Details | Last modification | View Log | RSS feed
| Rev | Author | Line No. | Line | 
|---|---|---|---|
| 14 | pmbaty | 1 | //===- Allocator.h - Simple memory allocation abstraction -------*- C++ -*-===// | 
| 2 | // | ||
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | ||
| 4 | // See https://llvm.org/LICENSE.txt for license information. | ||
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | ||
| 6 | // | ||
| 7 | //===----------------------------------------------------------------------===// | ||
| 8 | /// \file | ||
| 9 | /// | ||
| 10 | /// This file defines the BumpPtrAllocator interface. BumpPtrAllocator conforms | ||
| 11 | /// to the LLVM "Allocator" concept and is similar to MallocAllocator, but | ||
| 12 | /// objects cannot be deallocated. Their lifetime is tied to the lifetime of the | ||
| 13 | /// allocator. | ||
| 14 | /// | ||
| 15 | //===----------------------------------------------------------------------===// | ||
| 16 | |||
| 17 | #ifndef LLVM_SUPPORT_ALLOCATOR_H | ||
| 18 | #define LLVM_SUPPORT_ALLOCATOR_H | ||
| 19 | |||
| 20 | #include "llvm/ADT/SmallVector.h" | ||
| 21 | #include "llvm/Support/Alignment.h" | ||
| 22 | #include "llvm/Support/AllocatorBase.h" | ||
| 23 | #include "llvm/Support/Compiler.h" | ||
| 24 | #include "llvm/Support/MathExtras.h" | ||
| 25 | #include <algorithm> | ||
| 26 | #include <cassert> | ||
| 27 | #include <cstddef> | ||
| 28 | #include <cstdint> | ||
| 29 | #include <iterator> | ||
| 30 | #include <optional> | ||
| 31 | #include <utility> | ||
| 32 | |||
| 33 | namespace llvm { | ||
| 34 | |||
| 35 | namespace detail { | ||
| 36 | |||
| 37 | // We call out to an external function to actually print the message as the | ||
| 38 | // printing code uses Allocator.h in its implementation. | ||
| 39 | void printBumpPtrAllocatorStats(unsigned NumSlabs, size_t BytesAllocated, | ||
| 40 | size_t TotalMemory); | ||
| 41 | |||
| 42 | } // end namespace detail | ||
| 43 | |||
| 44 | /// Allocate memory in an ever growing pool, as if by bump-pointer. | ||
| 45 | /// | ||
| 46 | /// This isn't strictly a bump-pointer allocator as it uses backing slabs of | ||
| 47 | /// memory rather than relying on a boundless contiguous heap. However, it has | ||
| 48 | /// bump-pointer semantics in that it is a monotonically growing pool of memory | ||
| 49 | /// where every allocation is found by merely allocating the next N bytes in | ||
| 50 | /// the slab, or the next N bytes in the next slab. | ||
| 51 | /// | ||
| 52 | /// Note that this also has a threshold for forcing allocations above a certain | ||
| 53 | /// size into their own slab. | ||
| 54 | /// | ||
| 55 | /// The BumpPtrAllocatorImpl template defaults to using a MallocAllocator | ||
| 56 | /// object, which wraps malloc, to allocate memory, but it can be changed to | ||
| 57 | /// use a custom allocator. | ||
| 58 | /// | ||
| 59 | /// The GrowthDelay specifies after how many allocated slabs the allocator | ||
| 60 | /// increases the size of the slabs. | ||
| 61 | template <typename AllocatorT = MallocAllocator, size_t SlabSize = 4096, | ||
