Details | Last modification | View Log | RSS feed
| Rev | Author | Line No. | Line |
|---|---|---|---|
| 14 | pmbaty | 1 | //===-- llvm/Support/MathExtras.h - Useful math functions -------*- C++ -*-===// |
| 2 | // |
||
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
||
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
||
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
||
| 6 | // |
||
| 7 | //===----------------------------------------------------------------------===// |
||
| 8 | // |
||
| 9 | // This file contains some functions that are useful for math stuff. |
||
| 10 | // |
||
| 11 | //===----------------------------------------------------------------------===// |
||
| 12 | |||
| 13 | #ifndef LLVM_SUPPORT_MATHEXTRAS_H |
||
| 14 | #define LLVM_SUPPORT_MATHEXTRAS_H |
||
| 15 | |||
| 16 | #include "llvm/ADT/bit.h" |
||
| 17 | #include "llvm/Support/Compiler.h" |
||
| 18 | #include <cassert> |
||
| 19 | #include <climits> |
||
| 20 | #include <cstdint> |
||
| 21 | #include <cstring> |
||
| 22 | #include <limits> |
||
| 23 | #include <type_traits> |
||
| 24 | |||
| 25 | namespace llvm { |
||
| 26 | |||
| 27 | /// The behavior an operation has on an input of 0. |
||
| 28 | enum ZeroBehavior { |
||
| 29 | /// The returned value is undefined. |
||
| 30 | ZB_Undefined, |
||
| 31 | /// The returned value is numeric_limits<T>::max() |
||
| 32 | ZB_Max |
||
| 33 | }; |
||
| 34 | |||
| 35 | /// Mathematical constants. |
||
| 36 | namespace numbers { |
||
| 37 | // TODO: Track C++20 std::numbers. |
||
| 38 | // TODO: Favor using the hexadecimal FP constants (requires C++17). |
||
| 39 | constexpr double e = 2.7182818284590452354, // (0x1.5bf0a8b145749P+1) https://oeis.org/A001113 |
||
| 40 | egamma = .57721566490153286061, // (0x1.2788cfc6fb619P-1) https://oeis.org/A001620 |
||
| 41 | ln2 = .69314718055994530942, // (0x1.62e42fefa39efP-1) https://oeis.org/A002162 |
||
| 42 | ln10 = 2.3025850929940456840, // (0x1.24bb1bbb55516P+1) https://oeis.org/A002392 |
||
| 43 | log2e = 1.4426950408889634074, // (0x1.71547652b82feP+0) |
||
| 44 | log10e = .43429448190325182765, // (0x1.bcb7b1526e50eP-2) |
||
| 45 | pi = 3.1415926535897932385, // (0x1.921fb54442d18P+1) https://oeis.org/A000796 |
||
| 46 | inv_pi = .31830988618379067154, // (0x1.45f306bc9c883P-2) https://oeis.org/A049541 |
||
| 47 | sqrtpi = 1.7724538509055160273, // (0x1.c5bf891b4ef6bP+0) https://oeis.org/A002161 |
||
| 48 | inv_sqrtpi = .56418958354775628695, // (0x1.20dd750429b6dP-1) https://oeis.org/A087197 |
||
| 49 | sqrt2 = 1.4142135623730950488, // (0x1.6a09e667f3bcdP+0) https://oeis.org/A00219 |
||
| 50 | inv_sqrt2 = .70710678118654752440, // (0x1.6a09e667f3bcdP-1) |
||
| 51 | sqrt3 = 1.7320508075688772935, // (0x1.bb67ae8584caaP+0) https://oeis.org/A002194 |
||
| 52 | inv_sqrt3 = .57735026918962576451, // (0x1.279a74590331cP-1) |
||
| 53 | phi = 1.6180339887498948482; // (0x1.9e3779b97f4a8P+0) https://oeis.org/A001622 |
||
| 54 | constexpr float ef = 2.71828183F, // (0x1.5bf0a8P+1) https://oeis.org/A001113 |
||
| 55 | egammaf = .577215665F, // (0x1.2788d0P-1) https://oeis.org/A001620 |
||
| 56 | ln2f = .693147181F, // (0x1.62e430P-1) https://oeis.org/A002162 |
||
| 57 | ln10f = 2.30258509F, // (0x1.26bb1cP+1) https://oeis.org/A002392 |
||
| 58 | log2ef = 1.44269504F, // (0x1.715476P+0) |
||
| 59 | log10ef = .434294482F, // (0x1.bcb7b2P-2) |
||
| 60 | pif = 3.14159265F, // (0x1.921fb6P+1) https://oeis.org/A000796 |
||
| 61 | inv_pif = .318309886F, // (0x1.45f306P-2) https://oeis.org/A049541 |
||
| 62 | sqrtpif = 1.77245385F, // (0x1.c5bf8aP+0) https://oeis.org/A002161 |
||
| 63 | inv_sqrtpif = .564189584F, // (0x1.20dd76P-1) https://oeis.org/A087197 |
||
| 64 | sqrt2f = 1.41421356F, // (0x1.6a09e6P+0) https://oeis.org/A002193 |
||
| 65 | inv_sqrt2f = .707106781F, // (0x1.6a09e6P-1) |
||
| 66 | sqrt3f = 1.73205081F, // (0x1.bb67aeP+0) https://oeis.org/A002194 |
||
| 67 | inv_sqrt3f = .577350269F, // (0x1.279a74P-1) |
||
| 68 | phif = 1.61803399F; // (0x1.9e377aP+0) https://oeis.org/A001622 |
||
| 69 | } // namespace numbers |
||
| 70 | |||
| 71 | /// Count number of 0's from the least significant bit to the most |
||
| 72 | /// stopping at the first 1. |
||
| 73 | /// |
||
| 74 | /// Only unsigned integral types are allowed. |
||
| 75 | /// |
||
| 76 | /// Returns std::numeric_limits<T>::digits on an input of 0. |
||
| 77 | template <typename T> unsigned countTrailingZeros(T Val) { |
||
| 78 | static_assert(std::is_unsigned_v<T>, |
||
| 79 | "Only unsigned integral types are allowed."); |
||
| 80 | return llvm::countr_zero(Val); |
||
| 81 | } |
||
| 82 | |||
| 83 | /// Count number of 0's from the most significant bit to the least |
