Details | Last modification | View Log | RSS feed
| Rev | Author | Line No. | Line |
|---|---|---|---|
| 14 | pmbaty | 1 | //===-- ProfiledCallGraph.h - Profiled Call Graph ----------------- C++ -*-===// |
| 2 | // |
||
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
||
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
||
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
||
| 6 | // |
||
| 7 | //===----------------------------------------------------------------------===// |
||
| 8 | |||
| 9 | #ifndef LLVM_TRANSFORMS_IPO_PROFILEDCALLGRAPH_H |
||
| 10 | #define LLVM_TRANSFORMS_IPO_PROFILEDCALLGRAPH_H |
||
| 11 | |||
| 12 | #include "llvm/ADT/GraphTraits.h" |
||
| 13 | #include "llvm/ADT/StringMap.h" |
||
| 14 | #include "llvm/ADT/StringRef.h" |
||
| 15 | #include "llvm/ProfileData/SampleProf.h" |
||
| 16 | #include "llvm/ProfileData/SampleProfReader.h" |
||
| 17 | #include "llvm/Transforms/IPO/SampleContextTracker.h" |
||
| 18 | #include <queue> |
||
| 19 | #include <set> |
||
| 20 | |||
| 21 | namespace llvm { |
||
| 22 | namespace sampleprof { |
||
| 23 | |||
| 24 | struct ProfiledCallGraphNode; |
||
| 25 | |||
| 26 | struct ProfiledCallGraphEdge { |
||
| 27 | ProfiledCallGraphEdge(ProfiledCallGraphNode *Source, |
||
| 28 | ProfiledCallGraphNode *Target, uint64_t Weight) |
||
| 29 | : Source(Source), Target(Target), Weight(Weight) {} |
||
| 30 | ProfiledCallGraphNode *Source; |
||
| 31 | ProfiledCallGraphNode *Target; |
||
| 32 | uint64_t Weight; |
||
| 33 | |||
| 34 | // The call destination is the only important data here, |
||
| 35 | // allow to transparently unwrap into it. |
||
| 36 | operator ProfiledCallGraphNode *() const { return Target; } |
||
| 37 | }; |
||
| 38 | |||
| 39 | struct ProfiledCallGraphNode { |
||
| 40 | |||
| 41 | // Sort edges by callee names only since all edges to be compared are from |
||
| 42 | // same caller. Edge weights are not considered either because for the same |
||
| 43 | // callee only the edge with the largest weight is added to the edge set. |
||
| 44 | struct ProfiledCallGraphEdgeComparer { |
||
| 45 | bool operator()(const ProfiledCallGraphEdge &L, |
||
| 46 | const ProfiledCallGraphEdge &R) const { |
||
| 47 | return L.Target->Name < R.Target->Name; |
||
| 48 | } |
||
| 49 | }; |
||
| 50 | |||
| 51 | using edge = ProfiledCallGraphEdge; |
||
| 52 | using edges = std::set<edge, ProfiledCallGraphEdgeComparer>; |
||
| 53 | using iterator = edges::iterator; |
||
| 54 | using const_iterator = edges::const_iterator; |
||
| 55 | |||
| 56 | ProfiledCallGraphNode(StringRef FName = StringRef()) : Name(FName) {} |
||
| 57 | |||
| 58 | StringRef Name; |
||
| 59 | edges Edges; |
||
| 60 | }; |
||
| 61 | |||
| 62 | class ProfiledCallGraph { |
||
| 63 | public: |
||
| 64 | using iterator = ProfiledCallGraphNode::iterator; |
||
| 65 | |||
| 66 | // Constructor for non-CS profile. |
||
| 67 | ProfiledCallGraph(SampleProfileMap &ProfileMap) { |
||
| 68 | assert(!FunctionSamples::ProfileIsCS && |
||
| 69 | "CS flat profile is not handled here"); |
||
| 70 | for (const auto &Samples : ProfileMap) { |
||
| 71 | addProfiledCalls(Samples.second); |
||