| 62 | size_t SizeThreshold = SlabSize, size_t GrowthDelay = 128> | ||
| 63 | class BumpPtrAllocatorImpl | ||
| 64 | : public AllocatorBase<BumpPtrAllocatorImpl<AllocatorT, SlabSize, | ||
| 65 |                                                 SizeThreshold, GrowthDelay>>, | ||
| 66 | private detail::AllocatorHolder<AllocatorT> { | ||
| 67 | using AllocTy = detail::AllocatorHolder<AllocatorT>; | ||
| 68 | |||
| 69 | public: | ||
| 70 | static_assert(SizeThreshold <= SlabSize, | ||
| 71 |                 "The SizeThreshold must be at most the SlabSize to ensure " | ||
| 72 |                 "that objects larger than a slab go into their own memory " | ||
| 73 | "allocation."); | ||
| 74 | static_assert(GrowthDelay > 0, | ||
| 75 |                 "GrowthDelay must be at least 1 which already increases the" | ||
| 76 | "slab size after each allocated slab."); | ||
| 77 | |||
| 78 | BumpPtrAllocatorImpl() = default; | ||
| 79 | |||
| 80 | template <typename T> | ||
| 81 | BumpPtrAllocatorImpl(T &&Allocator) | ||
| 82 | : AllocTy(std::forward<T &&>(Allocator)) {} | ||
| 83 | |||
| 84 |   // Manually implement a move constructor as we must clear the old allocator's | ||
| 85 |   // slabs as a matter of correctness. | ||
| 86 | BumpPtrAllocatorImpl(BumpPtrAllocatorImpl &&Old) | ||
| 87 | : AllocTy(std::move(Old.getAllocator())), CurPtr(Old.CurPtr), | ||
| 88 | End(Old.End), Slabs(std::move(Old.Slabs)), | ||
| 89 | CustomSizedSlabs(std::move(Old.CustomSizedSlabs)), | ||
| 90 | BytesAllocated(Old.BytesAllocated), RedZoneSize(Old.RedZoneSize) { | ||
| 91 | Old.CurPtr = Old.End = nullptr; | ||
| 92 | Old.BytesAllocated = 0; | ||
| 93 | Old.Slabs.clear(); | ||
| 94 | Old.CustomSizedSlabs.clear(); | ||
| 95 |   } | ||
| 96 | |||
| 97 | ~BumpPtrAllocatorImpl() { | ||
| 98 | DeallocateSlabs(Slabs.begin(), Slabs.end()); | ||
| 99 | DeallocateCustomSizedSlabs(); | ||
| 100 |   } | ||
| 101 | |||
| 102 | BumpPtrAllocatorImpl &operator=(BumpPtrAllocatorImpl &&RHS) { | ||
| 103 | DeallocateSlabs(Slabs.begin(), Slabs.end()); | ||
| 104 | DeallocateCustomSizedSlabs(); | ||
| 105 | |||
| 106 | CurPtr = RHS.CurPtr; | ||
| 107 | End = RHS.End; | ||
| 108 | BytesAllocated = RHS.BytesAllocated; | ||
| 109 | RedZoneSize = RHS.RedZoneSize; | ||
| 110 | Slabs = std::move(RHS.Slabs); | ||
| 111 | CustomSizedSlabs = std::move(RHS.CustomSizedSlabs); | ||
| 112 | AllocTy::operator=(std::move(RHS.getAllocator())); | ||
| 113 | |||
| 114 | RHS.CurPtr = RHS.End = nullptr; | ||
| 115 | RHS.BytesAllocated = 0; | ||
| 116 | RHS.Slabs.clear(); | ||
| 117 | RHS.CustomSizedSlabs.clear(); | ||
| 118 | return *this; | ||
| 119 |   } | ||
| 120 | |||
| 121 |   /// Deallocate all but the current slab and reset the current pointer | ||
| 122 |   /// to the beginning of it, freeing all memory allocated so far. | ||
| 123 | void Reset() { | ||
| 124 |     // Deallocate all but the first slab, and deallocate all custom-sized slabs. | ||
| 125 | DeallocateCustomSizedSlabs(); | ||
| 126 | CustomSizedSlabs.clear(); | ||
| 127 | |||
| 128 | if (Slabs.empty()) | ||
| 129 | return; | ||
| 130 | |||
| 131 |     // Reset the state. | ||
