Details | Last modification | View Log | RSS feed
| Rev | Author | Line No. | Line | 
|---|---|---|---|
| 14 | pmbaty | 1 | //===- GenericDomTreeConstruction.h - Dominator Calculation ------*- C++ -*-==// | 
| 2 | // | ||
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | ||
| 4 | // See https://llvm.org/LICENSE.txt for license information. | ||
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | ||
| 6 | // | ||
| 7 | //===----------------------------------------------------------------------===// | ||
| 8 | /// \file | ||
| 9 | /// | ||
| 10 | /// Generic dominator tree construction - this file provides routines to | ||
| 11 | /// construct immediate dominator information for a flow-graph based on the | ||
| 12 | /// Semi-NCA algorithm described in this dissertation: | ||
| 13 | /// | ||
| 14 | ///   [1] Linear-Time Algorithms for Dominators and Related Problems | ||
| 15 | ///   Loukas Georgiadis, Princeton University, November 2005, pp. 21-23: | ||
| 16 | ///   ftp://ftp.cs.princeton.edu/reports/2005/737.pdf | ||
| 17 | /// | ||
| 18 | /// Semi-NCA algorithm runs in O(n^2) worst-case time but usually slightly | ||
| 19 | /// faster than Simple Lengauer-Tarjan in practice. | ||
| 20 | /// | ||
| 21 | /// O(n^2) worst cases happen when the computation of nearest common ancestors | ||
| 22 | /// requires O(n) average time, which is very unlikely in real world. If this | ||
| 23 | /// ever turns out to be an issue, consider implementing a hybrid algorithm | ||
| 24 | /// that uses SLT to perform full constructions and SemiNCA for incremental | ||
| 25 | /// updates. | ||
| 26 | /// | ||
| 27 | /// The file uses the Depth Based Search algorithm to perform incremental | ||
| 28 | /// updates (insertion and deletions). The implemented algorithm is based on | ||
| 29 | /// this publication: | ||
| 30 | /// | ||
| 31 | ///   [2] An Experimental Study of Dynamic Dominators | ||
| 32 | ///   Loukas Georgiadis, et al., April 12 2016, pp. 5-7, 9-10: | ||
| 33 | ///   https://arxiv.org/pdf/1604.02711.pdf | ||
| 34 | /// | ||
| 35 | //===----------------------------------------------------------------------===// | ||
| 36 | |||
| 37 | #ifndef LLVM_SUPPORT_GENERICDOMTREECONSTRUCTION_H | ||
| 38 | #define LLVM_SUPPORT_GENERICDOMTREECONSTRUCTION_H | ||
| 39 | |||
| 40 | #include "llvm/ADT/ArrayRef.h" | ||
| 41 | #include "llvm/ADT/DenseSet.h" | ||
| 42 | #include "llvm/ADT/DepthFirstIterator.h" | ||
| 43 | #include "llvm/ADT/PointerIntPair.h" | ||
| 44 | #include "llvm/ADT/SmallPtrSet.h" | ||
| 45 | #include "llvm/Support/Debug.h" | ||
| 46 | #include "llvm/Support/GenericDomTree.h" | ||
| 47 | #include <optional> | ||
| 48 | #include <queue> | ||
| 49 | |||
| 50 | #define DEBUG_TYPE "dom-tree-builder" | ||
| 51 | |||
| 52 | namespace llvm { | ||
| 53 | namespace DomTreeBuilder { | ||
| 54 | |||
| 55 | template <typename DomTreeT> | ||
| 56 | struct SemiNCAInfo { | ||
| 57 | using NodePtr = typename DomTreeT::NodePtr; | ||
| 58 | using NodeT = typename DomTreeT::NodeType; | ||
| 59 | using TreeNodePtr = DomTreeNodeBase<NodeT> *; | ||
| 60 | using RootsT = decltype(DomTreeT::Roots); | ||
| 61 | static constexpr bool IsPostDom = DomTreeT::IsPostDominator; | ||
| 62 | using GraphDiffT = GraphDiff<NodePtr, IsPostDom>; | ||
| 63 | |||
| 64 |   // Information record used by Semi-NCA during tree construction. | ||
| 65 | struct InfoRec { | ||
| 66 | unsigned DFSNum = 0; | ||
| 67 | unsigned Parent = 0; | ||
| 68 | unsigned Semi = 0; | ||
| 69 | NodePtr Label = nullptr; | ||
| 70 | NodePtr IDom = nullptr; | ||
| 71 | SmallVector<NodePtr, 2> ReverseChildren; | ||
| 72 | }; | ||
| 73 | |||
| 74 |   // Number to node mapping is 1-based. Initialize the mapping to start with | ||
| 75 |   // a dummy element. | ||
| 76 | std::vector<NodePtr> NumToNode = {nullptr}; | ||
| 77 | DenseMap<NodePtr, InfoRec> NodeToInfo; | ||
| 78 | |||
| 79 | using UpdateT = typename DomTreeT::UpdateType; | ||
| 80 | using UpdateKind = typename DomTreeT::UpdateKind; | ||
| 81 | struct BatchUpdateInfo { | ||
| 82 |     // Note: Updates inside PreViewCFG are already legalized. | ||
| 83 | BatchUpdateInfo(GraphDiffT &PreViewCFG, GraphDiffT *PostViewCFG = nullptr) | ||
| 84 | : PreViewCFG(PreViewCFG), PostViewCFG(PostViewCFG), | ||
| 85 | NumLegalized(PreViewCFG.getNumLegalizedUpdates()) {} | ||
| 86 | |||
| 87 |     // Remembers if the whole tree was recalculated at some point during the | ||
| 88 |     // current batch update. | ||
| 89 | bool IsRecalculated = false; | ||
| 90 | GraphDiffT &PreViewCFG; | ||
| 91 | GraphDiffT *PostViewCFG; | ||
| 92 | const size_t NumLegalized; | ||
| 93 | }; | ||
| 94 | |||
| 95 | BatchUpdateInfo *BatchUpdates; | ||
| 96 | using BatchUpdatePtr = BatchUpdateInfo *; | ||
| 97 | |||
| 98 |   // If BUI is a nullptr, then there's no batch update in progress. | ||
| 99 | SemiNCAInfo(BatchUpdatePtr BUI) : BatchUpdates(BUI) {} | ||
| 100 | |||
| 101 | void clear() { | ||
| 102 | NumToNode = {nullptr}; // Restore to initial state with a dummy start node. | ||
| 103 | NodeToInfo.clear(); | ||
| 104 |     // Don't reset the pointer to BatchUpdateInfo here -- if there's an update | ||
| 105 |     // in progress, we need this information to continue it. | ||
| 106 |   } | ||
| 107 | |||
| 108 | template <bool Inversed> | ||
| 109 | static SmallVector<NodePtr, 8> getChildren(NodePtr N, BatchUpdatePtr BUI) { | ||
| 110 | if (BUI) | ||
| 111 | return BUI->PreViewCFG.template getChildren<Inversed>(N); | ||
| 112 | return getChildren<Inversed>(N); | ||
| 113 |   } | ||
| 114 | |||
| 115 | template <bool Inversed> | ||
| 116 | static SmallVector<NodePtr, 8> getChildren(NodePtr N) { | ||
| 117 | using DirectedNodeT = | ||
| 118 | std::conditional_t<Inversed, Inverse<NodePtr>, NodePtr>; | ||
| 119 | auto R = children<DirectedNodeT>(N); | ||
| 120 | SmallVector<NodePtr, 8> Res(detail::reverse_if<!Inversed>(R)); | ||
| 121 | |||
| 122 |     // Remove nullptr children for clang. | ||
| 123 | llvm::erase_value(Res, nullptr); | ||
| 124 | return Res; | ||
| 125 |   } | ||
| 126 | |||
| 127 | NodePtr getIDom(NodePtr BB) const { | ||
| 128 | auto InfoIt = NodeToInfo.find(BB); | ||
| 129 | if (InfoIt == NodeToInfo.end()) return nullptr; | ||
| 130 | |||
| 131 | return InfoIt->second.IDom; | ||
| 132 |   } | ||
| 133 | |||
| 134 | TreeNodePtr getNodeForBlock(NodePtr BB, DomTreeT &DT) { | ||
| 135 | if (TreeNodePtr Node = DT.getNode(BB)) return Node; | ||
| 136 | |||
| 137 |     // Haven't calculated this node yet?  Get or calculate the node for the | ||
| 138 |     // immediate dominator. | ||
| 139 | NodePtr IDom = getIDom(BB); | ||
| 140 | |||
| 141 | assert(IDom || DT.DomTreeNodes[nullptr]); | ||
| 142 | TreeNodePtr IDomNode = getNodeForBlock(IDom, DT); | ||
| 143 | |||
| 144 |     // Add a new tree node for this NodeT, and link it as a child of | ||
| 145 |     // IDomNode | ||
| 146 | return DT.createChild(BB, IDomNode); | ||
| 147 |   } | ||
| 148 | |||
| 149 | static bool AlwaysDescend(NodePtr, NodePtr) { return true; } | ||
| 150 | |||
| 151 | struct BlockNamePrinter { | ||
| 152 |     NodePtr N; | ||
| 153 | |||
| 154 | BlockNamePrinter(NodePtr Block) : N(Block) {} | ||
| 155 | BlockNamePrinter(TreeNodePtr TN) : N(TN ? TN->getBlock() : nullptr) {} | ||
| 156 | |||
| 157 | friend raw_ostream &operator<<(raw_ostream &O, const BlockNamePrinter &BP) { | ||
| 158 | if (!BP.N) | ||
| 159 | O << "nullptr"; | ||
| 160 |       else | ||
| 161 | BP.N->printAsOperand(O, false); | ||
| 162 | |||
| 163 | return O; | ||
| 164 |     } | ||
| 165 | }; | ||
| 166 | |||
| 167 | using NodeOrderMap = DenseMap<NodePtr, unsigned>; | ||
| 168 | |||
| 169 |   // Custom DFS implementation which can skip nodes based on a provided | ||
| 170 |   // predicate. It also collects ReverseChildren so that we don't have to spend | ||
| 171 |   // time getting predecessors in SemiNCA. | ||
| 172 |   // | ||
| 173 |   // If IsReverse is set to true, the DFS walk will be performed backwards | ||
| 174 |   // relative to IsPostDom -- using reverse edges for dominators and forward | ||
| 175 |   // edges for postdominators. | ||
| 176 |   // | ||
| 177 |   // If SuccOrder is specified then in this order the DFS traverses the children | ||
| 178 |   // otherwise the order is implied by the results of getChildren(). | ||
| 179 | template <bool IsReverse = false, typename DescendCondition> | ||
| 180 | unsigned runDFS(NodePtr V, unsigned LastNum, DescendCondition Condition, | ||
| 181 |                   unsigned AttachToNum, | ||
| 182 | const NodeOrderMap *SuccOrder = nullptr) { | ||
| 183 | assert(V); | ||
| 184 | SmallVector<NodePtr, 64> WorkList = {V}; | ||
| 185 | if (NodeToInfo.count(V) != 0) NodeToInfo[V].Parent = AttachToNum; | ||
| 186 | |||
| 187 | while (!WorkList.empty()) { | ||
| 188 | const NodePtr BB = WorkList.pop_back_val(); | ||
| 189 | auto &BBInfo = NodeToInfo[BB]; | ||
| 190 | |||
| 191 |       // Visited nodes always have positive DFS numbers. | ||
| 192 | if (BBInfo.DFSNum != 0) continue; | ||
| 193 | BBInfo.DFSNum = BBInfo.Semi = ++LastNum; | ||
| 194 | BBInfo.Label = BB; | ||
| 195 | NumToNode.push_back(BB); | ||
| 196 | |||
| 197 | constexpr bool Direction = IsReverse != IsPostDom; // XOR. | ||
| 198 | auto Successors = getChildren<Direction>(BB, BatchUpdates); | ||
| 199 | if (SuccOrder && Successors.size() > 1) | ||
| 200 | llvm::sort( | ||
| 201 | Successors.begin(), Successors.end(), [=](NodePtr A, NodePtr B) { | ||
| 202 | return SuccOrder->find(A)->second < SuccOrder->find(B)->second; | ||
| 203 | }); | ||
| 204 | |||
| 205 | for (const NodePtr Succ : Successors) { | ||
| 206 | const auto SIT = NodeToInfo.find(Succ); | ||
| 207 |         // Don't visit nodes more than once but remember to collect | ||
