Details | Last modification | View Log | RSS feed
Rev | Author | Line No. | Line |
---|---|---|---|
14 | pmbaty | 1 | //===- llvm/MC/MCInstrAnalysis.h - InstrDesc target hooks -------*- C++ -*-===// |
2 | // |
||
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
||
4 | // See https://llvm.org/LICENSE.txt for license information. |
||
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
||
6 | // |
||
7 | //===----------------------------------------------------------------------===// |
||
8 | // |
||
9 | // This file defines the MCInstrAnalysis class which the MCTargetDescs can |
||
10 | // derive from to give additional information to MC. |
||
11 | // |
||
12 | //===----------------------------------------------------------------------===// |
||
13 | |||
14 | #ifndef LLVM_MC_MCINSTRANALYSIS_H |
||
15 | #define LLVM_MC_MCINSTRANALYSIS_H |
||
16 | |||
17 | #include "llvm/ADT/ArrayRef.h" |
||
18 | #include "llvm/MC/MCInst.h" |
||
19 | #include "llvm/MC/MCInstrDesc.h" |
||
20 | #include "llvm/MC/MCInstrInfo.h" |
||
21 | #include <cstdint> |
||
22 | #include <vector> |
||
23 | |||
24 | namespace llvm { |
||
25 | |||
26 | class MCRegisterInfo; |
||
27 | class Triple; |
||
28 | |||
29 | class MCInstrAnalysis { |
||
30 | protected: |
||
31 | friend class Target; |
||
32 | |||
33 | const MCInstrInfo *Info; |
||
34 | |||
35 | public: |
||
36 | MCInstrAnalysis(const MCInstrInfo *Info) : Info(Info) {} |
||
37 | virtual ~MCInstrAnalysis() = default; |
||
38 | |||
39 | virtual bool isBranch(const MCInst &Inst) const { |
||
40 | return Info->get(Inst.getOpcode()).isBranch(); |
||
41 | } |
||
42 | |||
43 | virtual bool isConditionalBranch(const MCInst &Inst) const { |
||
44 | return Info->get(Inst.getOpcode()).isConditionalBranch(); |
||
45 | } |
||
46 | |||
47 | virtual bool isUnconditionalBranch(const MCInst &Inst) const { |
||
48 | return Info->get(Inst.getOpcode()).isUnconditionalBranch(); |
||
49 | } |
||
50 | |||
51 | virtual bool isIndirectBranch(const MCInst &Inst) const { |
||
52 | return Info->get(Inst.getOpcode()).isIndirectBranch(); |
||
53 | } |
||
54 | |||
55 | virtual bool isCall(const MCInst &Inst) const { |
||
56 | return Info->get(Inst.getOpcode()).isCall(); |
||
57 | } |
||
58 | |||
59 | virtual bool isReturn(const MCInst &Inst) const { |
||
60 | return Info->get(Inst.getOpcode()).isReturn(); |
||
61 | } |
||
62 | |||
63 | virtual bool isTerminator(const MCInst &Inst) const { |
||
64 | return Info->get(Inst.getOpcode()).isTerminator(); |
||
65 | } |
||
66 | |||
67 | /// Returns true if at least one of the register writes performed by |
||
68 | /// \param Inst implicitly clears the upper portion of all super-registers. |
||
69 | /// |
||
70 | /// Example: on X86-64, a write to EAX implicitly clears the upper half of |
||
71 | /// RAX. Also (still on x86) an XMM write perfomed by an AVX 128-bit |
||
72 | /// instruction implicitly clears the upper portion of the correspondent |
||
73 | /// YMM register. |
||
74 | /// |
||
75 | /// This method also updates an APInt which is used as mask of register |
||
76 | /// writes. There is one bit for every explicit/implicit write performed by |
||
77 | /// the instruction. If a write implicitly clears its super-registers, then |
||
78 | /// the corresponding bit is set (vic. the corresponding bit is cleared). |
||
79 | /// |
||
80 | /// The first bits in the APint are related to explicit writes. The remaining |
||
81 | /// bits are related to implicit writes. The sequence of writes follows the |
||
82 | /// machine operand sequence. For implicit writes, the sequence is defined by |
||
83 | /// the MCInstrDesc. |
||
84 | /// |
||
85 | /// The assumption is that the bit-width of the APInt is correctly set by |
||
86 | /// the caller. The default implementation conservatively assumes that none of |
||
87 | /// the writes clears the upper portion of a super-register. |
||
88 | virtual bool clearsSuperRegisters(const MCRegisterInfo &MRI, |
||
89 | const MCInst &Inst, |
||
90 | APInt &Writes) const; |
||
91 | |||
92 | /// Returns true if MI is a dependency breaking zero-idiom for the given |
||
93 | /// subtarget. |
||
94 | /// |
||
95 | /// Mask is used to identify input operands that have their dependency |
||
96 | /// broken. Each bit of the mask is associated with a specific input operand. |