| 132 | BytesAllocated = 0; | ||
| 133 | CurPtr = (char *)Slabs.front(); | ||
| 134 | End = CurPtr + SlabSize; | ||
| 135 | |||
| 136 | __asan_poison_memory_region(*Slabs.begin(), computeSlabSize(0)); | ||
| 137 | DeallocateSlabs(std::next(Slabs.begin()), Slabs.end()); | ||
| 138 | Slabs.erase(std::next(Slabs.begin()), Slabs.end()); | ||
| 139 |   } | ||
| 140 | |||
| 141 |   /// Allocate space at the specified alignment. | ||
| 142 |   // This method is *not* marked noalias, because | ||
| 143 |   // SpecificBumpPtrAllocator::DestroyAll() loops over all allocations, and | ||
| 144 |   // that loop is not based on the Allocate() return value. | ||
| 145 |   // | ||
| 146 |   // Allocate(0, N) is valid, it returns a non-null pointer (which should not | ||
| 147 |   // be dereferenced). | ||
| 148 | LLVM_ATTRIBUTE_RETURNS_NONNULL void *Allocate(size_t Size, Align Alignment) { | ||
| 149 |     // Keep track of how many bytes we've allocated. | ||
| 150 | BytesAllocated += Size; | ||
| 151 | |||
| 152 | size_t Adjustment = offsetToAlignedAddr(CurPtr, Alignment); | ||
| 153 | assert(Adjustment + Size >= Size && "Adjustment + Size must not overflow"); | ||
| 154 | |||
| 155 | size_t SizeToAllocate = Size; | ||
| 156 | #if LLVM_ADDRESS_SANITIZER_BUILD | ||
| 157 |     // Add trailing bytes as a "red zone" under ASan. | ||
| 158 | SizeToAllocate += RedZoneSize; | ||
| 159 | #endif | ||
| 160 | |||
| 161 |     // Check if we have enough space. | ||
| 162 | if (Adjustment + SizeToAllocate <= size_t(End - CurPtr) | ||
| 163 |         // We can't return nullptr even for a zero-sized allocation! | ||
| 164 | && CurPtr != nullptr) { | ||
| 165 | char *AlignedPtr = CurPtr + Adjustment; | ||
| 166 | CurPtr = AlignedPtr + SizeToAllocate; | ||
| 167 |       // Update the allocation point of this memory block in MemorySanitizer. | ||
| 168 |       // Without this, MemorySanitizer messages for values originated from here | ||
| 169 |       // will point to the allocation of the entire slab. | ||
| 170 | __msan_allocated_memory(AlignedPtr, Size); | ||
| 171 |       // Similarly, tell ASan about this space. | ||
| 172 | __asan_unpoison_memory_region(AlignedPtr, Size); | ||
| 173 | return AlignedPtr; | ||
| 174 |     } | ||
| 175 | |||
| 176 |     // If Size is really big, allocate a separate slab for it. | ||
| 177 | size_t PaddedSize = SizeToAllocate + Alignment.value() - 1; | ||
| 178 | if (PaddedSize > SizeThreshold) { | ||
| 179 | void *NewSlab = | ||
| 180 | this->getAllocator().Allocate(PaddedSize, alignof(std::max_align_t)); | ||
| 181 |       // We own the new slab and don't want anyone reading anyting other than | ||
| 182 |       // pieces returned from this method.  So poison the whole slab. | ||
| 183 | __asan_poison_memory_region(NewSlab, PaddedSize); | ||
| 184 | CustomSizedSlabs.push_back(std::make_pair(NewSlab, PaddedSize)); | ||
| 185 | |||
| 186 | uintptr_t AlignedAddr = alignAddr(NewSlab, Alignment); | ||
| 187 | assert(AlignedAddr + Size <= (uintptr_t)NewSlab + PaddedSize); | ||
| 188 | char *AlignedPtr = (char*)AlignedAddr; | ||
