Details | Last modification | View Log | RSS feed
Rev | Author | Line No. | Line |
---|---|---|---|
14 | pmbaty | 1 | //===- llvm/Support/Parallel.h - Parallel algorithms ----------------------===// |
2 | // |
||
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
||
4 | // See https://llvm.org/LICENSE.txt for license information. |
||
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
||
6 | // |
||
7 | //===----------------------------------------------------------------------===// |
||
8 | |||
9 | #ifndef LLVM_SUPPORT_PARALLEL_H |
||
10 | #define LLVM_SUPPORT_PARALLEL_H |
||
11 | |||
12 | #include "llvm/ADT/STLExtras.h" |
||
13 | #include "llvm/Config/llvm-config.h" |
||
14 | #include "llvm/Support/Error.h" |
||
15 | #include "llvm/Support/MathExtras.h" |
||
16 | #include "llvm/Support/Threading.h" |
||
17 | |||
18 | #include <algorithm> |
||
19 | #include <condition_variable> |
||
20 | #include <functional> |
||
21 | #include <mutex> |
||
22 | |||
23 | namespace llvm { |
||
24 | |||
25 | namespace parallel { |
||
26 | |||
27 | // Strategy for the default executor used by the parallel routines provided by |
||
28 | // this file. It defaults to using all hardware threads and should be |
||
29 | // initialized before the first use of parallel routines. |
||
30 | extern ThreadPoolStrategy strategy; |
||
31 | |||
32 | #if LLVM_ENABLE_THREADS |
||
33 | #ifdef _WIN32 |
||
34 | // Direct access to thread_local variables from a different DLL isn't |
||
35 | // possible with Windows Native TLS. |
||
36 | unsigned getThreadIndex(); |
||
37 | #else |
||
38 | // Don't access this directly, use the getThreadIndex wrapper. |
||
39 | extern thread_local unsigned threadIndex; |
||
40 | |||
41 | inline unsigned getThreadIndex() { return threadIndex; } |
||
42 | #endif |
||
43 | #else |
||
44 | inline unsigned getThreadIndex() { return 0; } |
||
45 | #endif |
||
46 | |||
47 | namespace detail { |
||
48 | class Latch { |
||
49 | uint32_t Count; |
||
50 | mutable std::mutex Mutex; |
||
51 | mutable std::condition_variable Cond; |
||
52 | |||
53 | public: |
||
54 | explicit Latch(uint32_t Count = 0) : Count(Count) {} |
||
55 | ~Latch() { |
||
56 | // Ensure at least that sync() was called. |
||
57 | assert(Count == 0); |
||
58 | } |
||
59 | |||
60 | void inc() { |
||
61 | std::lock_guard<std::mutex> lock(Mutex); |
||
62 | ++Count; |
||
63 | } |
||
64 | |||
65 | void dec() { |
||
66 | std::lock_guard<std::mutex> lock(Mutex); |
||
67 | if (--Count == 0) |
||
68 | Cond.notify_all(); |
||
69 | } |
||
70 | |||
71 | void sync() const { |
||
72 | std::unique_lock<std::mutex> lock(Mutex); |
||
73 | Cond.wait(lock, [&] { return Count == 0; }); |
||
74 | } |
||
75 | }; |
||
76 | } // namespace detail |
||
77 | |||
78 | class TaskGroup { |
||
79 | detail::Latch L; |
||
80 | bool Parallel; |
||
81 | |||
82 | public: |
||
83 | TaskGroup(); |
||
84 | ~TaskGroup(); |
||
85 | |||
86 | // Spawn a task, but does not wait for it to finish. |
||
87 | void spawn(std::function<void()> f); |
||
88 | |||
89 | // Similar to spawn, but execute the task immediately when ThreadsRequested == |
||
90 | // 1. The difference is to give the following pattern a more intuitive order |
||
91 | // when single threading is requested. |
||
92 | // |
||
93 | // for (size_t begin = 0, i = 0, taskSize = 0;;) { |
||
94 | // taskSize += ... |
||
95 | // bool done = ++i == end; |
||
96 | // if (done || taskSize >= taskSizeLimit) { |
||
97 | // tg.execute([=] { fn(begin, i); }); |
||
98 | // if (done) |
||
99 | // break; |
||
100 | // begin = i; |
||
101 | // taskSize = 0; |
||
102 | // } |
||
103 | // } |
||
104 | void execute(std::function<void()> f); |
||
105 | |||
106 | void sync() const { L.sync(); } |
||
107 | }; |
||
108 | |||
109 | namespace detail { |
||
110 | |||
111 | #if LLVM_ENABLE_THREADS |
||
112 | const ptrdiff_t MinParallelSize = 1024; |
||
113 | |||
114 | /// Inclusive median. |
||
115 | template <class RandomAccessIterator, class Comparator> |
