Subversion Repositories QNX 8.QNX8 LLVM/Clang compiler suite

Rev

Details | Last modification | View Log | RSS feed

Rev Author Line No. Line
14 pmbaty 1
//===-- llvm/Support/ARMWinEH.h - Windows on ARM EH Constants ---*- C++ -*-===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
 
9
#ifndef LLVM_SUPPORT_ARMWINEH_H
10
#define LLVM_SUPPORT_ARMWINEH_H
11
 
12
#include "llvm/ADT/ArrayRef.h"
13
#include "llvm/Support/Endian.h"
14
 
15
namespace llvm {
16
namespace ARM {
17
namespace WinEH {
18
enum class RuntimeFunctionFlag {
19
  RFF_Unpacked,       /// unpacked entry
20
  RFF_Packed,         /// packed entry
21
  RFF_PackedFragment, /// packed entry representing a fragment
22
  RFF_Reserved,       /// reserved
23
};
24
 
25
enum class ReturnType {
26
  RT_POP,             /// return via pop {pc} (L flag must be set)
27
  RT_B,               /// 16-bit branch
28
  RT_BW,              /// 32-bit branch
29
  RT_NoEpilogue,      /// no epilogue (fragment)
30
};
31
 
32
/// RuntimeFunction - An entry in the table of procedure data (.pdata)
33
///
34
/// This is ARM specific, but the Function Start RVA, Flag and
35
/// ExceptionInformationRVA fields work identically for ARM64.
36
///
37
///  3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
38
///  1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
39
/// +---------------------------------------------------------------+
40
/// |                     Function Start RVA                        |
41
/// +-------------------+-+-+-+-----+-+---+---------------------+---+
42
/// |    Stack Adjust   |C|L|R| Reg |H|Ret|   Function Length   |Flg|
43
/// +-------------------+-+-+-+-----+-+---+---------------------+---+
44
///
45
/// Flag : 2-bit field with the following meanings:
46
///   - 00 = packed unwind data not used; reamining bits point to .xdata record
47
///   - 01 = packed unwind data
48
///   - 10 = packed unwind data, function assumed to have no prologue; useful
49
///          for function fragments that are discontiguous with the start of the
50
///          function
51
///   - 11 = reserved
52
/// Function Length : 11-bit field providing the length of the entire function
53
///                   in bytes, divided by 2; if the function is greater than
54
///                   4KB, a full .xdata record must be used instead
55
/// Ret : 2-bit field indicating how the function returns
56
///   - 00 = return via pop {pc} (the L bit must be set)
57
///   - 01 = return via 16-bit branch
58
///   - 10 = return via 32-bit branch
59
///   - 11 = no epilogue; useful for function fragments that may only contain a
60
///          prologue but the epilogue is elsewhere
61
/// H : 1-bit flag indicating whether the function "homes" the integer parameter
62
///     registers (r0-r3), allocating 16-bytes on the stack
63
/// Reg : 3-bit field indicating the index of the last saved non-volatile
64
///       register.  If the R bit is set to 0, then only integer registers are
65
///       saved (r4-rN, where N is 4 + Reg).  If the R bit is set to 1, then
66
///       only floating-point registers are being saved (d8-dN, where N is
67
///       8 + Reg).  The special case of the R bit being set to 1 and Reg equal
68
///       to 7 indicates that no registers are saved.
69
/// R : 1-bit flag indicating whether the non-volatile registers are integer or
70
///     floating-point.  0 indicates integer, 1 indicates floating-point.  The
71
///     special case of the R-flag being set and Reg being set to 7 indicates
72
///     that no non-volatile registers are saved.
73
/// L : 1-bit flag indicating whether the function saves/restores the link
74
///     register (LR)
75
/// C : 1-bit flag indicating whether the function includes extra instructions
76
///     to setup a frame chain for fast walking.  If this flag is set, r11 is
77
///     implicitly added to the list of saved non-volatile integer registers.
78
/// Stack Adjust : 10-bit field indicating the number of bytes of stack that are
79
///                allocated for this function.  Only values between 0x000 and
80
///                0x3f3 can be directly encoded.  If the value is 0x3f4 or
81
///                greater, then the low 4 bits have special meaning as follows:
82
///                - Bit 0-1
83
///                  indicate the number of words' of adjustment (1-4), minus 1
84
///                - Bit 2
85
///                  indicates if the prologue combined adjustment into push
86
///                - Bit 3
87
///                  indicates if the epilogue combined adjustment into pop
88
///
89
/// RESTRICTIONS:
90
///   - IF C is SET:
91
///     + L flag must be set since frame chaining requires r11 and lr
92
///     + r11 must NOT be included in the set of registers described by Reg
93
///   - IF Ret is 0:
94
///     + L flag must be set
95
 
