Subversion Repositories QNX 8.QNX8 LLVM/Clang compiler suite

Rev

Details | Last modification | View Log | RSS feed

Rev Author Line No. Line
14 pmbaty 1
//===-- Automaton.h - Support for driving TableGen-produced DFAs ----------===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
// This file implements class that drive and introspect deterministic finite-
10
// state automata (DFAs) as generated by TableGen's -gen-automata backend.
11
//
12
// For a description of how to define an automaton, see
13
// include/llvm/TableGen/Automaton.td.
14
//
15
// One important detail is that these deterministic automata are created from
16
// (potentially) nondeterministic definitions. Therefore a unique sequence of
17
// input symbols will produce one path through the DFA but multiple paths
18
// through the original NFA. An automaton by default only returns "accepted" or
19
// "not accepted", but frequently we want to analyze what NFA path was taken.
20
// Finding a path through the NFA states that results in a DFA state can help
21
// answer *what* the solution to a problem was, not just that there exists a
22
// solution.
23
//
24
//===----------------------------------------------------------------------===//
25
 
26
#ifndef LLVM_SUPPORT_AUTOMATON_H
27
#define LLVM_SUPPORT_AUTOMATON_H
28
 
29
#include "llvm/ADT/ArrayRef.h"
30
#include "llvm/ADT/DenseMap.h"
31
#include "llvm/ADT/SmallVector.h"
32
#include "llvm/Support/Allocator.h"
33
#include <deque>
34
#include <map>
35
#include <memory>
36
#include <unordered_map>
37
#include <vector>
38
 
39
namespace llvm {
40
 
41
using NfaPath = SmallVector<uint64_t, 4>;
42
 
43
/// Forward define the pair type used by the automata transition info tables.
44
///
45
/// Experimental results with large tables have shown a significant (multiple
46
/// orders of magnitude) parsing speedup by using a custom struct here with a
47
/// trivial constructor rather than std::pair<uint64_t, uint64_t>.
48
struct NfaStatePair {
49
  uint64_t FromDfaState, ToDfaState;
50
 
51
  bool operator<(const NfaStatePair &Other) const {
52
    return std::make_tuple(FromDfaState, ToDfaState) <
53
           std::make_tuple(Other.FromDfaState, Other.ToDfaState);
54
  }
55
};
56
 
57
namespace internal {
58
/// The internal class that maintains all possible paths through an NFA based
59
/// on a path through the DFA.
60
class NfaTranscriber {
61
private:
62
  /// Cached transition table. This is a table of NfaStatePairs that contains
63
  /// zero-terminated sequences pointed to by DFA transitions.
64
  ArrayRef<NfaStatePair> TransitionInfo;
65
 
66
  /// A simple linked-list of traversed states that can have a shared tail. The
67
  /// traversed path is stored in reverse order with the latest state as the
68
  /// head.
69
  struct PathSegment {
70
    uint64_t State;
71
    PathSegment *Tail;
72
  };
73
 
74
  /// We allocate segment objects frequently. Allocate them upfront and dispose
75
  /// at the end of a traversal rather than hammering the system allocator.
76
  SpecificBumpPtrAllocator<PathSegment> Allocator;
77
 
78
  /// Heads of each tracked path. These are not ordered.
79
  std::deque<PathSegment *> Heads;
80
 
81
  /// The returned paths. This is populated during getPaths.
82
  SmallVector<NfaPath, 4> Paths;
83
 
84
  /// Create a new segment and return it.
85
  PathSegment *makePathSegment(uint64_t State, PathSegment *Tail) {
86
    PathSegment *P = Allocator.Allocate();
87
    *P = {State, Tail};
88
    return P;
89
  }
90
 
91
  /// Pairs defines a sequence of possible NFA transitions for a single DFA
92
  /// transition.
93
  void transition(ArrayRef<NfaStatePair> Pairs) {
94
    // Iterate over all existing heads. We will mutate the Heads deque during
95
    // iteration.
96
    unsigned NumHeads = Heads.size();
97
    for (unsigned I = 0; I < NumHeads; ++I) {
98
      PathSegment *Head = Heads[I];
99
      // The sequence of pairs is sorted. Select the set of pairs that
100
      // transition from the current head state.
101
      auto PI = lower_bound(Pairs, NfaStatePair{Head->State, 0ULL});
102
      auto PE = upper_bound(Pairs, NfaStatePair{Head->State, INT64_MAX});
103
      // For every transition from the current head state, add a new path
104
      // segment.
105
      for (; PI != PE; ++PI)
106
        if (PI->FromDfaState == Head->State)
107
          Heads.push_back(makePathSegment(PI->ToDfaState, Head));
108
    }
109
    // Now we've iterated over all the initial heads and added new ones,
110
    // dispose of the original heads.
111
    Heads.erase(Heads.begin(), std::next(Heads.begin(), NumHeads));
112
  }
113
 
114
public:
115
  NfaTranscriber(ArrayRef<NfaStatePair> TransitionInfo)
116
      : TransitionInfo(TransitionInfo) {
117
    reset();
118
  }
119
 
120
  ArrayRef<NfaStatePair> getTransitionInfo() const {
121
    return TransitionInfo;
122
  }
123
 
124
  void reset() {
125
    Paths.clear();
126
    Heads.clear();
127
    Allocator.DestroyAll();
128
    // The initial NFA state is 0.
129
    Heads.push_back(makePathSegment(0ULL, nullptr));
130
  }
131
 
