Details | Last modification | View Log | RSS feed
| Rev | Author | Line No. | Line |
|---|---|---|---|
| 14 | pmbaty | 1 | //===- llvm/Support/KnownBits.h - Stores known zeros/ones -------*- C++ -*-===// |
| 2 | // |
||
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
||
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
||
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
||
| 6 | // |
||
| 7 | //===----------------------------------------------------------------------===// |
||
| 8 | // |
||
| 9 | // This file contains a class for representing known zeros and ones used by |
||
| 10 | // computeKnownBits. |
||
| 11 | // |
||
| 12 | //===----------------------------------------------------------------------===// |
||
| 13 | |||
| 14 | #ifndef LLVM_SUPPORT_KNOWNBITS_H |
||
| 15 | #define LLVM_SUPPORT_KNOWNBITS_H |
||
| 16 | |||
| 17 | #include "llvm/ADT/APInt.h" |
||
| 18 | #include <optional> |
||
| 19 | |||
| 20 | namespace llvm { |
||
| 21 | |||
| 22 | // Struct for tracking the known zeros and ones of a value. |
||
| 23 | struct KnownBits { |
||
| 24 | APInt Zero; |
||
| 25 | APInt One; |
||
| 26 | |||
| 27 | private: |
||
| 28 | // Internal constructor for creating a KnownBits from two APInts. |
||
| 29 | KnownBits(APInt Zero, APInt One) |
||
| 30 | : Zero(std::move(Zero)), One(std::move(One)) {} |
||
| 31 | |||
| 32 | public: |
||
| 33 | // Default construct Zero and One. |
||
| 34 | KnownBits() = default; |
||
| 35 | |||
| 36 | /// Create a known bits object of BitWidth bits initialized to unknown. |
||
| 37 | KnownBits(unsigned BitWidth) : Zero(BitWidth, 0), One(BitWidth, 0) {} |
||
| 38 | |||
| 39 | /// Get the bit width of this value. |
||
| 40 | unsigned getBitWidth() const { |
||
| 41 | assert(Zero.getBitWidth() == One.getBitWidth() && |
||
| 42 | "Zero and One should have the same width!"); |
||
| 43 | return Zero.getBitWidth(); |
||
| 44 | } |
||
| 45 | |||
| 46 | /// Returns true if there is conflicting information. |
||
| 47 | bool hasConflict() const { return Zero.intersects(One); } |
||
| 48 | |||
| 49 | /// Returns true if we know the value of all bits. |
||
| 50 | bool isConstant() const { |
||
| 51 | assert(!hasConflict() && "KnownBits conflict!"); |
||
| 52 | return Zero.countPopulation() + One.countPopulation() == getBitWidth(); |
||
| 53 | } |
||
| 54 | |||
| 55 | /// Returns the value when all bits have a known value. This just returns One |
||
| 56 | /// with a protective assertion. |
||
| 57 | const APInt &getConstant() const { |
||
| 58 | assert(isConstant() && "Can only get value when all bits are known"); |
||
| 59 | return One; |
||
| 60 | } |
||
| 61 | |||
| 62 | /// Returns true if we don't know any bits. |
||
| 63 | bool isUnknown() const { return Zero.isZero() && One.isZero(); } |
||
| 64 | |||
| 65 | /// Resets the known state of all bits. |
||
| 66 | void resetAll() { |
||
| 67 | Zero.clearAllBits(); |
||
| 68 | One.clearAllBits(); |
||
| 69 | } |
||
| 70 | |||
| 71 | /// Returns true if value is all zero. |
||
| 72 | bool isZero() const { |
||
| 73 | assert(!hasConflict() && "KnownBits conflict!"); |
||
| 74 | return Zero.isAllOnes(); |
||
| 75 | } |
||
| 76 | |||
| 77 | /// Returns true if value is all one bits. |
||
| 78 | bool isAllOnes() const { |
||
| 79 | assert(!hasConflict() && "KnownBits conflict!"); |
||
| 80 | return One.isAllOnes(); |
||
| 81 | } |
||
| 82 | |||
