Details | Last modification | View Log | RSS feed
Rev | Author | Line No. | Line |
---|---|---|---|
14 | pmbaty | 1 | //===- Target.td - Target Independent TableGen interface ---*- tablegen -*-===// |
2 | // |
||
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
||
4 | // See https://llvm.org/LICENSE.txt for license information. |
||
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
||
6 | // |
||
7 | //===----------------------------------------------------------------------===// |
||
8 | // |
||
9 | // This file defines the target-independent interfaces which should be |
||
10 | // implemented by each target which is using a TableGen based code generator. |
||
11 | // |
||
12 | //===----------------------------------------------------------------------===// |
||
13 | |||
14 | // Include all information about LLVM intrinsics. |
||
15 | include "llvm/IR/Intrinsics.td" |
||
16 | |||
17 | //===----------------------------------------------------------------------===// |
||
18 | // Register file description - These classes are used to fill in the target |
||
19 | // description classes. |
||
20 | |||
21 | class HwMode<string FS> { |
||
22 | // A string representing subtarget features that turn on this HW mode. |
||
23 | // For example, "+feat1,-feat2" will indicate that the mode is active |
||
24 | // when "feat1" is enabled and "feat2" is disabled at the same time. |
||
25 | // Any other features are not checked. |
||
26 | // When multiple modes are used, they should be mutually exclusive, |
||
27 | // otherwise the results are unpredictable. |
||
28 | string Features = FS; |
||
29 | } |
||
30 | |||
31 | // A special mode recognized by tablegen. This mode is considered active |
||
32 | // when no other mode is active. For targets that do not use specific hw |
||
33 | // modes, this is the only mode. |
||
34 | def DefaultMode : HwMode<"">; |
||
35 | |||
36 | // A class used to associate objects with HW modes. It is only intended to |
||
37 | // be used as a base class, where the derived class should contain a member |
||
38 | // "Objects", which is a list of the same length as the list of modes. |
||
39 | // The n-th element on the Objects list will be associated with the n-th |
||
40 | // element on the Modes list. |
||
41 | class HwModeSelect<list<HwMode> Ms> { |
||
42 | list<HwMode> Modes = Ms; |
||
43 | } |
||
44 | |||
45 | // A common class that implements a counterpart of ValueType, which is |
||
46 | // dependent on a HW mode. This class inherits from ValueType itself, |
||
47 | // which makes it possible to use objects of this class where ValueType |
||
48 | // objects could be used. This is specifically applicable to selection |
||
49 | // patterns. |
||
50 | class ValueTypeByHwMode<list<HwMode> Ms, list<ValueType> Ts> |
||
51 | : HwModeSelect<Ms>, ValueType<0, 0> { |
||
52 | // The length of this list must be the same as the length of Ms. |
||
53 | list<ValueType> Objects = Ts; |
||
54 | } |
||
55 | |||
56 | // A class representing the register size, spill size and spill alignment |
||
57 | // in bits of a register. |
||
58 | class RegInfo<int RS, int SS, int SA> { |
||
59 | int RegSize = RS; // Register size in bits. |
||
60 | int SpillSize = SS; // Spill slot size in bits. |
||
61 | int SpillAlignment = SA; // Spill slot alignment in bits. |
||
62 | } |
||
63 | |||
64 | // The register size/alignment information, parameterized by a HW mode. |
||
65 | class RegInfoByHwMode<list<HwMode> Ms = [], list<RegInfo> Ts = []> |
||
66 | : HwModeSelect<Ms> { |
||
67 | // The length of this list must be the same as the length of Ms. |
||
68 | list<RegInfo> Objects = Ts; |
||
69 | } |
||
70 | |||
71 | // SubRegIndex - Use instances of SubRegIndex to identify subregisters. |
||
72 | class SubRegIndex<int size, int offset = 0> { |
||
73 | string Namespace = ""; |
||
74 | |||
75 | // Size - Size (in bits) of the sub-registers represented by this index. |
||
76 | int Size = size; |
||
77 | |||
78 | // Offset - Offset of the first bit that is part of this sub-register index. |
||
79 | // Set it to -1 if the same index is used to represent sub-registers that can |
||
80 | // be at different offsets (for example when using an index to access an |
||
81 | // element in a register tuple). |
||
82 | int Offset = offset; |
||
83 | |||
84 | // ComposedOf - A list of two SubRegIndex instances, [A, B]. |
||
85 | // This indicates that this SubRegIndex is the result of composing A and B. |
||
86 | // See ComposedSubRegIndex. |
||
87 | list<SubRegIndex> ComposedOf = []; |
||
88 | |||
89 | // CoveringSubRegIndices - A list of two or more sub-register indexes that |
||
90 | // cover this sub-register. |
||
91 | // |
||
92 | // This field should normally be left blank as TableGen can infer it. |
||
93 | // |
||
94 | // TableGen automatically detects sub-registers that straddle the registers |
||
95 | // in the SubRegs field of a Register definition. For example: |
||
96 | // |
||
97 | // Q0 = dsub_0 -> D0, dsub_1 -> D1 |
||
98 | // Q1 = dsub_0 -> D2, dsub_1 -> D3 |
||
99 | // D1_D2 = dsub_0 -> D1, dsub_1 -> D2 |
||
100 | // QQ0 = qsub_0 -> Q0, qsub_1 -> Q1 |
||
101 | // |
||
102 | // TableGen will infer that D1_D2 is a sub-register of QQ0. It will be given |
||
103 | // the synthetic index dsub_1_dsub_2 unless some SubRegIndex is defined with |
||
104 | // CoveringSubRegIndices = [dsub_1, dsub_2]. |
||
105 | list<SubRegIndex> CoveringSubRegIndices = []; |
||
106 | } |
||
107 | |||
108 | // ComposedSubRegIndex - A sub-register that is the result of composing A and B. |
||
109 | // Offset is set to the sum of A and B's Offsets. Size is set to B's Size. |
||
110 | class ComposedSubRegIndex<SubRegIndex A, SubRegIndex B> |
||
111 | : SubRegIndex<B.Size, !cond(!eq(A.Offset, -1): -1, |
||
112 | !eq(B.Offset, -1): -1, |
||
113 | true: !add(A.Offset, B.Offset))> { |
||
114 | // See SubRegIndex. |
||
115 | let ComposedOf = [A, B]; |
||
116 | } |
||
117 | |||
118 | // RegAltNameIndex - The alternate name set to use for register operands of |
||
119 | // this register class when printing. |
||
120 | class RegAltNameIndex { |
||
121 | string Namespace = ""; |
||
122 | |||
123 | // A set to be used if the name for a register is not defined in this set. |
||
124 | // This allows creating name sets with only a few alternative names. |
||
125 | RegAltNameIndex FallbackRegAltNameIndex = ?; |
||
126 | } |
||
127 | def NoRegAltName : RegAltNameIndex; |
||
128 | |||
129 | // Register - You should define one instance of this class for each register |
||
130 | // in the target machine. String n will become the "name" of the register. |
||
131 | class Register<string n, list<string> altNames = []> { |
||
132 | string Namespace = ""; |
||
133 | string AsmName = n; |
||
134 | list<string> AltNames = altNames; |
||
135 | |||
136 | // Aliases - A list of registers that this register overlaps with. A read or |
||
137 | // modification of this register can potentially read or modify the aliased |
||
138 | // registers. |
||
139 | list<Register> Aliases = []; |
||
140 | |||
141 | // SubRegs - A list of registers that are parts of this register. Note these |
||
142 | // are "immediate" sub-registers and the registers within the list do not |
||
143 | // themselves overlap. e.g. For X86, EAX's SubRegs list contains only [AX], |
||
144 | // not [AX, AH, AL]. |
||
145 | list<Register> SubRegs = []; |
||
146 | |||
147 | // SubRegIndices - For each register in SubRegs, specify the SubRegIndex used |
||
148 | // to address it. Sub-sub-register indices are automatically inherited from |
||
149 | // SubRegs. |
||
150 | list<SubRegIndex> SubRegIndices = []; |
||
151 | |||
152 | // RegAltNameIndices - The alternate name indices which are valid for this |
||
153 | // register. |
||
154 | list<RegAltNameIndex> RegAltNameIndices = []; |
||
155 | |||
156 | // DwarfNumbers - Numbers used internally by gcc/gdb to identify the register. |
||
157 | // These values can be determined by locating the <target>.h file in the |
||
158 | // directory llvmgcc/gcc/config/<target>/ and looking for REGISTER_NAMES. The |
||
159 | // order of these names correspond to the enumeration used by gcc. A value of |
||
160 | // -1 indicates that the gcc number is undefined and -2 that register number |
||
161 | // is invalid for this mode/flavour. |
||
162 | list<int> DwarfNumbers = []; |
||
163 | |||
164 | // CostPerUse - Additional cost of instructions using this register compared |
||
165 | // to other registers in its class. The register allocator will try to |
||
166 | // minimize the number of instructions using a register with a CostPerUse. |
||
167 | // This is used by the ARC target, by the ARM Thumb and x86-64 targets, where |
||
168 | // some registers require larger instruction encodings, by the RISC-V target, |
||
169 | // where some registers preclude using some C instructions. By making it a |
||
170 | // list, targets can have multiple cost models associated with each register |
||
171 | // and can choose one specific cost model per Machine Function by overriding |
||
172 | // TargetRegisterInfo::getRegisterCostTableIndex. Every target register will |
||
173 | // finally have an equal number of cost values which is the max of costPerUse |
||
174 | // values specified. Any mismatch in the cost values for a register will be |
||
175 | // filled with zeros. Restricted the cost type to uint8_t in the |
||
176 | // generated table. It will considerably reduce the table size. |
||
177 | list<int> CostPerUse = [0]; |
||
178 | |||
179 | // CoveredBySubRegs - When this bit is set, the value of this register is |
||
180 | // completely determined by the value of its sub-registers. For example, the |
||
181 | // x86 register AX is covered by its sub-registers AL and AH, but EAX is not |
||
182 | // covered by its sub-register AX. |
||
183 | bit CoveredBySubRegs = false; |
||
184 | |||
185 | // HWEncoding - The target specific hardware encoding for this register. |
||
186 | bits<16> HWEncoding = 0; |
||
187 | |||
188 | bit isArtificial = false; |
||
189 | |||
190 | // isConstant - This register always holds a constant value (e.g. the zero |
||
191 | // register in architectures such as MIPS) |
||
192 | bit isConstant = false; |
||
193 | } |
||
194 | |||
195 | // RegisterWithSubRegs - This can be used to define instances of Register which |
||
196 | // need to specify sub-registers. |
||
197 | // List "subregs" specifies which registers are sub-registers to this one. This |
||
198 | // is used to populate the SubRegs and AliasSet fields of TargetRegisterDesc. |
||
199 | // This allows the code generator to be careful not to put two values with |
||
200 | // overlapping live ranges into registers which alias. |
||
201 | class RegisterWithSubRegs<string n, list<Register> subregs> : Register<n> { |
||
202 | let SubRegs = subregs; |
||
203 | } |
||
204 | |||
205 | // DAGOperand - An empty base class that unifies RegisterClass's and other forms |
||
206 | // of Operand's that are legal as type qualifiers in DAG patterns. This should |
||
207 | // only ever be used for defining multiclasses that are polymorphic over both |
||
208 | // RegisterClass's and other Operand's. |
||
209 | class DAGOperand { |
||
210 | string OperandNamespace = "MCOI"; |
||
211 | string DecoderMethod = ""; |
||
212 | } |
||
213 | |||
214 | // RegisterClass - Now that all of the registers are defined, and aliases |
||
215 | // between registers are defined, specify which registers belong to which |
||
216 | // register classes. This also defines the default allocation order of |
||
217 | // registers by register allocators. |
||
218 | // |
||
219 | class RegisterClass<string namespace, list<ValueType> regTypes, int alignment, |
||
220 | dag regList, RegAltNameIndex idx = NoRegAltName> |
||
221 | : DAGOperand { |
||
222 | string Namespace = namespace; |