||
116 | RandomAccessIterator medianOf3(RandomAccessIterator Start, |
||
117 | RandomAccessIterator End, |
||
118 | const Comparator &Comp) { |
||
119 | RandomAccessIterator Mid = Start + (std::distance(Start, End) / 2); |
||
120 | return Comp(*Start, *(End - 1)) |
||
121 | ? (Comp(*Mid, *(End - 1)) ? (Comp(*Start, *Mid) ? Mid : Start) |
||
122 | : End - 1) |
||
123 | : (Comp(*Mid, *Start) ? (Comp(*(End - 1), *Mid) ? Mid : End - 1) |
||
124 | : Start); |
||
125 | } |
||
126 | |||
127 | template <class RandomAccessIterator, class Comparator> |
||
128 | void parallel_quick_sort(RandomAccessIterator Start, RandomAccessIterator End, |
||
129 | const Comparator &Comp, TaskGroup &TG, size_t Depth) { |
||
130 | // Do a sequential sort for small inputs. |
||
131 | if (std::distance(Start, End) < detail::MinParallelSize || Depth == 0) { |
||
132 | llvm::sort(Start, End, Comp); |
||
133 | return; |
||
134 | } |
||
135 | |||
136 | // Partition. |
||
137 | auto Pivot = medianOf3(Start, End, Comp); |
||
138 | // Move Pivot to End. |
||
139 | std::swap(*(End - 1), *Pivot); |
||
140 | Pivot = std::partition(Start, End - 1, [&Comp, End](decltype(*Start) V) { |
||
141 | return Comp(V, *(End - 1)); |
||
142 | }); |
||
143 | // Move Pivot to middle of partition. |
||
144 | std::swap(*Pivot, *(End - 1)); |
||
145 | |||
146 | // Recurse. |
||
147 | TG.spawn([=, &Comp, &TG] { |
||
148 | parallel_quick_sort(Start, Pivot, Comp, TG, Depth - 1); |
||
149 | }); |
||
150 | parallel_quick_sort(Pivot + 1, End, Comp, TG, Depth - 1); |
||
151 | } |
||
152 | |||
153 | template <class RandomAccessIterator, class Comparator> |
||
154 | void parallel_sort(RandomAccessIterator Start, RandomAccessIterator End, |
||
155 | const Comparator &Comp) { |
||
156 | TaskGroup TG; |
||
157 | parallel_quick_sort(Start, End, Comp, TG, |
||
158 | llvm::Log2_64(std::distance(Start, End)) + 1); |
||
159 | } |
||
160 | |||
161 | // TaskGroup has a relatively high overhead, so we want to reduce |
||
162 | // the number of spawn() calls. We'll create up to 1024 tasks here. |
||
163 | // (Note that 1024 is an arbitrary number. This code probably needs |
||
164 | // improving to take the number of available cores into account.) |
||
165 | enum { MaxTasksPerGroup = 1024 }; |
||
166 | |||
167 | template <class IterTy, class ResultTy, class ReduceFuncTy, |
||
168 | class TransformFuncTy> |
||
169 | ResultTy parallel_transform_reduce(IterTy Begin, IterTy End, ResultTy Init, |
||
170 | ReduceFuncTy Reduce, |
||
171 | TransformFuncTy Transform) { |
||
172 | // Limit the number of tasks to MaxTasksPerGroup to limit job scheduling |
||
173 | // overhead on large inputs. |
||
174 | size_t NumInputs = std::distance(Begin, End); |
||
175 | if (NumInputs == 0) |
||
176 | return std::move(Init); |
||
177 | size_t NumTasks = std::min(static_cast<size_t>(MaxTasksPerGroup), NumInputs); |
||
178 | std::vector<ResultTy> Results(NumTasks, Init); |
||
179 | { |
||
180 | // Each task processes either TaskSize or TaskSize+1 inputs. Any inputs |
||
181 | // remaining after dividing them equally amongst tasks are distributed as |
||
182 | // one extra input over the first tasks. |
||
183 | TaskGroup TG; |
||
184 | size_t TaskSize = NumInputs / NumTasks; |
||
185 | size_t RemainingInputs = NumInputs % NumTasks; |
||
186 | IterTy TBegin = Begin; |
||
187 | for (size_t TaskId = 0; TaskId < NumTasks; ++TaskId) { |
||
188 | IterTy TEnd = TBegin + TaskSize + (TaskId < RemainingInputs ? 1 : 0); |
||
189 | TG.spawn([=, &Transform, &Reduce, &Results] { |
||
190 | // Reduce the result of transformation eagerly within each task. |
||
191 | ResultTy R = Init; |
||
192 | for (IterTy It = TBegin; It != TEnd; ++It) |
||
193 | R = Reduce(R, Transform(*It)); |
||
194 | Results[TaskId] = R; |
||
195 | }); |
||
196 | TBegin = TEnd; |
||
197 | } |
||
198 | assert(TBegin == End); |
||
199 | } |
||
200 | |||
201 | // Do a final reduction. There are at most 1024 tasks, so this only adds |