| 208 |         // ReverseChildren. | ||
| 209 | if (SIT != NodeToInfo.end() && SIT->second.DFSNum != 0) { | ||
| 210 | if (Succ != BB) SIT->second.ReverseChildren.push_back(BB); | ||
| 211 | continue; | ||
| 212 |         } | ||
| 213 | |||
| 214 | if (!Condition(BB, Succ)) continue; | ||
| 215 | |||
| 216 |         // It's fine to add Succ to the map, because we know that it will be | ||
| 217 |         // visited later. | ||
| 218 | auto &SuccInfo = NodeToInfo[Succ]; | ||
| 219 | WorkList.push_back(Succ); | ||
| 220 | SuccInfo.Parent = LastNum; | ||
| 221 | SuccInfo.ReverseChildren.push_back(BB); | ||
| 222 |       } | ||
| 223 |     } | ||
| 224 | |||
| 225 | return LastNum; | ||
| 226 |   } | ||
| 227 | |||
| 228 |   // V is a predecessor of W. eval() returns V if V < W, otherwise the minimum | ||
| 229 |   // of sdom(U), where U > W and there is a virtual forest path from U to V. The | ||
| 230 |   // virtual forest consists of linked edges of processed vertices. | ||
| 231 |   // | ||
| 232 |   // We can follow Parent pointers (virtual forest edges) to determine the | ||
| 233 |   // ancestor U with minimum sdom(U). But it is slow and thus we employ the path | ||
| 234 |   // compression technique to speed up to O(m*log(n)). Theoretically the virtual | ||
| 235 |   // forest can be organized as balanced trees to achieve almost linear | ||
| 236 |   // O(m*alpha(m,n)) running time. But it requires two auxiliary arrays (Size | ||
| 237 |   // and Child) and is unlikely to be faster than the simple implementation. | ||
| 238 |   // | ||
| 239 |   // For each vertex V, its Label points to the vertex with the minimal sdom(U) | ||
| 240 |   // (Semi) in its path from V (included) to NodeToInfo[V].Parent (excluded). | ||
| 241 | NodePtr eval(NodePtr V, unsigned LastLinked, | ||
| 242 | SmallVectorImpl<InfoRec *> &Stack) { | ||
| 243 | InfoRec *VInfo = &NodeToInfo[V]; | ||
| 244 | if (VInfo->Parent < LastLinked) | ||
| 245 | return VInfo->Label; | ||
| 246 | |||
| 247 |     // Store ancestors except the last (root of a virtual tree) into a stack. | ||
| 248 | assert(Stack.empty()); | ||
| 249 | do { | ||
| 250 | Stack.push_back(VInfo); | ||
| 251 | VInfo = &NodeToInfo[NumToNode[VInfo->Parent]]; | ||
| 252 | } while (VInfo->Parent >= LastLinked); | ||
| 253 | |||
| 254 |     // Path compression. Point each vertex's Parent to the root and update its | ||
| 255 |     // Label if any of its ancestors (PInfo->Label) has a smaller Semi. | ||
| 256 | const InfoRec *PInfo = VInfo; | ||
| 257 | const InfoRec *PLabelInfo = &NodeToInfo[PInfo->Label]; | ||
| 258 | do { | ||
| 259 | VInfo = Stack.pop_back_val(); | ||
| 260 | VInfo->Parent = PInfo->Parent; | ||
| 261 | const InfoRec *VLabelInfo = &NodeToInfo[VInfo->Label]; | ||
| 262 | if (PLabelInfo->Semi < VLabelInfo->Semi) | ||
| 263 | VInfo->Label = PInfo->Label; | ||
| 264 |       else | ||
| 265 | PLabelInfo = VLabelInfo; | ||
| 266 | PInfo = VInfo; | ||
| 267 | } while (!Stack.empty()); | ||
| 268 | return VInfo->Label; | ||
| 269 |   } | ||
| 270 | |||
| 271 |   // This function requires DFS to be run before calling it. | ||
| 272 | void runSemiNCA(DomTreeT &DT, const unsigned MinLevel = 0) { | ||
| 273 | const unsigned NextDFSNum(NumToNode.size()); | ||
| 274 |     // Initialize IDoms to spanning tree parents. | ||
| 275 | for (unsigned i = 1; i < NextDFSNum; ++i) { | ||
| 276 | const NodePtr V = NumToNode[i]; | ||
| 277 | auto &VInfo = NodeToInfo[V]; | ||
| 278 | VInfo.IDom = NumToNode[VInfo.Parent]; | ||
| 279 |     } | ||
| 280 | |||
| 281 |     // Step #1: Calculate the semidominators of all vertices. | ||
| 282 | SmallVector<InfoRec *, 32> EvalStack; | ||
| 283 | for (unsigned i = NextDFSNum - 1; i >= 2; --i) { | ||
| 284 | NodePtr W = NumToNode[i]; | ||
| 285 | auto &WInfo = NodeToInfo[W]; | ||
| 286 | |||
| 287 |       // Initialize the semi dominator to point to the parent node. | ||
| 288 | WInfo.Semi = WInfo.Parent; | ||
| 289 | for (const auto &N : WInfo.ReverseChildren) { | ||
| 290 | if (NodeToInfo.count(N) == 0) // Skip unreachable predecessors. | ||
| 291 | continue; | ||
| 292 | |||
| 293 | const TreeNodePtr TN = DT.getNode(N); | ||
| 294 |         // Skip predecessors whose level is above the subtree we are processing. | ||
| 295 | if (TN && TN->getLevel() < MinLevel) | ||
| 296 | continue; | ||
| 297 | |||
| 298 | unsigned SemiU = NodeToInfo[eval(N, i + 1, EvalStack)].Semi; | ||
| 299 | if (SemiU < WInfo.Semi) WInfo.Semi = SemiU; | ||
| 300 |       } | ||
| 301 |     } | ||
| 302 | |||
| 303 |     // Step #2: Explicitly define the immediate dominator of each vertex. | ||
| 304 |     //          IDom[i] = NCA(SDom[i], SpanningTreeParent(i)). | ||
| 305 |     // Note that the parents were stored in IDoms and later got invalidated | ||
| 306 |     // during path compression in Eval. | ||
| 307 | for (unsigned i = 2; i < NextDFSNum; ++i) { | ||
| 308 | const NodePtr W = NumToNode[i]; | ||
| 309 | auto &WInfo = NodeToInfo[W]; | ||
| 310 | const unsigned SDomNum = NodeToInfo[NumToNode[WInfo.Semi]].DFSNum; | ||
| 311 | NodePtr WIDomCandidate = WInfo.IDom; | ||
| 312 | while (NodeToInfo[WIDomCandidate].DFSNum > SDomNum) | ||
| 313 | WIDomCandidate = NodeToInfo[WIDomCandidate].IDom; | ||
| 314 | |||
| 315 | WInfo.IDom = WIDomCandidate; | ||
| 316 |     } | ||
| 317 |   } | ||
| 318 | |||
| 319 |   // PostDominatorTree always has a virtual root that represents a virtual CFG | ||
| 320 |   // node that serves as a single exit from the function. All the other exits | ||
| 321 |   // (CFG nodes with terminators and nodes in infinite loops are logically | ||
| 322 |   // connected to this virtual CFG exit node). | ||
| 323 |   // This functions maps a nullptr CFG node to the virtual root tree node. | ||
| 324 | void addVirtualRoot() { | ||
| 325 | assert(IsPostDom && "Only postdominators have a virtual root"); | ||
| 326 | assert(NumToNode.size() == 1 && "SNCAInfo must be freshly constructed"); | ||
| 327 | |||
| 328 | auto &BBInfo = NodeToInfo[nullptr]; | ||
| 329 | BBInfo.DFSNum = BBInfo.Semi = 1; | ||
| 330 | BBInfo.Label = nullptr; | ||
| 331 | |||
| 332 | NumToNode.push_back(nullptr); // NumToNode[1] = nullptr; | ||
| 333 |   } | ||
| 334 | |||
| 335 |   // For postdominators, nodes with no forward successors are trivial roots that | ||
| 336 |   // are always selected as tree roots. Roots with forward successors correspond | ||
| 337 |   // to CFG nodes within infinite loops. | ||
| 338 | static bool HasForwardSuccessors(const NodePtr N, BatchUpdatePtr BUI) { | ||
| 339 | assert(N && "N must be a valid node"); | ||
| 340 | return !getChildren<false>(N, BUI).empty(); | ||
| 341 |   } | ||
| 342 | |||
| 343 | static NodePtr GetEntryNode(const DomTreeT &DT) { | ||
| 344 | assert(DT.Parent && "Parent not set"); | ||
| 345 | return GraphTraits<typename DomTreeT::ParentPtr>::getEntryNode(DT.Parent); | ||
| 346 |   } | ||
| 347 | |||
| 348 |   // Finds all roots without relaying on the set of roots already stored in the | ||
| 349 |   // tree. | ||
| 350 |   // We define roots to be some non-redundant set of the CFG nodes | ||
| 351 | static RootsT FindRoots(const DomTreeT &DT, BatchUpdatePtr BUI) { | ||
| 352 | assert(DT.Parent && "Parent pointer is not set"); | ||
| 353 |     RootsT Roots; | ||
| 354 | |||
| 355 |     // For dominators, function entry CFG node is always a tree root node. | ||
| 356 | if (!IsPostDom) { | ||
| 357 | Roots.push_back(GetEntryNode(DT)); | ||
| 358 | return Roots; | ||
| 359 |     } | ||
| 360 | |||
| 361 | SemiNCAInfo SNCA(BUI); | ||
| 362 | |||
| 363 |     // PostDominatorTree always has a virtual root. | ||
| 364 | SNCA.addVirtualRoot(); | ||
| 365 | unsigned Num = 1; | ||
| 366 | |||
| 367 | LLVM_DEBUG(dbgs() << "\t\tLooking for trivial roots\n"); | ||
| 368 | |||
| 369 |     // Step #1: Find all the trivial roots that are going to will definitely | ||
| 370 |     // remain tree roots. | ||
| 371 | unsigned Total = 0; | ||
| 372 |     // It may happen that there are some new nodes in the CFG that are result of | ||
| 373 |     // the ongoing batch update, but we cannot really pretend that they don't | ||
| 374 |     // exist -- we won't see any outgoing or incoming edges to them, so it's | ||
| 375 |     // fine to discover them here, as they would end up appearing in the CFG at | ||
| 376 |     // some point anyway. | ||
| 377 | for (const NodePtr N : nodes(DT.Parent)) { | ||
| 378 | ++Total; | ||
| 379 |       // If it has no *successors*, it is definitely a root. | ||
| 380 | if (!HasForwardSuccessors(N, BUI)) { | ||
| 381 | Roots.push_back(N); | ||
| 382 |         // Run DFS not to walk this part of CFG later. | ||
| 383 | Num = SNCA.runDFS(N, Num, AlwaysDescend, 1); | ||
| 384 | LLVM_DEBUG(dbgs() << "Found a new trivial root: " << BlockNamePrinter(N) | ||
| 385 | << "\n"); | ||
| 386 | LLVM_DEBUG(dbgs() << "Last visited node: " | ||
| 387 | << BlockNamePrinter(SNCA.NumToNode[Num]) << "\n"); | ||
| 388 |       } | ||
| 389 |     } | ||
| 390 | |||
| 391 | LLVM_DEBUG(dbgs() << "\t\tLooking for non-trivial roots\n"); | ||
| 392 | |||
| 393 |     // Step #2: Find all non-trivial root candidates. Those are CFG nodes that | ||
| 394 |     // are reverse-unreachable were not visited by previous DFS walks (i.e. CFG | ||
| 395 |     // nodes in infinite loops). | ||
| 396 | bool HasNonTrivialRoots = false; | ||
| 397 |     // Accounting for the virtual exit, see if we had any reverse-unreachable | ||
| 398 |     // nodes. | ||
| 399 | if (Total + 1 != Num) { | ||
| 400 | HasNonTrivialRoots = true; | ||
| 401 | |||
| 402 |       // SuccOrder is the order of blocks in the function. It is needed to make | ||
| 403 |       // the calculation of the FurthestAway node and the whole PostDomTree | ||