||
223 | |||
224 | // The register size/alignment information, parameterized by a HW mode. |
||
225 | RegInfoByHwMode RegInfos; |
||
226 | |||
227 | // RegType - Specify the list ValueType of the registers in this register |
||
228 | // class. Note that all registers in a register class must have the same |
||
229 | // ValueTypes. This is a list because some targets permit storing different |
||
230 | // types in same register, for example vector values with 128-bit total size, |
||
231 | // but different count/size of items, like SSE on x86. |
||
232 | // |
||
233 | list<ValueType> RegTypes = regTypes; |
||
234 | |||
235 | // Size - Specify the spill size in bits of the registers. A default value of |
||
236 | // zero lets tablegen pick an appropriate size. |
||
237 | int Size = 0; |
||
238 | |||
239 | // Alignment - Specify the alignment required of the registers when they are |
||
240 | // stored or loaded to memory. |
||
241 | // |
||
242 | int Alignment = alignment; |
||
243 | |||
244 | // CopyCost - This value is used to specify the cost of copying a value |
||
245 | // between two registers in this register class. The default value is one |
||
246 | // meaning it takes a single instruction to perform the copying. A negative |
||
247 | // value means copying is extremely expensive or impossible. |
||
248 | int CopyCost = 1; |
||
249 | |||
250 | // MemberList - Specify which registers are in this class. If the |
||
251 | // allocation_order_* method are not specified, this also defines the order of |
||
252 | // allocation used by the register allocator. |
||
253 | // |
||
254 | dag MemberList = regList; |
||
255 | |||
256 | // AltNameIndex - The alternate register name to use when printing operands |
||
257 | // of this register class. Every register in the register class must have |
||
258 | // a valid alternate name for the given index. |
||
259 | RegAltNameIndex altNameIndex = idx; |
||
260 | |||
261 | // isAllocatable - Specify that the register class can be used for virtual |
||
262 | // registers and register allocation. Some register classes are only used to |
||
263 | // model instruction operand constraints, and should have isAllocatable = 0. |
||
264 | bit isAllocatable = true; |
||
265 | |||
266 | // AltOrders - List of alternative allocation orders. The default order is |
||
267 | // MemberList itself, and that is good enough for most targets since the |
||
268 | // register allocators automatically remove reserved registers and move |
||
269 | // callee-saved registers to the end. |
||
270 | list<dag> AltOrders = []; |
||
271 | |||
272 | // AltOrderSelect - The body of a function that selects the allocation order |
||
273 | // to use in a given machine function. The code will be inserted in a |
||
274 | // function like this: |
||
275 | // |
||
276 | // static inline unsigned f(const MachineFunction &MF) { ... } |
||
277 | // |
||
278 | // The function should return 0 to select the default order defined by |
||
279 | // MemberList, 1 to select the first AltOrders entry and so on. |
||
280 | code AltOrderSelect = [{}]; |
||
281 | |||
282 | // Specify allocation priority for register allocators using a greedy |
||
283 | // heuristic. Classes with higher priority values are assigned first. This is |
||
284 | // useful as it is sometimes beneficial to assign registers to highly |
||
285 | // constrained classes first. The value has to be in the range [0,31]. |
||
286 | int AllocationPriority = 0; |
||
287 | |||
288 | // Force register class to use greedy's global heuristic for all |
||
289 | // registers in this class. This should more aggressively try to |
||
290 | // avoid spilling in pathological cases. |
||
291 | bit GlobalPriority = false; |
||
292 | |||
293 | // Generate register pressure set for this register class and any class |
||
294 | // synthesized from it. Set to 0 to inhibit unneeded pressure sets. |
||
295 | bit GeneratePressureSet = true; |
||
296 | |||
297 | // Weight override for register pressure calculation. This is the value |
||
298 | // TargetRegisterClass::getRegClassWeight() will return. The weight is in |
||
299 | // units of pressure for this register class. If unset tablegen will |
||
300 | // calculate a weight based on a number of register units in this register |
||
301 | // class registers. The weight is per register. |
||
302 | int Weight = ?; |
||
303 | |||
304 | // The diagnostic type to present when referencing this operand in a match |
||
305 | // failure error message. If this is empty, the default Match_InvalidOperand |
||
306 | // diagnostic type will be used. If this is "<name>", a Match_<name> enum |
||
307 | // value will be generated and used for this operand type. The target |
||
308 | // assembly parser is responsible for converting this into a user-facing |
||
309 | // diagnostic message. |
||
310 | string DiagnosticType = ""; |
||
311 | |||
312 | // A diagnostic message to emit when an invalid value is provided for this |
||
313 | // register class when it is being used an an assembly operand. If this is |
||
314 | // non-empty, an anonymous diagnostic type enum value will be generated, and |
||
315 | // the assembly matcher will provide a function to map from diagnostic types |
||
316 | // to message strings. |
||
317 | string DiagnosticString = ""; |
||
318 | |||
319 | // Target-specific flags. This becomes the TSFlags field in TargetRegisterClass. |
||
320 | bits<8> TSFlags = 0; |
||
321 | |||
322 | // If set then consider this register class to be the base class for registers in |
||
323 | // its MemberList. The base class for registers present in multiple base register |
||
324 | // classes will be resolved in the order defined by this value, with lower values |
||
325 | // taking precedence over higher ones. Ties are resolved by enumeration order. |
||
326 | int BaseClassOrder = ?; |
||
327 | } |
||
328 | |||
329 | // The memberList in a RegisterClass is a dag of set operations. TableGen |
||
330 | // evaluates these set operations and expand them into register lists. These |
||
331 | // are the most common operation, see test/TableGen/SetTheory.td for more |
||
332 | // examples of what is possible: |
||
333 | // |
||
334 | // (add R0, R1, R2) - Set Union. Each argument can be an individual register, a |
||
335 | // register class, or a sub-expression. This is also the way to simply list |
||
336 | // registers. |
||
337 | // |
||
338 | // (sub GPR, SP) - Set difference. Subtract the last arguments from the first. |
||
339 | // |
||
340 | // (and GPR, CSR) - Set intersection. All registers from the first set that are |
||
341 | // also in the second set. |
||
342 | // |
||
343 | // (sequence "R%u", 0, 15) -> [R0, R1, ..., R15]. Generate a sequence of |
||
344 | // numbered registers. Takes an optional 4th operand which is a stride to use |
||
345 | // when generating the sequence. |
||
346 | // |
||
347 | // (shl GPR, 4) - Remove the first N elements. |
||
348 | // |
||
349 | // (trunc GPR, 4) - Truncate after the first N elements. |
||
350 | // |
||
351 | // (rotl GPR, 1) - Rotate N places to the left. |
||
352 | // |
||
353 | // (rotr GPR, 1) - Rotate N places to the right. |
||
354 | // |
||
355 | // (decimate GPR, 2) - Pick every N'th element, starting with the first. |
||
356 | // |
||
357 | // (interleave A, B, ...) - Interleave the elements from each argument list. |
||
358 | // |
||
359 | // All of these operators work on ordered sets, not lists. That means |
||
360 | // duplicates are removed from sub-expressions. |
||
361 | |||
362 | // Set operators. The rest is defined in TargetSelectionDAG.td. |
||
363 | def sequence; |
||
364 | def decimate; |
||
365 | def interleave; |
||
366 | |||
367 | // RegisterTuples - Automatically generate super-registers by forming tuples of |
||
368 | // sub-registers. This is useful for modeling register sequence constraints |
||
369 | // with pseudo-registers that are larger than the architectural registers. |
||
370 | // |
||
371 | // The sub-register lists are zipped together: |
||
372 | // |
||
373 | // def EvenOdd : RegisterTuples<[sube, subo], [(add R0, R2), (add R1, R3)]>; |
||
374 | // |
||
375 | // Generates the same registers as: |
||
376 | // |
||
377 | // let SubRegIndices = [sube, subo] in { |
||
378 | // def R0_R1 : RegisterWithSubRegs<"", [R0, R1]>; |
||
379 | // def R2_R3 : RegisterWithSubRegs<"", [R2, R3]>; |
||
380 | // } |
||
381 | // |
||
382 | // The generated pseudo-registers inherit super-classes and fields from their |
||
383 | // first sub-register. Most fields from the Register class are inferred, and |
||
384 | // the AsmName and Dwarf numbers are cleared. |
||
385 | // |
||
386 | // RegisterTuples instances can be used in other set operations to form |
||
387 | // register classes and so on. This is the only way of using the generated |
||
388 | // registers. |
||
389 | // |
||
390 | // RegNames may be specified to supply asm names for the generated tuples. |
||
391 | // If used must have the same size as the list of produced registers. |
||
392 | class RegisterTuples<list<SubRegIndex> Indices, list<dag> Regs, |
||
393 | list<string> RegNames = []> { |
||
394 | // SubRegs - N lists of registers to be zipped up. Super-registers are |
||
395 | // synthesized from the first element of each SubRegs list, the second |
||
396 | // element and so on. |
||
397 | list<dag> SubRegs = Regs; |
||
398 | |||
399 | // SubRegIndices - N SubRegIndex instances. This provides the names of the |
||
400 | // sub-registers in the synthesized super-registers. |
||
401 | list<SubRegIndex> SubRegIndices = Indices; |
||
402 | |||
403 | // List of asm names for the generated tuple registers. |
||
404 | list<string> RegAsmNames = RegNames; |
||
405 | } |
||
406 | |||
407 | // RegisterCategory - This class is a list of RegisterClasses that belong to a |
||
408 | // general cateogry --- e.g. "general purpose" or "fixed" registers. This is |
||
409 | // useful for identifying registers in a generic way instead of having |
||
410 | // information about a specific target's registers. |
||
411 | class RegisterCategory<list<RegisterClass> classes> { |
||
412 | // Classes - A list of register classes that fall within the category. |
||
413 | list<RegisterClass> Classes = classes; |
||
414 | } |
||
415 | |||
416 | //===----------------------------------------------------------------------===// |
||
417 | // DwarfRegNum - This class provides a mapping of the llvm register enumeration |
||
418 | // to the register numbering used by gcc and gdb. These values are used by a |
||
419 | // debug information writer to describe where values may be located during |
||
420 | // execution. |
||
421 | class DwarfRegNum<list<int> Numbers> { |
||
422 | // DwarfNumbers - Numbers used internally by gcc/gdb to identify the register. |
||
423 | // These values can be determined by locating the <target>.h file in the |
||
424 | // directory llvmgcc/gcc/config/<target>/ and looking for REGISTER_NAMES. The |
||
425 | // order of these names correspond to the enumeration used by gcc. A value of |
||
426 | // -1 indicates that the gcc number is undefined and -2 that register number |
||
427 | // is invalid for this mode/flavour. |
||
428 | list<int> DwarfNumbers = Numbers; |
||
429 | } |
||
430 | |||
431 | // DwarfRegAlias - This class declares that a given register uses the same dwarf |
||
432 | // numbers as another one. This is useful for making it clear that the two |
||
433 | // registers do have the same number. It also lets us build a mapping |
||
434 | // from dwarf register number to llvm register. |
||
435 | class DwarfRegAlias<Register reg> { |
||
436 | Register DwarfAlias = reg; |
||
437 | } |
||
438 | |||
439 | //===----------------------------------------------------------------------===// |
||