96
// NOTE: RuntimeFunction is meant to be a simple class that provides raw access
97
// to all fields in the structure.  The accessor methods reflect the names of
98
// the bitfields that they correspond to.  Although some obvious simplifications
99
// are possible via merging of methods, it would prevent the use of this class
100
// to fully inspect the contents of the data structure which is particularly
101
// useful for scenarios such as llvm-readobj to aid in testing.
102
 
103
class RuntimeFunction {
104
public:
105
  const support::ulittle32_t BeginAddress;
106
  const support::ulittle32_t UnwindData;
107
 
108
  RuntimeFunction(const support::ulittle32_t *Data)
109
    : BeginAddress(Data[0]), UnwindData(Data[1]) {}
110
 
111
  RuntimeFunction(const support::ulittle32_t BeginAddress,
112
                  const support::ulittle32_t UnwindData)
113
    : BeginAddress(BeginAddress), UnwindData(UnwindData) {}
114
 
115
  RuntimeFunctionFlag Flag() const {
116
    return RuntimeFunctionFlag(UnwindData & 0x3);
117
  }
118
 
119
  uint32_t ExceptionInformationRVA() const {
120
    assert(Flag() == RuntimeFunctionFlag::RFF_Unpacked &&
121
           "unpacked form required for this operation");
122
    return (UnwindData & ~0x3);
123
  }
124
 
125
  uint32_t PackedUnwindData() const {
126
    assert((Flag() == RuntimeFunctionFlag::RFF_Packed ||
127
            Flag() == RuntimeFunctionFlag::RFF_PackedFragment) &&
128
           "packed form required for this operation");
129
    return (UnwindData & ~0x3);
130
  }
131
  uint32_t FunctionLength() const {
132
    assert((Flag() == RuntimeFunctionFlag::RFF_Packed ||
133
            Flag() == RuntimeFunctionFlag::RFF_PackedFragment) &&
134
           "packed form required for this operation");
135
    return (((UnwindData & 0x00001ffc) >> 2) << 1);
136
  }
137
  ReturnType Ret() const {
138
    assert((Flag() == RuntimeFunctionFlag::RFF_Packed ||
139
            Flag() == RuntimeFunctionFlag::RFF_PackedFragment) &&
140
           "packed form required for this operation");
141
    assert(((UnwindData & 0x00006000) || L()) && "L must be set to 1");
142
    return ReturnType((UnwindData & 0x00006000) >> 13);
143
  }
144
  bool H() const {
145
    assert((Flag() == RuntimeFunctionFlag::RFF_Packed ||
146
            Flag() == RuntimeFunctionFlag::RFF_PackedFragment) &&
147
           "packed form required for this operation");
148
    return ((UnwindData & 0x00008000) >> 15);
149
  }
150
  uint8_t Reg() const {
151
    assert((Flag() == RuntimeFunctionFlag::RFF_Packed ||
152
            Flag() == RuntimeFunctionFlag::RFF_PackedFragment) &&
153
           "packed form required for this operation");
154
    return ((UnwindData & 0x00070000) >> 16);
155
  }
156
  bool R() const {
157
    assert((Flag() == RuntimeFunctionFlag::RFF_Packed ||
158
            Flag() == RuntimeFunctionFlag::RFF_PackedFragment) &&
159
           "packed form required for this operation");
160
    return ((UnwindData & 0x00080000) >> 19);
161
  }
162
  bool L() const {
163
    assert((Flag() == RuntimeFunctionFlag::RFF_Packed ||
164
            Flag() == RuntimeFunctionFlag::RFF_PackedFragment) &&
165
           "packed form required for this operation");
166
    return ((UnwindData & 0x00100000) >> 20);
167
  }
168
  bool C() const {
169
    assert((Flag() == RuntimeFunctionFlag::RFF_Packed ||
170
            Flag() == RuntimeFunctionFlag::RFF_PackedFragment) &&
171
           "packed form required for this operation");
172
    assert(((~UnwindData & 0x00200000) || L()) &&
173
           "L flag must be set, chaining requires r11 and LR");
174
    assert(((~UnwindData & 0x00200000) || (Reg() < 7) || R()) &&
175
           "r11 must not be included in Reg; C implies r11");
176
    return ((UnwindData & 0x00200000) >> 21);
177
  }
178
  uint16_t StackAdjust() const {
179
    assert((Flag() == RuntimeFunctionFlag::RFF_Packed ||
180
            Flag() == RuntimeFunctionFlag::RFF_PackedFragment) &&
181
           "packed form required for this operation");
182
    return ((UnwindData & 0xffc00000) >> 22);
183
  }
184
};
185
 
