Details | Last modification | View Log | RSS feed
| Rev | Author | Line No. | Line | 
|---|---|---|---|
| 14 | pmbaty | 1 | //===- llvm/Value.h - Definition of the Value class -------------*- C++ -*-===// | 
| 2 | // | ||
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | ||
| 4 | // See https://llvm.org/LICENSE.txt for license information. | ||
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | ||
| 6 | // | ||
| 7 | //===----------------------------------------------------------------------===// | ||
| 8 | // | ||
| 9 | // This file declares the Value class. | ||
| 10 | // | ||
| 11 | //===----------------------------------------------------------------------===// | ||
| 12 | |||
| 13 | #ifndef LLVM_IR_VALUE_H | ||
| 14 | #define LLVM_IR_VALUE_H | ||
| 15 | |||
| 16 | #include "llvm-c/Types.h" | ||
| 17 | #include "llvm/ADT/STLExtras.h" | ||
| 18 | #include "llvm/ADT/StringRef.h" | ||
| 19 | #include "llvm/ADT/iterator_range.h" | ||
| 20 | #include "llvm/IR/Use.h" | ||
| 21 | #include "llvm/Support/Alignment.h" | ||
| 22 | #include "llvm/Support/CBindingWrapping.h" | ||
| 23 | #include "llvm/Support/Casting.h" | ||
| 24 | #include <cassert> | ||
| 25 | #include <iterator> | ||
| 26 | #include <memory> | ||
| 27 | |||
| 28 | namespace llvm { | ||
| 29 | |||
| 30 | class APInt; | ||
| 31 | class Argument; | ||
| 32 | class BasicBlock; | ||
| 33 | class Constant; | ||
| 34 | class ConstantData; | ||
| 35 | class ConstantAggregate; | ||
| 36 | class DataLayout; | ||
| 37 | class Function; | ||
| 38 | class GlobalAlias; | ||
| 39 | class GlobalIFunc; | ||
| 40 | class GlobalObject; | ||
| 41 | class GlobalValue; | ||
| 42 | class GlobalVariable; | ||
| 43 | class InlineAsm; | ||
| 44 | class Instruction; | ||
| 45 | class LLVMContext; | ||
| 46 | class MDNode; | ||
| 47 | class Module; | ||
| 48 | class ModuleSlotTracker; | ||
| 49 | class raw_ostream; | ||
| 50 | template<typename ValueTy> class StringMapEntry; | ||
| 51 | class Twine; | ||
| 52 | class Type; | ||
| 53 | class User; | ||
| 54 | |||
| 55 | using ValueName = StringMapEntry<Value *>; | ||
| 56 | |||
| 57 | //===----------------------------------------------------------------------===// | ||
| 58 | //                                 Value Class | ||
| 59 | //===----------------------------------------------------------------------===// | ||
| 60 | |||
| 61 | /// LLVM Value Representation | ||
| 62 | /// | ||
| 63 | /// This is a very important LLVM class. It is the base class of all values | ||
| 64 | /// computed by a program that may be used as operands to other values. Value is | ||
| 65 | /// the super class of other important classes such as Instruction and Function. | ||
| 66 | /// All Values have a Type. Type is not a subclass of Value. Some values can | ||
| 67 | /// have a name and they belong to some Module.  Setting the name on the Value | ||
| 68 | /// automatically updates the module's symbol table. | ||
| 69 | /// | ||
| 70 | /// Every value has a "use list" that keeps track of which other Values are | ||
| 71 | /// using this Value.  A Value can also have an arbitrary number of ValueHandle | ||
| 72 | /// objects that watch it and listen to RAUW and Destroy events.  See | ||
| 73 | /// llvm/IR/ValueHandle.h for details. | ||
| 74 | class Value { | ||
| 75 | Type *VTy; | ||
| 76 | Use *UseList; | ||
| 77 | |||
| 78 | friend class ValueAsMetadata; // Allow access to IsUsedByMD. | ||
| 79 | friend class ValueHandleBase; | ||
| 80 | |||
| 81 | const unsigned char SubclassID; // Subclass identifier (for isa/dyn_cast) | ||
| 82 | unsigned char HasValueHandle : 1; // Has a ValueHandle pointing to this? | ||
| 83 | |||
| 84 | protected: | ||
| 85 |   /// Hold subclass data that can be dropped. | ||
| 86 |   /// | ||
| 87 |   /// This member is similar to SubclassData, however it is for holding | ||
| 88 |   /// information which may be used to aid optimization, but which may be | ||
| 89 |   /// cleared to zero without affecting conservative interpretation. | ||
| 90 | unsigned char SubclassOptionalData : 7; | ||
| 91 | |||
| 92 | private: | ||
| 93 |   /// Hold arbitrary subclass data. | ||
| 94 |   /// | ||
| 95 |   /// This member is defined by this class, but is not used for anything. | ||
| 96 |   /// Subclasses can use it to hold whatever state they find useful.  This | ||
| 97 |   /// field is initialized to zero by the ctor. | ||
| 98 | unsigned short SubclassData; | ||
| 99 | |||
| 100 | protected: | ||
| 101 |   /// The number of operands in the subclass. | ||
| 102 |   /// | ||
| 103 |   /// This member is defined by this class, but not used for anything. | ||
| 104 |   /// Subclasses can use it to store their number of operands, if they have | ||
| 105 |   /// any. | ||
| 106 |   /// | ||
| 107 |   /// This is stored here to save space in User on 64-bit hosts.  Since most | ||
| 108 |   /// instances of Value have operands, 32-bit hosts aren't significantly | ||
| 109 |   /// affected. | ||
| 110 |   /// | ||
| 111 |   /// Note, this should *NOT* be used directly by any class other than User. | ||