440 | // Pull in the common support for MCPredicate (portable scheduling predicates). |
||
441 | // |
||
442 | include "llvm/Target/TargetInstrPredicate.td" |
||
443 | |||
444 | //===----------------------------------------------------------------------===// |
||
445 | // Pull in the common support for scheduling |
||
446 | // |
||
447 | include "llvm/Target/TargetSchedule.td" |
||
448 | |||
449 | class Predicate; // Forward def |
||
450 | |||
451 | class InstructionEncoding { |
||
452 | // Size of encoded instruction. |
||
453 | int Size; |
||
454 | |||
455 | // The "namespace" in which this instruction exists, on targets like ARM |
||
456 | // which multiple ISA namespaces exist. |
||
457 | string DecoderNamespace = ""; |
||
458 | |||
459 | // List of predicates which will be turned into isel matching code. |
||
460 | list<Predicate> Predicates = []; |
||
461 | |||
462 | string DecoderMethod = ""; |
||
463 | |||
464 | // Is the instruction decoder method able to completely determine if the |
||
465 | // given instruction is valid or not. If the TableGen definition of the |
||
466 | // instruction specifies bitpattern A??B where A and B are static bits, the |
||
467 | // hasCompleteDecoder flag says whether the decoder method fully handles the |
||
468 | // ?? space, i.e. if it is a final arbiter for the instruction validity. |
||
469 | // If not then the decoder attempts to continue decoding when the decoder |
||
470 | // method fails. |
||
471 | // |
||
472 | // This allows to handle situations where the encoding is not fully |
||
473 | // orthogonal. Example: |
||
474 | // * InstA with bitpattern 0b0000????, |
||
475 | // * InstB with bitpattern 0b000000?? but the associated decoder method |
||
476 | // DecodeInstB() returns Fail when ?? is 0b00 or 0b11. |
||
477 | // |
||
478 | // The decoder tries to decode a bitpattern that matches both InstA and |
||
479 | // InstB bitpatterns first as InstB (because it is the most specific |
||
480 | // encoding). In the default case (hasCompleteDecoder = 1), when |
||
481 | // DecodeInstB() returns Fail the bitpattern gets rejected. By setting |
||
482 | // hasCompleteDecoder = 0 in InstB, the decoder is informed that |
||
483 | // DecodeInstB() is not able to determine if all possible values of ?? are |
||
484 | // valid or not. If DecodeInstB() returns Fail the decoder will attempt to |
||
485 | // decode the bitpattern as InstA too. |
||
486 | bit hasCompleteDecoder = true; |
||
487 | } |
||
488 | |||
489 | // Allows specifying an InstructionEncoding by HwMode. If an Instruction specifies |
||
490 | // an EncodingByHwMode, its Inst and Size members are ignored and Ts are used |
||
491 | // to encode and decode based on HwMode. |
||
492 | class EncodingByHwMode<list<HwMode> Ms = [], list<InstructionEncoding> Ts = []> |
||
493 | : HwModeSelect<Ms> { |
||
494 | // The length of this list must be the same as the length of Ms. |
||
495 | list<InstructionEncoding> Objects = Ts; |
||
496 | } |
||
497 | |||
498 | //===----------------------------------------------------------------------===// |
||
499 | // Instruction set description - These classes correspond to the C++ classes in |
||
500 | // the Target/TargetInstrInfo.h file. |
||
501 | // |
||
502 | class Instruction : InstructionEncoding { |
||
503 | string Namespace = ""; |
||
504 | |||
505 | dag OutOperandList; // An dag containing the MI def operand list. |
||
506 | dag InOperandList; // An dag containing the MI use operand list. |
||
507 | string AsmString = ""; // The .s format to print the instruction with. |
||
508 | |||
509 | // Allows specifying a canonical InstructionEncoding by HwMode. If non-empty, |
||
510 | // the Inst member of this Instruction is ignored. |
||
511 | EncodingByHwMode EncodingInfos; |
||
512 | |||
513 | // Pattern - Set to the DAG pattern for this instruction, if we know of one, |
||
514 | // otherwise, uninitialized. |
||
515 | list<dag> Pattern; |
||
516 | |||
517 | // The follow state will eventually be inferred automatically from the |
||
518 | // instruction pattern. |
||
519 | |||
520 | list<Register> Uses = []; // Default to using no non-operand registers |
||
521 | list<Register> Defs = []; // Default to modifying no non-operand registers |
||
522 | |||
523 | // Predicates - List of predicates which will be turned into isel matching |
||
524 | // code. |
||
525 | list<Predicate> Predicates = []; |
||
526 | |||
527 | // Size - Size of encoded instruction, or zero if the size cannot be determined |
||
528 | // from the opcode. |
||
529 | int Size = 0; |
||
530 | |||
531 | // Code size, for instruction selection. |
||
532 | // FIXME: What does this actually mean? |
||
533 | int CodeSize = 0; |
||
534 | |||
535 | // Added complexity passed onto matching pattern. |
||
536 | int AddedComplexity = 0; |
||
537 | |||
538 | // Indicates if this is a pre-isel opcode that should be |
||
539 | // legalized/regbankselected/selected. |
||
540 | bit isPreISelOpcode = false; |
||
541 | |||
542 | // These bits capture information about the high-level semantics of the |
||
543 | // instruction. |
||
544 | bit isReturn = false; // Is this instruction a return instruction? |
||
545 | bit isBranch = false; // Is this instruction a branch instruction? |
||
546 | bit isEHScopeReturn = false; // Does this instruction end an EH scope? |
||
547 | bit isIndirectBranch = false; // Is this instruction an indirect branch? |
||
548 | bit isCompare = false; // Is this instruction a comparison instruction? |
||
549 | bit isMoveImm = false; // Is this instruction a move immediate instruction? |
||
550 | bit isMoveReg = false; // Is this instruction a move register instruction? |
||
551 | bit isBitcast = false; // Is this instruction a bitcast instruction? |
||
552 | bit isSelect = false; // Is this instruction a select instruction? |
||
553 | bit isBarrier = false; // Can control flow fall through this instruction? |
||
554 | bit isCall = false; // Is this instruction a call instruction? |
||
555 | bit isAdd = false; // Is this instruction an add instruction? |
||
556 | bit isTrap = false; // Is this instruction a trap instruction? |
||
557 | bit canFoldAsLoad = false; // Can this be folded as a simple memory operand? |
||
558 | bit mayLoad = ?; // Is it possible for this inst to read memory? |
||
559 | bit mayStore = ?; // Is it possible for this inst to write memory? |
||
560 | bit mayRaiseFPException = false; // Can this raise a floating-point exception? |
||
561 | bit isConvertibleToThreeAddress = false; // Can this 2-addr instruction promote? |
||
562 | bit isCommutable = false; // Is this 3 operand instruction commutable? |
||
563 | bit isTerminator = false; // Is this part of the terminator for a basic block? |
||
564 | bit isReMaterializable = false; // Is this instruction re-materializable? |
||
565 | bit isPredicable = false; // 1 means this instruction is predicable |
||
566 | // even if it does not have any operand |
||
567 | // tablegen can identify as a predicate |
||
568 | bit isUnpredicable = false; // 1 means this instruction is not predicable |
||
569 | // even if it _does_ have a predicate operand |
||
570 | bit hasDelaySlot = false; // Does this instruction have an delay slot? |
||
571 | bit usesCustomInserter = false; // Pseudo instr needing special help. |
||
572 | bit hasPostISelHook = false; // To be *adjusted* after isel by target hook. |
||
573 | bit hasCtrlDep = false; // Does this instruction r/w ctrl-flow chains? |
||
574 | bit isNotDuplicable = false; // Is it unsafe to duplicate this instruction? |
||
575 | bit isConvergent = false; // Is this instruction convergent? |
||
576 | bit isAuthenticated = false; // Does this instruction authenticate a pointer? |
||
577 | bit isAsCheapAsAMove = false; // As cheap (or cheaper) than a move instruction. |
||
578 | bit hasExtraSrcRegAllocReq = false; // Sources have special regalloc requirement? |
||
579 | bit hasExtraDefRegAllocReq = false; // Defs have special regalloc requirement? |
||
580 | bit isRegSequence = false; // Is this instruction a kind of reg sequence? |
||
581 | // If so, make sure to override |
||
582 | // TargetInstrInfo::getRegSequenceLikeInputs. |
||
583 | bit isPseudo = false; // Is this instruction a pseudo-instruction? |
||
584 | // If so, won't have encoding information for |
||
585 | // the [MC]CodeEmitter stuff. |
||
586 | bit isMeta = false; // Is this instruction a meta-instruction? |
||
587 | // If so, won't produce any output in the form of |
||
588 | // executable instructions |
||
589 | bit isExtractSubreg = false; // Is this instruction a kind of extract subreg? |
||
590 | // If so, make sure to override |
||
591 | // TargetInstrInfo::getExtractSubregLikeInputs. |
||
592 | bit isInsertSubreg = false; // Is this instruction a kind of insert subreg? |
||
593 | // If so, make sure to override |
||
594 | // TargetInstrInfo::getInsertSubregLikeInputs. |
||
595 | bit variadicOpsAreDefs = false; // Are variadic operands definitions? |
||
596 | |||
597 | // Does the instruction have side effects that are not captured by any |
||
598 | // operands of the instruction or other flags? |
||
599 | bit hasSideEffects = ?; |
||
600 | |||
601 | // Is this instruction a "real" instruction (with a distinct machine |
||
602 | // encoding), or is it a pseudo instruction used for codegen modeling |
||
603 | // purposes. |
||
604 | // FIXME: For now this is distinct from isPseudo, above, as code-gen-only |
||
605 | // instructions can (and often do) still have encoding information |
||
606 | // associated with them. Once we've migrated all of them over to true |
||
607 | // pseudo-instructions that are lowered to real instructions prior to |
||
608 | // the printer/emitter, we can remove this attribute and just use isPseudo. |
||
609 | // |
||
610 | // The intended use is: |
||
611 | // isPseudo: Does not have encoding information and should be expanded, |
||
612 | // at the latest, during lowering to MCInst. |
||
613 | // |
||
614 | // isCodeGenOnly: Does have encoding information and can go through to the |
||
615 | // CodeEmitter unchanged, but duplicates a canonical instruction |
||
616 | // definition's encoding and should be ignored when constructing the |
||
617 | // assembler match tables. |
||
618 | bit isCodeGenOnly = false; |
||
619 | |||
620 | // Is this instruction a pseudo instruction for use by the assembler parser. |
||
621 | bit isAsmParserOnly = false; |
||
622 | |||
623 | // This instruction is not expected to be queried for scheduling latencies |
||
624 | // and therefore needs no scheduling information even for a complete |
||
625 | // scheduling model. |
||
626 | bit hasNoSchedulingInfo = false; |
||
627 | |||
628 | InstrItinClass Itinerary = NoItinerary;// Execution steps used for scheduling. |
||
629 | |||
630 | // Scheduling information from TargetSchedule.td. |
||
631 | list<SchedReadWrite> SchedRW; |
||
632 | |||
633 | string Constraints = ""; // OperandConstraint, e.g. $src = $dst. |
||
634 | |||
635 | /// DisableEncoding - List of operand names (e.g. "$op1,$op2") that should not |
||
636 | /// be encoded into the output machineinstr. |
||
637 | string DisableEncoding = ""; |
||
638 | |||
639 | string PostEncoderMethod = ""; |
||
640 | |||
641 | /// Target-specific flags. This becomes the TSFlags field in TargetInstrDesc. |
||
642 | bits<64> TSFlags = 0; |
||
643 | |||
644 | ///@name Assembler Parser Support |
||
645 | ///@{ |
||
646 | |||
647 | string AsmMatchConverter = ""; |
||
648 | |||
649 | /// TwoOperandAliasConstraint - Enable TableGen to auto-generate a |
||
650 | /// two-operand matcher inst-alias for a three operand instruction. |
||
651 | /// For example, the arm instruction "add r3, r3, r5" can be written |
||
652 | /// as "add r3, r5". The constraint is of the same form as a tied-operand |
||
653 | /// constraint. For example, "$Rn = $Rd". |