| 404 |       // immune to swap successors transformation (e.g. canonicalizing branch | ||
| 405 |       // predicates). SuccOrder is initialized lazily only for successors of | ||
| 406 |       // reverse unreachable nodes. | ||
| 407 | std::optional<NodeOrderMap> SuccOrder; | ||
| 408 | auto InitSuccOrderOnce = [&]() { | ||
| 409 | SuccOrder = NodeOrderMap(); | ||
| 410 | for (const auto Node : nodes(DT.Parent)) | ||
| 411 | if (SNCA.NodeToInfo.count(Node) == 0) | ||
| 412 | for (const auto Succ : getChildren<false>(Node, SNCA.BatchUpdates)) | ||
| 413 | SuccOrder->try_emplace(Succ, 0); | ||
| 414 | |||
| 415 |         // Add mapping for all entries of SuccOrder. | ||
| 416 | unsigned NodeNum = 0; | ||
| 417 | for (const auto Node : nodes(DT.Parent)) { | ||
| 418 | ++NodeNum; | ||
| 419 | auto Order = SuccOrder->find(Node); | ||
| 420 | if (Order != SuccOrder->end()) { | ||
| 421 | assert(Order->second == 0); | ||
| 422 | Order->second = NodeNum; | ||
| 423 |           } | ||
| 424 |         } | ||
| 425 | }; | ||
| 426 | |||
| 427 |       // Make another DFS pass over all other nodes to find the | ||
| 428 |       // reverse-unreachable blocks, and find the furthest paths we'll be able | ||
| 429 |       // to make. | ||
| 430 |       // Note that this looks N^2, but it's really 2N worst case, if every node | ||
| 431 |       // is unreachable. This is because we are still going to only visit each | ||
| 432 |       // unreachable node once, we may just visit it in two directions, | ||
| 433 |       // depending on how lucky we get. | ||
| 434 | for (const NodePtr I : nodes(DT.Parent)) { | ||
| 435 | if (SNCA.NodeToInfo.count(I) == 0) { | ||
| 436 | LLVM_DEBUG(dbgs() | ||
| 437 | << "\t\t\tVisiting node " << BlockNamePrinter(I) << "\n"); | ||
| 438 |           // Find the furthest away we can get by following successors, then | ||
| 439 |           // follow them in reverse.  This gives us some reasonable answer about | ||
| 440 |           // the post-dom tree inside any infinite loop. In particular, it | ||
| 441 |           // guarantees we get to the farthest away point along *some* | ||
| 442 |           // path. This also matches the GCC's behavior. | ||
| 443 |           // If we really wanted a totally complete picture of dominance inside | ||
| 444 |           // this infinite loop, we could do it with SCC-like algorithms to find | ||
| 445 |           // the lowest and highest points in the infinite loop.  In theory, it | ||
| 446 |           // would be nice to give the canonical backedge for the loop, but it's | ||
| 447 |           // expensive and does not always lead to a minimal set of roots. | ||
| 448 | LLVM_DEBUG(dbgs() << "\t\t\tRunning forward DFS\n"); | ||
| 449 | |||
| 450 | if (!SuccOrder) | ||
| 451 | InitSuccOrderOnce(); | ||
| 452 | assert(SuccOrder); | ||
| 453 | |||
| 454 | const unsigned NewNum = | ||
| 455 | SNCA.runDFS<true>(I, Num, AlwaysDescend, Num, &*SuccOrder); | ||
| 456 | const NodePtr FurthestAway = SNCA.NumToNode[NewNum]; | ||
| 457 | LLVM_DEBUG(dbgs() << "\t\t\tFound a new furthest away node " | ||
| 458 | << "(non-trivial root): " | ||
| 459 | << BlockNamePrinter(FurthestAway) << "\n"); | ||
| 460 | Roots.push_back(FurthestAway); | ||
| 461 | LLVM_DEBUG(dbgs() << "\t\t\tPrev DFSNum: " << Num << ", new DFSNum: " | ||
| 462 | << NewNum << "\n\t\t\tRemoving DFS info\n"); | ||
| 463 | for (unsigned i = NewNum; i > Num; --i) { | ||
| 464 | const NodePtr N = SNCA.NumToNode[i]; | ||
| 465 | LLVM_DEBUG(dbgs() << "\t\t\t\tRemoving DFS info for " | ||
| 466 | << BlockNamePrinter(N) << "\n"); | ||
| 467 | SNCA.NodeToInfo.erase(N); | ||
| 468 | SNCA.NumToNode.pop_back(); | ||
| 469 |           } | ||
| 470 | const unsigned PrevNum = Num; | ||
| 471 | LLVM_DEBUG(dbgs() << "\t\t\tRunning reverse DFS\n"); | ||
| 472 | Num = SNCA.runDFS(FurthestAway, Num, AlwaysDescend, 1); | ||
| 473 | for (unsigned i = PrevNum + 1; i <= Num; ++i) | ||
| 474 | LLVM_DEBUG(dbgs() << "\t\t\t\tfound node " | ||
| 475 | << BlockNamePrinter(SNCA.NumToNode[i]) << "\n"); | ||
| 476 |         } | ||
| 477 |       } | ||
| 478 |     } | ||
| 479 | |||
| 480 | LLVM_DEBUG(dbgs() << "Total: " << Total << ", Num: " << Num << "\n"); | ||
| 481 | LLVM_DEBUG(dbgs() << "Discovered CFG nodes:\n"); | ||
| 482 | LLVM_DEBUG(for (size_t i = 0; i <= Num; ++i) dbgs() | ||
| 483 | << i << ": " << BlockNamePrinter(SNCA.NumToNode[i]) << "\n"); | ||
| 484 | |||
| 485 | assert((Total + 1 == Num) && "Everything should have been visited"); | ||
| 486 | |||
| 487 |     // Step #3: If we found some non-trivial roots, make them non-redundant. | ||
| 488 | if (HasNonTrivialRoots) RemoveRedundantRoots(DT, BUI, Roots); | ||
| 489 | |||
| 490 | LLVM_DEBUG(dbgs() << "Found roots: "); | ||
| 491 | LLVM_DEBUG(for (auto *Root | ||
| 492 | : Roots) dbgs() | ||
| 493 | << BlockNamePrinter(Root) << " "); | ||
| 494 | LLVM_DEBUG(dbgs() << "\n"); | ||
| 495 | |||
| 496 | return Roots; | ||
| 497 |   } | ||
| 498 | |||
| 499 |   // This function only makes sense for postdominators. | ||
| 500 |   // We define roots to be some set of CFG nodes where (reverse) DFS walks have | ||
| 501 |   // to start in order to visit all the CFG nodes (including the | ||
| 502 |   // reverse-unreachable ones). | ||
| 503 |   // When the search for non-trivial roots is done it may happen that some of | ||
| 504 |   // the non-trivial roots are reverse-reachable from other non-trivial roots, | ||
| 505 |   // which makes them redundant. This function removes them from the set of | ||
| 506 |   // input roots. | ||
| 507 | static void RemoveRedundantRoots(const DomTreeT &DT, BatchUpdatePtr BUI, | ||
| 508 | RootsT &Roots) { | ||
| 509 | assert(IsPostDom && "This function is for postdominators only"); | ||
| 510 | LLVM_DEBUG(dbgs() << "Removing redundant roots\n"); | ||
| 511 | |||
| 512 | SemiNCAInfo SNCA(BUI); | ||
| 513 | |||
| 514 | for (unsigned i = 0; i < Roots.size(); ++i) { | ||
| 515 | auto &Root = Roots[i]; | ||
| 516 |       // Trivial roots are always non-redundant. | ||
| 517 | if (!HasForwardSuccessors(Root, BUI)) continue; | ||
| 518 | LLVM_DEBUG(dbgs() << "\tChecking if " << BlockNamePrinter(Root) | ||
| 519 | << " remains a root\n"); | ||
| 520 | SNCA.clear(); | ||
| 521 |       // Do a forward walk looking for the other roots. | ||
| 522 | const unsigned Num = SNCA.runDFS<true>(Root, 0, AlwaysDescend, 0); | ||
| 523 |       // Skip the start node and begin from the second one (note that DFS uses | ||
| 524 |       // 1-based indexing). | ||
| 525 | for (unsigned x = 2; x <= Num; ++x) { | ||
| 526 | const NodePtr N = SNCA.NumToNode[x]; | ||
| 527 |         // If we wound another root in a (forward) DFS walk, remove the current | ||
| 528 |         // root from the set of roots, as it is reverse-reachable from the other | ||
| 529 |         // one. | ||
| 530 | if (llvm::is_contained(Roots, N)) { | ||
| 531 | LLVM_DEBUG(dbgs() << "\tForward DFS walk found another root " | ||
| 532 | << BlockNamePrinter(N) << "\n\tRemoving root " | ||
| 533 | << BlockNamePrinter(Root) << "\n"); | ||
| 534 | std::swap(Root, Roots.back()); | ||
| 535 | Roots.pop_back(); | ||
| 536 | |||
| 537 |           // Root at the back takes the current root's place. | ||
| 538 |           // Start the next loop iteration with the same index. | ||
| 539 | --i; | ||
| 540 | break; | ||
| 541 |         } | ||
| 542 |       } | ||
| 543 |     } | ||
| 544 |   } | ||
| 545 | |||
| 546 | template <typename DescendCondition> | ||
| 547 | void doFullDFSWalk(const DomTreeT &DT, DescendCondition DC) { | ||
| 548 | if (!IsPostDom) { | ||
| 549 | assert(DT.Roots.size() == 1 && "Dominators should have a singe root"); | ||
| 550 | runDFS(DT.Roots[0], 0, DC, 0); | ||
| 551 | return; | ||
| 552 |     } | ||
| 553 | |||
| 554 | addVirtualRoot(); | ||
| 555 | unsigned Num = 1; | ||
| 556 | for (const NodePtr Root : DT.Roots) Num = runDFS(Root, Num, DC, 0); | ||
| 557 |   } | ||
| 558 | |||
| 559 | static void CalculateFromScratch(DomTreeT &DT, BatchUpdatePtr BUI) { | ||
| 560 | auto *Parent = DT.Parent; | ||
| 561 | DT.reset(); | ||
| 562 | DT.Parent = Parent; | ||
| 563 |     // If the update is using the actual CFG, BUI is null. If it's using a view, | ||
| 564 |     // BUI is non-null and the PreCFGView is used. When calculating from | ||
| 565 |     // scratch, make the PreViewCFG equal to the PostCFGView, so Post is used. | ||
| 566 | BatchUpdatePtr PostViewBUI = nullptr; | ||
| 567 | if (BUI && BUI->PostViewCFG) { | ||
| 568 | BUI->PreViewCFG = *BUI->PostViewCFG; | ||
| 569 | PostViewBUI = BUI; | ||
| 570 |     } | ||
| 571 |     // This is rebuilding the whole tree, not incrementally, but PostViewBUI is | ||
| 572 |     // used in case the caller needs a DT update with a CFGView. | ||
| 573 | SemiNCAInfo SNCA(PostViewBUI); | ||
| 574 | |||
| 575 |     // Step #0: Number blocks in depth-first order and initialize variables used | ||
| 576 |     // in later stages of the algorithm. | ||
| 577 | DT.Roots = FindRoots(DT, PostViewBUI); | ||
| 578 | SNCA.doFullDFSWalk(DT, AlwaysDescend); | ||
| 579 | |||
| 580 | SNCA.runSemiNCA(DT); | ||
| 581 | if (BUI) { | ||
| 582 | BUI->IsRecalculated = true; | ||
| 583 |       LLVM_DEBUG( | ||
| 584 | dbgs() << "DomTree recalculated, skipping future batch updates\n"); | ||
| 585 |     } | ||
| 586 | |||
| 587 | if (DT.Roots.empty()) return; | ||
| 588 | |||
| 589 |     // Add a node for the root. If the tree is a PostDominatorTree it will be | ||
| 590 |     // the virtual exit (denoted by (BasicBlock *) nullptr) which postdominates | ||
| 591 |     // all real exits (including multiple exit blocks, infinite loops). | ||
| 592 | NodePtr Root = IsPostDom ? nullptr : DT.Roots[0]; | ||
| 593 | |||
| 594 | DT.RootNode = DT.createNode(Root); | ||