| 112 |   /// User uses this value to find the Use list. | ||
| 113 | enum : unsigned { NumUserOperandsBits = 27 }; | ||
| 114 | unsigned NumUserOperands : NumUserOperandsBits; | ||
| 115 | |||
| 116 |   // Use the same type as the bitfield above so that MSVC will pack them. | ||
| 117 | unsigned IsUsedByMD : 1; | ||
| 118 | unsigned HasName : 1; | ||
| 119 | unsigned HasMetadata : 1; // Has metadata attached to this? | ||
| 120 | unsigned HasHungOffUses : 1; | ||
| 121 | unsigned HasDescriptor : 1; | ||
| 122 | |||
| 123 | private: | ||
| 124 | template <typename UseT> // UseT == 'Use' or 'const Use' | ||
| 125 | class use_iterator_impl { | ||
| 126 | friend class Value; | ||
| 127 | |||
| 128 | UseT *U; | ||
| 129 | |||
| 130 | explicit use_iterator_impl(UseT *u) : U(u) {} | ||
| 131 | |||
| 132 | public: | ||
| 133 | using iterator_category = std::forward_iterator_tag; | ||
| 134 | using value_type = UseT *; | ||
| 135 | using difference_type = std::ptrdiff_t; | ||
| 136 | using pointer = value_type *; | ||
| 137 | using reference = value_type &; | ||
| 138 | |||
| 139 | use_iterator_impl() : U() {} | ||
| 140 | |||
| 141 | bool operator==(const use_iterator_impl &x) const { return U == x.U; } | ||
| 142 | bool operator!=(const use_iterator_impl &x) const { return !operator==(x); } | ||
| 143 | |||
| 144 | use_iterator_impl &operator++() { // Preincrement | ||
| 145 | assert(U && "Cannot increment end iterator!"); | ||
| 146 | U = U->getNext(); | ||
| 147 | return *this; | ||
| 148 |     } | ||
| 149 | |||
| 150 | use_iterator_impl operator++(int) { // Postincrement | ||
| 151 | auto tmp = *this; | ||
| 152 | ++*this; | ||
| 153 | return tmp; | ||
| 154 |     } | ||
| 155 | |||
| 156 | UseT &operator*() const { | ||
| 157 | assert(U && "Cannot dereference end iterator!"); | ||
| 158 | return *U; | ||
| 159 |     } | ||
| 160 | |||
| 161 | UseT *operator->() const { return &operator*(); } | ||
| 162 | |||
| 163 | operator use_iterator_impl<const UseT>() const { | ||
| 164 | return use_iterator_impl<const UseT>(U); | ||
| 165 |     } | ||
| 166 | }; | ||
| 167 | |||
| 168 | template <typename UserTy> // UserTy == 'User' or 'const User' | ||
| 169 | class user_iterator_impl { | ||
| 170 | use_iterator_impl<Use> UI; | ||
| 171 | explicit user_iterator_impl(Use *U) : UI(U) {} | ||
| 172 | friend class Value; | ||
| 173 | |||
| 174 | public: | ||
| 175 | using iterator_category = std::forward_iterator_tag; | ||
| 176 | using value_type = UserTy *; | ||
| 177 | using difference_type = std::ptrdiff_t; | ||
| 178 | using pointer = value_type *; | ||
| 179 | using reference = value_type &; | ||
| 180 | |||
| 181 | user_iterator_impl() = default; | ||
| 182 | |||
| 183 | bool operator==(const user_iterator_impl &x) const { return UI == x.UI; } | ||
| 184 | bool operator!=(const user_iterator_impl &x) const { return !operator==(x); } | ||
| 185 | |||
| 186 |     /// Returns true if this iterator is equal to user_end() on the value. | ||
| 187 | bool atEnd() const { return *this == user_iterator_impl(); } | ||
| 188 | |||
| 189 | user_iterator_impl &operator++() { // Preincrement | ||
| 190 | ++UI; | ||
| 191 | return *this; | ||
| 192 |     } | ||
| 193 | |||
| 194 | user_iterator_impl operator++(int) { // Postincrement | ||
| 195 | auto tmp = *this; | ||
| 196 | ++*this; | ||
| 197 | return tmp; | ||
| 198 |     } | ||
| 199 | |||
| 200 |     // Retrieve a pointer to the current User. | ||
| 201 | UserTy *operator*() const { | ||
| 202 | return UI->getUser(); | ||
| 203 |     } | ||
| 204 | |||
| 205 | UserTy *operator->() const { return operator*(); } | ||
| 206 | |||
| 207 | operator user_iterator_impl<const UserTy>() const { | ||
| 208 | return user_iterator_impl<const UserTy>(*UI); | ||
| 209 |     } | ||
| 210 | |||
| 211 | Use &getUse() const { return *UI; } | ||
| 212 | }; | ||
| 213 | |||
| 214 | protected: | ||
| 215 | Value(Type *Ty, unsigned scid); | ||
| 216 | |||
| 217 |   /// Value's destructor should be virtual by design, but that would require | ||
| 218 |   /// that Value and all of its subclasses have a vtable that effectively | ||
| 219 |   /// duplicates the information in the value ID. As a size optimization, the | ||
| 220 |   /// destructor has been protected, and the caller should manually call | ||
| 221 |   /// deleteValue. | ||
| 222 | ~Value(); // Use deleteValue() to delete a generic Value. | ||
| 223 | |||
| 224 | public: | ||
| 225 | Value(const Value &) = delete; | ||
| 226 | Value &operator=(const Value &) = delete; | ||
| 227 | |||
| 228 |   /// Delete a pointer to a generic Value. | ||
| 229 | void deleteValue(); | ||
| 230 | |||
| 231 |   /// Support for debugging, callable in GDB: V->dump() | ||
| 232 | void dump() const; | ||
| 233 | |||
| 234 |   /// Implement operator<< on Value. | ||
| 235 |   /// @{ | ||
| 236 | void print(raw_ostream &O, bool IsForDebug = false) const; | ||
| 237 | void print(raw_ostream &O, ModuleSlotTracker &MST, | ||
| 238 | bool IsForDebug = false) const; | ||