186
/// PrologueFolding - pseudo-flag derived from Stack Adjust indicating that the
187
/// prologue has stack adjustment combined into the push
188
inline bool PrologueFolding(const RuntimeFunction &RF) {
189
  return RF.StackAdjust() >= 0x3f4 && (RF.StackAdjust() & 0x4);
190
}
191
/// Epilogue - pseudo-flag derived from Stack Adjust indicating that the
192
/// epilogue has stack adjustment combined into the pop
193
inline bool EpilogueFolding(const RuntimeFunction &RF) {
194
  return RF.StackAdjust() >= 0x3f4 && (RF.StackAdjust() & 0x8);
195
}
196
/// StackAdjustment - calculated stack adjustment in words.  The stack
197
/// adjustment should be determined via this function to account for the special
198
/// handling the special encoding when the value is >= 0x3f4.
199
inline uint16_t StackAdjustment(const RuntimeFunction &RF) {
200
  uint16_t Adjustment = RF.StackAdjust();
201
  if (Adjustment >= 0x3f4)
202
    return (Adjustment & 0x3) + 1;
203
  return Adjustment;
204
}
205
 
206
/// SavedRegisterMask - Utility function to calculate the set of saved general
207
/// purpose (r0-r15) and VFP (d0-d31) registers.
208
std::pair<uint16_t, uint32_t> SavedRegisterMask(const RuntimeFunction &RF,
209
                                                bool Prologue = true);
210
 
211
/// RuntimeFunctionARM64 - An entry in the table of procedure data (.pdata)
212
///
213
///  3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
214
///  1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
215
/// +---------------------------------------------------------------+
216
/// |                     Function Start RVA                        |
217
/// +-----------------+---+-+-------+-----+---------------------+---+
218
/// |    Frame Size   |CR |H| RegI  |RegF |   Function Length   |Flg|
219
/// +-----------------+---+-+-------+-----+---------------------+---+
220
///
221
/// See https://docs.microsoft.com/en-us/cpp/build/arm64-exception-handling
222
/// for the full reference for this struct.
223
 
224
class RuntimeFunctionARM64 {
225
public:
226
  const support::ulittle32_t BeginAddress;
227
  const support::ulittle32_t UnwindData;
228
 
229
  RuntimeFunctionARM64(const support::ulittle32_t *Data)
230
      : BeginAddress(Data[0]), UnwindData(Data[1]) {}
231
 
232
  RuntimeFunctionARM64(const support::ulittle32_t BeginAddress,
233
                       const support::ulittle32_t UnwindData)
234
      : BeginAddress(BeginAddress), UnwindData(UnwindData) {}
235
 
236
  RuntimeFunctionFlag Flag() const {
237
    return RuntimeFunctionFlag(UnwindData & 0x3);
238
  }
239
 
240
  uint32_t ExceptionInformationRVA() const {
241
    assert(Flag() == RuntimeFunctionFlag::RFF_Unpacked &&
242
           "unpacked form required for this operation");
243
    return (UnwindData & ~0x3);
244
  }
245
 