| 595 | SNCA.attachNewSubtree(DT, DT.RootNode); | ||
| 596 |   } | ||
| 597 | |||
| 598 | void attachNewSubtree(DomTreeT& DT, const TreeNodePtr AttachTo) { | ||
| 599 |     // Attach the first unreachable block to AttachTo. | ||
| 600 | NodeToInfo[NumToNode[1]].IDom = AttachTo->getBlock(); | ||
| 601 |     // Loop over all of the discovered blocks in the function... | ||
| 602 | for (size_t i = 1, e = NumToNode.size(); i != e; ++i) { | ||
| 603 | NodePtr W = NumToNode[i]; | ||
| 604 | |||
| 605 |       // Don't replace this with 'count', the insertion side effect is important | ||
| 606 | if (DT.DomTreeNodes[W]) continue; // Haven't calculated this node yet? | ||
| 607 | |||
| 608 | NodePtr ImmDom = getIDom(W); | ||
| 609 | |||
| 610 |       // Get or calculate the node for the immediate dominator. | ||
| 611 | TreeNodePtr IDomNode = getNodeForBlock(ImmDom, DT); | ||
| 612 | |||
| 613 |       // Add a new tree node for this BasicBlock, and link it as a child of | ||
| 614 |       // IDomNode. | ||
| 615 | DT.createChild(W, IDomNode); | ||
| 616 |     } | ||
| 617 |   } | ||
| 618 | |||
| 619 | void reattachExistingSubtree(DomTreeT &DT, const TreeNodePtr AttachTo) { | ||
| 620 | NodeToInfo[NumToNode[1]].IDom = AttachTo->getBlock(); | ||
| 621 | for (size_t i = 1, e = NumToNode.size(); i != e; ++i) { | ||
| 622 | const NodePtr N = NumToNode[i]; | ||
| 623 | const TreeNodePtr TN = DT.getNode(N); | ||
| 624 | assert(TN); | ||
| 625 | const TreeNodePtr NewIDom = DT.getNode(NodeToInfo[N].IDom); | ||
| 626 | TN->setIDom(NewIDom); | ||
| 627 |     } | ||
| 628 |   } | ||
| 629 | |||
| 630 |   // Helper struct used during edge insertions. | ||
| 631 | struct InsertionInfo { | ||
| 632 | struct Compare { | ||
| 633 | bool operator()(TreeNodePtr LHS, TreeNodePtr RHS) const { | ||
| 634 | return LHS->getLevel() < RHS->getLevel(); | ||
| 635 |       } | ||
| 636 | }; | ||
| 637 | |||
| 638 |     // Bucket queue of tree nodes ordered by descending level. For simplicity, | ||
| 639 |     // we use a priority_queue here. | ||
| 640 | std::priority_queue<TreeNodePtr, SmallVector<TreeNodePtr, 8>, | ||
| 641 |                         Compare> | ||
| 642 |         Bucket; | ||
| 643 | SmallDenseSet<TreeNodePtr, 8> Visited; | ||
| 644 | SmallVector<TreeNodePtr, 8> Affected; | ||
| 645 | #ifdef LLVM_ENABLE_ABI_BREAKING_CHECKS | ||
| 646 | SmallVector<TreeNodePtr, 8> VisitedUnaffected; | ||
| 647 | #endif | ||
| 648 | }; | ||
| 649 | |||
| 650 | static void InsertEdge(DomTreeT &DT, const BatchUpdatePtr BUI, | ||
| 651 | const NodePtr From, const NodePtr To) { | ||
| 652 | assert((From || IsPostDom) && | ||
| 653 | "From has to be a valid CFG node or a virtual root"); | ||
| 654 | assert(To && "Cannot be a nullptr"); | ||
| 655 | LLVM_DEBUG(dbgs() << "Inserting edge " << BlockNamePrinter(From) << " -> " | ||
| 656 | << BlockNamePrinter(To) << "\n"); | ||
| 657 | TreeNodePtr FromTN = DT.getNode(From); | ||
| 658 | |||
| 659 | if (!FromTN) { | ||
| 660 |       // Ignore edges from unreachable nodes for (forward) dominators. | ||
| 661 | if (!IsPostDom) return; | ||
| 662 | |||
| 663 |       // The unreachable node becomes a new root -- a tree node for it. | ||
| 664 | TreeNodePtr VirtualRoot = DT.getNode(nullptr); | ||
| 665 | FromTN = DT.createChild(From, VirtualRoot); | ||
| 666 | DT.Roots.push_back(From); | ||
| 667 |     } | ||
| 668 | |||
| 669 | DT.DFSInfoValid = false; | ||
| 670 | |||
| 671 | const TreeNodePtr ToTN = DT.getNode(To); | ||
| 672 | if (!ToTN) | ||
| 673 | InsertUnreachable(DT, BUI, FromTN, To); | ||
| 674 |     else | ||
| 675 | InsertReachable(DT, BUI, FromTN, ToTN); | ||
| 676 |   } | ||
| 677 | |||
| 678 |   // Determines if some existing root becomes reverse-reachable after the | ||
| 679 |   // insertion. Rebuilds the whole tree if that situation happens. | ||
| 680 | static bool UpdateRootsBeforeInsertion(DomTreeT &DT, const BatchUpdatePtr BUI, | ||
| 681 |                                          const TreeNodePtr From, | ||
| 682 | const TreeNodePtr To) { | ||
| 683 | assert(IsPostDom && "This function is only for postdominators"); | ||
| 684 |     // Destination node is not attached to the virtual root, so it cannot be a | ||
| 685 |     // root. | ||
| 686 | if (!DT.isVirtualRoot(To->getIDom())) return false; | ||
| 687 | |||
| 688 | if (!llvm::is_contained(DT.Roots, To->getBlock())) | ||
| 689 | return false; // To is not a root, nothing to update. | ||
| 690 | |||
| 691 | LLVM_DEBUG(dbgs() << "\t\tAfter the insertion, " << BlockNamePrinter(To) | ||
| 692 | << " is no longer a root\n\t\tRebuilding the tree!!!\n"); | ||
| 693 | |||
| 694 | CalculateFromScratch(DT, BUI); | ||
| 695 | return true; | ||
| 696 |   } | ||
| 697 | |||
| 698 | static bool isPermutation(const SmallVectorImpl<NodePtr> &A, | ||
| 699 | const SmallVectorImpl<NodePtr> &B) { | ||
| 700 | if (A.size() != B.size()) | ||
| 701 | return false; | ||
| 702 | SmallPtrSet<NodePtr, 4> Set(A.begin(), A.end()); | ||
| 703 | for (NodePtr N : B) | ||
| 704 | if (Set.count(N) == 0) | ||
| 705 | return false; | ||
| 706 | return true; | ||
| 707 |   } | ||
| 708 | |||
| 709 |   // Updates the set of roots after insertion or deletion. This ensures that | ||
| 710 |   // roots are the same when after a series of updates and when the tree would | ||
| 711 |   // be built from scratch. | ||
| 712 | static void UpdateRootsAfterUpdate(DomTreeT &DT, const BatchUpdatePtr BUI) { | ||
| 713 | assert(IsPostDom && "This function is only for postdominators"); | ||
| 714 | |||
| 715 |     // The tree has only trivial roots -- nothing to update. | ||
| 716 | if (llvm::none_of(DT.Roots, [BUI](const NodePtr N) { | ||
| 717 | return HasForwardSuccessors(N, BUI); | ||
| 718 | })) | ||
| 719 | return; | ||
| 720 | |||
| 721 |     // Recalculate the set of roots. | ||
| 722 | RootsT Roots = FindRoots(DT, BUI); | ||
| 723 | if (!isPermutation(DT.Roots, Roots)) { | ||
| 724 |       // The roots chosen in the CFG have changed. This is because the | ||
| 725 |       // incremental algorithm does not really know or use the set of roots and | ||
| 726 |       // can make a different (implicit) decision about which node within an | ||
| 727 |       // infinite loop becomes a root. | ||
| 728 | |||
| 729 | LLVM_DEBUG(dbgs() << "Roots are different in updated trees\n" | ||
| 730 | << "The entire tree needs to be rebuilt\n"); | ||
| 731 |       // It may be possible to update the tree without recalculating it, but | ||
| 732 |       // we do not know yet how to do it, and it happens rarely in practice. | ||
| 733 | CalculateFromScratch(DT, BUI); | ||
| 734 |     } | ||
| 735 |   } | ||
| 736 | |||
| 737 |   // Handles insertion to a node already in the dominator tree. | ||
| 738 | static void InsertReachable(DomTreeT &DT, const BatchUpdatePtr BUI, | ||
| 739 | const TreeNodePtr From, const TreeNodePtr To) { | ||
| 740 | LLVM_DEBUG(dbgs() << "\tReachable " << BlockNamePrinter(From->getBlock()) | ||
| 741 | << " -> " << BlockNamePrinter(To->getBlock()) << "\n"); | ||
| 742 | if (IsPostDom && UpdateRootsBeforeInsertion(DT, BUI, From, To)) return; | ||
| 743 |     // DT.findNCD expects both pointers to be valid. When From is a virtual | ||
| 744 |     // root, then its CFG block pointer is a nullptr, so we have to 'compute' | ||
| 745 |     // the NCD manually. | ||
| 746 | const NodePtr NCDBlock = | ||
| 747 | (From->getBlock() && To->getBlock()) | ||
| 748 | ? DT.findNearestCommonDominator(From->getBlock(), To->getBlock()) | ||
| 749 | : nullptr; | ||
| 750 | assert(NCDBlock || DT.isPostDominator()); | ||
| 751 | const TreeNodePtr NCD = DT.getNode(NCDBlock); | ||
| 752 | assert(NCD); | ||
| 753 | |||
| 754 | LLVM_DEBUG(dbgs() << "\t\tNCA == " << BlockNamePrinter(NCD) << "\n"); | ||
| 755 | const unsigned NCDLevel = NCD->getLevel(); | ||
| 756 | |||
| 757 |     // Based on Lemma 2.5 from [2], after insertion of (From,To), v is affected | ||
| 758 |     // iff depth(NCD)+1 < depth(v) && a path P from To to v exists where every | ||
| 759 |     // w on P s.t. depth(v) <= depth(w) | ||
| 760 |     // | ||
| 761 |     // This reduces to a widest path problem (maximizing the depth of the | ||
| 762 |     // minimum vertex in the path) which can be solved by a modified version of | ||
| 763 |     // Dijkstra with a bucket queue (named depth-based search in [2]). | ||
| 764 | |||
| 765 |     // To is in the path, so depth(NCD)+1 < depth(v) <= depth(To). Nothing | ||
| 766 |     // affected if this does not hold. | ||
| 767 | if (NCDLevel + 1 >= To->getLevel()) | ||
| 768 | return; | ||
| 769 | |||
| 770 |     InsertionInfo II; | ||
| 771 | SmallVector<TreeNodePtr, 8> UnaffectedOnCurrentLevel; | ||
| 772 | II.Bucket.push(To); | ||
| 773 | II.Visited.insert(To); | ||
| 774 | |||
| 775 | while (!II.Bucket.empty()) { | ||
| 776 | TreeNodePtr TN = II.Bucket.top(); | ||
| 777 | II.Bucket.pop(); | ||
| 778 | II.Affected.push_back(TN); | ||
| 779 | |||
| 780 | const unsigned CurrentLevel = TN->getLevel(); | ||
| 781 | LLVM_DEBUG(dbgs() << "Mark " << BlockNamePrinter(TN) << | ||
| 782 | "as affected, CurrentLevel " << CurrentLevel << "\n"); | ||
| 783 | |||
| 784 | assert(TN->getBlock() && II.Visited.count(TN) && "Preconditions!"); | ||
| 785 | |||
| 786 | while (true) { | ||
| 787 |         // Unlike regular Dijkstra, we have an inner loop to expand more | ||
| 788 |         // vertices. The first iteration is for the (affected) vertex popped | ||
| 789 |         // from II.Bucket and the rest are for vertices in | ||
| 790 |         // UnaffectedOnCurrentLevel, which may eventually expand to affected | ||
| 791 |         // vertices. | ||
| 792 |         // | ||
| 793 |         // Invariant: there is an optimal path from `To` to TN with the minimum | ||