| 72 | } |
||
| 73 | } |
||
| 74 | |||
| 75 | // Constructor for CS profile. |
||
| 76 | ProfiledCallGraph(SampleContextTracker &ContextTracker) { |
||
| 77 | // BFS traverse the context profile trie to add call edges for calls shown |
||
| 78 | // in context. |
||
| 79 | std::queue<ContextTrieNode *> Queue; |
||
| 80 | for (auto &Child : ContextTracker.getRootContext().getAllChildContext()) { |
||
| 81 | ContextTrieNode *Callee = &Child.second; |
||
| 82 | addProfiledFunction(ContextTracker.getFuncNameFor(Callee)); |
||
| 83 | Queue.push(Callee); |
||
| 84 | } |
||
| 85 | |||
| 86 | while (!Queue.empty()) { |
||
| 87 | ContextTrieNode *Caller = Queue.front(); |
||
| 88 | Queue.pop(); |
||
| 89 | FunctionSamples *CallerSamples = Caller->getFunctionSamples(); |
||
| 90 | |||
| 91 | // Add calls for context. |
||
| 92 | // Note that callsite target samples are completely ignored since they can |
||
| 93 | // conflict with the context edges, which are formed by context |
||
| 94 | // compression during profile generation, for cyclic SCCs. This may |
||
| 95 | // further result in an SCC order incompatible with the purely |
||
| 96 | // context-based one, which may in turn block context-based inlining. |
||
| 97 | for (auto &Child : Caller->getAllChildContext()) { |
||
| 98 | ContextTrieNode *Callee = &Child.second; |
||
| 99 | addProfiledFunction(ContextTracker.getFuncNameFor(Callee)); |
||
| 100 | Queue.push(Callee); |
||
| 101 | |||
| 102 | // Fetch edge weight from the profile. |
||
| 103 | uint64_t Weight; |
||
| 104 | FunctionSamples *CalleeSamples = Callee->getFunctionSamples(); |
||
| 105 | if (!CalleeSamples || !CallerSamples) { |
||
| 106 | Weight = 0; |
||
| 107 | } else { |
||
| 108 | uint64_t CalleeEntryCount = CalleeSamples->getHeadSamplesEstimate(); |
||
| 109 | uint64_t CallsiteCount = 0; |
||
| 110 | LineLocation Callsite = Callee->getCallSiteLoc(); |
||
| 111 | if (auto CallTargets = CallerSamples->findCallTargetMapAt(Callsite)) { |
||
| 112 | SampleRecord::CallTargetMap &TargetCounts = CallTargets.get(); |
||
| 113 | auto It = TargetCounts.find(CalleeSamples->getName()); |
||
| 114 | if (It != TargetCounts.end()) |
||
| 115 | CallsiteCount = It->second; |
||
| 116 | } |
||
| 117 | Weight = std::max(CallsiteCount, CalleeEntryCount); |
||
| 118 | } |
||
| 119 | |||
| 120 | addProfiledCall(ContextTracker.getFuncNameFor(Caller), |
||
| 121 | ContextTracker.getFuncNameFor(Callee), Weight); |
||
| 122 | } |
||
| 123 | } |
||
| 124 | } |
||
| 125 | |||
| 126 | iterator begin() { return Root.Edges.begin(); } |
||
| 127 | iterator end() { return Root.Edges.end(); } |
||
| 128 | ProfiledCallGraphNode *getEntryNode() { return &Root; } |
||
| 129 | void addProfiledFunction(StringRef Name) { |
||
| 130 | if (!ProfiledFunctions.count(Name)) { |
||
| 131 | // Link to synthetic root to make sure every node is reachable |
||
| 132 | // from root. This does not affect SCC order. |
||
| 133 | ProfiledFunctions[Name] = ProfiledCallGraphNode(Name); |
||
| 134 | Root.Edges.emplace(&Root, &ProfiledFunctions[Name], 0); |
||
| 135 | } |
||
| 136 | } |
||
| 137 | |||
| 138 | private: |
||