| 189 | __msan_allocated_memory(AlignedPtr, Size); | ||
| 190 | __asan_unpoison_memory_region(AlignedPtr, Size); | ||
| 191 | return AlignedPtr; | ||
| 192 |     } | ||
| 193 | |||
| 194 |     // Otherwise, start a new slab and try again. | ||
| 195 | StartNewSlab(); | ||
| 196 | uintptr_t AlignedAddr = alignAddr(CurPtr, Alignment); | ||
| 197 | assert(AlignedAddr + SizeToAllocate <= (uintptr_t)End && | ||
| 198 | "Unable to allocate memory!"); | ||
| 199 | char *AlignedPtr = (char*)AlignedAddr; | ||
| 200 | CurPtr = AlignedPtr + SizeToAllocate; | ||
| 201 | __msan_allocated_memory(AlignedPtr, Size); | ||
| 202 | __asan_unpoison_memory_region(AlignedPtr, Size); | ||
| 203 | return AlignedPtr; | ||
| 204 |   } | ||
| 205 | |||
| 206 | inline LLVM_ATTRIBUTE_RETURNS_NONNULL void * | ||
| 207 | Allocate(size_t Size, size_t Alignment) { | ||
| 208 | assert(Alignment > 0 && "0-byte alignment is not allowed. Use 1 instead."); | ||
| 209 | return Allocate(Size, Align(Alignment)); | ||
| 210 |   } | ||
| 211 | |||
| 212 |   // Pull in base class overloads. | ||
| 213 | using AllocatorBase<BumpPtrAllocatorImpl>::Allocate; | ||
| 214 | |||
| 215 |   // Bump pointer allocators are expected to never free their storage; and | ||
| 216 |   // clients expect pointers to remain valid for non-dereferencing uses even | ||
| 217 |   // after deallocation. | ||
| 218 | void Deallocate(const void *Ptr, size_t Size, size_t /*Alignment*/) { | ||
| 219 | __asan_poison_memory_region(Ptr, Size); | ||
| 220 |   } | ||
| 221 | |||
| 222 |   // Pull in base class overloads. | ||
| 223 | using AllocatorBase<BumpPtrAllocatorImpl>::Deallocate; | ||
| 224 | |||
| 225 | size_t GetNumSlabs() const { return Slabs.size() + CustomSizedSlabs.size(); } | ||
| 226 | |||
| 227 |   /// \return An index uniquely and reproducibly identifying | ||
| 228 |   /// an input pointer \p Ptr in the given allocator. | ||
| 229 |   /// The returned value is negative iff the object is inside a custom-size | ||
| 230 |   /// slab. | ||
| 231 |   /// Returns an empty optional if the pointer is not found in the allocator. | ||
| 232 | std::optional<int64_t> identifyObject(const void *Ptr) { | ||
| 233 | const char *P = static_cast<const char *>(Ptr); | ||
| 234 | int64_t InSlabIdx = 0; | ||
| 235 | for (size_t Idx = 0, E = Slabs.size(); Idx < E; Idx++) { | ||
| 236 | const char *S = static_cast<const char *>(Slabs[Idx]); | ||
| 237 | if (P >= S && P < S + computeSlabSize(Idx)) | ||
| 238 | return InSlabIdx + static_cast<int64_t>(P - S); | ||
| 239 | InSlabIdx += static_cast<int64_t>(computeSlabSize(Idx)); | ||
| 240 |     } | ||
| 241 | |||
| 242 |     // Use negative index to denote custom sized slabs. | ||
| 243 | int64_t InCustomSizedSlabIdx = -1; | ||
| 244 | for (size_t Idx = 0, E = CustomSizedSlabs.size(); Idx < E; Idx++) { | ||
| 245 | const char *S = static_cast<const char *>(CustomSizedSlabs[Idx].first); | ||
| 246 | size_t Size = CustomSizedSlabs[Idx].second; | ||
| 247 | if (P >= S && P < S + Size) | ||
| 248 | return InCustomSizedSlabIdx - static_cast<int64_t>(P - S); | ||
| 249 | InCustomSizedSlabIdx -= static_cast<int64_t>(Size); | ||