||
| 84 | /// stopping at the first 1. |
||
| 85 | /// |
||
| 86 | /// Only unsigned integral types are allowed. |
||
| 87 | /// |
||
| 88 | /// Returns std::numeric_limits<T>::digits on an input of 0. |
||
| 89 | template <typename T> unsigned countLeadingZeros(T Val) { |
||
| 90 | static_assert(std::is_unsigned_v<T>, |
||
| 91 | "Only unsigned integral types are allowed."); |
||
| 92 | return llvm::countl_zero(Val); |
||
| 93 | } |
||
| 94 | |||
| 95 | /// Get the index of the first set bit starting from the least |
||
| 96 | /// significant bit. |
||
| 97 | /// |
||
| 98 | /// Only unsigned integral types are allowed. |
||
| 99 | /// |
||
| 100 | /// \param ZB the behavior on an input of 0. |
||
| 101 | template <typename T> T findFirstSet(T Val, ZeroBehavior ZB = ZB_Max) { |
||
| 102 | if (ZB == ZB_Max && Val == 0) |
||
| 103 | return std::numeric_limits<T>::max(); |
||
| 104 | |||
| 105 | return llvm::countr_zero(Val); |
||
| 106 | } |
||
| 107 | |||
| 108 | /// Create a bitmask with the N right-most bits set to 1, and all other |
||
| 109 | /// bits set to 0. Only unsigned types are allowed. |
||
| 110 | template <typename T> T maskTrailingOnes(unsigned N) { |
||
| 111 | static_assert(std::is_unsigned<T>::value, "Invalid type!"); |
||
| 112 | const unsigned Bits = CHAR_BIT * sizeof(T); |
||
| 113 | assert(N <= Bits && "Invalid bit index"); |
||
| 114 | return N == 0 ? 0 : (T(-1) >> (Bits - N)); |
||
| 115 | } |
||
| 116 | |||
| 117 | /// Create a bitmask with the N left-most bits set to 1, and all other |
||
| 118 | /// bits set to 0. Only unsigned types are allowed. |
||
| 119 | template <typename T> T maskLeadingOnes(unsigned N) { |
||
| 120 | return ~maskTrailingOnes<T>(CHAR_BIT * sizeof(T) - N); |
||
| 121 | } |
||
| 122 | |||
| 123 | /// Create a bitmask with the N right-most bits set to 0, and all other |
||
| 124 | /// bits set to 1. Only unsigned types are allowed. |
||
| 125 | template <typename T> T maskTrailingZeros(unsigned N) { |
||
| 126 | return maskLeadingOnes<T>(CHAR_BIT * sizeof(T) - N); |
||
| 127 | } |
||
| 128 | |||
| 129 | /// Create a bitmask with the N left-most bits set to 0, and all other |
||
| 130 | /// bits set to 1. Only unsigned types are allowed. |
||
| 131 | template <typename T> T maskLeadingZeros(unsigned N) { |
||
| 132 | return maskTrailingOnes<T>(CHAR_BIT * sizeof(T) - N); |
||
| 133 | } |
||
| 134 | |||
| 135 | /// Get the index of the last set bit starting from the least |
||
| 136 | /// significant bit. |
||
| 137 | /// |
||
| 138 | /// Only unsigned integral types are allowed. |
||
| 139 | /// |
||
| 140 | /// \param ZB the behavior on an input of 0. |
||
| 141 | template <typename T> T findLastSet(T Val, ZeroBehavior ZB = ZB_Max) { |
||
| 142 | if (ZB == ZB_Max && Val == 0) |
||
| 143 | return std::numeric_limits<T>::max(); |
||
| 144 | |||
| 145 | // Use ^ instead of - because both gcc and llvm can remove the associated ^ |
||
| 146 | // in the __builtin_clz intrinsic on x86. |
||
| 147 | return llvm::countl_zero(Val) ^ (std::numeric_limits<T>::digits - 1); |
||
| 148 | } |
||
| 149 | |||
| 150 | /// Macro compressed bit reversal table for 256 bits. |
||
| 151 | /// |
||
| 152 | /// http://graphics.stanford.edu/~seander/bithacks.html#BitReverseTable |
||
| 153 | static const unsigned char BitReverseTable256[256] = { |
||
| 154 | #define R2(n) n, n + 2 * 64, n + 1 * 64, n + 3 * 64 |
||
| 155 | #define R4(n) R2(n), R2(n + 2 * 16), R2(n + 1 * 16), R2(n + 3 * 16) |
||
| 156 | #define R6(n) R4(n), R4(n + 2 * 4), R4(n + 1 * 4), R4(n + 3 * 4) |
||
| 157 | R6(0), R6(2), R6(1), R6(3) |
||
| 158 | #undef R2 |
||
| 159 | #undef R4 |
||
| 160 | #undef R6 |
||
| 161 | }; |
||
| 162 | |||
| 163 | /// Reverse the bits in \p Val. |
||
| 164 | template <typename T> T reverseBits(T Val) { |
||
| 165 | #if __has_builtin(__builtin_bitreverse8) |
||
| 166 | if constexpr (std::is_same_v<T, uint8_t>) |
||
| 167 | return __builtin_bitreverse8(Val); |
||
| 168 | #endif |
||
| 169 | #if __has_builtin(__builtin_bitreverse16) |
||
| 170 | if constexpr (std::is_same_v<T, uint16_t>) |
||
| 171 | return __builtin_bitreverse16(Val); |
||
| 172 | #endif |
||
| 173 | #if __has_builtin(__builtin_bitreverse32) |
||
| 174 | if constexpr (std::is_same_v<T, uint32_t>) |
||
| 175 | return __builtin_bitreverse32(Val); |
||
| 176 | #endif |
||
| 177 | #if __has_builtin(__builtin_bitreverse64) |
||
| 178 | if constexpr (std::is_same_v<T, uint64_t>) |
||
| 179 | return __builtin_bitreverse64(Val); |
||
| 180 | #endif |
||
| 181 | |||
| 182 | unsigned char in[sizeof(Val)]; |
||
| 183 | unsigned char out[sizeof(Val)]; |
||
| 184 | std::memcpy(in, &Val, sizeof(Val)); |
||