246
  uint32_t PackedUnwindData() const {
247
    assert((Flag() == RuntimeFunctionFlag::RFF_Packed ||
248
            Flag() == RuntimeFunctionFlag::RFF_PackedFragment) &&
249
           "packed form required for this operation");
250
    return (UnwindData & ~0x3);
251
  }
252
  uint32_t FunctionLength() const {
253
    assert((Flag() == RuntimeFunctionFlag::RFF_Packed ||
254
            Flag() == RuntimeFunctionFlag::RFF_PackedFragment) &&
255
           "packed form required for this operation");
256
    return (((UnwindData & 0x00001ffc) >> 2) << 2);
257
  }
258
  uint8_t RegF() const {
259
    assert((Flag() == RuntimeFunctionFlag::RFF_Packed ||
260
            Flag() == RuntimeFunctionFlag::RFF_PackedFragment) &&
261
           "packed form required for this operation");
262
    return ((UnwindData & 0x0000e000) >> 13);
263
  }
264
  uint8_t RegI() const {
265
    assert((Flag() == RuntimeFunctionFlag::RFF_Packed ||
266
            Flag() == RuntimeFunctionFlag::RFF_PackedFragment) &&
267
           "packed form required for this operation");
268
    return ((UnwindData & 0x000f0000) >> 16);
269
  }
270
  bool H() const {
271
    assert((Flag() == RuntimeFunctionFlag::RFF_Packed ||
272
            Flag() == RuntimeFunctionFlag::RFF_PackedFragment) &&
273
           "packed form required for this operation");
274
    return ((UnwindData & 0x00100000) >> 20);
275
  }
276
  uint8_t CR() const {
277
    assert((Flag() == RuntimeFunctionFlag::RFF_Packed ||
278
            Flag() == RuntimeFunctionFlag::RFF_PackedFragment) &&
279
           "packed form required for this operation");
280
    return ((UnwindData & 0x600000) >> 21);
281
  }
282
  uint16_t FrameSize() const {
283
    assert((Flag() == RuntimeFunctionFlag::RFF_Packed ||
284
            Flag() == RuntimeFunctionFlag::RFF_PackedFragment) &&
285
           "packed form required for this operation");
286
    return ((UnwindData & 0xff800000) >> 23);
287
  }
288
};
289
 