| 239 |   /// @} | ||
| 240 | |||
| 241 |   /// Print the name of this Value out to the specified raw_ostream. | ||
| 242 |   /// | ||
| 243 |   /// This is useful when you just want to print 'int %reg126', not the | ||
| 244 |   /// instruction that generated it. If you specify a Module for context, then | ||
| 245 |   /// even constanst get pretty-printed; for example, the type of a null | ||
| 246 |   /// pointer is printed symbolically. | ||
| 247 |   /// @{ | ||
| 248 | void printAsOperand(raw_ostream &O, bool PrintType = true, | ||
| 249 | const Module *M = nullptr) const; | ||
| 250 | void printAsOperand(raw_ostream &O, bool PrintType, | ||
| 251 | ModuleSlotTracker &MST) const; | ||
| 252 |   /// @} | ||
| 253 | |||
| 254 |   /// All values are typed, get the type of this value. | ||
| 255 | Type *getType() const { return VTy; } | ||
| 256 | |||
| 257 |   /// All values hold a context through their type. | ||
| 258 | LLVMContext &getContext() const; | ||
| 259 | |||
| 260 |   // All values can potentially be named. | ||
| 261 | bool hasName() const { return HasName; } | ||
| 262 | ValueName *getValueName() const; | ||
| 263 | void setValueName(ValueName *VN); | ||
| 264 | |||
| 265 | private: | ||
| 266 | void destroyValueName(); | ||
| 267 | enum class ReplaceMetadataUses { No, Yes }; | ||
| 268 | void doRAUW(Value *New, ReplaceMetadataUses); | ||
| 269 | void setNameImpl(const Twine &Name); | ||
| 270 | |||
| 271 | public: | ||
| 272 |   /// Return a constant reference to the value's name. | ||
| 273 |   /// | ||
| 274 |   /// This guaranteed to return the same reference as long as the value is not | ||
| 275 |   /// modified.  If the value has a name, this does a hashtable lookup, so it's | ||
| 276 |   /// not free. | ||
| 277 | StringRef getName() const; | ||
| 278 | |||
| 279 |   /// Change the name of the value. | ||
| 280 |   /// | ||
| 281 |   /// Choose a new unique name if the provided name is taken. | ||
| 282 |   /// | ||
| 283 |   /// \param Name The new name; or "" if the value's name should be removed. | ||
| 284 | void setName(const Twine &Name); | ||
| 285 | |||
| 286 |   /// Transfer the name from V to this value. | ||
| 287 |   /// | ||
| 288 |   /// After taking V's name, sets V's name to empty. | ||
| 289 |   /// | ||
| 290 |   /// \note It is an error to call V->takeName(V). | ||
| 291 | void takeName(Value *V); | ||
| 292 | |||
| 293 | #ifndef NDEBUG | ||
| 294 | std::string getNameOrAsOperand() const; | ||
| 295 | #endif | ||
| 296 | |||
| 297 |   /// Change all uses of this to point to a new Value. | ||
| 298 |   /// | ||
| 299 |   /// Go through the uses list for this definition and make each use point to | ||
| 300 |   /// "V" instead of "this".  After this completes, 'this's use list is | ||
| 301 |   /// guaranteed to be empty. | ||
| 302 | void replaceAllUsesWith(Value *V); | ||
| 303 | |||
| 304 |   /// Change non-metadata uses of this to point to a new Value. | ||
| 305 |   /// | ||
| 306 |   /// Go through the uses list for this definition and make each use point to | ||
| 307 |   /// "V" instead of "this". This function skips metadata entries in the list. | ||
| 308 | void replaceNonMetadataUsesWith(Value *V); | ||
| 309 | |||
| 310 |   /// Go through the uses list for this definition and make each use point | ||
| 311 |   /// to "V" if the callback ShouldReplace returns true for the given Use. | ||
| 312 |   /// Unlike replaceAllUsesWith() this function does not support basic block | ||
| 313 |   /// values. | ||
| 314 | void replaceUsesWithIf(Value *New, | ||
| 315 | llvm::function_ref<bool(Use &U)> ShouldReplace); | ||
| 316 | |||
| 317 |   /// replaceUsesOutsideBlock - Go through the uses list for this definition and | ||
| 318 |   /// make each use point to "V" instead of "this" when the use is outside the | ||
| 319 |   /// block. 'This's use list is expected to have at least one element. | ||
| 320 |   /// Unlike replaceAllUsesWith() this function does not support basic block | ||
| 321 |   /// values. | ||
| 322 | void replaceUsesOutsideBlock(Value *V, BasicBlock *BB); | ||
| 323 | |||
| 324 |   //---------------------------------------------------------------------- | ||
| 325 |   // Methods for handling the chain of uses of this Value. | ||
| 326 |   // | ||
| 327 |   // Materializing a function can introduce new uses, so these methods come in | ||
| 328 |   // two variants: | ||
| 329 |   // The methods that start with materialized_ check the uses that are | ||
| 330 |   // currently known given which functions are materialized. Be very careful | ||
| 331 |   // when using them since you might not get all uses. | ||
| 332 |   // The methods that don't start with materialized_ assert that modules is | ||
| 333 |   // fully materialized. | ||
| 334 | void assertModuleIsMaterializedImpl() const; | ||
| 335 |   // This indirection exists so we can keep assertModuleIsMaterializedImpl() | ||
| 336 |   // around in release builds of Value.cpp to be linked with other code built | ||