| 185 | for (unsigned i = 0; i < sizeof(Val); ++i) |
||
| 186 | out[(sizeof(Val) - i) - 1] = BitReverseTable256[in[i]]; |
||
| 187 | std::memcpy(&Val, out, sizeof(Val)); |
||
| 188 | return Val; |
||
| 189 | } |
||
| 190 | |||
| 191 | // NOTE: The following support functions use the _32/_64 extensions instead of |
||
| 192 | // type overloading so that signed and unsigned integers can be used without |
||
| 193 | // ambiguity. |
||
| 194 | |||
| 195 | /// Return the high 32 bits of a 64 bit value. |
||
| 196 | constexpr inline uint32_t Hi_32(uint64_t Value) { |
||
| 197 | return static_cast<uint32_t>(Value >> 32); |
||
| 198 | } |
||
| 199 | |||
| 200 | /// Return the low 32 bits of a 64 bit value. |
||
| 201 | constexpr inline uint32_t Lo_32(uint64_t Value) { |
||
| 202 | return static_cast<uint32_t>(Value); |
||
| 203 | } |
||
| 204 | |||
| 205 | /// Make a 64-bit integer from a high / low pair of 32-bit integers. |
||
| 206 | constexpr inline uint64_t Make_64(uint32_t High, uint32_t Low) { |
||
| 207 | return ((uint64_t)High << 32) | (uint64_t)Low; |
||
| 208 | } |
||
| 209 | |||
| 210 | /// Checks if an integer fits into the given bit width. |
||
| 211 | template <unsigned N> constexpr inline bool isInt(int64_t x) { |
||
| 212 | if constexpr (N == 8) |
||
| 213 | return static_cast<int8_t>(x) == x; |
||
| 214 | if constexpr (N == 16) |
||
| 215 | return static_cast<int16_t>(x) == x; |
||
| 216 | if constexpr (N == 32) |
||
| 217 | return static_cast<int32_t>(x) == x; |
||
| 218 | if constexpr (N < 64) |
||
| 219 | return -(INT64_C(1) << (N - 1)) <= x && x < (INT64_C(1) << (N - 1)); |
||
| 220 | (void)x; // MSVC v19.25 warns that x is unused. |
||
| 221 | return true; |
||
| 222 | } |
||
| 223 | |||
| 224 | /// Checks if a signed integer is an N bit number shifted left by S. |
||
| 225 | template <unsigned N, unsigned S> |
||
| 226 | constexpr inline bool isShiftedInt(int64_t x) { |
||
| 227 | static_assert( |
||
| 228 | N > 0, "isShiftedInt<0> doesn't make sense (refers to a 0-bit number."); |
||
| 229 | static_assert(N + S <= 64, "isShiftedInt<N, S> with N + S > 64 is too wide."); |
||
| 230 | return isInt<N + S>(x) && (x % (UINT64_C(1) << S) == 0); |
||
| 231 | } |
||
| 232 | |||
| 233 | /// Checks if an unsigned integer fits into the given bit width. |
||
| 234 | template <unsigned N> constexpr inline bool isUInt(uint64_t x) { |
||
| 235 | static_assert(N > 0, "isUInt<0> doesn't make sense"); |
||
| 236 | if constexpr (N == 8) |
||
| 237 | return static_cast<uint8_t>(x) == x; |
||
| 238 | if constexpr (N == 16) |
||
| 239 | return static_cast<uint16_t>(x) == x; |
||
| 240 | if constexpr (N == 32) |
||
| 241 | return static_cast<uint32_t>(x) == x; |
||
| 242 | if constexpr (N < 64) |
||
| 243 | return x < (UINT64_C(1) << (N)); |
||
| 244 | (void)x; // MSVC v19.25 warns that x is unused. |
||
| 245 | return true; |
||
| 246 | } |
||
| 247 | |||
| 248 | /// Checks if a unsigned integer is an N bit number shifted left by S. |
||
| 249 | template <unsigned N, unsigned S> |
||
| 250 | constexpr inline bool isShiftedUInt(uint64_t x) { |
||
| 251 | static_assert( |
||
| 252 | N > 0, "isShiftedUInt<0> doesn't make sense (refers to a 0-bit number)"); |
||
| 253 | static_assert(N + S <= 64, |
||
| 254 | "isShiftedUInt<N, S> with N + S > 64 is too wide."); |
||
| 255 | // Per the two static_asserts above, S must be strictly less than 64. So |
||
| 256 | // 1 << S is not undefined behavior. |
||
| 257 | return isUInt<N + S>(x) && (x % (UINT64_C(1) << S) == 0); |
||
| 258 | } |
||
| 259 | |||
| 260 | /// Gets the maximum value for a N-bit unsigned integer. |
||
| 261 | inline uint64_t maxUIntN(uint64_t N) { |
||
| 262 | assert(N > 0 && N <= 64 && "integer width out of range"); |
||
| 263 | |||
| 264 | // uint64_t(1) << 64 is undefined behavior, so we can't do |
||
| 265 | // (uint64_t(1) << N) - 1 |
||
| 266 | // without checking first that N != 64. But this works and doesn't have a |
||
| 267 | // branch. |
||
| 268 | return UINT64_MAX >> (64 - N); |
||
| 269 | } |
||
| 270 | |||
| 271 | /// Gets the minimum value for a N-bit signed integer. |
||
| 272 | inline int64_t minIntN(int64_t N) { |
||
| 273 | assert(N > 0 && N <= 64 && "integer width out of range"); |
||
| 274 | |||
| 275 | return UINT64_C(1) + ~(UINT64_C(1) << (N - 1)); |
||
| 276 | } |
||
| 277 | |||
| 278 | /// Gets the maximum value for a N-bit signed integer. |
||
| 279 | inline int64_t maxIntN(int64_t N) { |
||
| 280 | assert(N > 0 && N <= 64 && "integer width out of range"); |
||
| 281 | |||
| 282 | // This relies on two's complement wraparound when N == 64, so we convert to |
||
| 283 | // int64_t only at the very end to avoid UB. |