||
654 | string TwoOperandAliasConstraint = ""; |
||
655 | |||
656 | /// Assembler variant name to use for this instruction. If specified then |
||
657 | /// instruction will be presented only in MatchTable for this variant. If |
||
658 | /// not specified then assembler variants will be determined based on |
||
659 | /// AsmString |
||
660 | string AsmVariantName = ""; |
||
661 | |||
662 | ///@} |
||
663 | |||
664 | /// UseNamedOperandTable - If set, the operand indices of this instruction |
||
665 | /// can be queried via the getNamedOperandIdx() function which is generated |
||
666 | /// by TableGen. |
||
667 | bit UseNamedOperandTable = false; |
||
668 | |||
669 | /// Should generate helper functions that help you to map a logical operand's |
||
670 | /// index to the underlying MIOperand's index. |
||
671 | /// In most architectures logical operand indicies are equal to |
||
672 | /// MIOperand indicies, but for some CISC architectures, a logical operand |
||
673 | /// might be consist of multiple MIOperand (e.g. a logical operand that |
||
674 | /// uses complex address mode). |
||
675 | bit UseLogicalOperandMappings = false; |
||
676 | |||
677 | /// Should FastISel ignore this instruction. For certain ISAs, they have |
||
678 | /// instructions which map to the same ISD Opcode, value type operands and |
||
679 | /// instruction selection predicates. FastISel cannot handle such cases, but |
||
680 | /// SelectionDAG can. |
||
681 | bit FastISelShouldIgnore = false; |
||
682 | |||
683 | /// HasPositionOrder: Indicate tablegen to sort the instructions by record |
||
684 | /// ID, so that instruction that is defined earlier can be sorted earlier |
||
685 | /// in the assembly matching table. |
||
686 | bit HasPositionOrder = false; |
||
687 | } |
||
688 | |||
689 | /// Defines a Pat match between compressed and uncompressed instruction. |
||
690 | /// The relationship and helper function generation are handled by |
||
691 | /// CompressInstEmitter backend. |
||
692 | class CompressPat<dag input, dag output, list<Predicate> predicates = []> { |
||
693 | /// Uncompressed instruction description. |
||
694 | dag Input = input; |
||
695 | /// Compressed instruction description. |
||
696 | dag Output = output; |
||
697 | /// Predicates that must be true for this to match. |
||
698 | list<Predicate> Predicates = predicates; |
||
699 | /// Duplicate match when tied operand is just different. |
||
700 | bit isCompressOnly = false; |
||
701 | } |
||
702 | |||
703 | /// Defines an additional encoding that disassembles to the given instruction |
||
704 | /// Like Instruction, the Inst and SoftFail fields are omitted to allow targets |
||
705 | // to specify their size. |
||
706 | class AdditionalEncoding<Instruction I> : InstructionEncoding { |
||
707 | Instruction AliasOf = I; |
||
708 | } |
||
709 | |||
710 | /// PseudoInstExpansion - Expansion information for a pseudo-instruction. |
||
711 | /// Which instruction it expands to and how the operands map from the |
||
712 | /// pseudo. |
||
713 | class PseudoInstExpansion<dag Result> { |
||
714 | dag ResultInst = Result; // The instruction to generate. |
||
715 | bit isPseudo = true; |
||
716 | } |
||
717 | |||
718 | /// Predicates - These are extra conditionals which are turned into instruction |
||
719 | /// selector matching code. Currently each predicate is just a string. |
||
720 | class Predicate<string cond> { |
||
721 | string CondString = cond; |
||
722 | |||
723 | /// AssemblerMatcherPredicate - If this feature can be used by the assembler |
||
724 | /// matcher, this is true. Targets should set this by inheriting their |
||
725 | /// feature from the AssemblerPredicate class in addition to Predicate. |
||
726 | bit AssemblerMatcherPredicate = false; |
||
727 | |||
728 | /// AssemblerCondDag - Set of subtarget features being tested used |
||
729 | /// as alternative condition string used for assembler matcher. Must be used |
||
730 | /// with (all_of) to indicate that all features must be present, or (any_of) |
||
731 | /// to indicate that at least one must be. The required lack of presence of |
||
732 | /// a feature can be tested using a (not) node including the feature. |
||
733 | /// e.g. "(all_of ModeThumb)" is translated to "(Bits & ModeThumb) != 0". |
||
734 | /// "(all_of (not ModeThumb))" is translated to |
||
735 | /// "(Bits & ModeThumb) == 0". |
||
736 | /// "(all_of ModeThumb, FeatureThumb2)" is translated to |
||
737 | /// "(Bits & ModeThumb) != 0 && (Bits & FeatureThumb2) != 0". |
||
738 | /// "(any_of ModeTumb, FeatureThumb2)" is translated to |
||
739 | /// "(Bits & ModeThumb) != 0 || (Bits & FeatureThumb2) != 0". |
||
740 | /// all_of and any_of cannot be combined in a single dag, instead multiple |
||
741 | /// predicates can be placed onto Instruction definitions. |
||
742 | dag AssemblerCondDag; |
||
743 | |||
744 | /// PredicateName - User-level name to use for the predicate. Mainly for use |
||
745 | /// in diagnostics such as missing feature errors in the asm matcher. |
||
746 | string PredicateName = ""; |
||
747 | |||
748 | /// Setting this to '1' indicates that the predicate must be recomputed on |
||
749 | /// every function change. Most predicates can leave this at '0'. |
||
750 | /// |
||
751 | /// Ignored by SelectionDAG, it always recomputes the predicate on every use. |
||
752 | bit RecomputePerFunction = false; |
||
753 | } |
||
754 | |||
755 | /// NoHonorSignDependentRounding - This predicate is true if support for |
||
756 | /// sign-dependent-rounding is not enabled. |
||
757 | def NoHonorSignDependentRounding |
||
758 | : Predicate<"!TM.Options.HonorSignDependentRoundingFPMath()">; |
||
759 | |||
760 | class Requires<list<Predicate> preds> { |
||
761 | list<Predicate> Predicates = preds; |
||
762 | } |
||
763 | |||
764 | /// ops definition - This is just a simple marker used to identify the operand |
||
765 | /// list for an instruction. outs and ins are identical both syntactically and |
||
766 | /// semantically; they are used to define def operands and use operands to |
||
767 | /// improve readability. This should be used like this: |
||
768 | /// (outs R32:$dst), (ins R32:$src1, R32:$src2) or something similar. |
||
769 | def ops; |
||
770 | def outs; |
||
771 | def ins; |
||
772 | |||
773 | /// variable_ops definition - Mark this instruction as taking a variable number |
||
774 | /// of operands. |
||
775 | def variable_ops; |
||
776 | |||
777 | /// variable-length instruction encoding utilities. |
||
778 | /// The `ascend` operator should be used like this: |
||
779 | /// (ascend 0b0010, 0b1101) |
||
780 | /// Which represent a seqence of encoding fragments placing from LSB to MSB. |
||
781 | /// Thus, in this case the final encoding will be 0b1101_0010. |
||
782 | /// The arguments for `ascend` can either be `bits` or another DAG. |
||
783 | def ascend; |
||
784 | /// In addition, we can use `descend` to describe an encoding that places |
||
785 | /// its arguments (i.e. encoding fragments) from MSB to LSB. For instance: |
||
786 | /// (descend 0b0010, 0b1101) |
||
787 | /// This results in an encoding of 0b0010_1101. |
||
788 | def descend; |
||
789 | /// The `operand` operator should be used like this: |
||
790 | /// (operand "$src", 4) |
||
791 | /// Which represents a 4-bit encoding for an instruction operand named `$src`. |
||
792 | def operand; |
||
793 | /// Similar to `operand`, we can reference only part of the operand's encoding: |
||
794 | /// (slice "$src", 6, 8) |
||
795 | /// (slice "$src", 8, 6) |
||
796 | /// Both DAG represent bit 6 to 8 (total of 3 bits) in the encoding of operand |
||
797 | /// `$src`. |
||
798 | def slice; |
||
799 | /// You can use `encoder` or `decoder` to specify a custom encoder or decoder |
||
800 | /// function for a specific `operand` or `slice` directive. For example: |
||
801 | /// (operand "$src", 4, (encoder "encodeMyImm")) |
||
802 | /// (slice "$src", 8, 6, (encoder "encodeMyReg")) |
||
803 | /// (operand "$src", 4, (encoder "encodeMyImm"), (decoder "decodeMyImm")) |
||
804 | /// The ordering of `encoder` and `decoder` in the same `operand` or `slice` |
||
805 | /// doesn't matter. |
||
806 | /// Note that currently we cannot assign different decoders in the same |
||
807 | /// (instruction) operand. |
||
808 | def encoder; |
||
809 | def decoder; |
||
810 | |||
811 | /// PointerLikeRegClass - Values that are designed to have pointer width are |
||
812 | /// derived from this. TableGen treats the register class as having a symbolic |
||
813 | /// type that it doesn't know, and resolves the actual regclass to use by using |
||
814 | /// the TargetRegisterInfo::getPointerRegClass() hook at codegen time. |
||
815 | class PointerLikeRegClass<int Kind> { |
||
816 | int RegClassKind = Kind; |
||
817 | } |
||
818 | |||
819 | |||
820 | /// ptr_rc definition - Mark this operand as being a pointer value whose |
||
821 | /// register class is resolved dynamically via a callback to TargetInstrInfo. |
||
822 | /// FIXME: We should probably change this to a class which contain a list of |
||
823 | /// flags. But currently we have but one flag. |
||
824 | def ptr_rc : PointerLikeRegClass<0>; |
||
825 | |||
826 | /// unknown definition - Mark this operand as being of unknown type, causing |
||
827 | /// it to be resolved by inference in the context it is used. |
||
828 | class unknown_class; |
||
829 | def unknown : unknown_class; |
||
830 | |||
831 | /// AsmOperandClass - Representation for the kinds of operands which the target |
||
832 | /// specific parser can create and the assembly matcher may need to distinguish. |
||
833 | /// |
||
834 | /// Operand classes are used to define the order in which instructions are |
||
835 | /// matched, to ensure that the instruction which gets matched for any |
||
836 | /// particular list of operands is deterministic. |
||
837 | /// |
||
838 | /// The target specific parser must be able to classify a parsed operand into a |
||
839 | /// unique class which does not partially overlap with any other classes. It can |
||
840 | /// match a subset of some other class, in which case the super class field |
||
841 | /// should be defined. |
||
842 | class AsmOperandClass { |
||
843 | /// The name to use for this class, which should be usable as an enum value. |
||
844 | string Name = ?; |
||
845 | |||
846 | /// The super classes of this operand. |
||
847 | list<AsmOperandClass> SuperClasses = []; |
||
848 | |||
849 | /// The name of the method on the target specific operand to call to test |
||
850 | /// whether the operand is an instance of this class. If not set, this will |
||
851 | /// default to "isFoo", where Foo is the AsmOperandClass name. The method |
||
852 | /// signature should be: |
||
853 | /// bool isFoo() const; |
||
854 | string PredicateMethod = ?; |
||
855 | |||
856 | /// The name of the method on the target specific operand to call to add the |
||
857 | /// target specific operand to an MCInst. If not set, this will default to |
||
858 | /// "addFooOperands", where Foo is the AsmOperandClass name. The method |
||
859 | /// signature should be: |
||
860 | /// void addFooOperands(MCInst &Inst, unsigned N) const; |
||
861 | string RenderMethod = ?; |
||
862 | |||
863 | /// The name of the method on the target specific operand to call to custom |
||
864 | /// handle the operand parsing. This is useful when the operands do not relate |
||
865 | /// to immediates or registers and are very instruction specific (as flags to |
||
866 | /// set in a processor register, coprocessor number, ...). |
||
867 | string ParserMethod = ?; |
||
868 | |||
869 | // The diagnostic type to present when referencing this operand in a |
||
870 | // match failure error message. By default, use a generic "invalid operand" |
||
