Details | Last modification | View Log | RSS feed
| Rev | Author | Line No. | Line | 
|---|---|---|---|
| 14 | pmbaty | 1 | //===-- Automaton.h - Support for driving TableGen-produced DFAs ----------===// | 
| 2 | // | ||
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | ||
| 4 | // See https://llvm.org/LICENSE.txt for license information. | ||
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | ||
| 6 | // | ||
| 7 | //===----------------------------------------------------------------------===// | ||
| 8 | // | ||
| 9 | // This file implements class that drive and introspect deterministic finite- | ||
| 10 | // state automata (DFAs) as generated by TableGen's -gen-automata backend. | ||
| 11 | // | ||
| 12 | // For a description of how to define an automaton, see | ||
| 13 | // include/llvm/TableGen/Automaton.td. | ||
| 14 | // | ||
| 15 | // One important detail is that these deterministic automata are created from | ||
| 16 | // (potentially) nondeterministic definitions. Therefore a unique sequence of | ||
| 17 | // input symbols will produce one path through the DFA but multiple paths | ||
| 18 | // through the original NFA. An automaton by default only returns "accepted" or | ||
| 19 | // "not accepted", but frequently we want to analyze what NFA path was taken. | ||
| 20 | // Finding a path through the NFA states that results in a DFA state can help | ||
| 21 | // answer *what* the solution to a problem was, not just that there exists a | ||
| 22 | // solution. | ||
| 23 | // | ||
| 24 | //===----------------------------------------------------------------------===// | ||
| 25 | |||
| 26 | #ifndef LLVM_SUPPORT_AUTOMATON_H | ||
| 27 | #define LLVM_SUPPORT_AUTOMATON_H | ||
| 28 | |||
| 29 | #include "llvm/ADT/ArrayRef.h" | ||
| 30 | #include "llvm/ADT/DenseMap.h" | ||
| 31 | #include "llvm/ADT/SmallVector.h" | ||
| 32 | #include "llvm/Support/Allocator.h" | ||
| 33 | #include <deque> | ||
| 34 | #include <map> | ||
| 35 | #include <memory> | ||
| 36 | #include <unordered_map> | ||
| 37 | #include <vector> | ||
| 38 | |||
| 39 | namespace llvm { | ||
| 40 | |||
| 41 | using NfaPath = SmallVector<uint64_t, 4>; | ||
| 42 | |||
| 43 | /// Forward define the pair type used by the automata transition info tables. | ||
| 44 | /// | ||
| 45 | /// Experimental results with large tables have shown a significant (multiple | ||
| 46 | /// orders of magnitude) parsing speedup by using a custom struct here with a | ||
| 47 | /// trivial constructor rather than std::pair<uint64_t, uint64_t>. | ||
| 48 | struct NfaStatePair { | ||
| 49 | uint64_t FromDfaState, ToDfaState; | ||
| 50 | |||
| 51 | bool operator<(const NfaStatePair &Other) const { | ||
| 52 | return std::make_tuple(FromDfaState, ToDfaState) < | ||
| 53 | std::make_tuple(Other.FromDfaState, Other.ToDfaState); | ||
| 54 |   } | ||
| 55 | }; | ||
| 56 | |||
| 57 | namespace internal { | ||
| 58 | /// The internal class that maintains all possible paths through an NFA based | ||
| 59 | /// on a path through the DFA. | ||
| 60 | class NfaTranscriber { | ||
| 61 | private: | ||
| 62 |   /// Cached transition table. This is a table of NfaStatePairs that contains | ||
| 63 |   /// zero-terminated sequences pointed to by DFA transitions. | ||
| 64 | ArrayRef<NfaStatePair> TransitionInfo; | ||
| 65 | |||
| 66 |   /// A simple linked-list of traversed states that can have a shared tail. The | ||
| 67 |   /// traversed path is stored in reverse order with the latest state as the | ||
| 68 |   /// head. | ||
| 69 | struct PathSegment { | ||
| 70 | uint64_t State; | ||
| 71 | PathSegment *Tail; | ||
| 72 | }; | ||
| 73 | |||
| 74 |   /// We allocate segment objects frequently. Allocate them upfront and dispose | ||
| 75 |   /// at the end of a traversal rather than hammering the system allocator. | ||
| 76 | SpecificBumpPtrAllocator<PathSegment> Allocator; | ||
| 77 | |||
| 78 |   /// Heads of each tracked path. These are not ordered. | ||
| 79 | std::deque<PathSegment *> Heads; | ||
| 80 | |||
| 81 |   /// The returned paths. This is populated during getPaths. | ||
| 82 | SmallVector<NfaPath, 4> Paths; | ||
| 83 | |||
| 84 |   /// Create a new segment and return it. | ||
| 85 | PathSegment *makePathSegment(uint64_t State, PathSegment *Tail) { | ||