||
| 284 | return (UINT64_C(1) << (N - 1)) - 1; |
||
| 285 | } |
||
| 286 | |||
| 287 | /// Checks if an unsigned integer fits into the given (dynamic) bit width. |
||
| 288 | inline bool isUIntN(unsigned N, uint64_t x) { |
||
| 289 | return N >= 64 || x <= maxUIntN(N); |
||
| 290 | } |
||
| 291 | |||
| 292 | /// Checks if an signed integer fits into the given (dynamic) bit width. |
||
| 293 | inline bool isIntN(unsigned N, int64_t x) { |
||
| 294 | return N >= 64 || (minIntN(N) <= x && x <= maxIntN(N)); |
||
| 295 | } |
||
| 296 | |||
| 297 | /// Return true if the argument is a non-empty sequence of ones starting at the |
||
| 298 | /// least significant bit with the remainder zero (32 bit version). |
||
| 299 | /// Ex. isMask_32(0x0000FFFFU) == true. |
||
| 300 | constexpr inline bool isMask_32(uint32_t Value) { |
||
| 301 | return Value && ((Value + 1) & Value) == 0; |
||
| 302 | } |
||
| 303 | |||
| 304 | /// Return true if the argument is a non-empty sequence of ones starting at the |
||
| 305 | /// least significant bit with the remainder zero (64 bit version). |
||
| 306 | constexpr inline bool isMask_64(uint64_t Value) { |
||
| 307 | return Value && ((Value + 1) & Value) == 0; |
||
| 308 | } |
||
| 309 | |||
| 310 | /// Return true if the argument contains a non-empty sequence of ones with the |
||
| 311 | /// remainder zero (32 bit version.) Ex. isShiftedMask_32(0x0000FF00U) == true. |
||
| 312 | constexpr inline bool isShiftedMask_32(uint32_t Value) { |
||
| 313 | return Value && isMask_32((Value - 1) | Value); |
||
| 314 | } |
||
| 315 | |||
| 316 | /// Return true if the argument contains a non-empty sequence of ones with the |
||
| 317 | /// remainder zero (64 bit version.) |
||
| 318 | constexpr inline bool isShiftedMask_64(uint64_t Value) { |
||
| 319 | return Value && isMask_64((Value - 1) | Value); |
||
| 320 | } |
||
| 321 | |||
| 322 | /// Return true if the argument is a power of two > 0. |
||
| 323 | /// Ex. isPowerOf2_32(0x00100000U) == true (32 bit edition.) |
||
| 324 | constexpr inline bool isPowerOf2_32(uint32_t Value) { |
||
| 325 | return llvm::has_single_bit(Value); |
||
| 326 | } |
||
| 327 | |||
| 328 | /// Return true if the argument is a power of two > 0 (64 bit edition.) |
||
| 329 | constexpr inline bool isPowerOf2_64(uint64_t Value) { |
||
| 330 | return llvm::has_single_bit(Value); |
||
| 331 | } |
||
| 332 | |||
| 333 | /// Count the number of ones from the most significant bit to the first |
||
| 334 | /// zero bit. |
||
| 335 | /// |
||
| 336 | /// Ex. countLeadingOnes(0xFF0FFF00) == 8. |
||
| 337 | /// Only unsigned integral types are allowed. |
||
| 338 | /// |
||
| 339 | /// Returns std::numeric_limits<T>::digits on an input of all ones. |
||
| 340 | template <typename T> unsigned countLeadingOnes(T Value) { |
||
| 341 | static_assert(std::is_unsigned_v<T>, |
||
| 342 | "Only unsigned integral types are allowed."); |
||
| 343 | return llvm::countl_one<T>(Value); |
||
| 344 | } |
||
| 345 | |||
| 346 | /// Count the number of ones from the least significant bit to the first |
||
| 347 | /// zero bit. |
||
| 348 | /// |
||
| 349 | /// Ex. countTrailingOnes(0x00FF00FF) == 8. |
||
| 350 | /// Only unsigned integral types are allowed. |
||
| 351 | /// |
||
| 352 | /// Returns std::numeric_limits<T>::digits on an input of all ones. |
||
| 353 | template <typename T> unsigned countTrailingOnes(T Value) { |
||
| 354 | static_assert(std::is_unsigned_v<T>, |
||
| 355 | "Only unsigned integral types are allowed."); |
||
| 356 | return llvm::countr_one<T>(Value); |
||
| 357 | } |
||
| 358 | |||
| 359 | /// Count the number of set bits in a value. |
||
| 360 | /// Ex. countPopulation(0xF000F000) = 8 |
||
| 361 | /// Returns 0 if the word is zero. |
||
| 362 | template <typename T> |
||
| 363 | inline unsigned countPopulation(T Value) { |
||
| 364 | static_assert(std::is_unsigned_v<T>, |
||
| 365 | "Only unsigned integral types are allowed."); |
||
| 366 | return (unsigned)llvm::popcount(Value); |
||
| 367 | } |
||
| 368 | |||
| 369 | /// Return true if the argument contains a non-empty sequence of ones with the |
||
| 370 | /// remainder zero (32 bit version.) Ex. isShiftedMask_32(0x0000FF00U) == true. |
||
| 371 | /// If true, \p MaskIdx will specify the index of the lowest set bit and \p |
||
| 372 | /// MaskLen is updated to specify the length of the mask, else neither are |
||
| 373 | /// updated. |
||
| 374 | inline bool isShiftedMask_32(uint32_t Value, unsigned &MaskIdx, |
||
| 375 | unsigned &MaskLen) { |
||
| 376 | if (!isShiftedMask_32(Value)) |
||
| 377 | return false; |
||
| 378 | MaskIdx = llvm::countr_zero(Value); |
||
| 379 | MaskLen = llvm::popcount(Value); |