871 | // diagnostic. The target AsmParser maps these codes to text. |
||
872 | string DiagnosticType = ""; |
||
873 | |||
874 | /// A diagnostic message to emit when an invalid value is provided for this |
||
875 | /// operand. |
||
876 | string DiagnosticString = ""; |
||
877 | |||
878 | /// Set to 1 if this operand is optional and not always required. Typically, |
||
879 | /// the AsmParser will emit an error when it finishes parsing an |
||
880 | /// instruction if it hasn't matched all the operands yet. However, this |
||
881 | /// error will be suppressed if all of the remaining unmatched operands are |
||
882 | /// marked as IsOptional. |
||
883 | /// |
||
884 | /// Optional arguments must be at the end of the operand list. |
||
885 | bit IsOptional = false; |
||
886 | |||
887 | /// The name of the method on the target specific asm parser that returns the |
||
888 | /// default operand for this optional operand. This method is only used if |
||
889 | /// IsOptional == 1. If not set, this will default to "defaultFooOperands", |
||
890 | /// where Foo is the AsmOperandClass name. The method signature should be: |
||
891 | /// std::unique_ptr<MCParsedAsmOperand> defaultFooOperands() const; |
||
892 | string DefaultMethod = ?; |
||
893 | } |
||
894 | |||
895 | def ImmAsmOperand : AsmOperandClass { |
||
896 | let Name = "Imm"; |
||
897 | } |
||
898 | |||
899 | /// Operand Types - These provide the built-in operand types that may be used |
||
900 | /// by a target. Targets can optionally provide their own operand types as |
||
901 | /// needed, though this should not be needed for RISC targets. |
||
902 | class Operand<ValueType ty> : DAGOperand { |
||
903 | ValueType Type = ty; |
||
904 | string PrintMethod = "printOperand"; |
||
905 | string EncoderMethod = ""; |
||
906 | bit hasCompleteDecoder = true; |
||
907 | string OperandType = "OPERAND_UNKNOWN"; |
||
908 | dag MIOperandInfo = (ops); |
||
909 | |||
910 | // MCOperandPredicate - Optionally, a code fragment operating on |
||
911 | // const MCOperand &MCOp, and returning a bool, to indicate if |
||
912 | // the value of MCOp is valid for the specific subclass of Operand |
||
913 | code MCOperandPredicate; |
||
914 | |||
915 | // ParserMatchClass - The "match class" that operands of this type fit |
||
916 | // in. Match classes are used to define the order in which instructions are |
||
917 | // match, to ensure that which instructions gets matched is deterministic. |
||
918 | // |
||
919 | // The target specific parser must be able to classify an parsed operand into |
||
920 | // a unique class, which does not partially overlap with any other classes. It |
||
921 | // can match a subset of some other class, in which case the AsmOperandClass |
||
922 | // should declare the other operand as one of its super classes. |
||
923 | AsmOperandClass ParserMatchClass = ImmAsmOperand; |
||
924 | } |
||
925 | |||
926 | class RegisterOperand<RegisterClass regclass, string pm = "printOperand"> |
||
927 | : DAGOperand { |
||
928 | // RegClass - The register class of the operand. |
||
929 | RegisterClass RegClass = regclass; |
||
930 | // PrintMethod - The target method to call to print register operands of |
||
931 | // this type. The method normally will just use an alt-name index to look |
||
932 | // up the name to print. Default to the generic printOperand(). |
||
933 | string PrintMethod = pm; |
||
934 | |||
935 | // EncoderMethod - The target method name to call to encode this register |
||
936 | // operand. |
||
937 | string EncoderMethod = ""; |
||
938 | |||
939 | // ParserMatchClass - The "match class" that operands of this type fit |
||
940 | // in. Match classes are used to define the order in which instructions are |
||
941 | // match, to ensure that which instructions gets matched is deterministic. |
||
942 | // |
||
943 | // The target specific parser must be able to classify an parsed operand into |
||
944 | // a unique class, which does not partially overlap with any other classes. It |
||
945 | // can match a subset of some other class, in which case the AsmOperandClass |
||
946 | // should declare the other operand as one of its super classes. |
||
947 | AsmOperandClass ParserMatchClass; |
||
948 | |||
949 | string OperandType = "OPERAND_REGISTER"; |
||
950 | |||
951 | // When referenced in the result of a CodeGen pattern, GlobalISel will |
||
952 | // normally copy the matched operand to the result. When this is set, it will |
||
953 | // emit a special copy that will replace zero-immediates with the specified |
||
954 | // zero-register. |
||
955 | Register GIZeroRegister = ?; |
||
956 | } |
||
957 | |||
958 | let OperandType = "OPERAND_IMMEDIATE" in { |
||
959 | def i1imm : Operand<i1>; |
||
960 | def i8imm : Operand<i8>; |
||
961 | def i16imm : Operand<i16>; |
||
962 | def i32imm : Operand<i32>; |
||
963 | def i64imm : Operand<i64>; |
||
964 | |||
965 | def f32imm : Operand<f32>; |
||
966 | def f64imm : Operand<f64>; |
||
967 | } |
||
968 | |||
969 | // Register operands for generic instructions don't have an MVT, but do have |
||
970 | // constraints linking the operands (e.g. all operands of a G_ADD must |
||
971 | // have the same LLT). |
||
972 | class TypedOperand<string Ty> : Operand<untyped> { |
||
973 | let OperandType = Ty; |
||
974 | bit IsPointer = false; |
||
975 | bit IsImmediate = false; |
||
976 | } |
||
977 | |||
978 | def type0 : TypedOperand<"OPERAND_GENERIC_0">; |
||
979 | def type1 : TypedOperand<"OPERAND_GENERIC_1">; |
||
980 | def type2 : TypedOperand<"OPERAND_GENERIC_2">; |
||
981 | def type3 : TypedOperand<"OPERAND_GENERIC_3">; |
||
982 | def type4 : TypedOperand<"OPERAND_GENERIC_4">; |
||
983 | def type5 : TypedOperand<"OPERAND_GENERIC_5">; |
||
984 | |||
985 | let IsPointer = true in { |
||
986 | def ptype0 : TypedOperand<"OPERAND_GENERIC_0">; |
||
987 | def ptype1 : TypedOperand<"OPERAND_GENERIC_1">; |
||
988 | def ptype2 : TypedOperand<"OPERAND_GENERIC_2">; |
||
989 | def ptype3 : TypedOperand<"OPERAND_GENERIC_3">; |
||
990 | def ptype4 : TypedOperand<"OPERAND_GENERIC_4">; |
||
991 | def ptype5 : TypedOperand<"OPERAND_GENERIC_5">; |
||
992 | } |
||
993 | |||
994 | // untyped_imm is for operands where isImm() will be true. It currently has no |
||
995 | // special behaviour and is only used for clarity. |
||
996 | def untyped_imm_0 : TypedOperand<"OPERAND_GENERIC_IMM_0"> { |
||
997 | let IsImmediate = true; |
||
998 | } |
||
999 | |||
1000 | /// zero_reg definition - Special node to stand for the zero register. |
||
1001 | /// |
||
1002 | def zero_reg; |
||
1003 | |||
1004 | /// undef_tied_input - Special node to indicate an input register tied |
||
1005 | /// to an output which defaults to IMPLICIT_DEF. |
||
1006 | def undef_tied_input; |
||
1007 | |||
1008 | /// All operands which the MC layer classifies as predicates should inherit from |
||
1009 | /// this class in some manner. This is already handled for the most commonly |
||
1010 | /// used PredicateOperand, but may be useful in other circumstances. |
||
1011 | class PredicateOp; |
||
1012 | |||
1013 | /// OperandWithDefaultOps - This Operand class can be used as the parent class |
||
1014 | /// for an Operand that needs to be initialized with a default value if |
||
1015 | /// no value is supplied in a pattern. This class can be used to simplify the |
||
1016 | /// pattern definitions for instructions that have target specific flags |
||
1017 | /// encoded as immediate operands. |
||
1018 | class OperandWithDefaultOps<ValueType ty, dag defaultops> |
||
1019 | : Operand<ty> { |
||
1020 | dag DefaultOps = defaultops; |
||
1021 | } |
||
1022 | |||
1023 | /// PredicateOperand - This can be used to define a predicate operand for an |
||
1024 | /// instruction. OpTypes specifies the MIOperandInfo for the operand, and |
||
1025 | /// AlwaysVal specifies the value of this predicate when set to "always |
||
1026 | /// execute". |
||
1027 | class PredicateOperand<ValueType ty, dag OpTypes, dag AlwaysVal> |
||
1028 | : OperandWithDefaultOps<ty, AlwaysVal>, PredicateOp { |
||
1029 | let MIOperandInfo = OpTypes; |
||
1030 | } |
||
1031 | |||
1032 | /// OptionalDefOperand - This is used to define a optional definition operand |
||
1033 | /// for an instruction. DefaultOps is the register the operand represents if |
||
1034 | /// none is supplied, e.g. zero_reg. |
||
1035 | class OptionalDefOperand<ValueType ty, dag OpTypes, dag defaultops> |
||
1036 | : OperandWithDefaultOps<ty, defaultops> { |
||
1037 | let MIOperandInfo = OpTypes; |
||
1038 | } |
||
1039 | |||
1040 | |||
1041 | // InstrInfo - This class should only be instantiated once to provide parameters |
||
1042 | // which are global to the target machine. |
||
1043 | // |
||
1044 | class InstrInfo { |
||
1045 | // Target can specify its instructions in either big or little-endian formats. |
||
1046 | // For instance, while both Sparc and PowerPC are big-endian platforms, the |
||
1047 | // Sparc manual specifies its instructions in the format [31..0] (big), while |
||
1048 | // PowerPC specifies them using the format [0..31] (little). |
||
1049 | bit isLittleEndianEncoding = false; |
||
1050 | |||
1051 | // The instruction properties mayLoad, mayStore, and hasSideEffects are unset |
||
1052 | // by default, and TableGen will infer their value from the instruction |
||
1053 | // pattern when possible. |
||
1054 | // |
||
1055 | // Normally, TableGen will issue an error if it can't infer the value of a |
||
1056 | // property that hasn't been set explicitly. When guessInstructionProperties |
||
1057 | // is set, it will guess a safe value instead. |
||
1058 | // |
||
1059 | // This option is a temporary migration help. It will go away. |
||
1060 | bit guessInstructionProperties = true; |
||
1061 | |||
1062 | // TableGen's instruction encoder generator has support for matching operands |
||
1063 | // to bit-field variables both by name and by position. Support for matching |
||
1064 | // by position is DEPRECATED, and WILL BE REMOVED. Positional matching is |
||
1065 | // confusing to use, and makes it very easy to accidentally write buggy |
||
1066 | // instruction definitions. |
||
1067 | // |
||
1068 | // In previous versions of LLVM, the ability to match operands by position was |
||
1069 | // enabled unconditionally. It is now controllable by this option -- and |
||
1070 | // disabled by default. The previous behavior can be restored by setting this |
||
1071 | // option to true. |
||
1072 | // |
||
1073 | // This option is temporary, and will go away once all in-tree targets have |
||
1074 | // migrated. |
||
1075 | // |
||
1076 | // TODO: clean up and remove these options. |
||
1077 | bit useDeprecatedPositionallyEncodedOperands = false; |
||
1078 | |||
1079 | // If positional encoding rules are used for the encoder generator, they may |
||
1080 | // also need to be used by the decoder generator -- if so, enable this |
||
1081 | // variable. |
||
1082 | // |
||
1083 | // This option is a no-op unless useDeprecatedPositionallyEncodedOperands is |
||
1084 | // true. |
||
1085 | // |
||
1086 | // This option is temporary, and will go away once all in-tree targets have |
||
1087 | // migrated. |
||
1088 | bit decodePositionallyEncodedOperands = false; |
||
1089 | |||
1090 | // When set, this indicates that there will be no overlap between those |
||
1091 | // operands that are matched by ordering (positional operands) and those |
||
1092 | // matched by name. |
||
1093 | // |
||
1094 | // This is a no-op unless useDeprecatedPositionallyEncodedOperands is true |
||
1095 | // (though it does modify the "would've used positional operand XXX" error.) |
||
1096 | // |
||
1097 | // This option is temporary, and will go away once all in-tree targets have |
||
1098 | // migrated. |
||
1099 | bit noNamedPositionallyEncodedOperands = false; |
||
1100 | } |
||
1101 | |||