| 337 |   // in debug mode. But this avoids calling it in any of the release built code. | ||
| 338 | void assertModuleIsMaterialized() const { | ||
| 339 | #ifndef NDEBUG | ||
| 340 | assertModuleIsMaterializedImpl(); | ||
| 341 | #endif | ||
| 342 |   } | ||
| 343 | |||
| 344 | bool use_empty() const { | ||
| 345 | assertModuleIsMaterialized(); | ||
| 346 | return UseList == nullptr; | ||
| 347 |   } | ||
| 348 | |||
| 349 | bool materialized_use_empty() const { | ||
| 350 | return UseList == nullptr; | ||
| 351 |   } | ||
| 352 | |||
| 353 | using use_iterator = use_iterator_impl<Use>; | ||
| 354 | using const_use_iterator = use_iterator_impl<const Use>; | ||
| 355 | |||
| 356 | use_iterator materialized_use_begin() { return use_iterator(UseList); } | ||
| 357 | const_use_iterator materialized_use_begin() const { | ||
| 358 | return const_use_iterator(UseList); | ||
| 359 |   } | ||
| 360 | use_iterator use_begin() { | ||
| 361 | assertModuleIsMaterialized(); | ||
| 362 | return materialized_use_begin(); | ||
| 363 |   } | ||
| 364 | const_use_iterator use_begin() const { | ||
| 365 | assertModuleIsMaterialized(); | ||
| 366 | return materialized_use_begin(); | ||
| 367 |   } | ||
| 368 | use_iterator use_end() { return use_iterator(); } | ||
| 369 | const_use_iterator use_end() const { return const_use_iterator(); } | ||
| 370 | iterator_range<use_iterator> materialized_uses() { | ||
| 371 | return make_range(materialized_use_begin(), use_end()); | ||
| 372 |   } | ||
| 373 | iterator_range<const_use_iterator> materialized_uses() const { | ||
| 374 | return make_range(materialized_use_begin(), use_end()); | ||
| 375 |   } | ||
| 376 | iterator_range<use_iterator> uses() { | ||
| 377 | assertModuleIsMaterialized(); | ||
| 378 | return materialized_uses(); | ||
| 379 |   } | ||
| 380 | iterator_range<const_use_iterator> uses() const { | ||
| 381 | assertModuleIsMaterialized(); | ||
| 382 | return materialized_uses(); | ||
| 383 |   } | ||
| 384 | |||
| 385 | bool user_empty() const { | ||
| 386 | assertModuleIsMaterialized(); | ||
| 387 | return UseList == nullptr; | ||
| 388 |   } | ||
| 389 | |||
| 390 | using user_iterator = user_iterator_impl<User>; | ||
| 391 | using const_user_iterator = user_iterator_impl<const User>; | ||
| 392 | |||
| 393 | user_iterator materialized_user_begin() { return user_iterator(UseList); } | ||
| 394 | const_user_iterator materialized_user_begin() const { | ||
| 395 | return const_user_iterator(UseList); | ||
| 396 |   } | ||
| 397 | user_iterator user_begin() { | ||
| 398 | assertModuleIsMaterialized(); | ||
| 399 | return materialized_user_begin(); | ||
| 400 |   } | ||
| 401 | const_user_iterator user_begin() const { | ||
| 402 | assertModuleIsMaterialized(); | ||
| 403 | return materialized_user_begin(); | ||
| 404 |   } | ||
| 405 | user_iterator user_end() { return user_iterator(); } | ||
| 406 | const_user_iterator user_end() const { return const_user_iterator(); } | ||
| 407 | User *user_back() { | ||
| 408 | assertModuleIsMaterialized(); | ||
| 409 | return *materialized_user_begin(); | ||
| 410 |   } | ||
| 411 | const User *user_back() const { | ||
| 412 | assertModuleIsMaterialized(); | ||
| 413 | return *materialized_user_begin(); | ||
| 414 |   } | ||
| 415 | iterator_range<user_iterator> materialized_users() { | ||
| 416 | return make_range(materialized_user_begin(), user_end()); | ||
| 417 |   } | ||
| 418 | iterator_range<const_user_iterator> materialized_users() const { | ||
| 419 | return make_range(materialized_user_begin(), user_end()); | ||
| 420 |   } | ||
| 421 | iterator_range<user_iterator> users() { | ||
| 422 | assertModuleIsMaterialized(); | ||
| 423 | return materialized_users(); | ||
| 424 |   } | ||
| 425 | iterator_range<const_user_iterator> users() const { | ||
| 426 | assertModuleIsMaterialized(); | ||
| 427 | return materialized_users(); | ||
| 428 |   } | ||
| 429 | |||
| 430 |   /// Return true if there is exactly one use of this value. | ||
| 431 |   /// | ||
| 432 |   /// This is specialized because it is a common request and does not require | ||
| 433 |   /// traversing the whole use list. | ||
| 434 | bool hasOneUse() const { return hasSingleElement(uses()); } | ||
| 435 | |||
| 436 |   /// Return true if this Value has exactly N uses. | ||
| 437 | bool hasNUses(unsigned N) const; | ||
| 438 | |||
| 439 |   /// Return true if this value has N uses or more. | ||
| 440 |   /// | ||
| 441 |   /// This is logically equivalent to getNumUses() >= N. | ||
| 442 | bool hasNUsesOrMore(unsigned N) const; | ||
| 443 | |||
| 444 |   /// Return true if there is exactly one user of this value. | ||
| 445 |   /// | ||
| 446 |   /// Note that this is not the same as "has one use". If a value has one use, | ||
| 447 |   /// then there certainly is a single user. But if value has several uses, | ||
| 448 |   /// it is possible that all uses are in a single user, or not. | ||
| 449 |   /// | ||
| 450 |   /// This check is potentially costly, since it requires traversing, | ||