| 794 |         // depth being CurrentLevel. | ||
| 795 | for (const NodePtr Succ : getChildren<IsPostDom>(TN->getBlock(), BUI)) { | ||
| 796 | const TreeNodePtr SuccTN = DT.getNode(Succ); | ||
| 797 | assert(SuccTN && | ||
| 798 | "Unreachable successor found at reachable insertion"); | ||
| 799 | const unsigned SuccLevel = SuccTN->getLevel(); | ||
| 800 | |||
| 801 | LLVM_DEBUG(dbgs() << "\tSuccessor " << BlockNamePrinter(Succ) | ||
| 802 | << ", level = " << SuccLevel << "\n"); | ||
| 803 | |||
| 804 |           // There is an optimal path from `To` to Succ with the minimum depth | ||
| 805 |           // being min(CurrentLevel, SuccLevel). | ||
| 806 |           // | ||
| 807 |           // If depth(NCD)+1 < depth(Succ) is not satisfied, Succ is unaffected | ||
| 808 |           // and no affected vertex may be reached by a path passing through it. | ||
| 809 |           // Stop here. Also, Succ may be visited by other predecessors but the | ||
| 810 |           // first visit has the optimal path. Stop if Succ has been visited. | ||
| 811 | if (SuccLevel <= NCDLevel + 1 || !II.Visited.insert(SuccTN).second) | ||
| 812 | continue; | ||
| 813 | |||
| 814 | if (SuccLevel > CurrentLevel) { | ||
| 815 |             // Succ is unaffected but it may (transitively) expand to affected | ||
| 816 |             // vertices. Store it in UnaffectedOnCurrentLevel. | ||
| 817 | LLVM_DEBUG(dbgs() << "\t\tMarking visited not affected " | ||
| 818 | << BlockNamePrinter(Succ) << "\n"); | ||
| 819 | UnaffectedOnCurrentLevel.push_back(SuccTN); | ||
| 820 | #ifndef NDEBUG | ||
| 821 | II.VisitedUnaffected.push_back(SuccTN); | ||
| 822 | #endif | ||
| 823 | } else { | ||
| 824 |             // The condition is satisfied (Succ is affected). Add Succ to the | ||
| 825 |             // bucket queue. | ||
| 826 | LLVM_DEBUG(dbgs() << "\t\tAdd " << BlockNamePrinter(Succ) | ||
| 827 | << " to a Bucket\n"); | ||
| 828 | II.Bucket.push(SuccTN); | ||
| 829 |           } | ||
| 830 |         } | ||
| 831 | |||
| 832 | if (UnaffectedOnCurrentLevel.empty()) | ||
| 833 | break; | ||
| 834 | TN = UnaffectedOnCurrentLevel.pop_back_val(); | ||
| 835 | LLVM_DEBUG(dbgs() << " Next: " << BlockNamePrinter(TN) << "\n"); | ||
| 836 |       } | ||
| 837 |     } | ||
| 838 | |||
| 839 |     // Finish by updating immediate dominators and levels. | ||
| 840 | UpdateInsertion(DT, BUI, NCD, II); | ||
| 841 |   } | ||
| 842 | |||
| 843 |   // Updates immediate dominators and levels after insertion. | ||
| 844 | static void UpdateInsertion(DomTreeT &DT, const BatchUpdatePtr BUI, | ||
| 845 | const TreeNodePtr NCD, InsertionInfo &II) { | ||
| 846 | LLVM_DEBUG(dbgs() << "Updating NCD = " << BlockNamePrinter(NCD) << "\n"); | ||
| 847 | |||
| 848 | for (const TreeNodePtr TN : II.Affected) { | ||
| 849 | LLVM_DEBUG(dbgs() << "\tIDom(" << BlockNamePrinter(TN) | ||
| 850 | << ") = " << BlockNamePrinter(NCD) << "\n"); | ||
| 851 | TN->setIDom(NCD); | ||
| 852 |     } | ||
| 853 | |||
| 854 | #if defined(LLVM_ENABLE_ABI_BREAKING_CHECKS) && !defined(NDEBUG) | ||
| 855 | for (const TreeNodePtr TN : II.VisitedUnaffected) | ||
| 856 | assert(TN->getLevel() == TN->getIDom()->getLevel() + 1 && | ||
| 857 | "TN should have been updated by an affected ancestor"); | ||
| 858 | #endif | ||
| 859 | |||
| 860 | if (IsPostDom) UpdateRootsAfterUpdate(DT, BUI); | ||
| 861 |   } | ||
| 862 | |||
| 863 |   // Handles insertion to previously unreachable nodes. | ||
| 864 | static void InsertUnreachable(DomTreeT &DT, const BatchUpdatePtr BUI, | ||
| 865 | const TreeNodePtr From, const NodePtr To) { | ||
| 866 | LLVM_DEBUG(dbgs() << "Inserting " << BlockNamePrinter(From) | ||
| 867 | << " -> (unreachable) " << BlockNamePrinter(To) << "\n"); | ||
| 868 | |||
| 869 |     // Collect discovered edges to already reachable nodes. | ||
| 870 | SmallVector<std::pair<NodePtr, TreeNodePtr>, 8> DiscoveredEdgesToReachable; | ||
| 871 |     // Discover and connect nodes that became reachable with the insertion. | ||
| 872 | ComputeUnreachableDominators(DT, BUI, To, From, DiscoveredEdgesToReachable); | ||
| 873 | |||
| 874 | LLVM_DEBUG(dbgs() << "Inserted " << BlockNamePrinter(From) | ||
| 875 | << " -> (prev unreachable) " << BlockNamePrinter(To) | ||
| 876 | << "\n"); | ||
| 877 | |||
| 878 |     // Used the discovered edges and inset discovered connecting (incoming) | ||
| 879 |     // edges. | ||
| 880 | for (const auto &Edge : DiscoveredEdgesToReachable) { | ||
| 881 | LLVM_DEBUG(dbgs() << "\tInserting discovered connecting edge " | ||
| 882 | << BlockNamePrinter(Edge.first) << " -> " | ||
| 883 | << BlockNamePrinter(Edge.second) << "\n"); | ||
| 884 | InsertReachable(DT, BUI, DT.getNode(Edge.first), Edge.second); | ||
| 885 |     } | ||
| 886 |   } | ||
| 887 | |||
| 888 |   // Connects nodes that become reachable with an insertion. | ||
| 889 | static void ComputeUnreachableDominators( | ||
| 890 | DomTreeT &DT, const BatchUpdatePtr BUI, const NodePtr Root, | ||
| 891 |       const TreeNodePtr Incoming, | ||
| 892 | SmallVectorImpl<std::pair<NodePtr, TreeNodePtr>> | ||
| 893 | &DiscoveredConnectingEdges) { | ||
| 894 | assert(!DT.getNode(Root) && "Root must not be reachable"); | ||
| 895 | |||
| 896 |     // Visit only previously unreachable nodes. | ||
| 897 | auto UnreachableDescender = [&DT, &DiscoveredConnectingEdges](NodePtr From, | ||
| 898 | NodePtr To) { | ||
| 899 | const TreeNodePtr ToTN = DT.getNode(To); | ||
| 900 | if (!ToTN) return true; | ||
| 901 | |||
| 902 | DiscoveredConnectingEdges.push_back({From, ToTN}); | ||
| 903 | return false; | ||
| 904 | }; | ||
| 905 | |||
| 906 | SemiNCAInfo SNCA(BUI); | ||
| 907 | SNCA.runDFS(Root, 0, UnreachableDescender, 0); | ||
| 908 | SNCA.runSemiNCA(DT); | ||
| 909 | SNCA.attachNewSubtree(DT, Incoming); | ||
| 910 | |||
| 911 | LLVM_DEBUG(dbgs() << "After adding unreachable nodes\n"); | ||
| 912 |   } | ||
| 913 | |||
| 914 | static void DeleteEdge(DomTreeT &DT, const BatchUpdatePtr BUI, | ||
| 915 | const NodePtr From, const NodePtr To) { | ||
| 916 | assert(From && To && "Cannot disconnect nullptrs"); | ||
| 917 | LLVM_DEBUG(dbgs() << "Deleting edge " << BlockNamePrinter(From) << " -> " | ||
| 918 | << BlockNamePrinter(To) << "\n"); | ||
| 919 | |||
| 920 | #ifdef LLVM_ENABLE_ABI_BREAKING_CHECKS | ||
| 921 |     // Ensure that the edge was in fact deleted from the CFG before informing | ||
| 922 |     // the DomTree about it. | ||
| 923 |     // The check is O(N), so run it only in debug configuration. | ||
| 924 | auto IsSuccessor = [BUI](const NodePtr SuccCandidate, const NodePtr Of) { | ||
| 925 | auto Successors = getChildren<IsPostDom>(Of, BUI); | ||
| 926 | return llvm::is_contained(Successors, SuccCandidate); | ||
| 927 | }; | ||
| 928 | (void)IsSuccessor; | ||
| 929 | assert(!IsSuccessor(To, From) && "Deleted edge still exists in the CFG!"); | ||
| 930 | #endif | ||
| 931 | |||
| 932 | const TreeNodePtr FromTN = DT.getNode(From); | ||
| 933 |     // Deletion in an unreachable subtree -- nothing to do. | ||
| 934 | if (!FromTN) return; | ||
| 935 | |||
| 936 | const TreeNodePtr ToTN = DT.getNode(To); | ||
| 937 | if (!ToTN) { | ||
| 938 |       LLVM_DEBUG( | ||
| 939 | dbgs() << "\tTo (" << BlockNamePrinter(To) | ||
| 940 | << ") already unreachable -- there is no edge to delete\n"); | ||
| 941 | return; | ||
| 942 |     } | ||
| 943 | |||
| 944 | const NodePtr NCDBlock = DT.findNearestCommonDominator(From, To); | ||
| 945 | const TreeNodePtr NCD = DT.getNode(NCDBlock); | ||
| 946 | |||
| 947 |     // If To dominates From -- nothing to do. | ||
| 948 | if (ToTN != NCD) { | ||
| 949 | DT.DFSInfoValid = false; | ||
| 950 | |||
| 951 | const TreeNodePtr ToIDom = ToTN->getIDom(); | ||
| 952 | LLVM_DEBUG(dbgs() << "\tNCD " << BlockNamePrinter(NCD) << ", ToIDom " | ||
| 953 | << BlockNamePrinter(ToIDom) << "\n"); | ||
| 954 | |||
| 955 |       // To remains reachable after deletion. | ||
| 956 |       // (Based on the caption under Figure 4. from [2].) | ||
| 957 | if (FromTN != ToIDom || HasProperSupport(DT, BUI, ToTN)) | ||
| 958 | DeleteReachable(DT, BUI, FromTN, ToTN); | ||
| 959 |       else | ||
| 960 | DeleteUnreachable(DT, BUI, ToTN); | ||
| 961 |     } | ||
| 962 | |||
| 963 | if (IsPostDom) UpdateRootsAfterUpdate(DT, BUI); | ||
| 964 |   } | ||
| 965 | |||
| 966 |   // Handles deletions that leave destination nodes reachable. | ||
| 967 | static void DeleteReachable(DomTreeT &DT, const BatchUpdatePtr BUI, | ||
| 968 |                               const TreeNodePtr FromTN, | ||
| 969 | const TreeNodePtr ToTN) { | ||
| 970 | LLVM_DEBUG(dbgs() << "Deleting reachable " << BlockNamePrinter(FromTN) | ||
| 971 | << " -> " << BlockNamePrinter(ToTN) << "\n"); | ||
| 972 | LLVM_DEBUG(dbgs() << "\tRebuilding subtree\n"); | ||
| 973 | |||
| 974 |     // Find the top of the subtree that needs to be rebuilt. | ||
| 975 |     // (Based on the lemma 2.6 from [2].) | ||
| 976 | const NodePtr ToIDom = | ||
| 977 | DT.findNearestCommonDominator(FromTN->getBlock(), ToTN->getBlock()); | ||
| 978 | assert(ToIDom || DT.isPostDominator()); | ||
| 979 | const TreeNodePtr ToIDomTN = DT.getNode(ToIDom); | ||
| 980 | assert(ToIDomTN); | ||
| 981 | const TreeNodePtr PrevIDomSubTree = ToIDomTN->getIDom(); | ||
| 982 |     // Top of the subtree to rebuild is the root node. Rebuild the tree from | ||
| 983 |     // scratch. | ||
| 984 | if (!PrevIDomSubTree) { | ||
| 985 | LLVM_DEBUG(dbgs() << "The entire tree needs to be rebuilt\n"); | ||
| 986 | CalculateFromScratch(DT, BUI); | ||
| 987 | return; | ||
| 988 |     } | ||
| 989 | |||
| 990 |     // Only visit nodes in the subtree starting at To. | ||
| 991 | const unsigned Level = ToIDomTN->getLevel(); | ||
| 992 | auto DescendBelow = [Level, &DT](NodePtr, NodePtr To) { | ||