| 86 | PathSegment *P = Allocator.Allocate(); | ||
| 87 | *P = {State, Tail}; | ||
| 88 | return P; | ||
| 89 |   } | ||
| 90 | |||
| 91 |   /// Pairs defines a sequence of possible NFA transitions for a single DFA | ||
| 92 |   /// transition. | ||
| 93 | void transition(ArrayRef<NfaStatePair> Pairs) { | ||
| 94 |     // Iterate over all existing heads. We will mutate the Heads deque during | ||
| 95 |     // iteration. | ||
| 96 | unsigned NumHeads = Heads.size(); | ||
| 97 | for (unsigned I = 0; I < NumHeads; ++I) { | ||
| 98 | PathSegment *Head = Heads[I]; | ||
| 99 |       // The sequence of pairs is sorted. Select the set of pairs that | ||
| 100 |       // transition from the current head state. | ||
| 101 | auto PI = lower_bound(Pairs, NfaStatePair{Head->State, 0ULL}); | ||
| 102 | auto PE = upper_bound(Pairs, NfaStatePair{Head->State, INT64_MAX}); | ||
| 103 |       // For every transition from the current head state, add a new path | ||
| 104 |       // segment. | ||
| 105 | for (; PI != PE; ++PI) | ||
| 106 | if (PI->FromDfaState == Head->State) | ||
| 107 | Heads.push_back(makePathSegment(PI->ToDfaState, Head)); | ||
| 108 |     } | ||
| 109 |     // Now we've iterated over all the initial heads and added new ones, | ||
| 110 |     // dispose of the original heads. | ||
| 111 | Heads.erase(Heads.begin(), std::next(Heads.begin(), NumHeads)); | ||
| 112 |   } | ||
| 113 | |||
| 114 | public: | ||
| 115 | NfaTranscriber(ArrayRef<NfaStatePair> TransitionInfo) | ||
| 116 | : TransitionInfo(TransitionInfo) { | ||
| 117 | reset(); | ||
| 118 |   } | ||
| 119 | |||
| 120 | ArrayRef<NfaStatePair> getTransitionInfo() const { | ||
| 121 | return TransitionInfo; | ||
| 122 |   } | ||
| 123 | |||
| 124 | void reset() { | ||
| 125 | Paths.clear(); | ||
| 126 | Heads.clear(); | ||
| 127 | Allocator.DestroyAll(); | ||
| 128 |     // The initial NFA state is 0. | ||
| 129 | Heads.push_back(makePathSegment(0ULL, nullptr)); | ||
| 130 |   } | ||
| 131 | |||
| 132 | void transition(unsigned TransitionInfoIdx) { | ||
| 133 | unsigned EndIdx = TransitionInfoIdx; | ||
| 134 | while (TransitionInfo[EndIdx].ToDfaState != 0) | ||
| 135 | ++EndIdx; | ||
| 136 | ArrayRef<NfaStatePair> Pairs(&TransitionInfo[TransitionInfoIdx], | ||
| 137 | EndIdx - TransitionInfoIdx); | ||
| 138 | transition(Pairs); | ||
| 139 |   } | ||
| 140 | |||
| 141 | ArrayRef<NfaPath> getPaths() { | ||
| 142 | Paths.clear(); | ||
| 143 | for (auto *Head : Heads) { | ||
| 144 |       NfaPath P; | ||
| 145 | while (Head->State != 0) { | ||
| 146 | P.push_back(Head->State); | ||
| 147 | Head = Head->Tail; | ||
| 148 |       } | ||
| 149 | std::reverse(P.begin(), P.end()); | ||
| 150 | Paths.push_back(std::move(P)); | ||
| 151 |     } | ||
| 152 | return Paths; | ||
| 153 |   } | ||
| 154 | }; | ||
| 155 | } // namespace internal | ||
| 156 | |||
| 157 | /// A deterministic finite-state automaton. The automaton is defined in | ||
| 158 | /// TableGen; this object drives an automaton defined by tblgen-emitted tables. | ||
| 159 | /// | ||
| 160 | /// An automaton accepts a sequence of input tokens ("actions"). This class is | ||
| 161 | /// templated on the type of these actions. | ||
| 162 | template <typename ActionT> class Automaton { | ||
| 163 |   /// Map from {State, Action} to {NewState, TransitionInfoIdx}. | ||
| 164 |   /// TransitionInfoIdx is used by the DfaTranscriber to analyze the transition. | ||
| 165 |   /// FIXME: This uses a std::map because ActionT can be a pair type including | ||
| 166 |   /// an enum. In particular DenseMapInfo<ActionT> must be defined to use | ||
| 167 |   /// DenseMap here. | ||
| 168 |   /// This is a shared_ptr to allow very quick copy-construction of Automata; this | ||
| 169 |   /// state is immutable after construction so this is safe. | ||
| 170 | using MapTy = std::map<std::pair<uint64_t, ActionT>, std::pair<uint64_t, unsigned>>; | ||
| 171 | std::shared_ptr<MapTy> M; | ||
| 172 |   /// An optional transcription object. This uses much more state than simply | ||
| 173 |   /// traversing the DFA for acceptance, so is heap allocated. | ||
| 174 | std::shared_ptr<internal::NfaTranscriber> Transcriber; | ||
| 175 |   /// The initial DFA state is 1. | ||