290
/// ExceptionDataRecord - An entry in the table of exception data (.xdata)
291
///
292
/// The format on ARM is:
293
///
294
///  3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
295
///  1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
296
/// +-------+---------+-+-+-+---+-----------------------------------+
297
/// | C Wrd | Epi Cnt |F|E|X|Ver|         Function Length           |
298
/// +-------+--------+'-'-'-'---'---+-------------------------------+
299
/// |    Reserved    |Ex. Code Words|   (Extended Epilogue Count)   |
300
/// +-------+--------+--------------+-------------------------------+
301
///
302
/// The format on ARM64 is:
303
///
304
///  3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
305
///  1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
306
/// +---------+---------+-+-+---+-----------------------------------+
307
/// |  C Wrd  | Epi Cnt |E|X|Ver|         Function Length           |
308
/// +---------+------+--'-'-'---'---+-------------------------------+
309
/// |    Reserved    |Ex. Code Words|   (Extended Epilogue Count)   |
310
/// +-------+--------+--------------+-------------------------------+
311
///
312
/// Function Length : 18-bit field indicating the total length of the function
313
///                   in bytes divided by 2.  If a function is larger than
314
///                   512KB, then multiple pdata and xdata records must be used.
315
/// Vers : 2-bit field describing the version of the remaining structure.  Only
316
///        version 0 is currently defined (values 1-3 are not permitted).
317
/// X : 1-bit field indicating the presence of exception data
318
/// E : 1-bit field indicating that the single epilogue is packed into the
319
///     header
320
/// F : 1-bit field indicating that the record describes a function fragment
321
///     (implies that no prologue is present, and prologue processing should be
322
///     skipped) (ARM only)
323
/// Epilogue Count : 5-bit field that differs in meaning based on the E field.
324
///
325
///                  If E is set, then this field specifies the index of the
326
///                  first unwind code describing the (only) epilogue.
327
///
328
///                  Otherwise, this field indicates the number of exception
329
///                  scopes.  If more than 31 scopes exist, then this field and
330
///                  the Code Words field must both be set to 0 to indicate that
331
///                  an extension word is required.
332
/// Code Words : 4-bit (5-bit on ARM64) field that specifies the number of
333
///              32-bit words needed to contain all the unwind codes.  If more
334
///              than 15 words (31 words on ARM64) are required, then this field
335
///              and the Epilogue Count field must both be set to 0 to indicate
336
///              that an extension word is required.
337
/// Extended Epilogue Count, Extended Code Words :
338
///                          Valid only if Epilog Count and Code Words are both
339
///                          set to 0.  Provides an 8-bit extended code word
340
///                          count and 16-bits for epilogue count
341
///
342
/// The epilogue scope format on ARM is:
343
///
344
///  3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
345
///  1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
346
/// +----------------+------+---+---+-------------------------------+
347
/// |  Ep Start Idx  | Cond |Res|       Epilogue Start Offset       |
348
/// +----------------+------+---+-----------------------------------+
349
///
350
/// The epilogue scope format on ARM64 is:
351
///
352
///  3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
353
///  1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
354
/// +-------------------+-------+---+-------------------------------+
355
/// |  Ep Start Idx     |  Res  |   Epilogue Start Offset           |
356
/// +-------------------+-------+-----------------------------------+
357
///
358
/// If the E bit is unset in the header, the header is followed by a series of
359
/// epilogue scopes, which are sorted by their offset.
360
///
361
/// Epilogue Start Offset: 18-bit field encoding the offset of epilogue relative
362
///                        to the start of the function in bytes divided by two
363
/// Res : 2-bit field reserved for future expansion (must be set to 0)
364
/// Condition : (ARM only) 4-bit field providing the condition under which the
365
///             epilogue is executed.  Unconditional epilogues should set this
366
///             field to 0xe. Epilogues must be entirely conditional or
367
///             unconditional, and in Thumb-2 mode.  The epilogue begins with
368
///             the first instruction after the IT opcode.
369
/// Epilogue Start Index : 8-bit field indicating the byte index of the first
370
///                        unwind code describing the epilogue
371
///
372
///  3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
373
///  1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
374
/// +---------------+---------------+---------------+---------------+
375
/// | Unwind Code 3 | Unwind Code 2 | Unwind Code 1 | Unwind Code 0 |
376
/// +---------------+---------------+---------------+---------------+
377
///
378
/// Following the epilogue scopes, the byte code describing the unwinding
379
/// follows.  This is padded to align up to word alignment.  Bytes are stored in
380
/// little endian.
381
///
382
///  3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
383
///  1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
384
/// +---------------------------------------------------------------+
385
/// |           Exception Handler RVA (requires X = 1)              |
386
/// +---------------------------------------------------------------+
387
/// |  (possibly followed by data required for exception handler)   |
388
/// +---------------------------------------------------------------+
389
///
390
/// If the X bit is set in the header, the unwind byte code is followed by the
391
/// exception handler information.  This constants of one Exception Handler RVA
392
/// which is the address to the exception handler, followed immediately by the
393
/// variable length data associated with the exception handler.
394
///
395
 
396
struct EpilogueScope {
397
  const support::ulittle32_t ES;
398
 
399
  EpilogueScope(const support::ulittle32_t Data) : ES(Data) {}
400
  // Same for both ARM and AArch64.
401
  uint32_t EpilogueStartOffset() const {
402
    return (ES & 0x0003ffff);
403
  }
404
 
405
  // Different implementations for ARM and AArch64.
406
  uint8_t ResARM() const {
407
    return ((ES & 0x000c0000) >> 18);
408
  }
409
 
410
  uint8_t ResAArch64() const {
411
    return ((ES & 0x000f0000) >> 18);
412
  }
413
 
414
  // Condition is only applicable to ARM.
415
  uint8_t Condition() const {
416
    return ((ES & 0x00f00000) >> 20);
417
  }
418
 