| 993 | return DT.getNode(To)->getLevel() > Level; | ||
| 994 | }; | ||
| 995 | |||
| 996 | LLVM_DEBUG(dbgs() << "\tTop of subtree: " << BlockNamePrinter(ToIDomTN) | ||
| 997 | << "\n"); | ||
| 998 | |||
| 999 | SemiNCAInfo SNCA(BUI); | ||
| 1000 | SNCA.runDFS(ToIDom, 0, DescendBelow, 0); | ||
| 1001 | LLVM_DEBUG(dbgs() << "\tRunning Semi-NCA\n"); | ||
| 1002 | SNCA.runSemiNCA(DT, Level); | ||
| 1003 | SNCA.reattachExistingSubtree(DT, PrevIDomSubTree); | ||
| 1004 |   } | ||
| 1005 | |||
| 1006 |   // Checks if a node has proper support, as defined on the page 3 and later | ||
| 1007 |   // explained on the page 7 of [2]. | ||
| 1008 | static bool HasProperSupport(DomTreeT &DT, const BatchUpdatePtr BUI, | ||
| 1009 | const TreeNodePtr TN) { | ||
| 1010 | LLVM_DEBUG(dbgs() << "IsReachableFromIDom " << BlockNamePrinter(TN) | ||
| 1011 | << "\n"); | ||
| 1012 | auto TNB = TN->getBlock(); | ||
| 1013 | for (const NodePtr Pred : getChildren<!IsPostDom>(TNB, BUI)) { | ||
| 1014 | LLVM_DEBUG(dbgs() << "\tPred " << BlockNamePrinter(Pred) << "\n"); | ||
| 1015 | if (!DT.getNode(Pred)) continue; | ||
| 1016 | |||
| 1017 | const NodePtr Support = DT.findNearestCommonDominator(TNB, Pred); | ||
| 1018 | LLVM_DEBUG(dbgs() << "\tSupport " << BlockNamePrinter(Support) << "\n"); | ||
| 1019 | if (Support != TNB) { | ||
| 1020 | LLVM_DEBUG(dbgs() << "\t" << BlockNamePrinter(TN) | ||
| 1021 | << " is reachable from support " | ||
| 1022 | << BlockNamePrinter(Support) << "\n"); | ||
| 1023 | return true; | ||
| 1024 |       } | ||
| 1025 |     } | ||
| 1026 | |||
| 1027 | return false; | ||
| 1028 |   } | ||
| 1029 | |||
| 1030 |   // Handle deletions that make destination node unreachable. | ||
| 1031 |   // (Based on the lemma 2.7 from the [2].) | ||
| 1032 | static void DeleteUnreachable(DomTreeT &DT, const BatchUpdatePtr BUI, | ||
| 1033 | const TreeNodePtr ToTN) { | ||
| 1034 | LLVM_DEBUG(dbgs() << "Deleting unreachable subtree " | ||
| 1035 | << BlockNamePrinter(ToTN) << "\n"); | ||
| 1036 | assert(ToTN); | ||
| 1037 | assert(ToTN->getBlock()); | ||
| 1038 | |||
| 1039 | if (IsPostDom) { | ||
| 1040 |       // Deletion makes a region reverse-unreachable and creates a new root. | ||
| 1041 |       // Simulate that by inserting an edge from the virtual root to ToTN and | ||
| 1042 |       // adding it as a new root. | ||
| 1043 | LLVM_DEBUG(dbgs() << "\tDeletion made a region reverse-unreachable\n"); | ||
| 1044 | LLVM_DEBUG(dbgs() << "\tAdding new root " << BlockNamePrinter(ToTN) | ||
| 1045 | << "\n"); | ||
| 1046 | DT.Roots.push_back(ToTN->getBlock()); | ||
| 1047 | InsertReachable(DT, BUI, DT.getNode(nullptr), ToTN); | ||
| 1048 | return; | ||
| 1049 |     } | ||
| 1050 | |||
| 1051 | SmallVector<NodePtr, 16> AffectedQueue; | ||
| 1052 | const unsigned Level = ToTN->getLevel(); | ||
| 1053 | |||
| 1054 |     // Traverse destination node's descendants with greater level in the tree | ||
| 1055 |     // and collect visited nodes. | ||
| 1056 | auto DescendAndCollect = [Level, &AffectedQueue, &DT](NodePtr, NodePtr To) { | ||
| 1057 | const TreeNodePtr TN = DT.getNode(To); | ||
| 1058 | assert(TN); | ||
| 1059 | if (TN->getLevel() > Level) return true; | ||
| 1060 | if (!llvm::is_contained(AffectedQueue, To)) | ||
| 1061 | AffectedQueue.push_back(To); | ||
| 1062 | |||
| 1063 | return false; | ||
| 1064 | }; | ||
| 1065 | |||
| 1066 | SemiNCAInfo SNCA(BUI); | ||
| 1067 | unsigned LastDFSNum = | ||
| 1068 | SNCA.runDFS(ToTN->getBlock(), 0, DescendAndCollect, 0); | ||
| 1069 | |||
| 1070 | TreeNodePtr MinNode = ToTN; | ||
| 1071 | |||
| 1072 |     // Identify the top of the subtree to rebuild by finding the NCD of all | ||
| 1073 |     // the affected nodes. | ||
| 1074 | for (const NodePtr N : AffectedQueue) { | ||
| 1075 | const TreeNodePtr TN = DT.getNode(N); | ||
| 1076 | const NodePtr NCDBlock = | ||
| 1077 | DT.findNearestCommonDominator(TN->getBlock(), ToTN->getBlock()); | ||
| 1078 | assert(NCDBlock || DT.isPostDominator()); | ||
| 1079 | const TreeNodePtr NCD = DT.getNode(NCDBlock); | ||
| 1080 | assert(NCD); | ||
| 1081 | |||
| 1082 | LLVM_DEBUG(dbgs() << "Processing affected node " << BlockNamePrinter(TN) | ||
| 1083 | << " with NCD = " << BlockNamePrinter(NCD) | ||
| 1084 | << ", MinNode =" << BlockNamePrinter(MinNode) << "\n"); | ||
| 1085 | if (NCD != TN && NCD->getLevel() < MinNode->getLevel()) MinNode = NCD; | ||
| 1086 |     } | ||
| 1087 | |||
| 1088 |     // Root reached, rebuild the whole tree from scratch. | ||
| 1089 | if (!MinNode->getIDom()) { | ||
| 1090 | LLVM_DEBUG(dbgs() << "The entire tree needs to be rebuilt\n"); | ||
| 1091 | CalculateFromScratch(DT, BUI); | ||
| 1092 | return; | ||
| 1093 |     } | ||
| 1094 | |||
| 1095 |     // Erase the unreachable subtree in reverse preorder to process all children | ||
| 1096 |     // before deleting their parent. | ||
| 1097 | for (unsigned i = LastDFSNum; i > 0; --i) { | ||
| 1098 | const NodePtr N = SNCA.NumToNode[i]; | ||
| 1099 | const TreeNodePtr TN = DT.getNode(N); | ||
| 1100 | LLVM_DEBUG(dbgs() << "Erasing node " << BlockNamePrinter(TN) << "\n"); | ||
| 1101 | |||
| 1102 | EraseNode(DT, TN); | ||
| 1103 |     } | ||
| 1104 | |||
| 1105 |     // The affected subtree start at the To node -- there's no extra work to do. | ||
| 1106 | if (MinNode == ToTN) return; | ||
| 1107 | |||
| 1108 | LLVM_DEBUG(dbgs() << "DeleteUnreachable: running DFS with MinNode = " | ||
| 1109 | << BlockNamePrinter(MinNode) << "\n"); | ||
| 1110 | const unsigned MinLevel = MinNode->getLevel(); | ||
| 1111 | const TreeNodePtr PrevIDom = MinNode->getIDom(); | ||
| 1112 | assert(PrevIDom); | ||
| 1113 | SNCA.clear(); | ||
| 1114 | |||
| 1115 |     // Identify nodes that remain in the affected subtree. | ||
| 1116 | auto DescendBelow = [MinLevel, &DT](NodePtr, NodePtr To) { | ||
| 1117 | const TreeNodePtr ToTN = DT.getNode(To); | ||
| 1118 | return ToTN && ToTN->getLevel() > MinLevel; | ||
| 1119 | }; | ||
| 1120 | SNCA.runDFS(MinNode->getBlock(), 0, DescendBelow, 0); | ||
| 1121 | |||
| 1122 | LLVM_DEBUG(dbgs() << "Previous IDom(MinNode) = " | ||
| 1123 | << BlockNamePrinter(PrevIDom) << "\nRunning Semi-NCA\n"); | ||
| 1124 | |||
| 1125 |     // Rebuild the remaining part of affected subtree. | ||
| 1126 | SNCA.runSemiNCA(DT, MinLevel); | ||
| 1127 | SNCA.reattachExistingSubtree(DT, PrevIDom); | ||
| 1128 |   } | ||
| 1129 | |||
| 1130 |   // Removes leaf tree nodes from the dominator tree. | ||
| 1131 | static void EraseNode(DomTreeT &DT, const TreeNodePtr TN) { | ||
| 1132 | assert(TN); | ||
| 1133 | assert(TN->getNumChildren() == 0 && "Not a tree leaf"); | ||
| 1134 | |||
| 1135 | const TreeNodePtr IDom = TN->getIDom(); | ||
| 1136 | assert(IDom); | ||
| 1137 | |||
| 1138 | auto ChIt = llvm::find(IDom->Children, TN); | ||
| 1139 | assert(ChIt != IDom->Children.end()); | ||
| 1140 | std::swap(*ChIt, IDom->Children.back()); | ||
| 1141 | IDom->Children.pop_back(); | ||
| 1142 | |||
| 1143 | DT.DomTreeNodes.erase(TN->getBlock()); | ||
| 1144 |   } | ||
| 1145 | |||
| 1146 |   //~~ | ||
| 1147 |   //===--------------------- DomTree Batch Updater --------------------------=== | ||
| 1148 |   //~~ | ||
| 1149 | |||
| 1150 | static void ApplyUpdates(DomTreeT &DT, GraphDiffT &PreViewCFG, | ||
| 1151 | GraphDiffT *PostViewCFG) { | ||
| 1152 |     // Note: the PostViewCFG is only used when computing from scratch. It's data | ||
| 1153 |     // should already included in the PreViewCFG for incremental updates. | ||
| 1154 | const size_t NumUpdates = PreViewCFG.getNumLegalizedUpdates(); | ||
| 1155 | if (NumUpdates == 0) | ||
| 1156 | return; | ||
| 1157 | |||
| 1158 |     // Take the fast path for a single update and avoid running the batch update | ||
| 1159 |     // machinery. | ||
| 1160 | if (NumUpdates == 1) { | ||
| 1161 | UpdateT Update = PreViewCFG.popUpdateForIncrementalUpdates(); | ||
| 1162 | if (!PostViewCFG) { | ||
| 1163 | if (Update.getKind() == UpdateKind::Insert) | ||
| 1164 | InsertEdge(DT, /*BUI=*/nullptr, Update.getFrom(), Update.getTo()); | ||
| 1165 |         else | ||
| 1166 | DeleteEdge(DT, /*BUI=*/nullptr, Update.getFrom(), Update.getTo()); | ||
| 1167 | } else { | ||
| 1168 | BatchUpdateInfo BUI(*PostViewCFG, PostViewCFG); | ||
| 1169 | if (Update.getKind() == UpdateKind::Insert) | ||
| 1170 | InsertEdge(DT, &BUI, Update.getFrom(), Update.getTo()); | ||
| 1171 |         else | ||
| 1172 | DeleteEdge(DT, &BUI, Update.getFrom(), Update.getTo()); | ||
| 1173 |       } | ||
| 1174 | return; | ||
| 1175 |     } | ||
| 1176 | |||
| 1177 | BatchUpdateInfo BUI(PreViewCFG, PostViewCFG); | ||
| 1178 |     // Recalculate the DominatorTree when the number of updates | ||
| 1179 |     // exceeds a threshold, which usually makes direct updating slower than | ||
| 1180 |     // recalculation. We select this threshold proportional to the | ||
| 1181 |     // size of the DominatorTree. The constant is selected | ||
| 1182 |     // by choosing the one with an acceptable performance on some real-world | ||
| 1183 |     // inputs. | ||
| 1184 | |||
| 1185 |     // Make unittests of the incremental algorithm work | ||
| 1186 | if (DT.DomTreeNodes.size() <= 100) { | ||
| 1187 | if (BUI.NumLegalized > DT.DomTreeNodes.size()) | ||
| 1188 | CalculateFromScratch(DT, &BUI); | ||
| 1189 | } else if (BUI.NumLegalized > DT.DomTreeNodes.size() / 40) | ||
| 1190 | CalculateFromScratch(DT, &BUI); | ||
| 1191 | |||
| 1192 |     // If the DominatorTree was recalculated at some point, stop the batch | ||
| 1193 |     // updates. Full recalculations ignore batch updates and look at the actual | ||
| 1194 |     // CFG. | ||
| 1195 | for (size_t i = 0; i < BUI.NumLegalized && !BUI.IsRecalculated; ++i) | ||
| 1196 | ApplyNextUpdate(DT, BUI); | ||
| 1197 |   } | ||
| 1198 | |||