| 451 |   /// in the worst case, the whole use list of a value. | ||
| 452 | bool hasOneUser() const; | ||
| 453 | |||
| 454 |   /// Return true if there is exactly one use of this value that cannot be | ||
| 455 |   /// dropped. | ||
| 456 | Use *getSingleUndroppableUse(); | ||
| 457 | const Use *getSingleUndroppableUse() const { | ||
| 458 | return const_cast<Value *>(this)->getSingleUndroppableUse(); | ||
| 459 |   } | ||
| 460 | |||
| 461 |   /// Return true if there is exactly one unique user of this value that cannot be | ||
| 462 |   /// dropped (that user can have multiple uses of this value). | ||
| 463 | User *getUniqueUndroppableUser(); | ||
| 464 | const User *getUniqueUndroppableUser() const { | ||
| 465 | return const_cast<Value *>(this)->getUniqueUndroppableUser(); | ||
| 466 |   } | ||
| 467 | |||
| 468 |   /// Return true if there this value. | ||
| 469 |   /// | ||
| 470 |   /// This is specialized because it is a common request and does not require | ||
| 471 |   /// traversing the whole use list. | ||
| 472 | bool hasNUndroppableUses(unsigned N) const; | ||
| 473 | |||
| 474 |   /// Return true if this value has N uses or more. | ||
| 475 |   /// | ||
| 476 |   /// This is logically equivalent to getNumUses() >= N. | ||
| 477 | bool hasNUndroppableUsesOrMore(unsigned N) const; | ||
| 478 | |||
| 479 |   /// Remove every uses that can safely be removed. | ||
| 480 |   /// | ||
| 481 |   /// This will remove for example uses in llvm.assume. | ||
| 482 |   /// This should be used when performing want to perform a tranformation but | ||
| 483 |   /// some Droppable uses pervent it. | ||
| 484 |   /// This function optionally takes a filter to only remove some droppable | ||
| 485 |   /// uses. | ||
| 486 | void dropDroppableUses(llvm::function_ref<bool(const Use *)> ShouldDrop = | ||
| 487 | [](const Use *) { return true; }); | ||
| 488 | |||
| 489 |   /// Remove every use of this value in \p User that can safely be removed. | ||
| 490 | void dropDroppableUsesIn(User &Usr); | ||
| 491 | |||
| 492 |   /// Remove the droppable use \p U. | ||
| 493 | static void dropDroppableUse(Use &U); | ||
| 494 | |||
| 495 |   /// Check if this value is used in the specified basic block. | ||
| 496 | bool isUsedInBasicBlock(const BasicBlock *BB) const; | ||
| 497 | |||
| 498 |   /// This method computes the number of uses of this Value. | ||
| 499 |   /// | ||
| 500 |   /// This is a linear time operation.  Use hasOneUse, hasNUses, or | ||
| 501 |   /// hasNUsesOrMore to check for specific values. | ||
| 502 | unsigned getNumUses() const; | ||
| 503 | |||
| 504 |   /// This method should only be used by the Use class. | ||
| 505 | void addUse(Use &U) { U.addToList(&UseList); } | ||
| 506 | |||
| 507 |   /// Concrete subclass of this. | ||
| 508 |   /// | ||
| 509 |   /// An enumeration for keeping track of the concrete subclass of Value that | ||
| 510 |   /// is actually instantiated. Values of this enumeration are kept in the | ||
| 511 |   /// Value classes SubclassID field. They are used for concrete type | ||
| 512 |   /// identification. | ||
| 513 | enum ValueTy { | ||
| 514 | #define HANDLE_VALUE(Name) Name##Val, | ||
| 515 | #include "llvm/IR/Value.def" | ||
| 516 | |||
| 517 |     // Markers: | ||
| 518 | #define HANDLE_CONSTANT_MARKER(Marker, Constant) Marker = Constant##Val, | ||
| 519 | #include "llvm/IR/Value.def" | ||
| 520 | }; | ||
| 521 | |||
| 522 |   /// Return an ID for the concrete type of this object. | ||
| 523 |   /// | ||
| 524 |   /// This is used to implement the classof checks.  This should not be used | ||
| 525 |   /// for any other purpose, as the values may change as LLVM evolves.  Also, | ||
| 526 |   /// note that for instructions, the Instruction's opcode is added to | ||
| 527 |   /// InstructionVal. So this means three things: | ||
| 528 |   /// # there is no value with code InstructionVal (no opcode==0). | ||
| 529 |   /// # there are more possible values for the value type than in ValueTy enum. | ||
| 530 |   /// # the InstructionVal enumerator must be the highest valued enumerator in | ||
| 531 |   ///   the ValueTy enum. | ||
| 532 | unsigned getValueID() const { | ||
| 533 | return SubclassID; | ||
| 534 |   } | ||
| 535 | |||
| 536 |   /// Return the raw optional flags value contained in this value. | ||
| 537 |   /// | ||
| 538 |   /// This should only be used when testing two Values for equivalence. | ||
| 539 | unsigned getRawSubclassOptionalData() const { | ||
| 540 | return SubclassOptionalData; | ||
| 541 |   } | ||
| 542 | |||
| 543 |   /// Clear the optional flags contained in this value. | ||
| 544 | void clearSubclassOptionalData() { | ||
| 545 | SubclassOptionalData = 0; | ||
| 546 |   } | ||
| 547 | |||
| 548 |   /// Check the optional flags for equality. | ||
| 549 | bool hasSameSubclassOptionalData(const Value *V) const { | ||
| 550 | return SubclassOptionalData == V->SubclassOptionalData; | ||
| 551 |   } | ||
| 552 | |||
| 553 |   /// Return true if there is a value handle associated with this value. | ||