| 139 | void addProfiledCall(StringRef CallerName, StringRef CalleeName, |
||
| 140 | uint64_t Weight = 0) { |
||
| 141 | assert(ProfiledFunctions.count(CallerName)); |
||
| 142 | auto CalleeIt = ProfiledFunctions.find(CalleeName); |
||
| 143 | if (CalleeIt == ProfiledFunctions.end()) |
||
| 144 | return; |
||
| 145 | ProfiledCallGraphEdge Edge(&ProfiledFunctions[CallerName], |
||
| 146 | &CalleeIt->second, Weight); |
||
| 147 | auto &Edges = ProfiledFunctions[CallerName].Edges; |
||
| 148 | auto EdgeIt = Edges.find(Edge); |
||
| 149 | if (EdgeIt == Edges.end()) { |
||
| 150 | Edges.insert(Edge); |
||
| 151 | } else if (EdgeIt->Weight < Edge.Weight) { |
||
| 152 | // Replace existing call edges with same target but smaller weight. |
||
| 153 | Edges.erase(EdgeIt); |
||
| 154 | Edges.insert(Edge); |
||
| 155 | } |
||
| 156 | } |
||
| 157 | |||
| 158 | void addProfiledCalls(const FunctionSamples &Samples) { |
||
| 159 | addProfiledFunction(Samples.getFuncName()); |
||
| 160 | |||
| 161 | for (const auto &Sample : Samples.getBodySamples()) { |
||
| 162 | for (const auto &[Target, Frequency] : Sample.second.getCallTargets()) { |
||
| 163 | addProfiledFunction(Target); |
||
| 164 | addProfiledCall(Samples.getFuncName(), Target, Frequency); |
||
| 165 | } |
||
| 166 | } |
||
| 167 | |||
| 168 | for (const auto &CallsiteSamples : Samples.getCallsiteSamples()) { |
||
| 169 | for (const auto &InlinedSamples : CallsiteSamples.second) { |
||
| 170 | addProfiledFunction(InlinedSamples.first); |
||
| 171 | addProfiledCall(Samples.getFuncName(), InlinedSamples.first, |
||
| 172 | InlinedSamples.second.getHeadSamplesEstimate()); |
||
| 173 | addProfiledCalls(InlinedSamples.second); |
||
| 174 | } |
||
| 175 | } |
||
| 176 | } |
||
| 177 | |||
| 178 | ProfiledCallGraphNode Root; |
||
| 179 | StringMap<ProfiledCallGraphNode> ProfiledFunctions; |
||
| 180 | }; |
||
| 181 | |||
| 182 | } // end namespace sampleprof |
||
| 183 | |||
| 184 | template <> struct GraphTraits<ProfiledCallGraphNode *> { |
||
| 185 | using NodeType = ProfiledCallGraphNode; |
||
| 186 | using NodeRef = ProfiledCallGraphNode *; |
||
| 187 | using EdgeType = NodeType::edge; |
||
| 188 | using ChildIteratorType = NodeType::const_iterator; |
||
| 189 | |||
| 190 | static NodeRef getEntryNode(NodeRef PCGN) { return PCGN; } |
||
| 191 | static ChildIteratorType child_begin(NodeRef N) { return N->Edges.begin(); } |
||
| 192 | static ChildIteratorType child_end(NodeRef N) { return N->Edges.end(); } |
||
| 193 | }; |
||
| 194 | |||
| 195 | template <> |
||
| 196 | struct GraphTraits<ProfiledCallGraph *> |
||
| 197 | : public GraphTraits<ProfiledCallGraphNode *> { |
||
| 198 | static NodeRef getEntryNode(ProfiledCallGraph *PCG) { |
||
| 199 | return PCG->getEntryNode(); |
||
| 200 | } |
||
| 201 | |||
| 202 | static ChildIteratorType nodes_begin(ProfiledCallGraph *PCG) { |
||
| 203 | return PCG->begin(); |
||
| 204 | } |
||
| 205 | |||
| 206 | static ChildIteratorType nodes_end(ProfiledCallGraph *PCG) { |
||
| 207 | return PCG->end(); |
||
| 208 | } |
||
| 209 | }; |
||
| 210 | |||
| 211 | } // end namespace llvm |
||
| 212 | |||
| 213 | #endif |