |
||
178 | TM->Bits->After.setBit(Pos - 8 * minAfterBytes(), RetVal); |
||
179 | } |
||
180 | |||
181 | // Set the bytes at position Pos before the address point to RetVal. |
||
182 | // Because the bytes in Before are stored in reverse order, we use the |
||
183 | // opposite endianness to the target. |
||
184 | void setBeforeBytes(uint64_t Pos, uint8_t Size) { |
||
185 | assert(Pos >= 8 * minBeforeBytes()); |
||
186 | if (IsBigEndian) |
||
187 | TM->Bits->Before.setLE(Pos - 8 * minBeforeBytes(), RetVal, Size); |
||
188 | else |
||
189 | TM->Bits->Before.setBE(Pos - 8 * minBeforeBytes(), RetVal, Size); |
||
190 | } |
||
191 | |||
192 | // Set the bytes at position Pos after the address point to RetVal. |
||
193 | void setAfterBytes(uint64_t Pos, uint8_t Size) { |
||
194 | assert(Pos >= 8 * minAfterBytes()); |
||
195 | if (IsBigEndian) |
||
196 | TM->Bits->After.setBE(Pos - 8 * minAfterBytes(), RetVal, Size); |
||
197 | else |
||
198 | TM->Bits->After.setLE(Pos - 8 * minAfterBytes(), RetVal, Size); |
||
199 | } |
||
200 | }; |
||
201 | |||
202 | // Find the minimum offset that we may store a value of size Size bits at. If |
||
203 | // IsAfter is set, look for an offset before the object, otherwise look for an |
||
204 | // offset after the object. |
||
205 | uint64_t findLowestOffset(ArrayRef<VirtualCallTarget> Targets, bool IsAfter, |
||
206 | uint64_t Size); |
||
207 | |||
208 | // Set the stored value in each of Targets to VirtualCallTarget::RetVal at the |
||
209 | // given allocation offset before the vtable address. Stores the computed |
||
210 | // byte/bit offset to OffsetByte/OffsetBit. |
||
211 | void setBeforeReturnValues(MutableArrayRef<VirtualCallTarget> Targets, |
||
212 | uint64_t AllocBefore, unsigned BitWidth, |
||
213 | int64_t &OffsetByte, uint64_t &OffsetBit); |
||
214 | |||
215 | // Set the stored value in each of Targets to VirtualCallTarget::RetVal at the |
||
216 | // given allocation offset after the vtable address. Stores the computed |
||
217 | // byte/bit offset to OffsetByte/OffsetBit. |
||
218 | void setAfterReturnValues(MutableArrayRef<VirtualCallTarget> Targets, |
||
219 | uint64_t AllocAfter, unsigned BitWidth, |
||
220 | int64_t &OffsetByte, uint64_t &OffsetBit); |
||
221 | |||
222 | } // end namespace wholeprogramdevirt |
||
223 | |||
224 | struct WholeProgramDevirtPass : public PassInfoMixin<WholeProgramDevirtPass> { |
||
225 | ModuleSummaryIndex *ExportSummary; |
||
226 | const ModuleSummaryIndex *ImportSummary; |
||
227 | bool UseCommandLine = false; |
||
228 | WholeProgramDevirtPass() |
||
229 | : ExportSummary(nullptr), ImportSummary(nullptr), UseCommandLine(true) {} |
||
230 | WholeProgramDevirtPass(ModuleSummaryIndex *ExportSummary, |
||
231 | const ModuleSummaryIndex *ImportSummary) |
||
232 | : ExportSummary(ExportSummary), ImportSummary(ImportSummary) { |
||
233 | assert(!(ExportSummary && ImportSummary)); |
||
234 | } |
||
235 | PreservedAnalyses run(Module &M, ModuleAnalysisManager &); |
||
236 | }; |
||
237 | |||
238 | struct VTableSlotSummary { |
||
239 | StringRef TypeID; |
||
240 | uint64_t ByteOffset; |
||
241 | }; |
||
242 | bool hasWholeProgramVisibility(bool WholeProgramVisibilityEnabledInLTO); |
||
243 | void updatePublicTypeTestCalls(Module &M, |
||
244 | bool WholeProgramVisibilityEnabledInLTO); |
||
245 | void updateVCallVisibilityInModule( |
||
246 | Module &M, bool WholeProgramVisibilityEnabledInLTO, |
||
247 | const DenseSet<GlobalValue::GUID> &DynamicExportSymbols); |
||
248 | void updateVCallVisibilityInIndex( |
||
249 | ModuleSummaryIndex &Index, bool WholeProgramVisibilityEnabledInLTO, |
||
250 | const DenseSet<GlobalValue::GUID> &DynamicExportSymbols); |
||
251 | |||
252 | /// Perform index-based whole program devirtualization on the \p Summary |
||
253 | /// index. Any devirtualized targets used by a type test in another module |
||
254 | /// are added to the \p ExportedGUIDs set. For any local devirtualized targets |
||
255 | /// only used within the defining module, the information necessary for |
||
256 | /// locating the corresponding WPD resolution is recorded for the ValueInfo |
||
257 | /// in case it is exported by cross module importing (in which case the |
||
258 | /// devirtualized target name will need adjustment). |
||
259 | void runWholeProgramDevirtOnIndex( |
||
260 | ModuleSummaryIndex &Summary, std::set<GlobalValue::GUID> &ExportedGUIDs, |
||
261 | std::map<ValueInfo, std::vector<VTableSlotSummary>> &LocalWPDTargetsMap); |
||
262 | |||
263 | /// Call after cross-module importing to update the recorded single impl |
||
264 | /// devirt target names for any locals that were exported. |
||
265 | void updateIndexWPDForExports( |
||
266 | ModuleSummaryIndex &Summary, |
||
267 | function_ref<bool(StringRef, ValueInfo)> isExported, |
||
268 | std::map<ValueInfo, std::vector<VTableSlotSummary>> &LocalWPDTargetsMap); |
||
269 | |||
270 | } // end namespace llvm |
||
271 | |||
272 | #endif // LLVM_TRANSFORMS_IPO_WHOLEPROGRAMDEVIRT_H |