Details | Last modification | View Log | RSS feed
Rev | Author | Line No. | Line |
---|---|---|---|
14 | pmbaty | 1 | //===- llvm/MC/MCInstrItineraries.h - Scheduling ----------------*- C++ -*-===// |
2 | // |
||
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
||
4 | // See https://llvm.org/LICENSE.txt for license information. |
||
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
||
6 | // |
||
7 | //===----------------------------------------------------------------------===// |
||
8 | // |
||
9 | // This file describes the structures used for instruction |
||
10 | // itineraries, stages, and operand reads/writes. This is used by |
||
11 | // schedulers to determine instruction stages and latencies. |
||
12 | // |
||
13 | //===----------------------------------------------------------------------===// |
||
14 | |||
15 | #ifndef LLVM_MC_MCINSTRITINERARIES_H |
||
16 | #define LLVM_MC_MCINSTRITINERARIES_H |
||
17 | |||
18 | #include "llvm/MC/MCSchedule.h" |
||
19 | #include <algorithm> |
||
20 | |||
21 | namespace llvm { |
||
22 | |||
23 | //===----------------------------------------------------------------------===// |
||
24 | /// These values represent a non-pipelined step in |
||
25 | /// the execution of an instruction. Cycles represents the number of |
||
26 | /// discrete time slots needed to complete the stage. Units represent |
||
27 | /// the choice of functional units that can be used to complete the |
||
28 | /// stage. Eg. IntUnit1, IntUnit2. NextCycles indicates how many |
||
29 | /// cycles should elapse from the start of this stage to the start of |
||
30 | /// the next stage in the itinerary. A value of -1 indicates that the |
||
31 | /// next stage should start immediately after the current one. |
||
32 | /// For example: |
||
33 | /// |
||
34 | /// { 1, x, -1 } |
||
35 | /// indicates that the stage occupies FU x for 1 cycle and that |
||
36 | /// the next stage starts immediately after this one. |
||
37 | /// |
||
38 | /// { 2, x|y, 1 } |
||
39 | /// indicates that the stage occupies either FU x or FU y for 2 |
||
40 | /// consecutive cycles and that the next stage starts one cycle |
||
41 | /// after this stage starts. That is, the stage requirements |
||
42 | /// overlap in time. |
||
43 | /// |
||
44 | /// { 1, x, 0 } |
||
45 | /// indicates that the stage occupies FU x for 1 cycle and that |
||
46 | /// the next stage starts in this same cycle. This can be used to |
||
47 | /// indicate that the instruction requires multiple stages at the |
||
48 | /// same time. |
||
49 | /// |
||
50 | /// FU reservation can be of two different kinds: |
||
51 | /// - FUs which instruction actually requires |
||
52 | /// - FUs which instruction just reserves. Reserved unit is not available for |
||
53 | /// execution of other instruction. However, several instructions can reserve |
||
54 | /// the same unit several times. |
||
55 | /// Such two types of units reservation is used to model instruction domain |
||
56 | /// change stalls, FUs using the same resource (e.g. same register file), etc. |
||
57 | |||
58 | struct InstrStage { |
||
59 | enum ReservationKinds { |
||
60 | Required = 0, |
||
61 | Reserved = 1 |
||
62 | }; |
||
63 | |||
64 | /// Bitmask representing a set of functional units. |
||
65 | typedef uint64_t FuncUnits; |
||
66 | |||
67 | unsigned Cycles_; ///< Length of stage in machine cycles |
||
68 | FuncUnits Units_; ///< Choice of functional units |
||
69 | int NextCycles_; ///< Number of machine cycles to next stage |
||
70 | ReservationKinds Kind_; ///< Kind of the FU reservation |
||
71 | |||
72 | /// Returns the number of cycles the stage is occupied. |
||
73 | unsigned getCycles() const { |
||
