Subversion Repositories QNX 8.QNX8 LLVM/Clang compiler suite

Rev

Details | Last modification | View Log | RSS feed

Rev Author Line No. Line
14 pmbaty 1
//===- llvm/MC/MCTargetAsmParser.h - Target Assembly Parser -----*- C++ -*-===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
 
9
#ifndef LLVM_MC_MCPARSER_MCTARGETASMPARSER_H
10
#define LLVM_MC_MCPARSER_MCTARGETASMPARSER_H
11
 
12
#include "llvm/ADT/StringRef.h"
13
#include "llvm/MC/MCExpr.h"
14
#include "llvm/MC/MCParser/MCAsmParserExtension.h"
15
#include "llvm/MC/MCParser/MCParsedAsmOperand.h"
16
#include "llvm/MC/MCTargetOptions.h"
17
#include "llvm/MC/SubtargetFeature.h"
18
#include "llvm/Support/SMLoc.h"
19
#include <cstdint>
20
#include <memory>
21
 
22
namespace llvm {
23
 
24
class MCContext;
25
class MCInst;
26
class MCInstrInfo;
27
class MCRegister;
28
class MCStreamer;
29
class MCSubtargetInfo;
30
class MCSymbol;
31
template <typename T> class SmallVectorImpl;
32
 
33
using OperandVector = SmallVectorImpl<std::unique_ptr<MCParsedAsmOperand>>;
34
 
35
enum AsmRewriteKind {
36
  AOK_Align,          // Rewrite align as .align.
37
  AOK_EVEN,           // Rewrite even as .even.
38
  AOK_Emit,           // Rewrite _emit as .byte.
39
  AOK_CallInput,      // Rewrite in terms of ${N:P}.
40
  AOK_Input,          // Rewrite in terms of $N.
41
  AOK_Output,         // Rewrite in terms of $N.
42
  AOK_SizeDirective,  // Add a sizing directive (e.g., dword ptr).
43
  AOK_Label,          // Rewrite local labels.
44
  AOK_EndOfStatement, // Add EndOfStatement (e.g., "\n\t").
45
  AOK_Skip,           // Skip emission (e.g., offset/type operators).
46
  AOK_IntelExpr       // SizeDirective SymDisp [BaseReg + IndexReg * Scale + ImmDisp]
47
};
48
 
49
const char AsmRewritePrecedence [] = {
50
  2, // AOK_Align
51
  2, // AOK_EVEN
52
  2, // AOK_Emit
53
  3, // AOK_Input
54
  3, // AOK_CallInput
55
  3, // AOK_Output
56
  5, // AOK_SizeDirective
57
  1, // AOK_Label
58
  5, // AOK_EndOfStatement
59
  2, // AOK_Skip
60
  2  // AOK_IntelExpr
61
};
62
 
63
// Represnt the various parts which makes up an intel expression,
64
// used for emitting compound intel expressions
65
struct IntelExpr {
66
  bool NeedBracs;
67
  int64_t Imm;
68
  StringRef BaseReg;
69
  StringRef IndexReg;
70
  StringRef OffsetName;
71
  unsigned Scale;
72
 
73
  IntelExpr()
74
      : NeedBracs(false), Imm(0), BaseReg(StringRef()), IndexReg(StringRef()),
75
        OffsetName(StringRef()), Scale(1) {}
76
  // [BaseReg + IndexReg * ScaleExpression + OFFSET name + ImmediateExpression]
77
  IntelExpr(StringRef baseReg, StringRef indexReg, unsigned scale,
78
            StringRef offsetName, int64_t imm, bool needBracs)
79
      : NeedBracs(needBracs), Imm(imm), BaseReg(baseReg), IndexReg(indexReg),
80
        OffsetName(offsetName), Scale(1) {
81
    if (scale)
82
      Scale = scale;
83
  }
84
  bool hasBaseReg() const { return !BaseReg.empty(); }
85
  bool hasIndexReg() const { return !IndexReg.empty(); }
86
  bool hasRegs() const { return hasBaseReg() || hasIndexReg(); }
87
  bool hasOffset() const { return !OffsetName.empty(); }
88
  // Normally we won't emit immediates unconditionally,
89
  // unless we've got no other components
90
  bool emitImm() const { return !(hasRegs() || hasOffset()); }
91
  bool isValid() const {
92
    return (Scale == 1) ||
93
           (hasIndexReg() && (Scale == 2 || Scale == 4 || Scale == 8));
94
  }
95
};
96
 