| 554 | bool hasValueHandle() const { return HasValueHandle; } | ||
| 555 | |||
| 556 |   /// Return true if there is metadata referencing this value. | ||
| 557 | bool isUsedByMetadata() const { return IsUsedByMD; } | ||
| 558 | |||
| 559 | protected: | ||
| 560 |   /// Get the current metadata attachments for the given kind, if any. | ||
| 561 |   /// | ||
| 562 |   /// These functions require that the value have at most a single attachment | ||
| 563 |   /// of the given kind, and return \c nullptr if such an attachment is missing. | ||
| 564 |   /// @{ | ||
| 565 | MDNode *getMetadata(unsigned KindID) const; | ||
| 566 | MDNode *getMetadata(StringRef Kind) const; | ||
| 567 |   /// @} | ||
| 568 | |||
| 569 |   /// Appends all attachments with the given ID to \c MDs in insertion order. | ||
| 570 |   /// If the Value has no attachments with the given ID, or if ID is invalid, | ||
| 571 |   /// leaves MDs unchanged. | ||
| 572 |   /// @{ | ||
| 573 | void getMetadata(unsigned KindID, SmallVectorImpl<MDNode *> &MDs) const; | ||
| 574 | void getMetadata(StringRef Kind, SmallVectorImpl<MDNode *> &MDs) const; | ||
| 575 |   /// @} | ||
| 576 | |||
| 577 |   /// Appends all metadata attached to this value to \c MDs, sorting by | ||
| 578 |   /// KindID. The first element of each pair returned is the KindID, the second | ||
| 579 |   /// element is the metadata value. Attachments with the same ID appear in | ||
| 580 |   /// insertion order. | ||
| 581 |   void | ||
| 582 | getAllMetadata(SmallVectorImpl<std::pair<unsigned, MDNode *>> &MDs) const; | ||
| 583 | |||
| 584 |   /// Return true if this value has any metadata attached to it. | ||
| 585 | bool hasMetadata() const { return (bool)HasMetadata; } | ||
| 586 | |||
| 587 |   /// Return true if this value has the given type of metadata attached. | ||
| 588 |   /// @{ | ||
| 589 | bool hasMetadata(unsigned KindID) const { | ||
| 590 | return getMetadata(KindID) != nullptr; | ||
| 591 |   } | ||
| 592 | bool hasMetadata(StringRef Kind) const { | ||
| 593 | return getMetadata(Kind) != nullptr; | ||
| 594 |   } | ||
| 595 |   /// @} | ||
| 596 | |||
| 597 |   /// Set a particular kind of metadata attachment. | ||
| 598 |   /// | ||
| 599 |   /// Sets the given attachment to \c MD, erasing it if \c MD is \c nullptr or | ||
| 600 |   /// replacing it if it already exists. | ||
| 601 |   /// @{ | ||
| 602 | void setMetadata(unsigned KindID, MDNode *Node); | ||
| 603 | void setMetadata(StringRef Kind, MDNode *Node); | ||
| 604 |   /// @} | ||
| 605 | |||
| 606 |   /// Add a metadata attachment. | ||
| 607 |   /// @{ | ||
| 608 | void addMetadata(unsigned KindID, MDNode &MD); | ||
| 609 | void addMetadata(StringRef Kind, MDNode &MD); | ||
| 610 |   /// @} | ||
| 611 | |||
| 612 |   /// Erase all metadata attachments with the given kind. | ||
| 613 |   /// | ||
| 614 |   /// \returns true if any metadata was removed. | ||
| 615 | bool eraseMetadata(unsigned KindID); | ||
| 616 | |||
| 617 |   /// Erase all metadata attached to this Value. | ||
| 618 | void clearMetadata(); | ||
| 619 | |||
| 620 | public: | ||
| 621 |   /// Return true if this value is a swifterror value. | ||
| 622 |   /// | ||
| 623 |   /// swifterror values can be either a function argument or an alloca with a | ||
| 624 |   /// swifterror attribute. | ||
| 625 | bool isSwiftError() const; | ||
| 626 | |||
| 627 |   /// Strip off pointer casts, all-zero GEPs and address space casts. | ||
| 628 |   /// | ||
| 629 |   /// Returns the original uncasted value.  If this is called on a non-pointer | ||
| 630 |   /// value, it returns 'this'. | ||
| 631 | const Value *stripPointerCasts() const; | ||
| 632 | Value *stripPointerCasts() { | ||
| 633 | return const_cast<Value *>( | ||
| 634 | static_cast<const Value *>(this)->stripPointerCasts()); | ||
| 635 |   } | ||
| 636 | |||
| 637 |   /// Strip off pointer casts, all-zero GEPs, address space casts, and aliases. | ||
| 638 |   /// | ||
| 639 |   /// Returns the original uncasted value.  If this is called on a non-pointer | ||
| 640 |   /// value, it returns 'this'. | ||
| 641 | const Value *stripPointerCastsAndAliases() const; | ||
| 642 | Value *stripPointerCastsAndAliases() { | ||
| 643 | return const_cast<Value *>( | ||
| 644 | static_cast<const Value *>(this)->stripPointerCastsAndAliases()); | ||
| 645 |   } | ||
| 646 | |||
| 647 |   /// Strip off pointer casts, all-zero GEPs and address space casts | ||
| 648 |   /// but ensures the representation of the result stays the same. | ||
| 649 |   /// | ||
| 650 |   /// Returns the original uncasted value with the same representation. If this | ||
| 651 |   /// is called on a non-pointer value, it returns 'this'. | ||
| 652 | const Value *stripPointerCastsSameRepresentation() const; | ||
| 653 | Value *stripPointerCastsSameRepresentation() { | ||
| 654 | return const_cast<Value *>(static_cast<const Value *>(this) | ||
| 655 | ->stripPointerCastsSameRepresentation()); | ||
| 656 |   } | ||
| 657 | |||