74 | return Cycles_; |
||
75 | } |
||
76 | |||
77 | /// Returns the choice of FUs. |
||
78 | FuncUnits getUnits() const { |
||
79 | return Units_; |
||
80 | } |
||
81 | |||
82 | ReservationKinds getReservationKind() const { |
||
83 | return Kind_; |
||
84 | } |
||
85 | |||
86 | /// Returns the number of cycles from the start of this stage to the |
||
87 | /// start of the next stage in the itinerary |
||
88 | unsigned getNextCycles() const { |
||
89 | return (NextCycles_ >= 0) ? (unsigned)NextCycles_ : Cycles_; |
||
90 | } |
||
91 | }; |
||
92 | |||
93 | //===----------------------------------------------------------------------===// |
||
94 | /// An itinerary represents the scheduling information for an instruction. |
||
95 | /// This includes a set of stages occupied by the instruction and the pipeline |
||
96 | /// cycle in which operands are read and written. |
||
97 | /// |
||
98 | struct InstrItinerary { |
||
99 | int16_t NumMicroOps; ///< # of micro-ops, -1 means it's variable |
||
100 | uint16_t FirstStage; ///< Index of first stage in itinerary |
||
101 | uint16_t LastStage; ///< Index of last + 1 stage in itinerary |
||
102 | uint16_t FirstOperandCycle; ///< Index of first operand rd/wr |
||
103 | uint16_t LastOperandCycle; ///< Index of last + 1 operand rd/wr |
||
104 | }; |
||
105 | |||
106 | //===----------------------------------------------------------------------===// |
||
107 | /// Itinerary data supplied by a subtarget to be used by a target. |
||
108 | /// |
||
109 | class InstrItineraryData { |
||
110 | public: |
||
111 | MCSchedModel SchedModel = |
||
112 | MCSchedModel::GetDefaultSchedModel(); ///< Basic machine properties. |
||
113 | const InstrStage *Stages = nullptr; ///< Array of stages selected |
||
114 | const unsigned *OperandCycles = nullptr; ///< Array of operand cycles selected |
||
115 | const unsigned *Forwardings = nullptr; ///< Array of pipeline forwarding paths |
||
116 | const InstrItinerary *Itineraries = |
||
117 | nullptr; ///< Array of itineraries selected |
||
118 | |||
119 | InstrItineraryData() = default; |
||
120 | InstrItineraryData(const MCSchedModel &SM, const InstrStage *S, |
||
121 | const unsigned *OS, const unsigned *F) |
||
122 | : SchedModel(SM), Stages(S), OperandCycles(OS), Forwardings(F), |
||
123 | Itineraries(SchedModel.InstrItineraries) {} |
||
124 | |||
125 | /// Returns true if there are no itineraries. |
||
126 | bool isEmpty() const { return Itineraries == nullptr; } |
||
127 | |||
128 | /// Returns true if the index is for the end marker itinerary. |
||
129 | bool isEndMarker(unsigned ItinClassIndx) const { |
||
130 | return ((Itineraries[ItinClassIndx].FirstStage == UINT16_MAX) && |
||
131 | (Itineraries[ItinClassIndx].LastStage == UINT16_MAX)); |
||
132 | } |
||
133 | |||
134 | /// Return the first stage of the itinerary. |
||
135 | const InstrStage *beginStage(unsigned ItinClassIndx) const { |
||
136 | unsigned StageIdx = Itineraries[ItinClassIndx].FirstStage; |
||
137 | return Stages + StageIdx; |
||
138 | } |
||
139 | |||
140 | /// Return the last+1 stage of the itinerary. |
||
141 | const InstrStage *endStage(unsigned ItinClassIndx) const { |
||
142 | unsigned StageIdx = Itineraries[ItinClassIndx].LastStage; |
||
143 | return Stages + StageIdx; |
||
144 | } |
||
145 | |||
146 | /// Return the total stage latency of the given class. The latency is |
||
147 | /// the maximum completion time for any stage in the itinerary. If no stages |
||
148 | /// exist, it defaults to one cycle. |
||
149 | unsigned getStageLatency(unsigned ItinClassIndx) const { |
||
150 | // If the target doesn't provide itinerary information, use a simple |
||
151 | // non-zero default value for all instructions. |
