Subversion Repositories QNX 8.QNX8 LLVM/Clang compiler suite

Rev

Details | Last modification | View Log | RSS feed

Rev Author Line No. Line
14 pmbaty 1
//===- llvm/MC/MCInstrAnalysis.h - InstrDesc target hooks -------*- C++ -*-===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
// This file defines the MCInstrAnalysis class which the MCTargetDescs can
10
// derive from to give additional information to MC.
11
//
12
//===----------------------------------------------------------------------===//
13
 
14
#ifndef LLVM_MC_MCINSTRANALYSIS_H
15
#define LLVM_MC_MCINSTRANALYSIS_H
16
 
17
#include "llvm/ADT/ArrayRef.h"
18
#include "llvm/MC/MCInst.h"
19
#include "llvm/MC/MCInstrDesc.h"
20
#include "llvm/MC/MCInstrInfo.h"
21
#include <cstdint>
22
#include <vector>
23
 
24
namespace llvm {
25
 
26
class MCRegisterInfo;
27
class Triple;
28
 
29
class MCInstrAnalysis {
30
protected:
31
  friend class Target;
32
 
33
  const MCInstrInfo *Info;
34
 
35
public:
36
  MCInstrAnalysis(const MCInstrInfo *Info) : Info(Info) {}
37
  virtual ~MCInstrAnalysis() = default;
38
 
39
  virtual bool isBranch(const MCInst &Inst) const {
40
    return Info->get(Inst.getOpcode()).isBranch();
41
  }
42
 
43
  virtual bool isConditionalBranch(const MCInst &Inst) const {
44
    return Info->get(Inst.getOpcode()).isConditionalBranch();
45
  }
46
 
47
  virtual bool isUnconditionalBranch(const MCInst &Inst) const {
48
    return Info->get(Inst.getOpcode()).isUnconditionalBranch();
49
  }
50
 
51
  virtual bool isIndirectBranch(const MCInst &Inst) const {
52
    return Info->get(Inst.getOpcode()).isIndirectBranch();
53
  }
54
 
55
  virtual bool isCall(const MCInst &Inst) const {
56
    return Info->get(Inst.getOpcode()).isCall();
57
  }
58
 
59
  virtual bool isReturn(const MCInst &Inst) const {
60
    return Info->get(Inst.getOpcode()).isReturn();
61
  }
62
 
63
  virtual bool isTerminator(const MCInst &Inst) const {
64
    return Info->get(Inst.getOpcode()).isTerminator();
65
  }
66
 
67
  /// Returns true if at least one of the register writes performed by
68
  /// \param Inst implicitly clears the upper portion of all super-registers.
69
  ///
70
  /// Example: on X86-64, a write to EAX implicitly clears the upper half of
71
  /// RAX. Also (still on x86) an XMM write perfomed by an AVX 128-bit
72
  /// instruction implicitly clears the upper portion of the correspondent
73
  /// YMM register.
74
  ///
75
  /// This method also updates an APInt which is used as mask of register
76
  /// writes. There is one bit for every explicit/implicit write performed by
77
  /// the instruction. If a write implicitly clears its super-registers, then
78
  /// the corresponding bit is set (vic. the corresponding bit is cleared).
79
  ///
80
  /// The first bits in the APint are related to explicit writes. The remaining
81
  /// bits are related to implicit writes. The sequence of writes follows the
82
  /// machine operand sequence. For implicit writes, the sequence is defined by
83
  /// the MCInstrDesc.
84
  ///
85
  /// The assumption is that the bit-width of the APInt is correctly set by
86
  /// the caller. The default implementation conservatively assumes that none of
87
  /// the writes clears the upper portion of a super-register.
88
  virtual bool clearsSuperRegisters(const MCRegisterInfo &MRI,
89
                                    const MCInst &Inst,
90
                                    APInt &Writes) const;
91
 