| 250 |     } | ||
| 251 | return std::nullopt; | ||
| 252 |   } | ||
| 253 | |||
| 254 |   /// A wrapper around identifyObject that additionally asserts that | ||
| 255 |   /// the object is indeed within the allocator. | ||
| 256 |   /// \return An index uniquely and reproducibly identifying | ||
| 257 |   /// an input pointer \p Ptr in the given allocator. | ||
| 258 | int64_t identifyKnownObject(const void *Ptr) { | ||
| 259 | std::optional<int64_t> Out = identifyObject(Ptr); | ||
| 260 | assert(Out && "Wrong allocator used"); | ||
| 261 | return *Out; | ||
| 262 |   } | ||
| 263 | |||
| 264 |   /// A wrapper around identifyKnownObject. Accepts type information | ||
| 265 |   /// about the object and produces a smaller identifier by relying on | ||
| 266 |   /// the alignment information. Note that sub-classes may have different | ||
| 267 |   /// alignment, so the most base class should be passed as template parameter | ||
| 268 |   /// in order to obtain correct results. For that reason automatic template | ||
| 269 |   /// parameter deduction is disabled. | ||
| 270 |   /// \return An index uniquely and reproducibly identifying | ||
| 271 |   /// an input pointer \p Ptr in the given allocator. This identifier is | ||
| 272 |   /// different from the ones produced by identifyObject and | ||
| 273 |   /// identifyAlignedObject. | ||
| 274 | template <typename T> | ||
| 275 | int64_t identifyKnownAlignedObject(const void *Ptr) { | ||
| 276 | int64_t Out = identifyKnownObject(Ptr); | ||
| 277 | assert(Out % alignof(T) == 0 && "Wrong alignment information"); | ||
| 278 | return Out / alignof(T); | ||
| 279 |   } | ||
| 280 | |||
| 281 | size_t getTotalMemory() const { | ||
| 282 | size_t TotalMemory = 0; | ||
| 283 | for (auto I = Slabs.begin(), E = Slabs.end(); I != E; ++I) | ||
| 284 | TotalMemory += computeSlabSize(std::distance(Slabs.begin(), I)); | ||
| 285 | for (const auto &PtrAndSize : CustomSizedSlabs) | ||
| 286 | TotalMemory += PtrAndSize.second; | ||
| 287 | return TotalMemory; | ||
| 288 |   } | ||
| 289 | |||
| 290 | size_t getBytesAllocated() const { return BytesAllocated; } | ||
| 291 | |||
| 292 | void setRedZoneSize(size_t NewSize) { | ||
| 293 | RedZoneSize = NewSize; | ||
| 294 |   } | ||
| 295 | |||
| 296 | void PrintStats() const { | ||
| 297 | detail::printBumpPtrAllocatorStats(Slabs.size(), BytesAllocated, | ||
| 298 | getTotalMemory()); | ||
| 299 |   } | ||
| 300 | |||
| 301 | private: | ||
| 302 |   /// The current pointer into the current slab. | ||
| 303 |   /// | ||
| 304 |   /// This points to the next free byte in the slab. | ||
| 305 | char *CurPtr = nullptr; | ||
| 306 | |||
| 307 |   /// The end of the current slab. | ||
| 308 | char *End = nullptr; | ||
| 309 | |||
| 310 |   /// The slabs allocated so far. | ||
| 311 | SmallVector<void *, 4> Slabs; | ||
| 312 | |||
| 313 |   /// Custom-sized slabs allocated for too-large allocation requests. | ||
| 314 | SmallVector<std::pair<void *, size_t>, 0> CustomSizedSlabs; | ||
| 315 | |||
| 316 |   /// How many bytes we've allocated. | ||
| 317 |   /// | ||