97
struct AsmRewrite {
98
  AsmRewriteKind Kind;
99
  SMLoc Loc;
100
  unsigned Len;
101
  bool Done;
102
  int64_t Val;
103
  StringRef Label;
104
  IntelExpr IntelExp;
105
  bool IntelExpRestricted;
106
 
107
public:
108
  AsmRewrite(AsmRewriteKind kind, SMLoc loc, unsigned len = 0, int64_t val = 0,
109
             bool Restricted = false)
110
      : Kind(kind), Loc(loc), Len(len), Done(false), Val(val) {
111
    IntelExpRestricted = Restricted;
112
  }
113
  AsmRewrite(AsmRewriteKind kind, SMLoc loc, unsigned len, StringRef label)
114
    : AsmRewrite(kind, loc, len) { Label = label; }
115
  AsmRewrite(SMLoc loc, unsigned len, IntelExpr exp)
116
    : AsmRewrite(AOK_IntelExpr, loc, len) { IntelExp = exp; }
117
};
118
 
119
struct ParseInstructionInfo {
120
  SmallVectorImpl<AsmRewrite> *AsmRewrites = nullptr;
121
 
122
  ParseInstructionInfo() = default;
123
  ParseInstructionInfo(SmallVectorImpl<AsmRewrite> *rewrites)
124
    : AsmRewrites(rewrites) {}
125
};
126
 
127
enum OperandMatchResultTy {
128
  MatchOperand_Success,  // operand matched successfully
129
  MatchOperand_NoMatch,  // operand did not match
130
  MatchOperand_ParseFail // operand matched but had errors
131
};
132
 
133
enum class DiagnosticPredicateTy {
134
  Match,
135
  NearMatch,
136
  NoMatch,
137
};
138
 
139
// When an operand is parsed, the assembler will try to iterate through a set of
140
// possible operand classes that the operand might match and call the
141
// corresponding PredicateMethod to determine that.
142
//
143
// If there are two AsmOperands that would give a specific diagnostic if there
144
// is no match, there is currently no mechanism to distinguish which operand is
145
// a closer match. The DiagnosticPredicate distinguishes between 'completely
146
// no match' and 'near match', so the assembler can decide whether to give a
147
// specific diagnostic, or use 'InvalidOperand' and continue to find a
148
// 'better matching' diagnostic.
149
//
150
// For example:
151
//    opcode opnd0, onpd1, opnd2
152
//
153
// where:
154
//    opnd2 could be an 'immediate of range [-8, 7]'
155
//    opnd2 could be a  'register + shift/extend'.
156
//
157
// If opnd2 is a valid register, but with a wrong shift/extend suffix, it makes
158
// little sense to give a diagnostic that the operand should be an immediate
159
// in range [-8, 7].
160
//
161
// This is a light-weight alternative to the 'NearMissInfo' approach
162
// below which collects *all* possible diagnostics. This alternative
163
// is optional and fully backward compatible with existing
164
// PredicateMethods that return a 'bool' (match or no match).
165
struct DiagnosticPredicate {
166
  DiagnosticPredicateTy Type;
167
 
168
  explicit DiagnosticPredicate(bool Match)
169
      : Type(Match ? DiagnosticPredicateTy::Match
170
                   : DiagnosticPredicateTy::NearMatch) {}
171
  DiagnosticPredicate(DiagnosticPredicateTy T) : Type(T) {}
172
  DiagnosticPredicate(const DiagnosticPredicate &) = default;
173
  DiagnosticPredicate& operator=(const DiagnosticPredicate &) = default;
174
 
175
  operator bool() const { return Type == DiagnosticPredicateTy::Match; }
176
  bool isMatch() const { return Type == DiagnosticPredicateTy::Match; }
177
  bool isNearMatch() const { return Type == DiagnosticPredicateTy::NearMatch; }
178
  bool isNoMatch() const { return Type == DiagnosticPredicateTy::NoMatch; }
179
};
180
 
181
// When matching of an assembly instruction fails, there may be multiple
182
// encodings that are close to being a match. It's often ambiguous which one
183
// the programmer intended to use, so we want to report an error which mentions
184
// each of these "near-miss" encodings. This struct contains information about
185
// one such encoding, and why it did not match the parsed instruction.
186
class NearMissInfo {
187
public:
188
  enum NearMissKind {
189
    NoNearMiss,
190
    NearMissOperand,
191
    NearMissFeature,
192
    NearMissPredicate,
193
    NearMissTooFewOperands,
194
  };
195
 
196
  // The encoding is valid for the parsed assembly string. This is only used
197
  // internally to the table-generated assembly matcher.
198
  static NearMissInfo getSuccess() { return NearMissInfo(); }
199
 