| 1199 | static void ApplyNextUpdate(DomTreeT &DT, BatchUpdateInfo &BUI) { | ||
| 1200 |     // Popping the next update, will move the PreViewCFG to the next snapshot. | ||
| 1201 | UpdateT CurrentUpdate = BUI.PreViewCFG.popUpdateForIncrementalUpdates(); | ||
| 1202 | #if 0 | ||
| 1203 |     // FIXME: The LLVM_DEBUG macro only plays well with a modular | ||
| 1204 |     // build of LLVM when the header is marked as textual, but doing | ||
| 1205 |     // so causes redefinition errors. | ||
| 1206 | LLVM_DEBUG(dbgs() << "Applying update: "); | ||
| 1207 | LLVM_DEBUG(CurrentUpdate.dump(); dbgs() << "\n"); | ||
| 1208 | #endif | ||
| 1209 | |||
| 1210 | if (CurrentUpdate.getKind() == UpdateKind::Insert) | ||
| 1211 | InsertEdge(DT, &BUI, CurrentUpdate.getFrom(), CurrentUpdate.getTo()); | ||
| 1212 |     else | ||
| 1213 | DeleteEdge(DT, &BUI, CurrentUpdate.getFrom(), CurrentUpdate.getTo()); | ||
| 1214 |   } | ||
| 1215 | |||
| 1216 |   //~~ | ||
| 1217 |   //===--------------- DomTree correctness verification ---------------------=== | ||
| 1218 |   //~~ | ||
| 1219 | |||
| 1220 |   // Check if the tree has correct roots. A DominatorTree always has a single | ||
| 1221 |   // root which is the function's entry node. A PostDominatorTree can have | ||
| 1222 |   // multiple roots - one for each node with no successors and for infinite | ||
| 1223 |   // loops. | ||
| 1224 |   // Running time: O(N). | ||
| 1225 | bool verifyRoots(const DomTreeT &DT) { | ||
| 1226 | if (!DT.Parent && !DT.Roots.empty()) { | ||
| 1227 | errs() << "Tree has no parent but has roots!\n"; | ||
| 1228 | errs().flush(); | ||
| 1229 | return false; | ||
| 1230 |     } | ||
| 1231 | |||
| 1232 | if (!IsPostDom) { | ||
| 1233 | if (DT.Roots.empty()) { | ||
| 1234 | errs() << "Tree doesn't have a root!\n"; | ||
| 1235 | errs().flush(); | ||
| 1236 | return false; | ||
| 1237 |       } | ||
| 1238 | |||
| 1239 | if (DT.getRoot() != GetEntryNode(DT)) { | ||
| 1240 | errs() << "Tree's root is not its parent's entry node!\n"; | ||
| 1241 | errs().flush(); | ||
| 1242 | return false; | ||
| 1243 |       } | ||
| 1244 |     } | ||
| 1245 | |||
| 1246 | RootsT ComputedRoots = FindRoots(DT, nullptr); | ||
| 1247 | if (!isPermutation(DT.Roots, ComputedRoots)) { | ||
| 1248 | errs() << "Tree has different roots than freshly computed ones!\n"; | ||
| 1249 | errs() << "\tPDT roots: "; | ||
| 1250 | for (const NodePtr N : DT.Roots) errs() << BlockNamePrinter(N) << ", "; | ||
| 1251 | errs() << "\n\tComputed roots: "; | ||
| 1252 | for (const NodePtr N : ComputedRoots) | ||
| 1253 | errs() << BlockNamePrinter(N) << ", "; | ||
| 1254 | errs() << "\n"; | ||
| 1255 | errs().flush(); | ||
| 1256 | return false; | ||
| 1257 |     } | ||
| 1258 | |||
| 1259 | return true; | ||
| 1260 |   } | ||
| 1261 | |||
| 1262 |   // Checks if the tree contains all reachable nodes in the input graph. | ||
| 1263 |   // Running time: O(N). | ||
| 1264 | bool verifyReachability(const DomTreeT &DT) { | ||
| 1265 | clear(); | ||
| 1266 | doFullDFSWalk(DT, AlwaysDescend); | ||
| 1267 | |||
| 1268 | for (auto &NodeToTN : DT.DomTreeNodes) { | ||
| 1269 | const TreeNodePtr TN = NodeToTN.second.get(); | ||
| 1270 | const NodePtr BB = TN->getBlock(); | ||
| 1271 | |||
| 1272 |       // Virtual root has a corresponding virtual CFG node. | ||
| 1273 | if (DT.isVirtualRoot(TN)) continue; | ||
| 1274 | |||
| 1275 | if (NodeToInfo.count(BB) == 0) { | ||
| 1276 | errs() << "DomTree node " << BlockNamePrinter(BB) | ||
| 1277 | << " not found by DFS walk!\n"; | ||
| 1278 | errs().flush(); | ||
| 1279 | |||
| 1280 | return false; | ||
| 1281 |       } | ||
| 1282 |     } | ||
| 1283 | |||
| 1284 | for (const NodePtr N : NumToNode) { | ||
| 1285 | if (N && !DT.getNode(N)) { | ||
| 1286 | errs() << "CFG node " << BlockNamePrinter(N) | ||
| 1287 | << " not found in the DomTree!\n"; | ||
| 1288 | errs().flush(); | ||
| 1289 | |||
| 1290 | return false; | ||
| 1291 |       } | ||
| 1292 |     } | ||
| 1293 | |||
| 1294 | return true; | ||
| 1295 |   } | ||
| 1296 | |||
| 1297 |   // Check if for every parent with a level L in the tree all of its children | ||
| 1298 |   // have level L + 1. | ||
| 1299 |   // Running time: O(N). | ||
| 1300 | static bool VerifyLevels(const DomTreeT &DT) { | ||
| 1301 | for (auto &NodeToTN : DT.DomTreeNodes) { | ||
| 1302 | const TreeNodePtr TN = NodeToTN.second.get(); | ||
| 1303 | const NodePtr BB = TN->getBlock(); | ||
| 1304 | if (!BB) continue; | ||
| 1305 | |||
| 1306 | const TreeNodePtr IDom = TN->getIDom(); | ||
| 1307 | if (!IDom && TN->getLevel() != 0) { | ||
| 1308 | errs() << "Node without an IDom " << BlockNamePrinter(BB) | ||
| 1309 | << " has a nonzero level " << TN->getLevel() << "!\n"; | ||
| 1310 | errs().flush(); | ||
| 1311 | |||
| 1312 | return false; | ||
| 1313 |       } | ||
| 1314 | |||
| 1315 | if (IDom && TN->getLevel() != IDom->getLevel() + 1) { | ||
| 1316 | errs() << "Node " << BlockNamePrinter(BB) << " has level " | ||
| 1317 | << TN->getLevel() << " while its IDom " | ||
| 1318 | << BlockNamePrinter(IDom->getBlock()) << " has level " | ||
| 1319 | << IDom->getLevel() << "!\n"; | ||
| 1320 | errs().flush(); | ||
| 1321 | |||
| 1322 | return false; | ||
| 1323 |       } | ||
| 1324 |     } | ||
| 1325 | |||
| 1326 | return true; | ||
| 1327 |   } | ||
| 1328 | |||
| 1329 |   // Check if the computed DFS numbers are correct. Note that DFS info may not | ||
| 1330 |   // be valid, and when that is the case, we don't verify the numbers. | ||
| 1331 |   // Running time: O(N log(N)). | ||
| 1332 | static bool VerifyDFSNumbers(const DomTreeT &DT) { | ||
| 1333 | if (!DT.DFSInfoValid || !DT.Parent) | ||
| 1334 | return true; | ||
| 1335 | |||
| 1336 | const NodePtr RootBB = IsPostDom ? nullptr : *DT.root_begin(); | ||
| 1337 | const TreeNodePtr Root = DT.getNode(RootBB); | ||
| 1338 | |||
| 1339 | auto PrintNodeAndDFSNums = [](const TreeNodePtr TN) { | ||
| 1340 | errs() << BlockNamePrinter(TN) << " {" << TN->getDFSNumIn() << ", " | ||
| 1341 | << TN->getDFSNumOut() << '}'; | ||
| 1342 | }; | ||
| 1343 | |||
| 1344 |     // Verify the root's DFS In number. Although DFS numbering would also work | ||
| 1345 |     // if we started from some other value, we assume 0-based numbering. | ||
| 1346 | if (Root->getDFSNumIn() != 0) { | ||
| 1347 | errs() << "DFSIn number for the tree root is not:\n\t"; | ||
| 1348 | PrintNodeAndDFSNums(Root); | ||
| 1349 | errs() << '\n'; | ||
| 1350 | errs().flush(); | ||
| 1351 | return false; | ||
| 1352 |     } | ||
| 1353 | |||
| 1354 |     // For each tree node verify if children's DFS numbers cover their parent's | ||
| 1355 |     // DFS numbers with no gaps. | ||
| 1356 | for (const auto &NodeToTN : DT.DomTreeNodes) { | ||
| 1357 | const TreeNodePtr Node = NodeToTN.second.get(); | ||
| 1358 | |||
| 1359 |       // Handle tree leaves. | ||
| 1360 | if (Node->isLeaf()) { | ||
| 1361 | if (Node->getDFSNumIn() + 1 != Node->getDFSNumOut()) { | ||
| 1362 | errs() << "Tree leaf should have DFSOut = DFSIn + 1:\n\t"; | ||
| 1363 | PrintNodeAndDFSNums(Node); | ||
| 1364 | errs() << '\n'; | ||
| 1365 | errs().flush(); | ||
| 1366 | return false; | ||
| 1367 |         } | ||
| 1368 | |||
| 1369 | continue; | ||
| 1370 |       } | ||
| 1371 | |||
| 1372 |       // Make a copy and sort it such that it is possible to check if there are | ||
| 1373 |       // no gaps between DFS numbers of adjacent children. | ||
| 1374 | SmallVector<TreeNodePtr, 8> Children(Node->begin(), Node->end()); | ||
| 1375 | llvm::sort(Children, [](const TreeNodePtr Ch1, const TreeNodePtr Ch2) { | ||
| 1376 | return Ch1->getDFSNumIn() < Ch2->getDFSNumIn(); | ||
| 1377 | }); | ||
| 1378 | |||
| 1379 | auto PrintChildrenError = [Node, &Children, PrintNodeAndDFSNums]( | ||
| 1380 | const TreeNodePtr FirstCh, const TreeNodePtr SecondCh) { | ||
| 1381 | assert(FirstCh); | ||
| 1382 | |||
| 1383 | errs() << "Incorrect DFS numbers for:\n\tParent "; | ||
| 1384 | PrintNodeAndDFSNums(Node); | ||
| 1385 | |||
| 1386 | errs() << "\n\tChild "; | ||
| 1387 | PrintNodeAndDFSNums(FirstCh); | ||
| 1388 | |||
| 1389 | if (SecondCh) { | ||
| 1390 | errs() << "\n\tSecond child "; | ||
| 1391 | PrintNodeAndDFSNums(SecondCh); | ||
| 1392 |         } | ||
| 1393 | |||
| 1394 | errs() << "\nAll children: "; | ||
| 1395 | for (const TreeNodePtr Ch : Children) { | ||
| 1396 | PrintNodeAndDFSNums(Ch); | ||
| 1397 | errs() << ", "; | ||
| 1398 |         } | ||
| 1399 | |||
| 1400 | errs() << '\n'; | ||
| 1401 | errs().flush(); | ||
| 1402 | }; | ||
| 1403 | |||
| 1404 | if (Children.front()->getDFSNumIn() != Node->getDFSNumIn() + 1) { | ||
| 1405 | PrintChildrenError(Children.front(), nullptr); | ||
| 1406 | return false; | ||
| 1407 |       } | ||
| 1408 | |||
| 1409 | if (Children.back()->getDFSNumOut() + 1 != Node->getDFSNumOut()) { | ||
| 1410 | PrintChildrenError(Children.back(), nullptr); | ||
| 1411 | return false; | ||
| 1412 |       } | ||
| 1413 | |||
| 1414 | for (size_t i = 0, e = Children.size() - 1; i != e; ++i) { | ||
| 1415 | if (Children[i]->getDFSNumOut() + 1 != Children[i + 1]->getDFSNumIn()) { | ||
| 1416 | PrintChildrenError(Children[i], Children[i + 1]); | ||
| 1417 | return false; | ||
| 1418 |         } | ||
| 1419 |       } | ||
| 1420 |     } | ||
| 1421 | |||
| 1422 | return true; | ||
| 1423 |   } | ||
| 1424 | |||
| 1425 |   // The below routines verify the correctness of the dominator tree relative to | ||
| 1426 |   // the CFG it's coming from.  A tree is a dominator tree iff it has two | ||
| 1427 |   // properties, called the parent property and the sibling property.  Tarjan | ||
| 1428 |   // and Lengauer prove (but don't explicitly name) the properties as part of | ||
| 1429 |   // the proofs in their 1972 paper, but the proofs are mostly part of proving | ||