| 658 |   /// Strip off pointer casts, all-zero GEPs, single-argument phi nodes and | ||
| 659 |   /// invariant group info. | ||
| 660 |   /// | ||
| 661 |   /// Returns the original uncasted value.  If this is called on a non-pointer | ||
| 662 |   /// value, it returns 'this'. This function should be used only in | ||
| 663 |   /// Alias analysis. | ||
| 664 | const Value *stripPointerCastsForAliasAnalysis() const; | ||
| 665 | Value *stripPointerCastsForAliasAnalysis() { | ||
| 666 | return const_cast<Value *>(static_cast<const Value *>(this) | ||
| 667 | ->stripPointerCastsForAliasAnalysis()); | ||
| 668 |   } | ||
| 669 | |||
| 670 |   /// Strip off pointer casts and all-constant inbounds GEPs. | ||
| 671 |   /// | ||
| 672 |   /// Returns the original pointer value.  If this is called on a non-pointer | ||
| 673 |   /// value, it returns 'this'. | ||
| 674 | const Value *stripInBoundsConstantOffsets() const; | ||
| 675 | Value *stripInBoundsConstantOffsets() { | ||
| 676 | return const_cast<Value *>( | ||
| 677 | static_cast<const Value *>(this)->stripInBoundsConstantOffsets()); | ||
| 678 |   } | ||
| 679 | |||
| 680 |   /// Accumulate the constant offset this value has compared to a base pointer. | ||
| 681 |   /// Only 'getelementptr' instructions (GEPs) are accumulated but other | ||
| 682 |   /// instructions, e.g., casts, are stripped away as well. | ||
| 683 |   /// The accumulated constant offset is added to \p Offset and the base | ||
| 684 |   /// pointer is returned. | ||
| 685 |   /// | ||
| 686 |   /// The APInt \p Offset has to have a bit-width equal to the IntPtr type for | ||
| 687 |   /// the address space of 'this' pointer value, e.g., use | ||
| 688 |   /// DataLayout::getIndexTypeSizeInBits(Ty). | ||
| 689 |   /// | ||
| 690 |   /// If \p AllowNonInbounds is true, offsets in GEPs are stripped and | ||
| 691 |   /// accumulated even if the GEP is not "inbounds". | ||
| 692 |   /// | ||
| 693 |   /// If \p AllowInvariantGroup is true then this method also looks through | ||
| 694 |   /// strip.invariant.group and launder.invariant.group intrinsics. | ||
| 695 |   /// | ||
| 696 |   /// If \p ExternalAnalysis is provided it will be used to calculate a offset | ||
| 697 |   /// when a operand of GEP is not constant. | ||
| 698 |   /// For example, for a value \p ExternalAnalysis might try to calculate a | ||
| 699 |   /// lower bound. If \p ExternalAnalysis is successful, it should return true. | ||
| 700 |   /// | ||
| 701 |   /// If this is called on a non-pointer value, it returns 'this' and the | ||
| 702 |   /// \p Offset is not modified. | ||
| 703 |   /// | ||
| 704 |   /// Note that this function will never return a nullptr. It will also never | ||
| 705 |   /// manipulate the \p Offset in a way that would not match the difference | ||
| 706 |   /// between the underlying value and the returned one. Thus, if no constant | ||
| 707 |   /// offset was found, the returned value is the underlying one and \p Offset | ||
| 708 |   /// is unchanged. | ||
| 709 | const Value *stripAndAccumulateConstantOffsets( | ||
| 710 | const DataLayout &DL, APInt &Offset, bool AllowNonInbounds, | ||
| 711 | bool AllowInvariantGroup = false, | ||
| 712 | function_ref<bool(Value &Value, APInt &Offset)> ExternalAnalysis = | ||
| 713 | nullptr) const; | ||
| 714 | Value *stripAndAccumulateConstantOffsets(const DataLayout &DL, APInt &Offset, | ||
| 715 |                                            bool AllowNonInbounds, | ||
| 716 | bool AllowInvariantGroup = false) { | ||
| 717 | return const_cast<Value *>( | ||
| 718 | static_cast<const Value *>(this)->stripAndAccumulateConstantOffsets( | ||
| 719 | DL, Offset, AllowNonInbounds, AllowInvariantGroup)); | ||
| 720 |   } | ||
| 721 | |||
| 722 |   /// This is a wrapper around stripAndAccumulateConstantOffsets with the | ||
| 723 |   /// in-bounds requirement set to false. | ||
| 724 | const Value *stripAndAccumulateInBoundsConstantOffsets(const DataLayout &DL, | ||
| 725 | APInt &Offset) const { | ||
| 726 | return stripAndAccumulateConstantOffsets(DL, Offset, | ||
| 727 | /* AllowNonInbounds */ false); | ||
| 728 |   } | ||
| 729 | Value *stripAndAccumulateInBoundsConstantOffsets(const DataLayout &DL, | ||
| 730 | APInt &Offset) { | ||
| 731 | return stripAndAccumulateConstantOffsets(DL, Offset, | ||
| 732 | /* AllowNonInbounds */ false); | ||
| 733 |   } | ||
| 734 | |||
| 735 |   /// Strip off pointer casts and inbounds GEPs. | ||
| 736 |   /// | ||
| 737 |   /// Returns the original pointer value.  If this is called on a non-pointer | ||
| 738 |   /// value, it returns 'this'. | ||
| 739 | const Value *stripInBoundsOffsets(function_ref<void(const Value *)> Func = | ||
| 740 | [](const Value *) {}) const; | ||
| 741 | inline Value *stripInBoundsOffsets(function_ref<void(const Value *)> Func = | ||
| 742 | [](const Value *) {}) { | ||
| 743 | return const_cast<Value *>( | ||
| 744 | static_cast<const Value *>(this)->stripInBoundsOffsets(Func)); | ||
| 745 |   } | ||
| 746 | |||