200
  // The instruction encoding is not valid because it requires some target
201
  // features that are not currently enabled. MissingFeatures has a bit set for
202
  // each feature that the encoding needs but which is not enabled.
203
  static NearMissInfo getMissedFeature(const FeatureBitset &MissingFeatures) {
204
    NearMissInfo Result;
205
    Result.Kind = NearMissFeature;
206
    Result.Features = MissingFeatures;
207
    return Result;
208
  }
209
 
210
  // The instruction encoding is not valid because the target-specific
211
  // predicate function returned an error code. FailureCode is the
212
  // target-specific error code returned by the predicate.
213
  static NearMissInfo getMissedPredicate(unsigned FailureCode) {
214
    NearMissInfo Result;
215
    Result.Kind = NearMissPredicate;
216
    Result.PredicateError = FailureCode;
217
    return Result;
218
  }
219
 
220
  // The instruction encoding is not valid because one (and only one) parsed
221
  // operand is not of the correct type. OperandError is the error code
222
  // relating to the operand class expected by the encoding. OperandClass is
223
  // the type of the expected operand. Opcode is the opcode of the encoding.
224
  // OperandIndex is the index into the parsed operand list.
225
  static NearMissInfo getMissedOperand(unsigned OperandError,
226
                                       unsigned OperandClass, unsigned Opcode,
227
                                       unsigned OperandIndex) {
228
    NearMissInfo Result;
229
    Result.Kind = NearMissOperand;
230
    Result.MissedOperand.Error = OperandError;
231
    Result.MissedOperand.Class = OperandClass;
232
    Result.MissedOperand.Opcode = Opcode;
233
    Result.MissedOperand.Index = OperandIndex;
234
    return Result;
235
  }
236
 
237
  // The instruction encoding is not valid because it expects more operands
238
  // than were parsed. OperandClass is the class of the expected operand that
239
  // was not provided. Opcode is the instruction encoding.
240
  static NearMissInfo getTooFewOperands(unsigned OperandClass,
241
                                        unsigned Opcode) {
242
    NearMissInfo Result;
243
    Result.Kind = NearMissTooFewOperands;
244
    Result.TooFewOperands.Class = OperandClass;
245
    Result.TooFewOperands.Opcode = Opcode;
246
    return Result;
247
  }
248
 
249
  operator bool() const { return Kind != NoNearMiss; }
250
 
251
  NearMissKind getKind() const { return Kind; }
252
 
253
  // Feature flags required by the instruction, that the current target does
254
  // not have.
255
  const FeatureBitset& getFeatures() const {
256
    assert(Kind == NearMissFeature);
257
    return Features;
258
  }
259
  // Error code returned by the target predicate when validating this
260
  // instruction encoding.
261
  unsigned getPredicateError() const {
262
    assert(Kind == NearMissPredicate);
263
    return PredicateError;
264
  }
265
  // MatchClassKind of the operand that we expected to see.
266
  unsigned getOperandClass() const {
267
    assert(Kind == NearMissOperand || Kind == NearMissTooFewOperands);
268
    return MissedOperand.Class;
269
  }
270
  // Opcode of the encoding we were trying to match.
271
  unsigned getOpcode() const {
272
    assert(Kind == NearMissOperand || Kind == NearMissTooFewOperands);
273
    return MissedOperand.Opcode;
274
  }
275
  // Error code returned when validating the operand.
276
  unsigned getOperandError() const {
277
    assert(Kind == NearMissOperand);
278
    return MissedOperand.Error;
279
  }
280
  // Index of the actual operand we were trying to match in the list of parsed
281
  // operands.
282
  unsigned getOperandIndex() const {
283
    assert(Kind == NearMissOperand);
284
    return MissedOperand.Index;
285
  }
286
 
287
private:
288
  NearMissKind Kind;
289
 
290
  // These two structs share a common prefix, so we can safely rely on the fact
291
  // that they overlap in the union.
292
  struct MissedOpInfo {
293
    unsigned Class;
294
    unsigned Opcode;
295
    unsigned Error;
296
    unsigned Index;
297
  };
298
 
299
  struct TooFewOperandsInfo {
300
    unsigned Class;
301
    unsigned Opcode;
302
  };
303
 
304
  union {
305
    FeatureBitset Features;
306
    unsigned PredicateError;
307
    MissedOpInfo MissedOperand;
308
    TooFewOperandsInfo TooFewOperands;
309
  };
310
 