| 83 | /// Make all bits known to be zero and discard any previous information. |
||
| 84 | void setAllZero() { |
||
| 85 | Zero.setAllBits(); |
||
| 86 | One.clearAllBits(); |
||
| 87 | } |
||
| 88 | |||
| 89 | /// Make all bits known to be one and discard any previous information. |
||
| 90 | void setAllOnes() { |
||
| 91 | Zero.clearAllBits(); |
||
| 92 | One.setAllBits(); |
||
| 93 | } |
||
| 94 | |||
| 95 | /// Returns true if this value is known to be negative. |
||
| 96 | bool isNegative() const { return One.isSignBitSet(); } |
||
| 97 | |||
| 98 | /// Returns true if this value is known to be non-negative. |
||
| 99 | bool isNonNegative() const { return Zero.isSignBitSet(); } |
||
| 100 | |||
| 101 | /// Returns true if this value is known to be non-zero. |
||
| 102 | bool isNonZero() const { return !One.isZero(); } |
||
| 103 | |||
| 104 | /// Returns true if this value is known to be positive. |
||
| 105 | bool isStrictlyPositive() const { |
||
| 106 | return Zero.isSignBitSet() && !One.isZero(); |
||
| 107 | } |
||
| 108 | |||
| 109 | /// Make this value negative. |
||
| 110 | void makeNegative() { |
||
| 111 | One.setSignBit(); |
||
| 112 | } |
||
| 113 | |||
| 114 | /// Make this value non-negative. |
||
| 115 | void makeNonNegative() { |
||
| 116 | Zero.setSignBit(); |
||
| 117 | } |
||
| 118 | |||
| 119 | /// Return the minimal unsigned value possible given these KnownBits. |
||
| 120 | APInt getMinValue() const { |
||
| 121 | // Assume that all bits that aren't known-ones are zeros. |
||
| 122 | return One; |
||
| 123 | } |
||
| 124 | |||
| 125 | /// Return the minimal signed value possible given these KnownBits. |
||
| 126 | APInt getSignedMinValue() const { |
||
| 127 | // Assume that all bits that aren't known-ones are zeros. |
||
| 128 | APInt Min = One; |
||
| 129 | // Sign bit is unknown. |
||
| 130 | if (Zero.isSignBitClear()) |
||
| 131 | Min.setSignBit(); |
||
| 132 | return Min; |
||
| 133 | } |
||
| 134 | |||
| 135 | /// Return the maximal unsigned value possible given these KnownBits. |
||
| 136 | APInt getMaxValue() const { |
||
| 137 | // Assume that all bits that aren't known-zeros are ones. |
||
| 138 | return ~Zero; |
||
| 139 | } |
||
| 140 | |||
| 141 | /// Return the maximal signed value possible given these KnownBits. |
||
| 142 | APInt getSignedMaxValue() const { |
||
| 143 | // Assume that all bits that aren't known-zeros are ones. |
||
| 144 | APInt Max = ~Zero; |
||
| 145 | // Sign bit is unknown. |
||
| 146 | if (One.isSignBitClear()) |
||
| 147 | Max.clearSignBit(); |
||
| 148 | return Max; |
||
| 149 | } |
||
| 150 | |||
| 151 | /// Return known bits for a truncation of the value we're tracking. |
||
| 152 | KnownBits trunc(unsigned BitWidth) const { |
||
| 153 | return KnownBits(Zero.trunc(BitWidth), One.trunc(BitWidth)); |
||
| 154 | } |
||
| 155 | |||
| 156 | /// Return known bits for an "any" extension of the value we're tracking, |
||
| 157 | /// where we don't know anything about the extended bits. |
||
| 158 | KnownBits anyext(unsigned BitWidth) const { |
||
| 159 | return KnownBits(Zero.zext(BitWidth), One.zext(BitWidth)); |
||
| 160 | } |
||
| 161 | |||
| 162 | /// Return known bits for a zero extension of the value we're tracking. |
||
| 163 | KnownBits zext(unsigned BitWidth) const { |
||
| 164 | unsigned OldBitWidth = getBitWidth(); |
||
| 165 | APInt NewZero = Zero.zext(BitWidth); |