||
| 380 | return true; |
||
| 381 | } |
||
| 382 | |||
| 383 | /// Return true if the argument contains a non-empty sequence of ones with the |
||
| 384 | /// remainder zero (64 bit version.) If true, \p MaskIdx will specify the index |
||
| 385 | /// of the lowest set bit and \p MaskLen is updated to specify the length of the |
||
| 386 | /// mask, else neither are updated. |
||
| 387 | inline bool isShiftedMask_64(uint64_t Value, unsigned &MaskIdx, |
||
| 388 | unsigned &MaskLen) { |
||
| 389 | if (!isShiftedMask_64(Value)) |
||
| 390 | return false; |
||
| 391 | MaskIdx = llvm::countr_zero(Value); |
||
| 392 | MaskLen = llvm::popcount(Value); |
||
| 393 | return true; |
||
| 394 | } |
||
| 395 | |||
| 396 | /// Compile time Log2. |
||
| 397 | /// Valid only for positive powers of two. |
||
| 398 | template <size_t kValue> constexpr inline size_t CTLog2() { |
||
| 399 | static_assert(kValue > 0 && llvm::isPowerOf2_64(kValue), |
||
| 400 | "Value is not a valid power of 2"); |
||
| 401 | return 1 + CTLog2<kValue / 2>(); |
||
| 402 | } |
||
| 403 | |||
| 404 | template <> constexpr inline size_t CTLog2<1>() { return 0; } |
||
| 405 | |||
| 406 | /// Return the floor log base 2 of the specified value, -1 if the value is zero. |
||
| 407 | /// (32 bit edition.) |
||
| 408 | /// Ex. Log2_32(32) == 5, Log2_32(1) == 0, Log2_32(0) == -1, Log2_32(6) == 2 |
||
| 409 | inline unsigned Log2_32(uint32_t Value) { |
||
| 410 | return 31 - llvm::countl_zero(Value); |
||
| 411 | } |
||
| 412 | |||
| 413 | /// Return the floor log base 2 of the specified value, -1 if the value is zero. |
||
| 414 | /// (64 bit edition.) |
||
| 415 | inline unsigned Log2_64(uint64_t Value) { |
||
| 416 | return 63 - llvm::countl_zero(Value); |
||
| 417 | } |
||
| 418 | |||
| 419 | /// Return the ceil log base 2 of the specified value, 32 if the value is zero. |
||
| 420 | /// (32 bit edition). |
||
| 421 | /// Ex. Log2_32_Ceil(32) == 5, Log2_32_Ceil(1) == 0, Log2_32_Ceil(6) == 3 |
||
| 422 | inline unsigned Log2_32_Ceil(uint32_t Value) { |
||
| 423 | return 32 - llvm::countl_zero(Value - 1); |
||
| 424 | } |
||
| 425 | |||
| 426 | /// Return the ceil log base 2 of the specified value, 64 if the value is zero. |
||
| 427 | /// (64 bit edition.) |
||
| 428 | inline unsigned Log2_64_Ceil(uint64_t Value) { |
||
| 429 | return 64 - llvm::countl_zero(Value - 1); |
||
| 430 | } |
||
| 431 | |||
| 432 | /// This function takes a 64-bit integer and returns the bit equivalent double. |
||
| 433 | inline double BitsToDouble(uint64_t Bits) { |
||
| 434 | static_assert(sizeof(uint64_t) == sizeof(double), "Unexpected type sizes"); |
||
| 435 | return llvm::bit_cast<double>(Bits); |
||
| 436 | } |
||
| 437 | |||
| 438 | /// This function takes a 32-bit integer and returns the bit equivalent float. |
||
| 439 | inline float BitsToFloat(uint32_t Bits) { |
||
| 440 | static_assert(sizeof(uint32_t) == sizeof(float), "Unexpected type sizes"); |
||
| 441 | return llvm::bit_cast<float>(Bits); |
||
| 442 | } |
||
| 443 | |||
| 444 | /// This function takes a double and returns the bit equivalent 64-bit integer. |
||
| 445 | /// Note that copying doubles around changes the bits of NaNs on some hosts, |
||
| 446 | /// notably x86, so this routine cannot be used if these bits are needed. |
||
| 447 | inline uint64_t DoubleToBits(double Double) { |
||
| 448 | static_assert(sizeof(uint64_t) == sizeof(double), "Unexpected type sizes"); |
||
| 449 | return llvm::bit_cast<uint64_t>(Double); |
||
| 450 | } |
||
| 451 | |||
| 452 | /// This function takes a float and returns the bit equivalent 32-bit integer. |
||
| 453 | /// Note that copying floats around changes the bits of NaNs on some hosts, |
||
| 454 | /// notably x86, so this routine cannot be used if these bits are needed. |
||
| 455 | inline uint32_t FloatToBits(float Float) { |
||
| 456 | static_assert(sizeof(uint32_t) == sizeof(float), "Unexpected type sizes"); |
||
| 457 | return llvm::bit_cast<uint32_t>(Float); |
||
| 458 | } |
||
| 459 | |||
| 460 | /// A and B are either alignments or offsets. Return the minimum alignment that |
||
| 461 | /// may be assumed after adding the two together. |
||
| 462 | constexpr inline uint64_t MinAlign(uint64_t A, uint64_t B) { |
||
| 463 | // The largest power of 2 that divides both A and B. |
||
| 464 | // |
||
| 465 | // Replace "-Value" by "1+~Value" in the following commented code to avoid |
||
| 466 | // MSVC warning C4146 |
||
| 467 | // return (A | B) & -(A | B); |
||
| 468 | return (A | B) & (1 + ~(A | B)); |
||
| 469 | } |
||
| 470 | |||
| 471 | /// Returns the next power of two (in 64-bits) that is strictly greater than A. |
||