311
  NearMissInfo() : Kind(NoNearMiss) {}
312
};
313
 
314
/// MCTargetAsmParser - Generic interface to target specific assembly parsers.
315
class MCTargetAsmParser : public MCAsmParserExtension {
316
public:
317
  enum MatchResultTy {
318
    Match_InvalidOperand,
319
    Match_InvalidTiedOperand,
320
    Match_MissingFeature,
321
    Match_MnemonicFail,
322
    Match_Success,
323
    Match_NearMisses,
324
    FIRST_TARGET_MATCH_RESULT_TY
325
  };
326
 
327
protected: // Can only create subclasses.
328
  MCTargetAsmParser(MCTargetOptions const &, const MCSubtargetInfo &STI,
329
                    const MCInstrInfo &MII);
330
 
331
  /// Create a copy of STI and return a non-const reference to it.
332
  MCSubtargetInfo &copySTI();
333
 
334
  /// AvailableFeatures - The current set of available features.
335
  FeatureBitset AvailableFeatures;
336
 
337
  /// ParsingMSInlineAsm - Are we parsing ms-style inline assembly?
338
  bool ParsingMSInlineAsm = false;
339
 
340
  /// SemaCallback - The Sema callback implementation.  Must be set when parsing
341
  /// ms-style inline assembly.
342
  MCAsmParserSemaCallback *SemaCallback = nullptr;
343
 
344
  /// Set of options which affects instrumentation of inline assembly.
345
  MCTargetOptions MCOptions;
346
 
347
  /// Current STI.
348
  const MCSubtargetInfo *STI;
349
 
350
  const MCInstrInfo &MII;
351
 
352
public:
353
  MCTargetAsmParser(const MCTargetAsmParser &) = delete;
354
  MCTargetAsmParser &operator=(const MCTargetAsmParser &) = delete;
355
 
356
  ~MCTargetAsmParser() override;
357
 
358
  const MCSubtargetInfo &getSTI() const;
359
 
360
  const FeatureBitset& getAvailableFeatures() const {
361
    return AvailableFeatures;
362
  }
363
  void setAvailableFeatures(const FeatureBitset& Value) {
364
    AvailableFeatures = Value;
365
  }
366
 
367
  bool isParsingMSInlineAsm () { return ParsingMSInlineAsm; }
368
  void setParsingMSInlineAsm (bool Value) { ParsingMSInlineAsm = Value; }
369
 
370
  MCTargetOptions getTargetOptions() const { return MCOptions; }
371
 
372
  void setSemaCallback(MCAsmParserSemaCallback *Callback) {
373
    SemaCallback = Callback;
374
  }
375
 
376
  // Target-specific parsing of expression.
377
  virtual bool parsePrimaryExpr(const MCExpr *&Res, SMLoc &EndLoc) {
378
    return getParser().parsePrimaryExpr(Res, EndLoc, nullptr);
379
  }
380
 
381
  virtual bool parseRegister(MCRegister &Reg, SMLoc &StartLoc,
382
                             SMLoc &EndLoc) = 0;
383
 
384
  /// tryParseRegister - parse one register if possible
385
  ///
386
  /// Check whether a register specification can be parsed at the current
387
  /// location, without failing the entire parse if it can't. Must not consume
388
  /// tokens if the parse fails.
389
  virtual OperandMatchResultTy
390
  tryParseRegister(MCRegister &Reg, SMLoc &StartLoc, SMLoc &EndLoc) = 0;
391
 
392
  /// ParseInstruction - Parse one assembly instruction.
393
  ///
394
  /// The parser is positioned following the instruction name. The target
395
  /// specific instruction parser should parse the entire instruction and
396
  /// construct the appropriate MCInst, or emit an error. On success, the entire
397
  /// line should be parsed up to and including the end-of-statement token. On
398
  /// failure, the parser is not required to read to the end of the line.
399
  //
400
  /// \param Name - The instruction name.
401
  /// \param NameLoc - The source location of the name.
402
  /// \param Operands [out] - The list of parsed operands, this returns
403
  ///        ownership of them to the caller.
404
  /// \return True on failure.
405
  virtual bool ParseInstruction(ParseInstructionInfo &Info, StringRef Name,
406
                                SMLoc NameLoc, OperandVector &Operands) = 0;
407
  virtual bool ParseInstruction(ParseInstructionInfo &Info, StringRef Name,
408
                                AsmToken Token, OperandVector &Operands) {
409
    return ParseInstruction(Info, Name, Token.getLoc(), Operands);
410
  }
411
 