||
| 166 | NewZero.setBitsFrom(OldBitWidth); |
||
| 167 | return KnownBits(NewZero, One.zext(BitWidth)); |
||
| 168 | } |
||
| 169 | |||
| 170 | /// Return known bits for a sign extension of the value we're tracking. |
||
| 171 | KnownBits sext(unsigned BitWidth) const { |
||
| 172 | return KnownBits(Zero.sext(BitWidth), One.sext(BitWidth)); |
||
| 173 | } |
||
| 174 | |||
| 175 | /// Return known bits for an "any" extension or truncation of the value we're |
||
| 176 | /// tracking. |
||
| 177 | KnownBits anyextOrTrunc(unsigned BitWidth) const { |
||
| 178 | if (BitWidth > getBitWidth()) |
||
| 179 | return anyext(BitWidth); |
||
| 180 | if (BitWidth < getBitWidth()) |
||
| 181 | return trunc(BitWidth); |
||
| 182 | return *this; |
||
| 183 | } |
||
| 184 | |||
| 185 | /// Return known bits for a zero extension or truncation of the value we're |
||
| 186 | /// tracking. |
||
| 187 | KnownBits zextOrTrunc(unsigned BitWidth) const { |
||
| 188 | if (BitWidth > getBitWidth()) |
||
| 189 | return zext(BitWidth); |
||
| 190 | if (BitWidth < getBitWidth()) |
||
| 191 | return trunc(BitWidth); |
||
| 192 | return *this; |
||
| 193 | } |
||
| 194 | |||
| 195 | /// Return known bits for a sign extension or truncation of the value we're |
||
| 196 | /// tracking. |
||
| 197 | KnownBits sextOrTrunc(unsigned BitWidth) const { |
||
| 198 | if (BitWidth > getBitWidth()) |
||
| 199 | return sext(BitWidth); |
||
| 200 | if (BitWidth < getBitWidth()) |
||
| 201 | return trunc(BitWidth); |
||
| 202 | return *this; |
||
| 203 | } |
||
| 204 | |||
| 205 | /// Return known bits for a in-register sign extension of the value we're |
||
| 206 | /// tracking. |
||
| 207 | KnownBits sextInReg(unsigned SrcBitWidth) const; |
||
| 208 | |||
| 209 | /// Insert the bits from a smaller known bits starting at bitPosition. |
||
| 210 | void insertBits(const KnownBits &SubBits, unsigned BitPosition) { |
||
| 211 | Zero.insertBits(SubBits.Zero, BitPosition); |
||
| 212 | One.insertBits(SubBits.One, BitPosition); |
||
| 213 | } |
||
| 214 | |||
| 215 | /// Return a subset of the known bits from [bitPosition,bitPosition+numBits). |
||
| 216 | KnownBits extractBits(unsigned NumBits, unsigned BitPosition) const { |
||
| 217 | return KnownBits(Zero.extractBits(NumBits, BitPosition), |
||
| 218 | One.extractBits(NumBits, BitPosition)); |
||
| 219 | } |
||
| 220 | |||
| 221 | /// Concatenate the bits from \p Lo onto the bottom of *this. This is |
||
| 222 | /// equivalent to: |
||
| 223 | /// (this->zext(NewWidth) << Lo.getBitWidth()) | Lo.zext(NewWidth) |
||
| 224 | KnownBits concat(const KnownBits &Lo) const { |
||
| 225 | return KnownBits(Zero.concat(Lo.Zero), One.concat(Lo.One)); |
||
| 226 | } |
||
| 227 | |||
| 228 | /// Return KnownBits based on this, but updated given that the underlying |
||
| 229 | /// value is known to be greater than or equal to Val. |
||
| 230 | KnownBits makeGE(const APInt &Val) const; |
||
| 231 | |||
| 232 | /// Returns the minimum number of trailing zero bits. |
||
| 233 | unsigned countMinTrailingZeros() const { |
||
| 234 | return Zero.countTrailingOnes(); |
||
| 235 | } |
||
| 236 | |||
| 237 | /// Returns the minimum number of trailing one bits. |
||
| 238 | unsigned countMinTrailingOnes() const { |
||
| 239 | return One.countTrailingOnes(); |
||
| 240 | } |
||
| 241 | |||
| 242 | /// Returns the minimum number of leading zero bits. |