| 472 | /// Returns zero on overflow. |
||
| 473 | constexpr inline uint64_t NextPowerOf2(uint64_t A) { |
||
| 474 | A |= (A >> 1); |
||
| 475 | A |= (A >> 2); |
||
| 476 | A |= (A >> 4); |
||
| 477 | A |= (A >> 8); |
||
| 478 | A |= (A >> 16); |
||
| 479 | A |= (A >> 32); |
||
| 480 | return A + 1; |
||
| 481 | } |
||
| 482 | |||
| 483 | /// Returns the power of two which is less than or equal to the given value. |
||
| 484 | /// Essentially, it is a floor operation across the domain of powers of two. |
||
| 485 | inline uint64_t PowerOf2Floor(uint64_t A) { |
||
| 486 | return llvm::bit_floor(A); |
||
| 487 | } |
||
| 488 | |||
| 489 | /// Returns the power of two which is greater than or equal to the given value. |
||
| 490 | /// Essentially, it is a ceil operation across the domain of powers of two. |
||
| 491 | inline uint64_t PowerOf2Ceil(uint64_t A) { |
||
| 492 | if (!A) |
||
| 493 | return 0; |
||
| 494 | return NextPowerOf2(A - 1); |
||
| 495 | } |
||
| 496 | |||
| 497 | /// Returns the next integer (mod 2**64) that is greater than or equal to |
||
| 498 | /// \p Value and is a multiple of \p Align. \p Align must be non-zero. |
||
| 499 | /// |
||
| 500 | /// Examples: |
||
| 501 | /// \code |
||
| 502 | /// alignTo(5, 8) = 8 |
||
| 503 | /// alignTo(17, 8) = 24 |
||
| 504 | /// alignTo(~0LL, 8) = 0 |
||
| 505 | /// alignTo(321, 255) = 510 |
||
| 506 | /// \endcode |
||
| 507 | inline uint64_t alignTo(uint64_t Value, uint64_t Align) { |
||
| 508 | assert(Align != 0u && "Align can't be 0."); |
||
| 509 | return (Value + Align - 1) / Align * Align; |
||
| 510 | } |
||
| 511 | |||
| 512 | inline uint64_t alignToPowerOf2(uint64_t Value, uint64_t Align) { |
||
| 513 | assert(Align != 0 && (Align & (Align - 1)) == 0 && |
||
| 514 | "Align must be a power of 2"); |
||
| 515 | return (Value + Align - 1) & -Align; |
||
| 516 | } |
||
| 517 | |||
| 518 | /// If non-zero \p Skew is specified, the return value will be a minimal integer |
||
| 519 | /// that is greater than or equal to \p Size and equal to \p A * N + \p Skew for |
||
| 520 | /// some integer N. If \p Skew is larger than \p A, its value is adjusted to '\p |
||
| 521 | /// Skew mod \p A'. \p Align must be non-zero. |
||
| 522 | /// |
||
| 523 | /// Examples: |
||
| 524 | /// \code |
||
| 525 | /// alignTo(5, 8, 7) = 7 |
||
| 526 | /// alignTo(17, 8, 1) = 17 |
||
| 527 | /// alignTo(~0LL, 8, 3) = 3 |
||
| 528 | /// alignTo(321, 255, 42) = 552 |
||
| 529 | /// \endcode |
||
| 530 | inline uint64_t alignTo(uint64_t Value, uint64_t Align, uint64_t Skew) { |
||
| 531 | assert(Align != 0u && "Align can't be 0."); |
||
| 532 | Skew %= Align; |
||
| 533 | return alignTo(Value - Skew, Align) + Skew; |
||
| 534 | } |
||
| 535 | |||
| 536 | /// Returns the next integer (mod 2**64) that is greater than or equal to |
||
| 537 | /// \p Value and is a multiple of \c Align. \c Align must be non-zero. |
||
| 538 | template <uint64_t Align> constexpr inline uint64_t alignTo(uint64_t Value) { |
||
| 539 | static_assert(Align != 0u, "Align must be non-zero"); |
||
| 540 | return (Value + Align - 1) / Align * Align; |
||
| 541 | } |
||
| 542 | |||
| 543 | /// Returns the integer ceil(Numerator / Denominator). |
||
| 544 | inline uint64_t divideCeil(uint64_t Numerator, uint64_t Denominator) { |
||
| 545 | return alignTo(Numerator, Denominator) / Denominator; |
||
| 546 | } |
||
| 547 | |||
| 548 | /// Returns the integer nearest(Numerator / Denominator). |
||
| 549 | inline uint64_t divideNearest(uint64_t Numerator, uint64_t Denominator) { |
||
| 550 | return (Numerator + (Denominator / 2)) / Denominator; |
||
| 551 | } |
||
| 552 | |||
| 553 | /// Returns the largest uint64_t less than or equal to \p Value and is |
||
| 554 | /// \p Skew mod \p Align. \p Align must be non-zero |
||
| 555 | inline uint64_t alignDown(uint64_t Value, uint64_t Align, uint64_t Skew = 0) { |
||
| 556 | assert(Align != 0u && "Align can't be 0."); |
||
| 557 | Skew %= Align; |
||
| 558 | return (Value - Skew) / Align * Align + Skew; |
||
| 559 | } |
||
| 560 | |||
| 561 | /// Sign-extend the number in the bottom B bits of X to a 32-bit integer. |
||
| 562 | /// Requires 0 < B <= 32. |
||
| 563 | template <unsigned B> constexpr inline int32_t SignExtend32(uint32_t X) { |
||
| 564 | static_assert(B > 0, "Bit width can't be 0."); |
||
| 565 | static_assert(B <= 32, "Bit width out of range."); |
||
| 566 | return int32_t(X << (32 - B)) >> (32 - B); |
||
| 567 | } |
||
| 568 | |||
| 569 | /// Sign-extend the number in the bottom B bits of X to a 32-bit integer. |
||
| 570 | /// Requires 0 < B <= 32. |
||
| 571 | inline int32_t SignExtend32(uint32_t X, unsigned B) { |
||