132
  void transition(unsigned TransitionInfoIdx) {
133
    unsigned EndIdx = TransitionInfoIdx;
134
    while (TransitionInfo[EndIdx].ToDfaState != 0)
135
      ++EndIdx;
136
    ArrayRef<NfaStatePair> Pairs(&TransitionInfo[TransitionInfoIdx],
137
                                 EndIdx - TransitionInfoIdx);
138
    transition(Pairs);
139
  }
140
 
141
  ArrayRef<NfaPath> getPaths() {
142
    Paths.clear();
143
    for (auto *Head : Heads) {
144
      NfaPath P;
145
      while (Head->State != 0) {
146
        P.push_back(Head->State);
147
        Head = Head->Tail;
148
      }
149
      std::reverse(P.begin(), P.end());
150
      Paths.push_back(std::move(P));
151
    }
152
    return Paths;
153
  }
154
};
155
} // namespace internal
156
 
157
/// A deterministic finite-state automaton. The automaton is defined in
158
/// TableGen; this object drives an automaton defined by tblgen-emitted tables.
159
///
160
/// An automaton accepts a sequence of input tokens ("actions"). This class is
161
/// templated on the type of these actions.
162
template <typename ActionT> class Automaton {
163
  /// Map from {State, Action} to {NewState, TransitionInfoIdx}.
164
  /// TransitionInfoIdx is used by the DfaTranscriber to analyze the transition.
165
  /// FIXME: This uses a std::map because ActionT can be a pair type including
166
  /// an enum. In particular DenseMapInfo<ActionT> must be defined to use
167
  /// DenseMap here.
168
  /// This is a shared_ptr to allow very quick copy-construction of Automata; this
169
  /// state is immutable after construction so this is safe.
170
  using MapTy = std::map<std::pair<uint64_t, ActionT>, std::pair<uint64_t, unsigned>>;
171
  std::shared_ptr<MapTy> M;
172
  /// An optional transcription object. This uses much more state than simply
173
  /// traversing the DFA for acceptance, so is heap allocated.
174
  std::shared_ptr<internal::NfaTranscriber> Transcriber;
175
  /// The initial DFA state is 1.
176
  uint64_t State = 1;
177
  /// True if we should transcribe and false if not (even if Transcriber is defined).
178
  bool Transcribe;
179
 
180
public:
181
  /// Create an automaton.
182
  /// \param Transitions The Transitions table as created by TableGen. Note that
183
  ///                    because the action type differs per automaton, the
184
  ///                    table type is templated as ArrayRef<InfoT>.
185
  /// \param TranscriptionTable The TransitionInfo table as created by TableGen.
186
  ///
187
  /// Providing the TranscriptionTable argument as non-empty will enable the
188
  /// use of transcription, which analyzes the possible paths in the original
189
  /// NFA taken by the DFA. NOTE: This is substantially more work than simply
190
  /// driving the DFA, so unless you require the getPaths() method leave this
191
  /// empty.
192
  template <typename InfoT>
193
  Automaton(ArrayRef<InfoT> Transitions,
194
            ArrayRef<NfaStatePair> TranscriptionTable = {}) {
195
    if (!TranscriptionTable.empty())
196
      Transcriber =
197
          std::make_shared<internal::NfaTranscriber>(TranscriptionTable);
198
    Transcribe = Transcriber != nullptr;
199
    M = std::make_shared<MapTy>();
200
    for (const auto &I : Transitions)
201
      // Greedily read and cache the transition table.
202
      M->emplace(std::make_pair(I.FromDfaState, I.Action),
203
                 std::make_pair(I.ToDfaState, I.InfoIdx));
204
  }
205
  Automaton(const Automaton &Other)
206
      : M(Other.M), State(Other.State), Transcribe(Other.Transcribe) {
207
    // Transcriber is not thread-safe, so create a new instance on copy.
208
    if (Other.Transcriber)
209
      Transcriber = std::make_shared<internal::NfaTranscriber>(
210
          Other.Transcriber->getTransitionInfo());
211
  }
212
 
213
  /// Reset the automaton to its initial state.
214
  void reset() {
215
    State = 1;
216
    if (Transcriber)
217
      Transcriber->reset();
218
  }
219
 
220
  /// Enable or disable transcription. Transcription is only available if
221
  /// TranscriptionTable was provided to the constructor.
222
  void enableTranscription(bool Enable = true) {
223
    assert(Transcriber &&
224
           "Transcription is only available if TranscriptionTable was provided "
225
           "to the Automaton constructor");
226
    Transcribe = Enable;
227
  }
228
 
229
  /// Transition the automaton based on input symbol A. Return true if the
230
  /// automaton transitioned to a valid state, false if the automaton
231
  /// transitioned to an invalid state.
232
  ///
233
  /// If this function returns false, all methods are undefined until reset() is
234
  /// called.
235
  bool add(const ActionT &A) {
236
    auto I = M->find({State, A});
237
    if (I == M->end())
238
      return false;
239
    if (Transcriber && Transcribe)
240
      Transcriber->transition(I->second.second);
241
    State = I->second.first;
242
    return true;
243
  }
244
 
245
  /// Return true if the automaton can be transitioned based on input symbol A.
246
  bool canAdd(const ActionT &A) {
247
    auto I = M->find({State, A});
248
    return I != M->end();
249
  }
250
 
251
  /// Obtain a set of possible paths through the input nondeterministic
252
  /// automaton that could be obtained from the sequence of input actions
253
  /// presented to this deterministic automaton.
254
  ArrayRef<NfaPath> getNfaPaths() {
255
    assert(Transcriber && Transcribe &&
256
           "Can only obtain NFA paths if transcribing!");
257
    return Transcriber->getPaths();
258
  }
259
};
260
 
261
} // namespace llvm
262
 
263
#endif // LLVM_SUPPORT_AUTOMATON_H