||
| 243 | unsigned countMinLeadingZeros() const { |
||
| 244 | return Zero.countLeadingOnes(); |
||
| 245 | } |
||
| 246 | |||
| 247 | /// Returns the minimum number of leading one bits. |
||
| 248 | unsigned countMinLeadingOnes() const { |
||
| 249 | return One.countLeadingOnes(); |
||
| 250 | } |
||
| 251 | |||
| 252 | /// Returns the number of times the sign bit is replicated into the other |
||
| 253 | /// bits. |
||
| 254 | unsigned countMinSignBits() const { |
||
| 255 | if (isNonNegative()) |
||
| 256 | return countMinLeadingZeros(); |
||
| 257 | if (isNegative()) |
||
| 258 | return countMinLeadingOnes(); |
||
| 259 | // Every value has at least 1 sign bit. |
||
| 260 | return 1; |
||
| 261 | } |
||
| 262 | |||
| 263 | /// Returns the maximum number of bits needed to represent all possible |
||
| 264 | /// signed values with these known bits. This is the inverse of the minimum |
||
| 265 | /// number of known sign bits. Examples for bitwidth 5: |
||
| 266 | /// 110?? --> 4 |
||
| 267 | /// 0000? --> 2 |
||
| 268 | unsigned countMaxSignificantBits() const { |
||
| 269 | return getBitWidth() - countMinSignBits() + 1; |
||
| 270 | } |
||
| 271 | |||
| 272 | /// Returns the maximum number of trailing zero bits possible. |
||
| 273 | unsigned countMaxTrailingZeros() const { |
||
| 274 | return One.countTrailingZeros(); |
||
| 275 | } |
||
| 276 | |||
| 277 | /// Returns the maximum number of trailing one bits possible. |
||
| 278 | unsigned countMaxTrailingOnes() const { |
||
| 279 | return Zero.countTrailingZeros(); |
||
| 280 | } |
||
| 281 | |||
| 282 | /// Returns the maximum number of leading zero bits possible. |
||
| 283 | unsigned countMaxLeadingZeros() const { |
||
| 284 | return One.countLeadingZeros(); |
||
| 285 | } |
||
| 286 | |||
| 287 | /// Returns the maximum number of leading one bits possible. |
||
| 288 | unsigned countMaxLeadingOnes() const { |
||
| 289 | return Zero.countLeadingZeros(); |
||
| 290 | } |
||
| 291 | |||
| 292 | /// Returns the number of bits known to be one. |
||
| 293 | unsigned countMinPopulation() const { |
||
| 294 | return One.countPopulation(); |
||
| 295 | } |
||
| 296 | |||
| 297 | /// Returns the maximum number of bits that could be one. |
||
| 298 | unsigned countMaxPopulation() const { |
||
| 299 | return getBitWidth() - Zero.countPopulation(); |
||
| 300 | } |
||
| 301 | |||
| 302 | /// Returns the maximum number of bits needed to represent all possible |
||
| 303 | /// unsigned values with these known bits. This is the inverse of the |
||
| 304 | /// minimum number of leading zeros. |
||
| 305 | unsigned countMaxActiveBits() const { |
||
| 306 | return getBitWidth() - countMinLeadingZeros(); |
||
| 307 | } |
||
| 308 | |||
| 309 | /// Create known bits from a known constant. |
||
| 310 | static KnownBits makeConstant(const APInt &C) { |
||
| 311 | return KnownBits(~C, C); |
||
| 312 | } |
||
| 313 | |||
| 314 | /// Compute known bits common to LHS and RHS. |
||
| 315 | static KnownBits commonBits(const KnownBits &LHS, const KnownBits &RHS) { |
||
| 316 | return KnownBits(LHS.Zero & RHS.Zero, LHS.One & RHS.One); |
||
| 317 | } |
||
| 318 | |||
| 319 | /// Return true if LHS and RHS have no common bits set. |
||
| 320 | static bool haveNoCommonBitsSet(const KnownBits &LHS, const KnownBits &RHS) { |
||
| 321 | return (LHS.Zero | RHS.Zero).isAllOnes(); |
||
| 322 | } |