| 318 |   /// Used so that we can compute how much space was wasted. | ||
| 319 | size_t BytesAllocated = 0; | ||
| 320 | |||
| 321 |   /// The number of bytes to put between allocations when running under | ||
| 322 |   /// a sanitizer. | ||
| 323 | size_t RedZoneSize = 1; | ||
| 324 | |||
| 325 | static size_t computeSlabSize(unsigned SlabIdx) { | ||
| 326 |     // Scale the actual allocated slab size based on the number of slabs | ||
| 327 |     // allocated. Every GrowthDelay slabs allocated, we double | ||
| 328 |     // the allocated size to reduce allocation frequency, but saturate at | ||
| 329 |     // multiplying the slab size by 2^30. | ||
| 330 | return SlabSize * | ||
| 331 | ((size_t)1 << std::min<size_t>(30, SlabIdx / GrowthDelay)); | ||
| 332 |   } | ||
| 333 | |||
| 334 |   /// Allocate a new slab and move the bump pointers over into the new | ||
| 335 |   /// slab, modifying CurPtr and End. | ||
| 336 | void StartNewSlab() { | ||
| 337 | size_t AllocatedSlabSize = computeSlabSize(Slabs.size()); | ||
| 338 | |||
| 339 | void *NewSlab = this->getAllocator().Allocate(AllocatedSlabSize, | ||
| 340 | alignof(std::max_align_t)); | ||
| 341 |     // We own the new slab and don't want anyone reading anything other than | ||
| 342 |     // pieces returned from this method.  So poison the whole slab. | ||
| 343 | __asan_poison_memory_region(NewSlab, AllocatedSlabSize); | ||
| 344 | |||
| 345 | Slabs.push_back(NewSlab); | ||
| 346 | CurPtr = (char *)(NewSlab); | ||
| 347 | End = ((char *)NewSlab) + AllocatedSlabSize; | ||
| 348 |   } | ||
| 349 | |||
| 350 |   /// Deallocate a sequence of slabs. | ||
| 351 | void DeallocateSlabs(SmallVectorImpl<void *>::iterator I, | ||
| 352 | SmallVectorImpl<void *>::iterator E) { | ||
| 353 | for (; I != E; ++I) { | ||
| 354 | size_t AllocatedSlabSize = | ||
| 355 | computeSlabSize(std::distance(Slabs.begin(), I)); | ||
| 356 | this->getAllocator().Deallocate(*I, AllocatedSlabSize, | ||
| 357 | alignof(std::max_align_t)); | ||
| 358 |     } | ||
| 359 |   } | ||
| 360 | |||
| 361 |   /// Deallocate all memory for custom sized slabs. | ||
| 362 | void DeallocateCustomSizedSlabs() { | ||
| 363 | for (auto &PtrAndSize : CustomSizedSlabs) { | ||
| 364 | void *Ptr = PtrAndSize.first; | ||
| 365 | size_t Size = PtrAndSize.second; | ||
| 366 | this->getAllocator().Deallocate(Ptr, Size, alignof(std::max_align_t)); | ||
| 367 |     } | ||
| 368 |   } | ||
| 369 | |||
| 370 | template <typename T> friend class SpecificBumpPtrAllocator; | ||
| 371 | }; | ||
| 372 | |||
| 373 | /// The standard BumpPtrAllocator which just uses the default template | ||
| 374 | /// parameters. | ||
| 375 | typedef BumpPtrAllocatorImpl<> BumpPtrAllocator; | ||
| 376 | |||
| 377 | /// A BumpPtrAllocator that allows only elements of a specific type to be | ||
| 378 | /// allocated. | ||
| 379 | /// | ||
| 380 | /// This allows calling the destructor in DestroyAll() and when the allocator is | ||
| 381 | /// destroyed. | ||
| 382 | template <typename T> class SpecificBumpPtrAllocator { | ||
| 383 |   BumpPtrAllocator Allocator; | ||
| 384 | |||