||
152 | if (isEmpty()) |
||
153 | return 1; |
||
154 | |||
155 | // Calculate the maximum completion time for any stage. |
||
156 | unsigned Latency = 0, StartCycle = 0; |
||
157 | for (const InstrStage *IS = beginStage(ItinClassIndx), |
||
158 | *E = endStage(ItinClassIndx); IS != E; ++IS) { |
||
159 | Latency = std::max(Latency, StartCycle + IS->getCycles()); |
||
160 | StartCycle += IS->getNextCycles(); |
||
161 | } |
||
162 | return Latency; |
||
163 | } |
||
164 | |||
165 | /// Return the cycle for the given class and operand. Return -1 if no |
||
166 | /// cycle is specified for the operand. |
||
167 | int getOperandCycle(unsigned ItinClassIndx, unsigned OperandIdx) const { |
||
168 | if (isEmpty()) |
||
169 | return -1; |
||
170 | |||
171 | unsigned FirstIdx = Itineraries[ItinClassIndx].FirstOperandCycle; |
||
172 | unsigned LastIdx = Itineraries[ItinClassIndx].LastOperandCycle; |
||
173 | if ((FirstIdx + OperandIdx) >= LastIdx) |
||
174 | return -1; |
||
175 | |||
176 | return (int)OperandCycles[FirstIdx + OperandIdx]; |
||
177 | } |
||
178 | |||
179 | /// Return true if there is a pipeline forwarding between instructions |
||
180 | /// of itinerary classes DefClass and UseClasses so that value produced by an |
||
181 | /// instruction of itinerary class DefClass, operand index DefIdx can be |
||
182 | /// bypassed when it's read by an instruction of itinerary class UseClass, |
||
183 | /// operand index UseIdx. |
||
184 | bool hasPipelineForwarding(unsigned DefClass, unsigned DefIdx, |
||
185 | unsigned UseClass, unsigned UseIdx) const { |
||
186 | unsigned FirstDefIdx = Itineraries[DefClass].FirstOperandCycle; |
||
187 | unsigned LastDefIdx = Itineraries[DefClass].LastOperandCycle; |
||
188 | if ((FirstDefIdx + DefIdx) >= LastDefIdx) |
||
189 | return false; |
||
190 | if (Forwardings[FirstDefIdx + DefIdx] == 0) |
||
191 | return false; |
||
192 | |||
193 | unsigned FirstUseIdx = Itineraries[UseClass].FirstOperandCycle; |
||
194 | unsigned LastUseIdx = Itineraries[UseClass].LastOperandCycle; |
||
195 | if ((FirstUseIdx + UseIdx) >= LastUseIdx) |
||
196 | return false; |
||
197 | |||
198 | return Forwardings[FirstDefIdx + DefIdx] == |
||
199 | Forwardings[FirstUseIdx + UseIdx]; |
||
200 | } |
||
201 | |||
202 | /// Compute and return the use operand latency of a given itinerary |
||
203 | /// class and operand index if the value is produced by an instruction of the |
||
204 | /// specified itinerary class and def operand index. |
||
205 | int getOperandLatency(unsigned DefClass, unsigned DefIdx, |
||
206 | unsigned UseClass, unsigned UseIdx) const { |
||
207 | if (isEmpty()) |
||
208 | return -1; |
||
209 | |||
210 | int DefCycle = getOperandCycle(DefClass, DefIdx); |
||
211 | if (DefCycle == -1) |
||
212 | return -1; |
||
213 | |||
214 | int UseCycle = getOperandCycle(UseClass, UseIdx); |
||
215 | if (UseCycle == -1) |
||
216 | return -1; |
||
217 | |||
218 | UseCycle = DefCycle - UseCycle + 1; |
||
219 | if (UseCycle > 0 && |
||
220 | hasPipelineForwarding(DefClass, DefIdx, UseClass, UseIdx)) |
||
221 | // FIXME: This assumes one cycle benefit for every pipeline forwarding. |
||
222 | --UseCycle; |
||
223 | return UseCycle; |
||
224 | } |
||
225 | |||
226 | /// Return the number of micro-ops that the given class decodes to. |
||
227 | /// Return -1 for classes that require dynamic lookup via TargetInstrInfo. |
||
228 | int getNumMicroOps(unsigned ItinClassIndx) const { |
||
229 | if (isEmpty()) |
||
230 | return 1; |
||
231 | return Itineraries[ItinClassIndx].NumMicroOps; |
||
232 | } |
||
233 | }; |
||
234 | |||
235 | } // end namespace llvm |
||
236 | |||
237 | #endif // LLVM_MC_MCINSTRITINERARIES_H |