| 572 | assert(B > 0 && "Bit width can't be 0."); |
||
| 573 | assert(B <= 32 && "Bit width out of range."); |
||
| 574 | return int32_t(X << (32 - B)) >> (32 - B); |
||
| 575 | } |
||
| 576 | |||
| 577 | /// Sign-extend the number in the bottom B bits of X to a 64-bit integer. |
||
| 578 | /// Requires 0 < B <= 64. |
||
| 579 | template <unsigned B> constexpr inline int64_t SignExtend64(uint64_t x) { |
||
| 580 | static_assert(B > 0, "Bit width can't be 0."); |
||
| 581 | static_assert(B <= 64, "Bit width out of range."); |
||
| 582 | return int64_t(x << (64 - B)) >> (64 - B); |
||
| 583 | } |
||
| 584 | |||
| 585 | /// Sign-extend the number in the bottom B bits of X to a 64-bit integer. |
||
| 586 | /// Requires 0 < B <= 64. |
||
| 587 | inline int64_t SignExtend64(uint64_t X, unsigned B) { |
||
| 588 | assert(B > 0 && "Bit width can't be 0."); |
||
| 589 | assert(B <= 64 && "Bit width out of range."); |
||
| 590 | return int64_t(X << (64 - B)) >> (64 - B); |
||
| 591 | } |
||
| 592 | |||
| 593 | /// Subtract two unsigned integers, X and Y, of type T and return the absolute |
||
| 594 | /// value of the result. |
||
| 595 | template <typename T> |
||
| 596 | std::enable_if_t<std::is_unsigned<T>::value, T> AbsoluteDifference(T X, T Y) { |
||
| 597 | return X > Y ? (X - Y) : (Y - X); |
||
| 598 | } |
||
| 599 | |||
| 600 | /// Add two unsigned integers, X and Y, of type T. Clamp the result to the |
||
| 601 | /// maximum representable value of T on overflow. ResultOverflowed indicates if |
||
| 602 | /// the result is larger than the maximum representable value of type T. |
||
| 603 | template <typename T> |
||
| 604 | std::enable_if_t<std::is_unsigned<T>::value, T> |
||
| 605 | SaturatingAdd(T X, T Y, bool *ResultOverflowed = nullptr) { |
||
| 606 | bool Dummy; |
||
| 607 | bool &Overflowed = ResultOverflowed ? *ResultOverflowed : Dummy; |
||
| 608 | // Hacker's Delight, p. 29 |
||
| 609 | T Z = X + Y; |
||
| 610 | Overflowed = (Z < X || Z < Y); |
||
| 611 | if (Overflowed) |
||
| 612 | return std::numeric_limits<T>::max(); |
||
| 613 | else |
||
| 614 | return Z; |
||
| 615 | } |
||
| 616 | |||
| 617 | /// Add multiple unsigned integers of type T. Clamp the result to the |
||
| 618 | /// maximum representable value of T on overflow. |
||
| 619 | template <class T, class... Ts> |
||
| 620 | std::enable_if_t<std::is_unsigned_v<T>, T> SaturatingAdd(T X, T Y, T Z, |
||
| 621 | Ts... Args) { |
||
| 622 | bool Overflowed = false; |
||
| 623 | T XY = SaturatingAdd(X, Y, &Overflowed); |
||
| 624 | if (Overflowed) |
||
| 625 | return SaturatingAdd(std::numeric_limits<T>::max(), T(1), Args...); |
||
| 626 | return SaturatingAdd(XY, Z, Args...); |
||
| 627 | } |
||
| 628 | |||
| 629 | /// Multiply two unsigned integers, X and Y, of type T. Clamp the result to the |
||
| 630 | /// maximum representable value of T on overflow. ResultOverflowed indicates if |
||
| 631 | /// the result is larger than the maximum representable value of type T. |
||
| 632 | template <typename T> |
||
| 633 | std::enable_if_t<std::is_unsigned<T>::value, T> |
||
| 634 | SaturatingMultiply(T X, T Y, bool *ResultOverflowed = nullptr) { |
||
| 635 | bool Dummy; |
||
| 636 | bool &Overflowed = ResultOverflowed ? *ResultOverflowed : Dummy; |
||
| 637 | |||
| 638 | // Hacker's Delight, p. 30 has a different algorithm, but we don't use that |
||
| 639 | // because it fails for uint16_t (where multiplication can have undefined |
||
| 640 | // behavior due to promotion to int), and requires a division in addition |
||
| 641 | // to the multiplication. |
||
| 642 | |||
| 643 | Overflowed = false; |
||
| 644 | |||
| 645 | // Log2(Z) would be either Log2Z or Log2Z + 1. |
||
| 646 | // Special case: if X or Y is 0, Log2_64 gives -1, and Log2Z |
||
| 647 | // will necessarily be less than Log2Max as desired. |
||
| 648 | int Log2Z = Log2_64(X) + Log2_64(Y); |
||
| 649 | const T Max = std::numeric_limits<T>::max(); |
||
| 650 | int Log2Max = Log2_64(Max); |
||
| 651 | if (Log2Z < Log2Max) { |
||
| 652 | return X * Y; |
||
| 653 | } |
||
| 654 | if (Log2Z > Log2Max) { |
||
| 655 | Overflowed = true; |
||
| 656 | return Max; |
||
| 657 | } |
||
| 658 | |||
| 659 | // We're going to use the top bit, and maybe overflow one |
||
| 660 | // bit past it. Multiply all but the bottom bit then add |
||
| 661 | // that on at the end. |
||
| 662 | T Z = (X >> 1) * Y; |
||
| 663 | if (Z & ~(Max >> 1)) { |
||
| 664 | Overflowed = true; |
||
| 665 | return Max; |
||
| 666 | } |
||
| 667 | Z <<= 1; |
||
| 668 | if (X & 1) |
||
| 669 | return SaturatingAdd(Z, Y, ResultOverflowed); |
||
| 670 | |||
| 671 | return Z; |
||
| 672 | } |
||
| 673 | |||