| 385 | public: | ||
| 386 | SpecificBumpPtrAllocator() { | ||
| 387 |     // Because SpecificBumpPtrAllocator walks the memory to call destructors, | ||
| 388 |     // it can't have red zones between allocations. | ||
| 389 | Allocator.setRedZoneSize(0); | ||
| 390 |   } | ||
| 391 | SpecificBumpPtrAllocator(SpecificBumpPtrAllocator &&Old) | ||
| 392 | : Allocator(std::move(Old.Allocator)) {} | ||
| 393 | ~SpecificBumpPtrAllocator() { DestroyAll(); } | ||
| 394 | |||
| 395 | SpecificBumpPtrAllocator &operator=(SpecificBumpPtrAllocator &&RHS) { | ||
| 396 | Allocator = std::move(RHS.Allocator); | ||
| 397 | return *this; | ||
| 398 |   } | ||
| 399 | |||
| 400 |   /// Call the destructor of each allocated object and deallocate all but the | ||
| 401 |   /// current slab and reset the current pointer to the beginning of it, freeing | ||
| 402 |   /// all memory allocated so far. | ||
| 403 | void DestroyAll() { | ||
| 404 | auto DestroyElements = [](char *Begin, char *End) { | ||
| 405 | assert(Begin == (char *)alignAddr(Begin, Align::Of<T>())); | ||
| 406 | for (char *Ptr = Begin; Ptr + sizeof(T) <= End; Ptr += sizeof(T)) | ||
| 407 | reinterpret_cast<T *>(Ptr)->~T(); | ||
| 408 | }; | ||
| 409 | |||
| 410 | for (auto I = Allocator.Slabs.begin(), E = Allocator.Slabs.end(); I != E; | ||
| 411 | ++I) { | ||
| 412 | size_t AllocatedSlabSize = BumpPtrAllocator::computeSlabSize( | ||
| 413 | std::distance(Allocator.Slabs.begin(), I)); | ||
| 414 | char *Begin = (char *)alignAddr(*I, Align::Of<T>()); | ||
| 415 | char *End = *I == Allocator.Slabs.back() ? Allocator.CurPtr | ||
| 416 | : (char *)*I + AllocatedSlabSize; | ||
| 417 | |||
| 418 | DestroyElements(Begin, End); | ||
| 419 |     } | ||
| 420 | |||
| 421 | for (auto &PtrAndSize : Allocator.CustomSizedSlabs) { | ||
| 422 | void *Ptr = PtrAndSize.first; | ||
| 423 | size_t Size = PtrAndSize.second; | ||
| 424 | DestroyElements((char *)alignAddr(Ptr, Align::Of<T>()), | ||
| 425 | (char *)Ptr + Size); | ||
| 426 |     } | ||
| 427 | |||
| 428 | Allocator.Reset(); | ||
| 429 |   } | ||
| 430 | |||
| 431 |   /// Allocate space for an array of objects without constructing them. | ||
| 432 | T *Allocate(size_t num = 1) { return Allocator.Allocate<T>(num); } | ||
| 433 | }; | ||
| 434 | |||
| 435 | } // end namespace llvm | ||
| 436 | |||
| 437 | template <typename AllocatorT, size_t SlabSize, size_t SizeThreshold, | ||
| 438 | size_t GrowthDelay> | ||
| 439 | void * | ||
| 440 | operator new(size_t Size, | ||
| 441 | llvm::BumpPtrAllocatorImpl<AllocatorT, SlabSize, SizeThreshold, | ||
| 442 | GrowthDelay> &Allocator) { | ||
| 443 | return Allocator.Allocate(Size, std::min((size_t)llvm::NextPowerOf2(Size), | ||
| 444 | alignof(std::max_align_t))); | ||
| 445 | } | ||
| 446 | |||
| 447 | template <typename AllocatorT, size_t SlabSize, size_t SizeThreshold, | ||
| 448 | size_t GrowthDelay> | ||
| 449 | void operator delete(void *, | ||
| 450 | llvm::BumpPtrAllocatorImpl<AllocatorT, SlabSize, | ||
| 451 | SizeThreshold, GrowthDelay> &) { | ||
| 452 | } | ||
| 453 | |||
| 454 | #endif // LLVM_SUPPORT_ALLOCATOR_H |