||
97 | /// Bits associated with explicit input operands are laid out first in the |
||
98 | /// mask; implicit operands come after explicit operands. |
||
99 | /// |
||
100 | /// Dependencies are broken only for operands that have their corresponding bit |
||
101 | /// set. Operands that have their bit cleared, or that don't have a |
||
102 | /// corresponding bit in the mask don't have their dependency broken. Note |
||
103 | /// that Mask may not be big enough to describe all operands. The assumption |
||
104 | /// for operands that don't have a correspondent bit in the mask is that those |
||
105 | /// are still data dependent. |
||
106 | /// |
||
107 | /// The only exception to the rule is for when Mask has all zeroes. |
||
108 | /// A zero mask means: dependencies are broken for all explicit register |
||
109 | /// operands. |
||
110 | virtual bool isZeroIdiom(const MCInst &MI, APInt &Mask, |
||
111 | unsigned CPUID) const { |
||
112 | return false; |
||
113 | } |
||
114 | |||
115 | /// Returns true if MI is a dependency breaking instruction for the |
||
116 | /// subtarget associated with CPUID . |
||
117 | /// |
||
118 | /// The value computed by a dependency breaking instruction is not dependent |
||
119 | /// on the inputs. An example of dependency breaking instruction on X86 is |
||
120 | /// `XOR %eax, %eax`. |
||
121 | /// |
||
122 | /// If MI is a dependency breaking instruction for subtarget CPUID, then Mask |
||
123 | /// can be inspected to identify independent operands. |
||
124 | /// |
||
125 | /// Essentially, each bit of the mask corresponds to an input operand. |
||
126 | /// Explicit operands are laid out first in the mask; implicit operands follow |
||
127 | /// explicit operands. Bits are set for operands that are independent. |
||
128 | /// |
||
129 | /// Note that the number of bits in Mask may not be equivalent to the sum of |
||
130 | /// explicit and implicit operands in MI. Operands that don't have a |
||
131 | /// corresponding bit in Mask are assumed "not independente". |
||
132 | /// |
||
133 | /// The only exception is for when Mask is all zeroes. That means: explicit |
||
134 | /// input operands of MI are independent. |
||
135 | virtual bool isDependencyBreaking(const MCInst &MI, APInt &Mask, |
||
136 | unsigned CPUID) const { |
||
137 | return isZeroIdiom(MI, Mask, CPUID); |
||
138 | } |
||
139 | |||
140 | /// Returns true if MI is a candidate for move elimination. |
||
141 | /// |
||
142 | /// Different subtargets may apply different constraints to optimizable |
||
143 | /// register moves. For example, on most X86 subtargets, a candidate for move |
||
144 | /// elimination cannot specify the same register for both source and |
||
145 | /// destination. |
||
146 | virtual bool isOptimizableRegisterMove(const MCInst &MI, |
||
147 | unsigned CPUID) const { |
||
148 | return false; |
||
149 | } |
||
150 | |||
151 | /// Given a branch instruction try to get the address the branch |
||
152 | /// targets. Return true on success, and the address in Target. |
||
153 | virtual bool |
||
154 | evaluateBranch(const MCInst &Inst, uint64_t Addr, uint64_t Size, |
||
155 | uint64_t &Target) const; |
||
156 | |||
157 | /// Given an instruction tries to get the address of a memory operand. Returns |
||
158 | /// the address on success. |
||
159 | virtual std::optional<uint64_t> |
||
160 | evaluateMemoryOperandAddress(const MCInst &Inst, const MCSubtargetInfo *STI, |
||
161 | uint64_t Addr, uint64_t Size) const; |
||
162 | |||
163 | /// Given an instruction with a memory operand that could require relocation, |
||
164 | /// returns the offset within the instruction of that relocation. |
||
165 | virtual std::optional<uint64_t> |
||
166 | getMemoryOperandRelocationOffset(const MCInst &Inst, uint64_t Size) const; |
||
167 | |||
168 | /// Returns (PLT virtual address, GOT virtual address) pairs for PLT entries. |
||
169 | virtual std::vector<std::pair<uint64_t, uint64_t>> |
||
170 | findPltEntries(uint64_t PltSectionVA, ArrayRef<uint8_t> PltContents, |
||
171 | uint64_t GotPltSectionVA, const Triple &TargetTriple) const { |
||
172 | return {}; |
||
173 | } |
||
174 | }; |
||
175 | |||
176 | } // end namespace llvm |
||
177 | |||
178 | #endif // LLVM_MC_MCINSTRANALYSIS_H |