| 674 | /// Multiply two unsigned integers, X and Y, and add the unsigned integer, A to |
||
| 675 | /// the product. Clamp the result to the maximum representable value of T on |
||
| 676 | /// overflow. ResultOverflowed indicates if the result is larger than the |
||
| 677 | /// maximum representable value of type T. |
||
| 678 | template <typename T> |
||
| 679 | std::enable_if_t<std::is_unsigned<T>::value, T> |
||
| 680 | SaturatingMultiplyAdd(T X, T Y, T A, bool *ResultOverflowed = nullptr) { |
||
| 681 | bool Dummy; |
||
| 682 | bool &Overflowed = ResultOverflowed ? *ResultOverflowed : Dummy; |
||
| 683 | |||
| 684 | T Product = SaturatingMultiply(X, Y, &Overflowed); |
||
| 685 | if (Overflowed) |
||
| 686 | return Product; |
||
| 687 | |||
| 688 | return SaturatingAdd(A, Product, &Overflowed); |
||
| 689 | } |
||
| 690 | |||
| 691 | /// Use this rather than HUGE_VALF; the latter causes warnings on MSVC. |
||
| 692 | extern const float huge_valf; |
||
| 693 | |||
| 694 | |||
| 695 | /// Add two signed integers, computing the two's complement truncated result, |
||
| 696 | /// returning true if overflow occurred. |
||
| 697 | template <typename T> |
||
| 698 | std::enable_if_t<std::is_signed<T>::value, T> AddOverflow(T X, T Y, T &Result) { |
||
| 699 | #if __has_builtin(__builtin_add_overflow) |
||
| 700 | return __builtin_add_overflow(X, Y, &Result); |
||
| 701 | #else |
||
| 702 | // Perform the unsigned addition. |
||
| 703 | using U = std::make_unsigned_t<T>; |
||
| 704 | const U UX = static_cast<U>(X); |
||
| 705 | const U UY = static_cast<U>(Y); |
||
| 706 | const U UResult = UX + UY; |
||
| 707 | |||
| 708 | // Convert to signed. |
||
| 709 | Result = static_cast<T>(UResult); |
||
| 710 | |||
| 711 | // Adding two positive numbers should result in a positive number. |
||
| 712 | if (X > 0 && Y > 0) |
||
| 713 | return Result <= 0; |
||
| 714 | // Adding two negatives should result in a negative number. |
||
| 715 | if (X < 0 && Y < 0) |
||
| 716 | return Result >= 0; |
||
| 717 | return false; |
||
| 718 | #endif |
||
| 719 | } |
||
| 720 | |||
| 721 | /// Subtract two signed integers, computing the two's complement truncated |
||
| 722 | /// result, returning true if an overflow ocurred. |
||
| 723 | template <typename T> |
||
| 724 | std::enable_if_t<std::is_signed<T>::value, T> SubOverflow(T X, T Y, T &Result) { |
||
| 725 | #if __has_builtin(__builtin_sub_overflow) |
||
| 726 | return __builtin_sub_overflow(X, Y, &Result); |
||
| 727 | #else |
||
| 728 | // Perform the unsigned addition. |
||
| 729 | using U = std::make_unsigned_t<T>; |
||
| 730 | const U UX = static_cast<U>(X); |
||
| 731 | const U UY = static_cast<U>(Y); |
||
| 732 | const U UResult = UX - UY; |
||
| 733 | |||
| 734 | // Convert to signed. |
||
| 735 | Result = static_cast<T>(UResult); |
||
| 736 | |||
| 737 | // Subtracting a positive number from a negative results in a negative number. |
||
| 738 | if (X <= 0 && Y > 0) |
||
| 739 | return Result >= 0; |
||
| 740 | // Subtracting a negative number from a positive results in a positive number. |
||
| 741 | if (X >= 0 && Y < 0) |
||
| 742 | return Result <= 0; |
||
| 743 | return false; |
||
| 744 | #endif |
||
| 745 | } |
||
| 746 | |||
| 747 | /// Multiply two signed integers, computing the two's complement truncated |
||
| 748 | /// result, returning true if an overflow ocurred. |
||
| 749 | template <typename T> |
||
| 750 | std::enable_if_t<std::is_signed<T>::value, T> MulOverflow(T X, T Y, T &Result) { |
||
| 751 | // Perform the unsigned multiplication on absolute values. |
||
| 752 | using U = std::make_unsigned_t<T>; |
||
| 753 | const U UX = X < 0 ? (0 - static_cast<U>(X)) : static_cast<U>(X); |
||
| 754 | const U UY = Y < 0 ? (0 - static_cast<U>(Y)) : static_cast<U>(Y); |
||
| 755 | const U UResult = UX * UY; |
||
| 756 | |||
| 757 | // Convert to signed. |
||
| 758 | const bool IsNegative = (X < 0) ^ (Y < 0); |
||
| 759 | Result = IsNegative ? (0 - UResult) : UResult; |
||
| 760 | |||
| 761 | // If any of the args was 0, result is 0 and no overflow occurs. |
||
| 762 | if (UX == 0 || UY == 0) |
||
| 763 | return false; |
||
| 764 | |||
| 765 | // UX and UY are in [1, 2^n], where n is the number of digits. |
||
| 766 | // Check how the max allowed absolute value (2^n for negative, 2^(n-1) for |
||
| 767 | // positive) divided by an argument compares to the other. |
||
| 768 | if (IsNegative) |
||
| 769 | return UX > (static_cast<U>(std::numeric_limits<T>::max()) + U(1)) / UY; |
||
| 770 | else |
||
| 771 | return UX > (static_cast<U>(std::numeric_limits<T>::max())) / UY; |
||
| 772 | } |
||
| 773 | |||
| 774 | } // End llvm namespace |
||
| 775 | |||
| 776 | #endif |