| 1430 |   // things about semidominators and idoms, and some of them are simply asserted | ||
| 1431 |   // based on even earlier papers (see, e.g., lemma 2).  Some papers refer to | ||
| 1432 |   // these properties as "valid" and "co-valid".  See, e.g., "Dominators, | ||
| 1433 |   // directed bipolar orders, and independent spanning trees" by Loukas | ||
| 1434 |   // Georgiadis and Robert E. Tarjan, as well as "Dominator Tree Verification | ||
| 1435 |   // and Vertex-Disjoint Paths " by the same authors. | ||
| 1436 | |||
| 1437 |   // A very simple and direct explanation of these properties can be found in | ||
| 1438 |   // "An Experimental Study of Dynamic Dominators", found at | ||
| 1439 |   // https://arxiv.org/abs/1604.02711 | ||
| 1440 | |||
| 1441 |   // The easiest way to think of the parent property is that it's a requirement | ||
| 1442 |   // of being a dominator.  Let's just take immediate dominators.  For PARENT to | ||
| 1443 |   // be an immediate dominator of CHILD, all paths in the CFG must go through | ||
| 1444 |   // PARENT before they hit CHILD.  This implies that if you were to cut PARENT | ||
| 1445 |   // out of the CFG, there should be no paths to CHILD that are reachable.  If | ||
| 1446 |   // there are, then you now have a path from PARENT to CHILD that goes around | ||
| 1447 |   // PARENT and still reaches CHILD, which by definition, means PARENT can't be | ||
| 1448 |   // a dominator of CHILD (let alone an immediate one). | ||
| 1449 | |||
| 1450 |   // The sibling property is similar.  It says that for each pair of sibling | ||
| 1451 |   // nodes in the dominator tree (LEFT and RIGHT) , they must not dominate each | ||
| 1452 |   // other.  If sibling LEFT dominated sibling RIGHT, it means there are no | ||
| 1453 |   // paths in the CFG from sibling LEFT to sibling RIGHT that do not go through | ||
| 1454 |   // LEFT, and thus, LEFT is really an ancestor (in the dominator tree) of | ||
| 1455 |   // RIGHT, not a sibling. | ||
| 1456 | |||
| 1457 |   // It is possible to verify the parent and sibling properties in linear time, | ||
| 1458 |   // but the algorithms are complex. Instead, we do it in a straightforward | ||
| 1459 |   // N^2 and N^3 way below, using direct path reachability. | ||
| 1460 | |||
| 1461 |   // Checks if the tree has the parent property: if for all edges from V to W in | ||
| 1462 |   // the input graph, such that V is reachable, the parent of W in the tree is | ||
| 1463 |   // an ancestor of V in the tree. | ||
| 1464 |   // Running time: O(N^2). | ||
| 1465 |   // | ||
| 1466 |   // This means that if a node gets disconnected from the graph, then all of | ||
| 1467 |   // the nodes it dominated previously will now become unreachable. | ||
| 1468 | bool verifyParentProperty(const DomTreeT &DT) { | ||
| 1469 | for (auto &NodeToTN : DT.DomTreeNodes) { | ||
| 1470 | const TreeNodePtr TN = NodeToTN.second.get(); | ||
| 1471 | const NodePtr BB = TN->getBlock(); | ||
| 1472 | if (!BB || TN->isLeaf()) | ||
| 1473 | continue; | ||
| 1474 | |||
| 1475 | LLVM_DEBUG(dbgs() << "Verifying parent property of node " | ||
| 1476 | << BlockNamePrinter(TN) << "\n"); | ||
| 1477 | clear(); | ||
| 1478 | doFullDFSWalk(DT, [BB](NodePtr From, NodePtr To) { | ||
| 1479 | return From != BB && To != BB; | ||
| 1480 | }); | ||
| 1481 | |||
| 1482 | for (TreeNodePtr Child : TN->children()) | ||
| 1483 | if (NodeToInfo.count(Child->getBlock()) != 0) { | ||
| 1484 | errs() << "Child " << BlockNamePrinter(Child) | ||
| 1485 | << " reachable after its parent " << BlockNamePrinter(BB) | ||
| 1486 | << " is removed!\n"; | ||
| 1487 | errs().flush(); | ||
| 1488 | |||
| 1489 | return false; | ||
| 1490 |         } | ||
| 1491 |     } | ||
| 1492 | |||
| 1493 | return true; | ||
| 1494 |   } | ||
| 1495 | |||
| 1496 |   // Check if the tree has sibling property: if a node V does not dominate a | ||
| 1497 |   // node W for all siblings V and W in the tree. | ||
| 1498 |   // Running time: O(N^3). | ||
| 1499 |   // | ||
| 1500 |   // This means that if a node gets disconnected from the graph, then all of its | ||
| 1501 |   // siblings will now still be reachable. | ||
| 1502 | bool verifySiblingProperty(const DomTreeT &DT) { | ||
| 1503 | for (auto &NodeToTN : DT.DomTreeNodes) { | ||
| 1504 | const TreeNodePtr TN = NodeToTN.second.get(); | ||
| 1505 | const NodePtr BB = TN->getBlock(); | ||
| 1506 | if (!BB || TN->isLeaf()) | ||
| 1507 | continue; | ||
| 1508 | |||
| 1509 | for (const TreeNodePtr N : TN->children()) { | ||
| 1510 | clear(); | ||
| 1511 | NodePtr BBN = N->getBlock(); | ||
| 1512 | doFullDFSWalk(DT, [BBN](NodePtr From, NodePtr To) { | ||
| 1513 | return From != BBN && To != BBN; | ||
| 1514 | }); | ||
| 1515 | |||
| 1516 | for (const TreeNodePtr S : TN->children()) { | ||
| 1517 | if (S == N) continue; | ||
| 1518 | |||
| 1519 | if (NodeToInfo.count(S->getBlock()) == 0) { | ||
| 1520 | errs() << "Node " << BlockNamePrinter(S) | ||
| 1521 | << " not reachable when its sibling " << BlockNamePrinter(N) | ||
| 1522 | << " is removed!\n"; | ||
| 1523 | errs().flush(); | ||
| 1524 | |||
| 1525 | return false; | ||
| 1526 |           } | ||
| 1527 |         } | ||
| 1528 |       } | ||
| 1529 |     } | ||
| 1530 | |||
| 1531 | return true; | ||
| 1532 |   } | ||
| 1533 | |||
| 1534 |   // Check if the given tree is the same as a freshly computed one for the same | ||
| 1535 |   // Parent. | ||
| 1536 |   // Running time: O(N^2), but faster in practice (same as tree construction). | ||
| 1537 |   // | ||
| 1538 |   // Note that this does not check if that the tree construction algorithm is | ||
| 1539 |   // correct and should be only used for fast (but possibly unsound) | ||
| 1540 |   // verification. | ||
| 1541 | static bool IsSameAsFreshTree(const DomTreeT &DT) { | ||
| 1542 |     DomTreeT FreshTree; | ||
| 1543 | FreshTree.recalculate(*DT.Parent); | ||
| 1544 | const bool Different = DT.compare(FreshTree); | ||
| 1545 | |||
| 1546 | if (Different) { | ||
| 1547 | errs() << (DT.isPostDominator() ? "Post" : "") | ||
| 1548 | << "DominatorTree is different than a freshly computed one!\n" | ||
| 1549 | << "\tCurrent:\n"; | ||
| 1550 | DT.print(errs()); | ||
| 1551 | errs() << "\n\tFreshly computed tree:\n"; | ||
| 1552 | FreshTree.print(errs()); | ||
| 1553 | errs().flush(); | ||
| 1554 |     } | ||
| 1555 | |||
| 1556 | return !Different; | ||
| 1557 |   } | ||
| 1558 | }; | ||
| 1559 | |||
| 1560 | template <class DomTreeT> | ||
| 1561 | void Calculate(DomTreeT &DT) { | ||
| 1562 | SemiNCAInfo<DomTreeT>::CalculateFromScratch(DT, nullptr); | ||
| 1563 | } | ||
| 1564 | |||
| 1565 | template <typename DomTreeT> | ||
| 1566 | void CalculateWithUpdates(DomTreeT &DT, | ||
| 1567 | ArrayRef<typename DomTreeT::UpdateType> Updates) { | ||
| 1568 |   // FIXME: Updated to use the PreViewCFG and behave the same as until now. | ||
| 1569 |   // This behavior is however incorrect; this actually needs the PostViewCFG. | ||
| 1570 | GraphDiff<typename DomTreeT::NodePtr, DomTreeT::IsPostDominator> PreViewCFG( | ||
| 1571 | Updates, /*ReverseApplyUpdates=*/true); | ||
| 1572 | typename SemiNCAInfo<DomTreeT>::BatchUpdateInfo BUI(PreViewCFG); | ||
| 1573 | SemiNCAInfo<DomTreeT>::CalculateFromScratch(DT, &BUI); | ||
| 1574 | } | ||
| 1575 | |||
| 1576 | template <class DomTreeT> | ||
| 1577 | void InsertEdge(DomTreeT &DT, typename DomTreeT::NodePtr From, | ||
| 1578 | typename DomTreeT::NodePtr To) { | ||
| 1579 | if (DT.isPostDominator()) std::swap(From, To); | ||
| 1580 | SemiNCAInfo<DomTreeT>::InsertEdge(DT, nullptr, From, To); | ||
| 1581 | } | ||
| 1582 | |||
| 1583 | template <class DomTreeT> | ||
| 1584 | void DeleteEdge(DomTreeT &DT, typename DomTreeT::NodePtr From, | ||
| 1585 | typename DomTreeT::NodePtr To) { | ||
| 1586 | if (DT.isPostDominator()) std::swap(From, To); | ||
| 1587 | SemiNCAInfo<DomTreeT>::DeleteEdge(DT, nullptr, From, To); | ||
| 1588 | } | ||
| 1589 | |||
| 1590 | template <class DomTreeT> | ||
| 1591 | void ApplyUpdates(DomTreeT &DT, | ||
| 1592 | GraphDiff<typename DomTreeT::NodePtr, | ||
| 1593 | DomTreeT::IsPostDominator> &PreViewCFG, | ||
| 1594 | GraphDiff<typename DomTreeT::NodePtr, | ||
| 1595 | DomTreeT::IsPostDominator> *PostViewCFG) { | ||
| 1596 | SemiNCAInfo<DomTreeT>::ApplyUpdates(DT, PreViewCFG, PostViewCFG); | ||
| 1597 | } | ||
| 1598 | |||
| 1599 | template <class DomTreeT> | ||
| 1600 | bool Verify(const DomTreeT &DT, typename DomTreeT::VerificationLevel VL) { | ||
| 1601 | SemiNCAInfo<DomTreeT> SNCA(nullptr); | ||
| 1602 | |||
| 1603 |   // Simplist check is to compare against a new tree. This will also | ||
| 1604 |   // usefully print the old and new trees, if they are different. | ||
| 1605 | if (!SNCA.IsSameAsFreshTree(DT)) | ||
| 1606 | return false; | ||
| 1607 | |||
| 1608 |   // Common checks to verify the properties of the tree. O(N log N) at worst. | ||
| 1609 | if (!SNCA.verifyRoots(DT) || !SNCA.verifyReachability(DT) || | ||
| 1610 | !SNCA.VerifyLevels(DT) || !SNCA.VerifyDFSNumbers(DT)) | ||
| 1611 | return false; | ||
| 1612 | |||
| 1613 |   // Extra checks depending on VerificationLevel. Up to O(N^3). | ||
| 1614 | if (VL == DomTreeT::VerificationLevel::Basic || | ||
| 1615 | VL == DomTreeT::VerificationLevel::Full) | ||
| 1616 | if (!SNCA.verifyParentProperty(DT)) | ||
| 1617 | return false; | ||
| 1618 | if (VL == DomTreeT::VerificationLevel::Full) | ||
| 1619 | if (!SNCA.verifySiblingProperty(DT)) | ||
| 1620 | return false; | ||
| 1621 | |||
| 1622 | return true; | ||
| 1623 | } | ||
| 1624 | |||
| 1625 | } // namespace DomTreeBuilder | ||
| 1626 | } // namespace llvm | ||
| 1627 | |||
| 1628 | #undef DEBUG_TYPE | ||
| 1629 | |||
| 1630 | #endif |