| 176 | uint64_t State = 1; | ||
| 177 |   /// True if we should transcribe and false if not (even if Transcriber is defined). | ||
| 178 | bool Transcribe; | ||
| 179 | |||
| 180 | public: | ||
| 181 |   /// Create an automaton. | ||
| 182 |   /// \param Transitions The Transitions table as created by TableGen. Note that | ||
| 183 |   ///                    because the action type differs per automaton, the | ||
| 184 |   ///                    table type is templated as ArrayRef<InfoT>. | ||
| 185 |   /// \param TranscriptionTable The TransitionInfo table as created by TableGen. | ||
| 186 |   /// | ||
| 187 |   /// Providing the TranscriptionTable argument as non-empty will enable the | ||
| 188 |   /// use of transcription, which analyzes the possible paths in the original | ||
| 189 |   /// NFA taken by the DFA. NOTE: This is substantially more work than simply | ||
| 190 |   /// driving the DFA, so unless you require the getPaths() method leave this | ||
| 191 |   /// empty. | ||
| 192 | template <typename InfoT> | ||
| 193 | Automaton(ArrayRef<InfoT> Transitions, | ||
| 194 | ArrayRef<NfaStatePair> TranscriptionTable = {}) { | ||
| 195 | if (!TranscriptionTable.empty()) | ||
| 196 |       Transcriber = | ||
| 197 | std::make_shared<internal::NfaTranscriber>(TranscriptionTable); | ||
| 198 | Transcribe = Transcriber != nullptr; | ||
| 199 | M = std::make_shared<MapTy>(); | ||
| 200 | for (const auto &I : Transitions) | ||
| 201 |       // Greedily read and cache the transition table. | ||
| 202 | M->emplace(std::make_pair(I.FromDfaState, I.Action), | ||
| 203 | std::make_pair(I.ToDfaState, I.InfoIdx)); | ||
| 204 |   } | ||
| 205 | Automaton(const Automaton &Other) | ||
| 206 | : M(Other.M), State(Other.State), Transcribe(Other.Transcribe) { | ||
| 207 |     // Transcriber is not thread-safe, so create a new instance on copy. | ||
| 208 | if (Other.Transcriber) | ||
| 209 | Transcriber = std::make_shared<internal::NfaTranscriber>( | ||
| 210 | Other.Transcriber->getTransitionInfo()); | ||
| 211 |   } | ||
| 212 | |||
| 213 |   /// Reset the automaton to its initial state. | ||
| 214 | void reset() { | ||
| 215 | State = 1; | ||
| 216 | if (Transcriber) | ||
| 217 | Transcriber->reset(); | ||
| 218 |   } | ||
| 219 | |||
| 220 |   /// Enable or disable transcription. Transcription is only available if | ||
| 221 |   /// TranscriptionTable was provided to the constructor. | ||
| 222 | void enableTranscription(bool Enable = true) { | ||
| 223 | assert(Transcriber && | ||
| 224 |            "Transcription is only available if TranscriptionTable was provided " | ||
| 225 | "to the Automaton constructor"); | ||
| 226 | Transcribe = Enable; | ||
| 227 |   } | ||
| 228 | |||
| 229 |   /// Transition the automaton based on input symbol A. Return true if the | ||
| 230 |   /// automaton transitioned to a valid state, false if the automaton | ||
| 231 |   /// transitioned to an invalid state. | ||
| 232 |   /// | ||
| 233 |   /// If this function returns false, all methods are undefined until reset() is | ||
| 234 |   /// called. | ||
| 235 | bool add(const ActionT &A) { | ||
| 236 | auto I = M->find({State, A}); | ||
| 237 | if (I == M->end()) | ||
| 238 | return false; | ||
| 239 | if (Transcriber && Transcribe) | ||
| 240 | Transcriber->transition(I->second.second); | ||
| 241 | State = I->second.first; | ||
| 242 | return true; | ||
| 243 |   } | ||
| 244 | |||
| 245 |   /// Return true if the automaton can be transitioned based on input symbol A. | ||
| 246 | bool canAdd(const ActionT &A) { | ||
| 247 | auto I = M->find({State, A}); | ||
| 248 | return I != M->end(); | ||
| 249 |   } | ||
| 250 | |||
| 251 |   /// Obtain a set of possible paths through the input nondeterministic | ||
| 252 |   /// automaton that could be obtained from the sequence of input actions | ||
| 253 |   /// presented to this deterministic automaton. | ||
| 254 | ArrayRef<NfaPath> getNfaPaths() { | ||
| 255 | assert(Transcriber && Transcribe && | ||
| 256 | "Can only obtain NFA paths if transcribing!"); | ||
| 257 | return Transcriber->getPaths(); | ||
| 258 |   } | ||
| 259 | }; | ||
| 260 | |||
| 261 | } // namespace llvm | ||
| 262 | |||
| 263 | #endif // LLVM_SUPPORT_AUTOMATON_H |