||
| 323 | |||
| 324 | /// Compute known bits resulting from adding LHS, RHS and a 1-bit Carry. |
||
| 325 | static KnownBits computeForAddCarry( |
||
| 326 | const KnownBits &LHS, const KnownBits &RHS, const KnownBits &Carry); |
||
| 327 | |||
| 328 | /// Compute known bits resulting from adding LHS and RHS. |
||
| 329 | static KnownBits computeForAddSub(bool Add, bool NSW, const KnownBits &LHS, |
||
| 330 | KnownBits RHS); |
||
| 331 | |||
| 332 | /// Compute known bits resulting from multiplying LHS and RHS. |
||
| 333 | static KnownBits mul(const KnownBits &LHS, const KnownBits &RHS, |
||
| 334 | bool NoUndefSelfMultiply = false); |
||
| 335 | |||
| 336 | /// Compute known bits from sign-extended multiply-hi. |
||
| 337 | static KnownBits mulhs(const KnownBits &LHS, const KnownBits &RHS); |
||
| 338 | |||
| 339 | /// Compute known bits from zero-extended multiply-hi. |
||
| 340 | static KnownBits mulhu(const KnownBits &LHS, const KnownBits &RHS); |
||
| 341 | |||
| 342 | /// Compute known bits for udiv(LHS, RHS). |
||
| 343 | static KnownBits udiv(const KnownBits &LHS, const KnownBits &RHS); |
||
| 344 | |||
| 345 | /// Compute known bits for urem(LHS, RHS). |
||
| 346 | static KnownBits urem(const KnownBits &LHS, const KnownBits &RHS); |
||
| 347 | |||
| 348 | /// Compute known bits for srem(LHS, RHS). |
||
| 349 | static KnownBits srem(const KnownBits &LHS, const KnownBits &RHS); |
||
| 350 | |||
| 351 | /// Compute known bits for umax(LHS, RHS). |
||
| 352 | static KnownBits umax(const KnownBits &LHS, const KnownBits &RHS); |
||
| 353 | |||
| 354 | /// Compute known bits for umin(LHS, RHS). |
||
| 355 | static KnownBits umin(const KnownBits &LHS, const KnownBits &RHS); |
||
| 356 | |||
| 357 | /// Compute known bits for smax(LHS, RHS). |
||
| 358 | static KnownBits smax(const KnownBits &LHS, const KnownBits &RHS); |
||
| 359 | |||
| 360 | /// Compute known bits for smin(LHS, RHS). |
||
| 361 | static KnownBits smin(const KnownBits &LHS, const KnownBits &RHS); |
||
| 362 | |||
| 363 | /// Compute known bits for shl(LHS, RHS). |
||
| 364 | /// NOTE: RHS (shift amount) bitwidth doesn't need to be the same as LHS. |
||
| 365 | static KnownBits shl(const KnownBits &LHS, const KnownBits &RHS); |
||
| 366 | |||
| 367 | /// Compute known bits for lshr(LHS, RHS). |
||
| 368 | /// NOTE: RHS (shift amount) bitwidth doesn't need to be the same as LHS. |
||
| 369 | static KnownBits lshr(const KnownBits &LHS, const KnownBits &RHS); |
||
| 370 | |||
| 371 | /// Compute known bits for ashr(LHS, RHS). |
||
| 372 | /// NOTE: RHS (shift amount) bitwidth doesn't need to be the same as LHS. |
||
| 373 | static KnownBits ashr(const KnownBits &LHS, const KnownBits &RHS); |
||
| 374 | |||
| 375 | /// Determine if these known bits always give the same ICMP_EQ result. |
||
| 376 | static std::optional<bool> eq(const KnownBits &LHS, const KnownBits &RHS); |
||
| 377 | |||
| 378 | /// Determine if these known bits always give the same ICMP_NE result. |
||
| 379 | static std::optional<bool> ne(const KnownBits &LHS, const KnownBits &RHS); |
||
| 380 | |||
| 381 | /// Determine if these known bits always give the same ICMP_UGT result. |
||
| 382 | static std::optional<bool> ugt(const KnownBits &LHS, const KnownBits &RHS); |
||
| 383 | |||
| 384 | /// Determine if these known bits always give the same ICMP_UGE result. |
||