1102 | // Standard Pseudo Instructions. |
||
1103 | // This list must match TargetOpcodes.def. |
||
1104 | // Only these instructions are allowed in the TargetOpcode namespace. |
||
1105 | // Ensure mayLoad and mayStore have a default value, so as not to break |
||
1106 | // targets that set guessInstructionProperties=0. Any local definition of |
||
1107 | // mayLoad/mayStore takes precedence over these default values. |
||
1108 | class StandardPseudoInstruction : Instruction { |
||
1109 | let mayLoad = false; |
||
1110 | let mayStore = false; |
||
1111 | let isCodeGenOnly = true; |
||
1112 | let isPseudo = true; |
||
1113 | let hasNoSchedulingInfo = true; |
||
1114 | let Namespace = "TargetOpcode"; |
||
1115 | } |
||
1116 | def PHI : StandardPseudoInstruction { |
||
1117 | let OutOperandList = (outs unknown:$dst); |
||
1118 | let InOperandList = (ins variable_ops); |
||
1119 | let AsmString = "PHINODE"; |
||
1120 | let hasSideEffects = false; |
||
1121 | } |
||
1122 | def INLINEASM : StandardPseudoInstruction { |
||
1123 | let OutOperandList = (outs); |
||
1124 | let InOperandList = (ins variable_ops); |
||
1125 | let AsmString = ""; |
||
1126 | let hasSideEffects = false; // Note side effect is encoded in an operand. |
||
1127 | } |
||
1128 | def INLINEASM_BR : StandardPseudoInstruction { |
||
1129 | let OutOperandList = (outs); |
||
1130 | let InOperandList = (ins variable_ops); |
||
1131 | let AsmString = ""; |
||
1132 | // Unlike INLINEASM, this is always treated as having side-effects. |
||
1133 | let hasSideEffects = true; |
||
1134 | // Despite potentially branching, this instruction is intentionally _not_ |
||
1135 | // marked as a terminator or a branch. |
||
1136 | } |
||
1137 | def CFI_INSTRUCTION : StandardPseudoInstruction { |
||
1138 | let OutOperandList = (outs); |
||
1139 | let InOperandList = (ins i32imm:$id); |
||
1140 | let AsmString = ""; |
||
1141 | let hasCtrlDep = true; |
||
1142 | let hasSideEffects = false; |
||
1143 | let isNotDuplicable = true; |
||
1144 | let isMeta = true; |
||
1145 | } |
||
1146 | def EH_LABEL : StandardPseudoInstruction { |
||
1147 | let OutOperandList = (outs); |
||
1148 | let InOperandList = (ins i32imm:$id); |
||
1149 | let AsmString = ""; |
||
1150 | let hasCtrlDep = true; |
||
1151 | let hasSideEffects = false; |
||
1152 | let isNotDuplicable = true; |
||
1153 | let isMeta = true; |
||
1154 | } |
||
1155 | def GC_LABEL : StandardPseudoInstruction { |
||
1156 | let OutOperandList = (outs); |
||
1157 | let InOperandList = (ins i32imm:$id); |
||
1158 | let AsmString = ""; |
||
1159 | let hasCtrlDep = true; |
||
1160 | let hasSideEffects = false; |
||
1161 | let isNotDuplicable = true; |
||
1162 | let isMeta = true; |
||
1163 | } |
||
1164 | def ANNOTATION_LABEL : StandardPseudoInstruction { |
||
1165 | let OutOperandList = (outs); |
||
1166 | let InOperandList = (ins i32imm:$id); |
||
1167 | let AsmString = ""; |
||
1168 | let hasCtrlDep = true; |
||
1169 | let hasSideEffects = false; |
||
1170 | let isNotDuplicable = true; |
||
1171 | } |
||
1172 | def KILL : StandardPseudoInstruction { |
||
1173 | let OutOperandList = (outs); |
||
1174 | let InOperandList = (ins variable_ops); |
||
1175 | let AsmString = ""; |
||
1176 | let hasSideEffects = false; |
||
1177 | let isMeta = true; |
||
1178 | } |
||
1179 | def EXTRACT_SUBREG : StandardPseudoInstruction { |
||
1180 | let OutOperandList = (outs unknown:$dst); |
||
1181 | let InOperandList = (ins unknown:$supersrc, i32imm:$subidx); |
||
1182 | let AsmString = ""; |
||
1183 | let hasSideEffects = false; |
||
1184 | } |
||
1185 | def INSERT_SUBREG : StandardPseudoInstruction { |
||
1186 | let OutOperandList = (outs unknown:$dst); |
||
1187 | let InOperandList = (ins unknown:$supersrc, unknown:$subsrc, i32imm:$subidx); |
||
1188 | let AsmString = ""; |
||
1189 | let hasSideEffects = false; |
||
1190 | let Constraints = "$supersrc = $dst"; |
||
1191 | } |
||
1192 | def IMPLICIT_DEF : StandardPseudoInstruction { |
||
1193 | let OutOperandList = (outs unknown:$dst); |
||
1194 | let InOperandList = (ins); |
||
1195 | let AsmString = ""; |
||
1196 | let hasSideEffects = false; |
||
1197 | let isReMaterializable = true; |
||
1198 | let isAsCheapAsAMove = true; |
||
1199 | let isMeta = true; |
||
1200 | } |
||
1201 | def SUBREG_TO_REG : StandardPseudoInstruction { |
||
1202 | let OutOperandList = (outs unknown:$dst); |
||
1203 | let InOperandList = (ins unknown:$implsrc, unknown:$subsrc, i32imm:$subidx); |
||
1204 | let AsmString = ""; |
||
1205 | let hasSideEffects = false; |
||
1206 | } |
||
1207 | def COPY_TO_REGCLASS : StandardPseudoInstruction { |
||
1208 | let OutOperandList = (outs unknown:$dst); |
||
1209 | let InOperandList = (ins unknown:$src, i32imm:$regclass); |
||
1210 | let AsmString = ""; |
||
1211 | let hasSideEffects = false; |
||
1212 | let isAsCheapAsAMove = true; |
||
1213 | } |
||
1214 | def DBG_VALUE : StandardPseudoInstruction { |
||
1215 | let OutOperandList = (outs); |
||
1216 | let InOperandList = (ins variable_ops); |
||
1217 | let AsmString = "DBG_VALUE"; |
||
1218 | let hasSideEffects = false; |
||
1219 | let isMeta = true; |
||
1220 | } |
||
1221 | def DBG_VALUE_LIST : StandardPseudoInstruction { |
||
1222 | let OutOperandList = (outs); |
||
1223 | let InOperandList = (ins variable_ops); |
||
1224 | let AsmString = "DBG_VALUE_LIST"; |
||
1225 | let hasSideEffects = 0; |
||
1226 | let isMeta = true; |
||
1227 | } |
||
1228 | def DBG_INSTR_REF : StandardPseudoInstruction { |
||
1229 | let OutOperandList = (outs); |
||
1230 | let InOperandList = (ins variable_ops); |
||
1231 | let AsmString = "DBG_INSTR_REF"; |
||
1232 | let hasSideEffects = false; |
||
1233 | let isMeta = true; |
||
1234 | } |
||
1235 | def DBG_PHI : StandardPseudoInstruction { |
||
1236 | let OutOperandList = (outs); |
||
1237 | let InOperandList = (ins variable_ops); |
||
1238 | let AsmString = "DBG_PHI"; |
||
1239 | let hasSideEffects = 0; |
||
1240 | let isMeta = true; |
||
1241 | } |
||
1242 | def DBG_LABEL : StandardPseudoInstruction { |
||
1243 | let OutOperandList = (outs); |
||
1244 | let InOperandList = (ins unknown:$label); |
||
1245 | let AsmString = "DBG_LABEL"; |
||
1246 | let hasSideEffects = false; |
||
1247 | let isMeta = true; |
||
1248 | } |
||
1249 | def REG_SEQUENCE : StandardPseudoInstruction { |
||
1250 | let OutOperandList = (outs unknown:$dst); |
||
1251 | let InOperandList = (ins unknown:$supersrc, variable_ops); |
||
1252 | let AsmString = ""; |
||
1253 | let hasSideEffects = false; |
||
1254 | let isAsCheapAsAMove = true; |
||
1255 | } |
||
1256 | def COPY : StandardPseudoInstruction { |
||
1257 | let OutOperandList = (outs unknown:$dst); |
||
1258 | let InOperandList = (ins unknown:$src); |
||
1259 | let AsmString = ""; |
||
1260 | let hasSideEffects = false; |
||
1261 | let isAsCheapAsAMove = true; |
||
1262 | let hasNoSchedulingInfo = false; |
||
1263 | } |
||
1264 | def BUNDLE : StandardPseudoInstruction { |
||
1265 | let OutOperandList = (outs); |
||
1266 | let InOperandList = (ins variable_ops); |
||
1267 | let AsmString = "BUNDLE"; |
||
1268 | let hasSideEffects = false; |
||
1269 | } |
||
1270 | def LIFETIME_START : StandardPseudoInstruction { |
||
1271 | let OutOperandList = (outs); |
||
1272 | let InOperandList = (ins i32imm:$id); |
||
1273 | let AsmString = "LIFETIME_START"; |
||
1274 | let hasSideEffects = false; |
||
1275 | let isMeta = true; |
||
1276 | } |
||
1277 | def LIFETIME_END : StandardPseudoInstruction { |
||
1278 | let OutOperandList = (outs); |
||
1279 | let InOperandList = (ins i32imm:$id); |
||
1280 | let AsmString = "LIFETIME_END"; |
||
1281 | let hasSideEffects = false; |
||
1282 | let isMeta = true; |
||
1283 | } |
||
1284 | def PSEUDO_PROBE : StandardPseudoInstruction { |
||
1285 | let OutOperandList = (outs); |
||
1286 | let InOperandList = (ins i64imm:$guid, i64imm:$index, i8imm:$type, i32imm:$attr); |
||
1287 | let AsmString = "PSEUDO_PROBE"; |
||
1288 | let hasSideEffects = 1; |
||
1289 | let isMeta = true; |
||
1290 | } |
||
1291 | def ARITH_FENCE : StandardPseudoInstruction { |
||
1292 | let OutOperandList = (outs unknown:$dst); |
||
1293 | let InOperandList = (ins unknown:$src); |
||
1294 | let AsmString = ""; |
||
1295 | let hasSideEffects = false; |
||
1296 | let Constraints = "$src = $dst"; |
||
1297 | let isMeta = true; |
||
1298 | } |
||
1299 | |||
1300 | def STACKMAP : StandardPseudoInstruction { |
||
1301 | let OutOperandList = (outs); |
||
1302 | let InOperandList = (ins i64imm:$id, i32imm:$nbytes, variable_ops); |
||
1303 | let hasSideEffects = true; |
||
1304 | let isCall = true; |
||
1305 | let mayLoad = true; |
||
1306 | let usesCustomInserter = true; |
||
1307 | } |
||
1308 | def PATCHPOINT : StandardPseudoInstruction { |
||
1309 | let OutOperandList = (outs unknown:$dst); |
||
1310 | let InOperandList = (ins i64imm:$id, i32imm:$nbytes, unknown:$callee, |
||
1311 | i32imm:$nargs, i32imm:$cc, variable_ops); |
||
1312 | let hasSideEffects = true; |
||
1313 | let isCall = true; |
||
1314 | let mayLoad = true; |
||
1315 | let usesCustomInserter = true; |
||
1316 | } |
||
1317 | def STATEPOINT : StandardPseudoInstruction { |
||
1318 | let OutOperandList = (outs variable_ops); |
||
1319 | let InOperandList = (ins variable_ops); |
||
1320 | let usesCustomInserter = true; |
||
1321 | let mayLoad = true; |
||
1322 | let mayStore = true; |
||
1323 | let hasSideEffects = true; |
||
1324 | let isCall = true; |
||
1325 | } |
||
1326 | def LOAD_STACK_GUARD : StandardPseudoInstruction { |
||
1327 | let OutOperandList = (outs ptr_rc:$dst); |
||
1328 | let InOperandList = (ins); |
||
1329 | let mayLoad = true; |
||
1330 | bit isReMaterializable = true; |
||
1331 | let hasSideEffects = false; |
||
1332 | bit isPseudo = true; |
||
1333 | } |
||
1334 | def PREALLOCATED_SETUP : StandardPseudoInstruction { |
||
1335 | let OutOperandList = (outs); |
||
1336 | let InOperandList = (ins i32imm:$a); |
||
1337 | let usesCustomInserter = true; |
||
1338 | let hasSideEffects = true; |
||
1339 | } |
||
1340 | def PREALLOCATED_ARG : StandardPseudoInstruction { |
||
1341 | let OutOperandList = (outs ptr_rc:$loc); |
||
1342 | let InOperandList = (ins i32imm:$a, i32imm:$b); |
||
1343 | let usesCustomInserter = true; |
||
1344 | let hasSideEffects = true; |
||
1345 | } |
||
1346 | def LOCAL_ESCAPE : StandardPseudoInstruction { |
||
1347 | // This instruction is really just a label. It has to be part of the chain so |
||
1348 | // that it doesn't get dropped from the DAG, but it produces nothing and has |
||
1349 | // no side effects. |
||
1350 | let OutOperandList = (outs); |
||
1351 | let InOperandList = (ins ptr_rc:$symbol, i32imm:$id); |
||
1352 | let hasSideEffects = false; |
||
1353 | let hasCtrlDep = true; |
||
1354 | } |
||
1355 | def FAULTING_OP : StandardPseudoInstruction { |
||
1356 | let OutOperandList = (outs unknown:$dst); |
||
1357 | let InOperandList = (ins variable_ops); |
||
1358 | let usesCustomInserter = true; |
||
1359 | let hasSideEffects = true; |
||
1360 | let mayLoad = true; |
||
1361 | let mayStore = true; |
||
1362 | let isTerminator = true; |
||
1363 | let isBranch = true; |
||
1364 | } |
||
1365 | def PATCHABLE_OP : StandardPseudoInstruction { |
||
1366 | let OutOperandList = (outs); |
||
1367 | let InOperandList = (ins variable_ops); |
||
1368 | let usesCustomInserter = true; |
||
1369 | let mayLoad = true; |
||
1370 | let mayStore = true; |
||
1371 | let hasSideEffects = true; |
||
1372 | } |
||
1373 | def PATCHABLE_FUNCTION_ENTER : StandardPseudoInstruction { |
||
1374 | let OutOperandList = (outs); |
||
1375 | let InOperandList = (ins); |
||
1376 | let AsmString = "# XRay Function Enter."; |
||
1377 | let usesCustomInserter = true; |
||
1378 | let hasSideEffects = true; |
||
1379 | } |
||
1380 | def PATCHABLE_RET : StandardPseudoInstruction { |
||