419
  // Different implementations for ARM and AArch64.
420
  uint8_t EpilogueStartIndexARM() const {
421
    return ((ES & 0xff000000) >> 24);
422
  }
423
 
424
  uint16_t EpilogueStartIndexAArch64() const {
425
    return ((ES & 0xffc00000) >> 22);
426
  }
427
};
428
 
429
struct ExceptionDataRecord;
430
inline size_t HeaderWords(const ExceptionDataRecord &XR);
431
 
432
struct ExceptionDataRecord {
433
  const support::ulittle32_t *Data;
434
  bool isAArch64;
435
 
436
  ExceptionDataRecord(const support::ulittle32_t *Data, bool isAArch64) :
437
    Data(Data), isAArch64(isAArch64) {}
438
 
439
  uint32_t FunctionLength() const {
440
    return (Data[0] & 0x0003ffff);
441
  }
442
 
443
  uint32_t FunctionLengthInBytesARM() const {
444
    return FunctionLength() << 1;
445
  }
446
 
447
  uint32_t FunctionLengthInBytesAArch64() const {
448
    return FunctionLength() << 2;
449
  }
450
 
451
  uint8_t Vers() const {
452
    return (Data[0] & 0x000C0000) >> 18;
453
  }
454
 
455
  bool X() const {
456
    return ((Data[0] & 0x00100000) >> 20);
457
  }
458
 
459
  bool E() const {
460
    return ((Data[0] & 0x00200000) >> 21);
461
  }
462
 
463
  bool F() const {
464
    assert(!isAArch64 && "Fragments are only supported on ARMv7 WinEH");
465
    return ((Data[0] & 0x00400000) >> 22);
466
  }
467
 
468
  uint16_t EpilogueCount() const {
469
    if (HeaderWords(*this) == 1) {
470
      if (isAArch64)
471
        return (Data[0] & 0x07C00000) >> 22;
472
      return (Data[0] & 0x0f800000) >> 23;
473
    }
474
    return Data[1] & 0x0000ffff;
475
  }
476
 
477
  uint8_t CodeWords() const {
478
    if (HeaderWords(*this) == 1) {
479
      if (isAArch64)
480
        return (Data[0] & 0xf8000000) >> 27;
481
      return (Data[0] & 0xf0000000) >> 28;
482
    }
483
    return (Data[1] & 0x00ff0000) >> 16;
484
  }
485
 
486
  ArrayRef<support::ulittle32_t> EpilogueScopes() const {
487
    assert(E() == 0 && "epilogue scopes are only present when the E bit is 0");
488
    size_t Offset = HeaderWords(*this);
489
    return ArrayRef(&Data[Offset], EpilogueCount());
490
  }
491
 
492
  ArrayRef<uint8_t> UnwindByteCode() const {
493
    const size_t Offset = HeaderWords(*this)
494
                        + (E() ? 0 :  EpilogueCount());
495
    const uint8_t *ByteCode =
496
      reinterpret_cast<const uint8_t *>(&Data[Offset]);
497
    return ArrayRef(ByteCode, CodeWords() * sizeof(uint32_t));
498
  }
499
 
500
  uint32_t ExceptionHandlerRVA() const {
501
    assert(X() && "Exception Handler RVA is only valid if the X bit is set");
502
    return Data[HeaderWords(*this) + (E() ? 0 : EpilogueCount()) + CodeWords()];
503
  }
504
 
505
  uint32_t ExceptionHandlerParameter() const {
506
    assert(X() && "Exception Handler RVA is only valid if the X bit is set");
507
    return Data[HeaderWords(*this) + (E() ? 0 : EpilogueCount()) + CodeWords() +
508
                1];
509
  }
510
};
511
 
512
inline size_t HeaderWords(const ExceptionDataRecord &XR) {
513
  if (XR.isAArch64)
514
    return (XR.Data[0] & 0xffc00000) ? 1 : 2;
515
  return (XR.Data[0] & 0xff800000) ? 1 : 2;
516
}
517
}
518
}
519
}
520
 
521
#endif