| 385 | static std::optional<bool> uge(const KnownBits &LHS, const KnownBits &RHS); |
||
| 386 | |||
| 387 | /// Determine if these known bits always give the same ICMP_ULT result. |
||
| 388 | static std::optional<bool> ult(const KnownBits &LHS, const KnownBits &RHS); |
||
| 389 | |||
| 390 | /// Determine if these known bits always give the same ICMP_ULE result. |
||
| 391 | static std::optional<bool> ule(const KnownBits &LHS, const KnownBits &RHS); |
||
| 392 | |||
| 393 | /// Determine if these known bits always give the same ICMP_SGT result. |
||
| 394 | static std::optional<bool> sgt(const KnownBits &LHS, const KnownBits &RHS); |
||
| 395 | |||
| 396 | /// Determine if these known bits always give the same ICMP_SGE result. |
||
| 397 | static std::optional<bool> sge(const KnownBits &LHS, const KnownBits &RHS); |
||
| 398 | |||
| 399 | /// Determine if these known bits always give the same ICMP_SLT result. |
||
| 400 | static std::optional<bool> slt(const KnownBits &LHS, const KnownBits &RHS); |
||
| 401 | |||
| 402 | /// Determine if these known bits always give the same ICMP_SLE result. |
||
| 403 | static std::optional<bool> sle(const KnownBits &LHS, const KnownBits &RHS); |
||
| 404 | |||
| 405 | /// Update known bits based on ANDing with RHS. |
||
| 406 | KnownBits &operator&=(const KnownBits &RHS); |
||
| 407 | |||
| 408 | /// Update known bits based on ORing with RHS. |
||
| 409 | KnownBits &operator|=(const KnownBits &RHS); |
||
| 410 | |||
| 411 | /// Update known bits based on XORing with RHS. |
||
| 412 | KnownBits &operator^=(const KnownBits &RHS); |
||
| 413 | |||
| 414 | /// Compute known bits for the absolute value. |
||
| 415 | KnownBits abs(bool IntMinIsPoison = false) const; |
||
| 416 | |||
| 417 | KnownBits byteSwap() const { |
||
| 418 | return KnownBits(Zero.byteSwap(), One.byteSwap()); |
||
| 419 | } |
||
| 420 | |||
| 421 | KnownBits reverseBits() const { |
||
| 422 | return KnownBits(Zero.reverseBits(), One.reverseBits()); |
||
| 423 | } |
||
| 424 | |||
| 425 | bool operator==(const KnownBits &Other) const { |
||
| 426 | return Zero == Other.Zero && One == Other.One; |
||
| 427 | } |
||
| 428 | |||
| 429 | bool operator!=(const KnownBits &Other) const { return !(*this == Other); } |
||
| 430 | |||
| 431 | void print(raw_ostream &OS) const; |
||
| 432 | void dump() const; |
||
| 433 | }; |
||
| 434 | |||
| 435 | inline KnownBits operator&(KnownBits LHS, const KnownBits &RHS) { |
||
| 436 | LHS &= RHS; |
||
| 437 | return LHS; |
||
| 438 | } |
||
| 439 | |||
| 440 | inline KnownBits operator&(const KnownBits &LHS, KnownBits &&RHS) { |
||
| 441 | RHS &= LHS; |
||
| 442 | return std::move(RHS); |
||
| 443 | } |
||
| 444 | |||
| 445 | inline KnownBits operator|(KnownBits LHS, const KnownBits &RHS) { |
||
| 446 | LHS |= RHS; |
||
| 447 | return LHS; |
||
| 448 | } |
||
| 449 | |||
| 450 | inline KnownBits operator|(const KnownBits &LHS, KnownBits &&RHS) { |
||
| 451 | RHS |= LHS; |
||
| 452 | return std::move(RHS); |
||
| 453 | } |
||
| 454 | |||
| 455 | inline KnownBits operator^(KnownBits LHS, const KnownBits &RHS) { |
||
| 456 | LHS ^= RHS; |
||
| 457 | return LHS; |
||
| 458 | } |
||
| 459 | |||
| 460 | inline KnownBits operator^(const KnownBits &LHS, KnownBits &&RHS) { |
||
| 461 | RHS ^= LHS; |
||
| 462 | return std::move(RHS); |
||
| 463 | } |
||
| 464 | |||
| 465 | } // end namespace llvm |
||
| 466 | |||
| 467 | #endif |