412
  /// ParseDirective - Parse a target specific assembler directive
413
  ///
414
  /// The parser is positioned following the directive name.  The target
415
  /// specific directive parser should parse the entire directive doing or
416
  /// recording any target specific work, or return true and do nothing if the
417
  /// directive is not target specific. If the directive is specific for
418
  /// the target, the entire line is parsed up to and including the
419
  /// end-of-statement token and false is returned.
420
  ///
421
  /// \param DirectiveID - the identifier token of the directive.
422
  virtual bool ParseDirective(AsmToken DirectiveID) = 0;
423
 
424
  /// MatchAndEmitInstruction - Recognize a series of operands of a parsed
425
  /// instruction as an actual MCInst and emit it to the specified MCStreamer.
426
  /// This returns false on success and returns true on failure to match.
427
  ///
428
  /// On failure, the target parser is responsible for emitting a diagnostic
429
  /// explaining the match failure.
430
  virtual bool MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
431
                                       OperandVector &Operands, MCStreamer &Out,
432
                                       uint64_t &ErrorInfo,
433
                                       bool MatchingInlineAsm) = 0;
434
 
435
  /// Allows targets to let registers opt out of clobber lists.
436
  virtual bool OmitRegisterFromClobberLists(unsigned RegNo) { return false; }
437
 
438
  /// Allow a target to add special case operand matching for things that
439
  /// tblgen doesn't/can't handle effectively. For example, literal
440
  /// immediates on ARM. TableGen expects a token operand, but the parser
441
  /// will recognize them as immediates.
442
  virtual unsigned validateTargetOperandClass(MCParsedAsmOperand &Op,
443
                                              unsigned Kind) {
444
    return Match_InvalidOperand;
445
  }
446
 
447
  /// Validate the instruction match against any complex target predicates
448
  /// before rendering any operands to it.
449
  virtual unsigned
450
  checkEarlyTargetMatchPredicate(MCInst &Inst, const OperandVector &Operands) {
451
    return Match_Success;
452
  }
453
 
454
  /// checkTargetMatchPredicate - Validate the instruction match against
455
  /// any complex target predicates not expressible via match classes.
456
  virtual unsigned checkTargetMatchPredicate(MCInst &Inst) {
457
    return Match_Success;
458
  }
459
 
460
  virtual void convertToMapAndConstraints(unsigned Kind,
461
                                          const OperandVector &Operands) = 0;
462
 
463
  /// Returns whether two operands are registers and are equal. This is used
464
  /// by the tied-operands checks in the AsmMatcher. This method can be
465
  /// overridden to allow e.g. a sub- or super-register as the tied operand.
466
  virtual bool areEqualRegs(const MCParsedAsmOperand &Op1,
467
                            const MCParsedAsmOperand &Op2) const {
468
    return Op1.isReg() && Op2.isReg() && Op1.getReg() == Op2.getReg();
469
  }
470
 
471
  // Return whether this parser uses assignment statements with equals tokens
472
  virtual bool equalIsAsmAssignment() { return true; };
473
  // Return whether this start of statement identifier is a label
474
  virtual bool isLabel(AsmToken &Token) { return true; };
475
  // Return whether this parser accept star as start of statement
476
  virtual bool starIsStartOfStatement() { return false; };
477
 
478
  virtual const MCExpr *applyModifierToExpr(const MCExpr *E,
479
                                            MCSymbolRefExpr::VariantKind,
480
                                            MCContext &Ctx) {
481
    return nullptr;
482
  }
483
 
484
  // For actions that have to be performed before a label is emitted
485
  virtual void doBeforeLabelEmit(MCSymbol *Symbol, SMLoc IDLoc) {}
486
 
487
  virtual void onLabelParsed(MCSymbol *Symbol) {}
488
 
489
  /// Ensure that all previously parsed instructions have been emitted to the
490
  /// output streamer, if the target does not emit them immediately.
491
  virtual void flushPendingInstructions(MCStreamer &Out) {}
492
 
493
  virtual const MCExpr *createTargetUnaryExpr(const MCExpr *E,
494
                                              AsmToken::TokenKind OperatorToken,
495
                                              MCContext &Ctx) {
496
    return nullptr;
497
  }
498
 
499
  // For any initialization at the beginning of parsing.
500
  virtual void onBeginOfFile() {}
501
 
502
  // For any checks or cleanups at the end of parsing.
503
  virtual void onEndOfFile() {}
504
};
505
 
506
} // end namespace llvm
507
 
508
#endif // LLVM_MC_MCPARSER_MCTARGETASMPARSER_H