1381 | let OutOperandList = (outs); |
||
1382 | let InOperandList = (ins variable_ops); |
||
1383 | let AsmString = "# XRay Function Patchable RET."; |
||
1384 | let usesCustomInserter = true; |
||
1385 | let hasSideEffects = true; |
||
1386 | let isTerminator = true; |
||
1387 | let isReturn = true; |
||
1388 | } |
||
1389 | def PATCHABLE_FUNCTION_EXIT : StandardPseudoInstruction { |
||
1390 | let OutOperandList = (outs); |
||
1391 | let InOperandList = (ins); |
||
1392 | let AsmString = "# XRay Function Exit."; |
||
1393 | let usesCustomInserter = true; |
||
1394 | let hasSideEffects = true; |
||
1395 | let isReturn = false; // Original return instruction will follow |
||
1396 | } |
||
1397 | def PATCHABLE_TAIL_CALL : StandardPseudoInstruction { |
||
1398 | let OutOperandList = (outs); |
||
1399 | let InOperandList = (ins variable_ops); |
||
1400 | let AsmString = "# XRay Tail Call Exit."; |
||
1401 | let usesCustomInserter = true; |
||
1402 | let hasSideEffects = true; |
||
1403 | let isReturn = true; |
||
1404 | } |
||
1405 | def PATCHABLE_EVENT_CALL : StandardPseudoInstruction { |
||
1406 | let OutOperandList = (outs); |
||
1407 | let InOperandList = (ins ptr_rc:$event, unknown:$size); |
||
1408 | let AsmString = "# XRay Custom Event Log."; |
||
1409 | let usesCustomInserter = true; |
||
1410 | let isCall = true; |
||
1411 | let mayLoad = true; |
||
1412 | let mayStore = true; |
||
1413 | let hasSideEffects = true; |
||
1414 | } |
||
1415 | def PATCHABLE_TYPED_EVENT_CALL : StandardPseudoInstruction { |
||
1416 | let OutOperandList = (outs); |
||
1417 | let InOperandList = (ins unknown:$type, ptr_rc:$event, unknown:$size); |
||
1418 | let AsmString = "# XRay Typed Event Log."; |
||
1419 | let usesCustomInserter = true; |
||
1420 | let isCall = true; |
||
1421 | let mayLoad = true; |
||
1422 | let mayStore = true; |
||
1423 | let hasSideEffects = true; |
||
1424 | } |
||
1425 | def FENTRY_CALL : StandardPseudoInstruction { |
||
1426 | let OutOperandList = (outs); |
||
1427 | let InOperandList = (ins); |
||
1428 | let AsmString = "# FEntry call"; |
||
1429 | let usesCustomInserter = true; |
||
1430 | let isCall = true; |
||
1431 | let mayLoad = true; |
||
1432 | let mayStore = true; |
||
1433 | let hasSideEffects = true; |
||
1434 | } |
||
1435 | def ICALL_BRANCH_FUNNEL : StandardPseudoInstruction { |
||
1436 | let OutOperandList = (outs); |
||
1437 | let InOperandList = (ins variable_ops); |
||
1438 | let AsmString = ""; |
||
1439 | let hasSideEffects = true; |
||
1440 | } |
||
1441 | def MEMBARRIER : StandardPseudoInstruction { |
||
1442 | let OutOperandList = (outs); |
||
1443 | let InOperandList = (ins); |
||
1444 | let AsmString = ""; |
||
1445 | let hasSideEffects = true; |
||
1446 | let Size = 0; |
||
1447 | let isMeta = true; |
||
1448 | } |
||
1449 | |||
1450 | // Generic opcodes used in GlobalISel. |
||
1451 | include "llvm/Target/GenericOpcodes.td" |
||
1452 | |||
1453 | //===----------------------------------------------------------------------===// |
||
1454 | // AsmParser - This class can be implemented by targets that wish to implement |
||
1455 | // .s file parsing. |
||
1456 | // |
||
1457 | // Subtargets can have multiple different assembly parsers (e.g. AT&T vs Intel |
||
1458 | // syntax on X86 for example). |
||
1459 | // |
||
1460 | class AsmParser { |
||
1461 | // AsmParserClassName - This specifies the suffix to use for the asmparser |
||
1462 | // class. Generated AsmParser classes are always prefixed with the target |
||
1463 | // name. |
||
1464 | string AsmParserClassName = "AsmParser"; |
||
1465 | |||
1466 | // AsmParserInstCleanup - If non-empty, this is the name of a custom member |
||
1467 | // function of the AsmParser class to call on every matched instruction. |
||
1468 | // This can be used to perform target specific instruction post-processing. |
||
1469 | string AsmParserInstCleanup = ""; |
||
1470 | |||
1471 | // ShouldEmitMatchRegisterName - Set to false if the target needs a hand |
||
1472 | // written register name matcher |
||
1473 | bit ShouldEmitMatchRegisterName = true; |
||
1474 | |||
1475 | // Set to true if the target needs a generated 'alternative register name' |
||
1476 | // matcher. |
||
1477 | // |
||
1478 | // This generates a function which can be used to lookup registers from |
||
1479 | // their aliases. This function will fail when called on targets where |
||
1480 | // several registers share the same alias (i.e. not a 1:1 mapping). |
||
1481 | bit ShouldEmitMatchRegisterAltName = false; |
||
1482 | |||
1483 | // Set to true if MatchRegisterName and MatchRegisterAltName functions |
||
1484 | // should be generated even if there are duplicate register names. The |
||
1485 | // target is responsible for coercing aliased registers as necessary |
||
1486 | // (e.g. in validateTargetOperandClass), and there are no guarantees about |
||
1487 | // which numeric register identifier will be returned in the case of |
||
1488 | // multiple matches. |
||
1489 | bit AllowDuplicateRegisterNames = false; |
||
1490 | |||
1491 | // HasMnemonicFirst - Set to false if target instructions don't always |
||
1492 | // start with a mnemonic as the first token. |
||
1493 | bit HasMnemonicFirst = true; |
||
1494 | |||
1495 | // ReportMultipleNearMisses - |
||
1496 | // When 0, the assembly matcher reports an error for one encoding or operand |
||
1497 | // that did not match the parsed instruction. |
||
1498 | // When 1, the assembly matcher returns a list of encodings that were close |
||
1499 | // to matching the parsed instruction, so to allow more detailed error |
||
1500 | // messages. |
||
1501 | bit ReportMultipleNearMisses = false; |
||
1502 | |||
1503 | // OperandParserMethod - If non-empty, this is the name of a custom |
||
1504 | // member function of the AsmParser class to call for every instruction |
||
1505 | // operand to be parsed. |
||
1506 | string OperandParserMethod = ""; |
||
1507 | |||
1508 | // CallCustomParserForAllOperands - Set to true if the custom parser |
||
1509 | // method shall be called for all operands as opposed to only those |
||
1510 | // that have their own specified custom parsers. |
||
1511 | bit CallCustomParserForAllOperands = false; |
||
1512 | } |
||
1513 | def DefaultAsmParser : AsmParser; |
||
1514 | |||
1515 | //===----------------------------------------------------------------------===// |
||
1516 | // AsmParserVariant - Subtargets can have multiple different assembly parsers |
||
1517 | // (e.g. AT&T vs Intel syntax on X86 for example). This class can be |
||
1518 | // implemented by targets to describe such variants. |
||
1519 | // |
||
1520 | class AsmParserVariant { |
||
1521 | // Variant - AsmParsers can be of multiple different variants. Variants are |
||
1522 | // used to support targets that need to parse multiple formats for the |
||
1523 | // assembly language. |
||
1524 | int Variant = 0; |
||
1525 | |||
1526 | // Name - The AsmParser variant name (e.g., AT&T vs Intel). |
||
1527 | string Name = ""; |
||
1528 | |||
1529 | // CommentDelimiter - If given, the delimiter string used to recognize |
||
1530 | // comments which are hard coded in the .td assembler strings for individual |
||
1531 | // instructions. |
||
1532 | string CommentDelimiter = ""; |
||
1533 | |||
1534 | // RegisterPrefix - If given, the token prefix which indicates a register |
||
1535 | // token. This is used by the matcher to automatically recognize hard coded |
||
1536 | // register tokens as constrained registers, instead of tokens, for the |
||
1537 | // purposes of matching. |
||
1538 | string RegisterPrefix = ""; |
||
1539 | |||
1540 | // TokenizingCharacters - Characters that are standalone tokens |
||
1541 | string TokenizingCharacters = "[]*!"; |
||
1542 | |||
1543 | // SeparatorCharacters - Characters that are not tokens |
||
1544 | string SeparatorCharacters = " \t,"; |
||
1545 | |||
1546 | // BreakCharacters - Characters that start new identifiers |
||
1547 | string BreakCharacters = ""; |
||
1548 | } |
||
1549 | def DefaultAsmParserVariant : AsmParserVariant; |
||
1550 | |||
1551 | // Operators for combining SubtargetFeatures in AssemblerPredicates |
||
1552 | def any_of; |
||
1553 | def all_of; |
||
1554 | |||
1555 | /// AssemblerPredicate - This is a Predicate that can be used when the assembler |
||
1556 | /// matches instructions and aliases. |
||
1557 | class AssemblerPredicate<dag cond, string name = ""> { |
||
1558 | bit AssemblerMatcherPredicate = true; |
||
1559 | dag AssemblerCondDag = cond; |
||
1560 | string PredicateName = name; |
||
1561 | } |
||
1562 | |||
1563 | /// TokenAlias - This class allows targets to define assembler token |
||
1564 | /// operand aliases. That is, a token literal operand which is equivalent |
||
1565 | /// to another, canonical, token literal. For example, ARM allows: |
||
1566 | /// vmov.u32 s4, #0 -> vmov.i32, #0 |
||
1567 | /// 'u32' is a more specific designator for the 32-bit integer type specifier |
||
1568 | /// and is legal for any instruction which accepts 'i32' as a datatype suffix. |
||
1569 | /// def : TokenAlias<".u32", ".i32">; |
||
1570 | /// |
||
1571 | /// This works by marking the match class of 'From' as a subclass of the |
||
1572 | /// match class of 'To'. |
||
1573 | class TokenAlias<string From, string To> { |
||
1574 | string FromToken = From; |
||
1575 | string ToToken = To; |
||
1576 | } |
||
1577 | |||
1578 | /// MnemonicAlias - This class allows targets to define assembler mnemonic |
||
1579 | /// aliases. This should be used when all forms of one mnemonic are accepted |
||
1580 | /// with a different mnemonic. For example, X86 allows: |
||
1581 | /// sal %al, 1 -> shl %al, 1 |
||
1582 | /// sal %ax, %cl -> shl %ax, %cl |
||
1583 | /// sal %eax, %cl -> shl %eax, %cl |
||
1584 | /// etc. Though "sal" is accepted with many forms, all of them are directly |
||
1585 | /// translated to a shl, so it can be handled with (in the case of X86, it |
||
1586 | /// actually has one for each suffix as well): |
||
1587 | /// def : MnemonicAlias<"sal", "shl">; |
||
1588 | /// |
||
1589 | /// Mnemonic aliases are mapped before any other translation in the match phase, |
||
1590 | /// and do allow Requires predicates, e.g.: |
||
1591 | /// |
||
1592 | /// def : MnemonicAlias<"pushf", "pushfq">, Requires<[In64BitMode]>; |
||
1593 | /// def : MnemonicAlias<"pushf", "pushfl">, Requires<[In32BitMode]>; |
||
1594 | /// |
||
1595 | /// Mnemonic aliases can also be constrained to specific variants, e.g.: |
||
1596 | /// |
||
1597 | /// def : MnemonicAlias<"pushf", "pushfq", "att">, Requires<[In64BitMode]>; |
||
1598 | /// |
||
1599 | /// If no variant (e.g., "att" or "intel") is specified then the alias is |
||
1600 | /// applied unconditionally. |
||
1601 | class MnemonicAlias<string From, string To, string VariantName = ""> { |
||
1602 | string FromMnemonic = From; |
||
1603 | string ToMnemonic = To; |
||
1604 | string AsmVariantName = VariantName; |
||
1605 | |||
1606 | // Predicates - Predicates that must be true for this remapping to happen. |
||
1607 | list<Predicate> Predicates = []; |
||
1608 | } |
||
1609 | |||
1610 | /// InstAlias - This defines an alternate assembly syntax that is allowed to |
||
1611 | /// match an instruction that has a different (more canonical) assembly |
||
1612 | /// representation. |
||
1613 | class InstAlias<string Asm, dag Result, int Emit = 1, string VariantName = ""> { |
||
1614 | string AsmString = Asm; // The .s format to match the instruction with. |
||
1615 | dag ResultInst = Result; // The MCInst to generate. |
||
1616 | |||
1617 | // This determines which order the InstPrinter detects aliases for |
||
1618 | // printing. A larger value makes the alias more likely to be |
||
1619 | // emitted. The Instruction's own definition is notionally 0.5, so 0 |
||