92
  /// Returns true if MI is a dependency breaking zero-idiom for the given
93
  /// subtarget.
94
  ///
95
  /// Mask is used to identify input operands that have their dependency
96
  /// broken. Each bit of the mask is associated with a specific input operand.
97
  /// Bits associated with explicit input operands are laid out first in the
98
  /// mask; implicit operands come after explicit operands.
99
  /// 
100
  /// Dependencies are broken only for operands that have their corresponding bit
101
  /// set. Operands that have their bit cleared, or that don't have a
102
  /// corresponding bit in the mask don't have their dependency broken.  Note
103
  /// that Mask may not be big enough to describe all operands.  The assumption
104
  /// for operands that don't have a correspondent bit in the mask is that those
105
  /// are still data dependent.
106
  /// 
107
  /// The only exception to the rule is for when Mask has all zeroes.
108
  /// A zero mask means: dependencies are broken for all explicit register
109
  /// operands.
110
  virtual bool isZeroIdiom(const MCInst &MI, APInt &Mask,
111
                           unsigned CPUID) const {
112
    return false;
113
  }
114
 
115
  /// Returns true if MI is a dependency breaking instruction for the
116
  /// subtarget associated with CPUID .
117
  ///
118
  /// The value computed by a dependency breaking instruction is not dependent
119
  /// on the inputs. An example of dependency breaking instruction on X86 is
120
  /// `XOR %eax, %eax`.
121
  ///
122
  /// If MI is a dependency breaking instruction for subtarget CPUID, then Mask
123
  /// can be inspected to identify independent operands.
124
  ///
125
  /// Essentially, each bit of the mask corresponds to an input operand.
126
  /// Explicit operands are laid out first in the mask; implicit operands follow
127
  /// explicit operands. Bits are set for operands that are independent.
128
  ///
129
  /// Note that the number of bits in Mask may not be equivalent to the sum of
130
  /// explicit and implicit operands in MI. Operands that don't have a
131
  /// corresponding bit in Mask are assumed "not independente".
132
  ///
133
  /// The only exception is for when Mask is all zeroes. That means: explicit
134
  /// input operands of MI are independent.
135
  virtual bool isDependencyBreaking(const MCInst &MI, APInt &Mask,
136
                                    unsigned CPUID) const {
137
    return isZeroIdiom(MI, Mask, CPUID);
138
  }
139
 
140
  /// Returns true if MI is a candidate for move elimination.
141
  ///
142
  /// Different subtargets may apply different constraints to optimizable
143
  /// register moves. For example, on most X86 subtargets, a candidate for move
144
  /// elimination cannot specify the same register for both source and
145
  /// destination.
146
  virtual bool isOptimizableRegisterMove(const MCInst &MI,
147
                                         unsigned CPUID) const {
148
    return false;
149
  }
150
 
151
  /// Given a branch instruction try to get the address the branch
152
  /// targets. Return true on success, and the address in Target.
153
  virtual bool
154
  evaluateBranch(const MCInst &Inst, uint64_t Addr, uint64_t Size,
155
                 uint64_t &Target) const;
156
 
157
  /// Given an instruction tries to get the address of a memory operand. Returns
158
  /// the address on success.
159
  virtual std::optional<uint64_t>
160
  evaluateMemoryOperandAddress(const MCInst &Inst, const MCSubtargetInfo *STI,
161
                               uint64_t Addr, uint64_t Size) const;
162
 
163
  /// Given an instruction with a memory operand that could require relocation,
164
  /// returns the offset within the instruction of that relocation.
165
  virtual std::optional<uint64_t>
166
  getMemoryOperandRelocationOffset(const MCInst &Inst, uint64_t Size) const;
167
 
168
  /// Returns (PLT virtual address, GOT virtual address) pairs for PLT entries.
169
  virtual std::vector<std::pair<uint64_t, uint64_t>>
170
  findPltEntries(uint64_t PltSectionVA, ArrayRef<uint8_t> PltContents,
171
                 uint64_t GotPltSectionVA, const Triple &TargetTriple) const {
172
    return {};
173
  }
174
};
175
 
176
} // end namespace llvm
177
 
178
#endif // LLVM_MC_MCINSTRANALYSIS_H