||
202 | // constant single-threaded overhead for large inputs. Hopefully most |
||
203 | // reductions are cheaper than the transformation. |
||
204 | ResultTy FinalResult = std::move(Results.front()); |
||
205 | for (ResultTy &PartialResult : |
||
206 | MutableArrayRef(Results.data() + 1, Results.size() - 1)) |
||
207 | FinalResult = Reduce(FinalResult, std::move(PartialResult)); |
||
208 | return std::move(FinalResult); |
||
209 | } |
||
210 | |||
211 | #endif |
||
212 | |||
213 | } // namespace detail |
||
214 | } // namespace parallel |
||
215 | |||
216 | template <class RandomAccessIterator, |
||
217 | class Comparator = std::less< |
||
218 | typename std::iterator_traits<RandomAccessIterator>::value_type>> |
||
219 | void parallelSort(RandomAccessIterator Start, RandomAccessIterator End, |
||
220 | const Comparator &Comp = Comparator()) { |
||
221 | #if LLVM_ENABLE_THREADS |
||
222 | if (parallel::strategy.ThreadsRequested != 1) { |
||
223 | parallel::detail::parallel_sort(Start, End, Comp); |
||
224 | return; |
||
225 | } |
||
226 | #endif |
||
227 | llvm::sort(Start, End, Comp); |
||
228 | } |
||
229 | |||
230 | void parallelFor(size_t Begin, size_t End, function_ref<void(size_t)> Fn); |
||
231 | |||
232 | template <class IterTy, class FuncTy> |
||
233 | void parallelForEach(IterTy Begin, IterTy End, FuncTy Fn) { |
||
234 | parallelFor(0, End - Begin, [&](size_t I) { Fn(Begin[I]); }); |
||
235 | } |
||
236 | |||
237 | template <class IterTy, class ResultTy, class ReduceFuncTy, |
||
238 | class TransformFuncTy> |
||
239 | ResultTy parallelTransformReduce(IterTy Begin, IterTy End, ResultTy Init, |
||
240 | ReduceFuncTy Reduce, |
||
241 | TransformFuncTy Transform) { |
||
242 | #if LLVM_ENABLE_THREADS |
||
243 | if (parallel::strategy.ThreadsRequested != 1) { |
||
244 | return parallel::detail::parallel_transform_reduce(Begin, End, Init, Reduce, |
||
245 | Transform); |
||
246 | } |
||
247 | #endif |
||
248 | for (IterTy I = Begin; I != End; ++I) |
||
249 | Init = Reduce(std::move(Init), Transform(*I)); |
||
250 | return std::move(Init); |
||
251 | } |
||
252 | |||
253 | // Range wrappers. |
||
254 | template <class RangeTy, |
||
255 | class Comparator = std::less<decltype(*std::begin(RangeTy()))>> |
||
256 | void parallelSort(RangeTy &&R, const Comparator &Comp = Comparator()) { |
||
257 | parallelSort(std::begin(R), std::end(R), Comp); |
||
258 | } |
||
259 | |||
260 | template <class RangeTy, class FuncTy> |
||
261 | void parallelForEach(RangeTy &&R, FuncTy Fn) { |
||
262 | parallelForEach(std::begin(R), std::end(R), Fn); |
||
263 | } |
||
264 | |||
265 | template <class RangeTy, class ResultTy, class ReduceFuncTy, |
||
266 | class TransformFuncTy> |
||
267 | ResultTy parallelTransformReduce(RangeTy &&R, ResultTy Init, |
||
268 | ReduceFuncTy Reduce, |
||
269 | TransformFuncTy Transform) { |
||
270 | return parallelTransformReduce(std::begin(R), std::end(R), Init, Reduce, |
||
271 | Transform); |
||
272 | } |
||
273 | |||
274 | // Parallel for-each, but with error handling. |
||
275 | template <class RangeTy, class FuncTy> |
||
276 | Error parallelForEachError(RangeTy &&R, FuncTy Fn) { |
||
277 | // The transform_reduce algorithm requires that the initial value be copyable. |
||
278 | // Error objects are uncopyable. We only need to copy initial success values, |
||
279 | // so work around this mismatch via the C API. The C API represents success |
||
280 | // values with a null pointer. The joinErrors discards null values and joins |
||
281 | // multiple errors into an ErrorList. |
||
282 | return unwrap(parallelTransformReduce( |
||
283 | std::begin(R), std::end(R), wrap(Error::success()), |
||
284 | [](LLVMErrorRef Lhs, LLVMErrorRef Rhs) { |
||
285 | return wrap(joinErrors(unwrap(Lhs), unwrap(Rhs))); |
||
286 | }, |
||
287 | [&Fn](auto &&V) { return wrap(Fn(V)); })); |
||
288 | } |
||
289 | |||
290 | } // namespace llvm |
||
291 | |||
292 | #endif // LLVM_SUPPORT_PARALLEL_H |