1620 | // disables printing and 1 enables it if there are no conflicting aliases. |
||
1621 | int EmitPriority = Emit; |
||
1622 | |||
1623 | // Predicates - Predicates that must be true for this to match. |
||
1624 | list<Predicate> Predicates = []; |
||
1625 | |||
1626 | // If the instruction specified in Result has defined an AsmMatchConverter |
||
1627 | // then setting this to 1 will cause the alias to use the AsmMatchConverter |
||
1628 | // function when converting the OperandVector into an MCInst instead of the |
||
1629 | // function that is generated by the dag Result. |
||
1630 | // Setting this to 0 will cause the alias to ignore the Result instruction's |
||
1631 | // defined AsmMatchConverter and instead use the function generated by the |
||
1632 | // dag Result. |
||
1633 | bit UseInstAsmMatchConverter = true; |
||
1634 | |||
1635 | // Assembler variant name to use for this alias. If not specified then |
||
1636 | // assembler variants will be determined based on AsmString |
||
1637 | string AsmVariantName = VariantName; |
||
1638 | } |
||
1639 | |||
1640 | //===----------------------------------------------------------------------===// |
||
1641 | // AsmWriter - This class can be implemented by targets that need to customize |
||
1642 | // the format of the .s file writer. |
||
1643 | // |
||
1644 | // Subtargets can have multiple different asmwriters (e.g. AT&T vs Intel syntax |
||
1645 | // on X86 for example). |
||
1646 | // |
||
1647 | class AsmWriter { |
||
1648 | // AsmWriterClassName - This specifies the suffix to use for the asmwriter |
||
1649 | // class. Generated AsmWriter classes are always prefixed with the target |
||
1650 | // name. |
||
1651 | string AsmWriterClassName = "InstPrinter"; |
||
1652 | |||
1653 | // PassSubtarget - Determines whether MCSubtargetInfo should be passed to |
||
1654 | // the various print methods. |
||
1655 | // FIXME: Remove after all ports are updated. |
||
1656 | int PassSubtarget = 0; |
||
1657 | |||
1658 | // Variant - AsmWriters can be of multiple different variants. Variants are |
||
1659 | // used to support targets that need to emit assembly code in ways that are |
||
1660 | // mostly the same for different targets, but have minor differences in |
||
1661 | // syntax. If the asmstring contains {|} characters in them, this integer |
||
1662 | // will specify which alternative to use. For example "{x|y|z}" with Variant |
||
1663 | // == 1, will expand to "y". |
||
1664 | int Variant = 0; |
||
1665 | } |
||
1666 | def DefaultAsmWriter : AsmWriter; |
||
1667 | |||
1668 | |||
1669 | //===----------------------------------------------------------------------===// |
||
1670 | // Target - This class contains the "global" target information |
||
1671 | // |
||
1672 | class Target { |
||
1673 | // InstructionSet - Instruction set description for this target. |
||
1674 | InstrInfo InstructionSet; |
||
1675 | |||
1676 | // AssemblyParsers - The AsmParser instances available for this target. |
||
1677 | list<AsmParser> AssemblyParsers = [DefaultAsmParser]; |
||
1678 | |||
1679 | /// AssemblyParserVariants - The AsmParserVariant instances available for |
||
1680 | /// this target. |
||
1681 | list<AsmParserVariant> AssemblyParserVariants = [DefaultAsmParserVariant]; |
||
1682 | |||
1683 | // AssemblyWriters - The AsmWriter instances available for this target. |
||
1684 | list<AsmWriter> AssemblyWriters = [DefaultAsmWriter]; |
||
1685 | |||
1686 | // AllowRegisterRenaming - Controls whether this target allows |
||
1687 | // post-register-allocation renaming of registers. This is done by |
||
1688 | // setting hasExtraDefRegAllocReq and hasExtraSrcRegAllocReq to 1 |
||
1689 | // for all opcodes if this flag is set to 0. |
||
1690 | int AllowRegisterRenaming = 0; |
||
1691 | } |
||
1692 | |||
1693 | //===----------------------------------------------------------------------===// |
||
1694 | // SubtargetFeature - A characteristic of the chip set. |
||
1695 | // |
||
1696 | class SubtargetFeature<string n, string a, string v, string d, |
||
1697 | list<SubtargetFeature> i = []> { |
||
1698 | // Name - Feature name. Used by command line (-mattr=) to determine the |
||
1699 | // appropriate target chip. |
||
1700 | // |
||
1701 | string Name = n; |
||
1702 | |||
1703 | // Attribute - Attribute to be set by feature. |
||
1704 | // |
||
1705 | string Attribute = a; |
||
1706 | |||
1707 | // Value - Value the attribute to be set to by feature. |
||
1708 | // |
||
1709 | string Value = v; |
||
1710 | |||
1711 | // Desc - Feature description. Used by command line (-mattr=) to display help |
||
1712 | // information. |
||
1713 | // |
||
1714 | string Desc = d; |
||
1715 | |||
1716 | // Implies - Features that this feature implies are present. If one of those |
||
1717 | // features isn't set, then this one shouldn't be set either. |
||
1718 | // |
||
1719 | list<SubtargetFeature> Implies = i; |
||
1720 | } |
||
1721 | |||
1722 | /// Specifies a Subtarget feature that this instruction is deprecated on. |
||
1723 | class Deprecated<SubtargetFeature dep> { |
||
1724 | SubtargetFeature DeprecatedFeatureMask = dep; |
||
1725 | } |
||
1726 | |||
1727 | /// A custom predicate used to determine if an instruction is |
||
1728 | /// deprecated or not. |
||
1729 | class ComplexDeprecationPredicate<string dep> { |
||
1730 | string ComplexDeprecationPredicate = dep; |
||
1731 | } |
||
1732 | |||
1733 | //===----------------------------------------------------------------------===// |
||
1734 | // Processor chip sets - These values represent each of the chip sets supported |
||
1735 | // by the scheduler. Each Processor definition requires corresponding |
||
1736 | // instruction itineraries. |
||
1737 | // |
||
1738 | class Processor<string n, ProcessorItineraries pi, list<SubtargetFeature> f, |
||
1739 | list<SubtargetFeature> tunef = []> { |
||
1740 | // Name - Chip set name. Used by command line (-mcpu=) to determine the |
||
1741 | // appropriate target chip. |
||
1742 | // |
||
1743 | string Name = n; |
||
1744 | |||
1745 | // SchedModel - The machine model for scheduling and instruction cost. |
||
1746 | // |
||
1747 | SchedMachineModel SchedModel = NoSchedModel; |
||
1748 | |||
1749 | // ProcItin - The scheduling information for the target processor. |
||
1750 | // |
||
1751 | ProcessorItineraries ProcItin = pi; |
||
1752 | |||
1753 | // Features - list of |
||
1754 | list<SubtargetFeature> Features = f; |
||
1755 | |||
1756 | // TuneFeatures - list of features for tuning for this CPU. If the target |
||
1757 | // supports -mtune, this should contain the list of features used to make |
||
1758 | // microarchitectural optimization decisions for a given processor. While |
||
1759 | // Features should contain the architectural features for the processor. |
||
1760 | list<SubtargetFeature> TuneFeatures = tunef; |
||
1761 | } |
||
1762 | |||
1763 | // ProcessorModel allows subtargets to specify the more general |
||
1764 | // SchedMachineModel instead if a ProcessorItinerary. Subtargets will |
||
1765 | // gradually move to this newer form. |
||
1766 | // |
||
1767 | // Although this class always passes NoItineraries to the Processor |
||
1768 | // class, the SchedMachineModel may still define valid Itineraries. |
||
1769 | class ProcessorModel<string n, SchedMachineModel m, list<SubtargetFeature> f, |
||
1770 | list<SubtargetFeature> tunef = []> |
||
1771 | : Processor<n, NoItineraries, f, tunef> { |
||
1772 | let SchedModel = m; |
||
1773 | } |
||
1774 | |||
1775 | //===----------------------------------------------------------------------===// |
||
1776 | // InstrMapping - This class is used to create mapping tables to relate |
||
1777 | // instructions with each other based on the values specified in RowFields, |
||
1778 | // ColFields, KeyCol and ValueCols. |
||
1779 | // |
||
1780 | class InstrMapping { |
||
1781 | // FilterClass - Used to limit search space only to the instructions that |
||
1782 | // define the relationship modeled by this InstrMapping record. |
||
1783 | string FilterClass; |
||
1784 | |||
1785 | // RowFields - List of fields/attributes that should be same for all the |
||
1786 | // instructions in a row of the relation table. Think of this as a set of |
||
1787 | // properties shared by all the instructions related by this relationship |
||
1788 | // model and is used to categorize instructions into subgroups. For instance, |
||
1789 | // if we want to define a relation that maps 'Add' instruction to its |
||
1790 | // predicated forms, we can define RowFields like this: |
||
1791 | // |
||
1792 | // let RowFields = BaseOp |
||
1793 | // All add instruction predicated/non-predicated will have to set their BaseOp |
||
1794 | // to the same value. |
||
1795 | // |
||
1796 | // def Add: { let BaseOp = 'ADD'; let predSense = 'nopred' } |
||
1797 | // def Add_predtrue: { let BaseOp = 'ADD'; let predSense = 'true' } |
||
1798 | // def Add_predfalse: { let BaseOp = 'ADD'; let predSense = 'false' } |
||
1799 | list<string> RowFields = []; |
||
1800 | |||
1801 | // List of fields/attributes that are same for all the instructions |
||
1802 | // in a column of the relation table. |
||
1803 | // Ex: let ColFields = 'predSense' -- It means that the columns are arranged |
||
1804 | // based on the 'predSense' values. All the instruction in a specific |
||
1805 | // column have the same value and it is fixed for the column according |
||
1806 | // to the values set in 'ValueCols'. |
||
1807 | list<string> ColFields = []; |
||
1808 | |||
1809 | // Values for the fields/attributes listed in 'ColFields'. |
||
1810 | // Ex: let KeyCol = 'nopred' -- It means that the key instruction (instruction |
||
1811 | // that models this relation) should be non-predicated. |
||
1812 | // In the example above, 'Add' is the key instruction. |
||
1813 | list<string> KeyCol = []; |
||
1814 | |||
1815 | // List of values for the fields/attributes listed in 'ColFields', one for |
||
1816 | // each column in the relation table. |
||
1817 | // |
||
1818 | // Ex: let ValueCols = [['true'],['false']] -- It adds two columns in the |
||
1819 | // table. First column requires all the instructions to have predSense |
||
1820 | // set to 'true' and second column requires it to be 'false'. |
||
1821 | list<list<string> > ValueCols = []; |
||
1822 | } |
||
1823 | |||
1824 | //===----------------------------------------------------------------------===// |
||
1825 | // Pull in the common support for calling conventions. |
||
1826 | // |
||
1827 | include "llvm/Target/TargetCallingConv.td" |
||
1828 | |||
1829 | //===----------------------------------------------------------------------===// |
||
1830 | // Pull in the common support for DAG isel generation. |
||
1831 | // |
||
1832 | include "llvm/Target/TargetSelectionDAG.td" |
||
1833 | |||
1834 | //===----------------------------------------------------------------------===// |
||
1835 | // Pull in the common support for Global ISel register bank info generation. |
||
1836 | // |
||
1837 | include "llvm/Target/GlobalISel/RegisterBank.td" |
||
1838 | |||
1839 | //===----------------------------------------------------------------------===// |
||
1840 | // Pull in the common support for DAG isel generation. |
||
1841 | // |
||
1842 | include "llvm/Target/GlobalISel/Target.td" |
||
1843 | |||
1844 | //===----------------------------------------------------------------------===// |
||
1845 | // Pull in the common support for the Global ISel DAG-based selector generation. |
||
1846 | // |
||
1847 | include "llvm/Target/GlobalISel/SelectionDAGCompat.td" |
||
1848 | |||
1849 | //===----------------------------------------------------------------------===// |
||
1850 | // Pull in the common support for Pfm Counters generation. |
||
1851 | // |
||
1852 | include "llvm/Target/TargetPfmCounters.td" |