| 747 |   /// Return true if the memory object referred to by V can by freed in the | ||
| 748 |   /// scope for which the SSA value defining the allocation is statically | ||
| 749 |   /// defined.  E.g.  deallocation after the static scope of a value does not | ||
| 750 |   /// count, but a deallocation before that does. | ||
| 751 | bool canBeFreed() const; | ||
| 752 | |||
| 753 |   /// Returns the number of bytes known to be dereferenceable for the | ||
| 754 |   /// pointer value. | ||
| 755 |   /// | ||
| 756 |   /// If CanBeNull is set by this function the pointer can either be null or be | ||
| 757 |   /// dereferenceable up to the returned number of bytes. | ||
| 758 |   /// | ||
| 759 |   /// IF CanBeFreed is true, the pointer is known to be dereferenceable at | ||
| 760 |   /// point of definition only.  Caller must prove that allocation is not | ||
| 761 |   /// deallocated between point of definition and use. | ||
| 762 | uint64_t getPointerDereferenceableBytes(const DataLayout &DL, | ||
| 763 | bool &CanBeNull, | ||
| 764 | bool &CanBeFreed) const; | ||
| 765 | |||
| 766 |   /// Returns an alignment of the pointer value. | ||
| 767 |   /// | ||
| 768 |   /// Returns an alignment which is either specified explicitly, e.g. via | ||
| 769 |   /// align attribute of a function argument, or guaranteed by DataLayout. | ||
| 770 | Align getPointerAlignment(const DataLayout &DL) const; | ||
| 771 | |||
| 772 |   /// Translate PHI node to its predecessor from the given basic block. | ||
| 773 |   /// | ||
| 774 |   /// If this value is a PHI node with CurBB as its parent, return the value in | ||
| 775 |   /// the PHI node corresponding to PredBB.  If not, return ourself.  This is | ||
| 776 |   /// useful if you want to know the value something has in a predecessor | ||
| 777 |   /// block. | ||
| 778 | const Value *DoPHITranslation(const BasicBlock *CurBB, | ||
| 779 | const BasicBlock *PredBB) const; | ||
| 780 | Value *DoPHITranslation(const BasicBlock *CurBB, const BasicBlock *PredBB) { | ||
| 781 | return const_cast<Value *>( | ||
| 782 | static_cast<const Value *>(this)->DoPHITranslation(CurBB, PredBB)); | ||
| 783 |   } | ||
| 784 | |||
| 785 |   /// The maximum alignment for instructions. | ||
| 786 |   /// | ||
| 787 |   /// This is the greatest alignment value supported by load, store, and alloca | ||
| 788 |   /// instructions, and global values. | ||
| 789 | static constexpr unsigned MaxAlignmentExponent = 32; | ||
| 790 | static constexpr uint64_t MaximumAlignment = 1ULL << MaxAlignmentExponent; | ||
| 791 | |||
| 792 |   /// Mutate the type of this Value to be of the specified type. | ||
| 793 |   /// | ||
| 794 |   /// Note that this is an extremely dangerous operation which can create | ||
| 795 |   /// completely invalid IR very easily.  It is strongly recommended that you | ||
| 796 |   /// recreate IR objects with the right types instead of mutating them in | ||
| 797 |   /// place. | ||
| 798 | void mutateType(Type *Ty) { | ||
| 799 | VTy = Ty; | ||
| 800 |   } | ||
| 801 | |||
| 802 |   /// Sort the use-list. | ||
| 803 |   /// | ||
| 804 |   /// Sorts the Value's use-list by Cmp using a stable mergesort.  Cmp is | ||
| 805 |   /// expected to compare two \a Use references. | ||
| 806 | template <class Compare> void sortUseList(Compare Cmp); | ||
| 807 | |||
| 808 |   /// Reverse the use-list. | ||
| 809 | void reverseUseList(); | ||
| 810 | |||
| 811 | private: | ||
| 812 |   /// Merge two lists together. | ||
| 813 |   /// | ||
| 814 |   /// Merges \c L and \c R using \c Cmp.  To enable stable sorts, always pushes | ||
| 815 |   /// "equal" items from L before items from R. | ||
| 816 |   /// | ||
| 817 |   /// \return the first element in the list. | ||
| 818 |   /// | ||
| 819 |   /// \note Completely ignores \a Use::Prev (doesn't read, doesn't update). | ||
| 820 | template <class Compare> | ||
| 821 | static Use *mergeUseLists(Use *L, Use *R, Compare Cmp) { | ||
| 822 | Use *Merged; | ||
| 823 | Use **Next = &Merged; | ||
| 824 | |||
| 825 | while (true) { | ||
| 826 | if (!L) { | ||
| 827 | *Next = R; | ||
| 828 | break; | ||
| 829 |       } | ||
| 830 | if (!R) { | ||
| 831 | *Next = L; | ||
| 832 | break; | ||
| 833 |       } | ||
| 834 | if (Cmp(*R, *L)) { | ||
| 835 | *Next = R; | ||
| 836 | Next = &R->Next; | ||
| 837 | R = R->Next; | ||
| 838 | } else { | ||
| 839 | *Next = L; | ||
| 840 | Next = &L->Next; | ||
| 841 | L = L->Next; | ||
| 842 |       } | ||
| 843 |     } | ||
| 844 | |||
| 845 | return Merged; | ||
| 846 |   } | ||
| 847 | |||
| 848 | protected: | ||
| 849 | unsigned short getSubclassDataFromValue() const { return SubclassData; } | ||
| 850 | void setValueSubclassData(unsigned short D) { SubclassData = D; } | ||
| 851 | }; | ||
| 852 | |||
| 853 | struct ValueDeleter { void operator()(Value *V) { V->deleteValue(); } }; | ||
| 854 | |||
| 855 | /// Use this instead of std::unique_ptr<Value> or std::unique_ptr<Instruction>. | ||
| 856 | /// Those don't work because Value and Instruction's destructors are protected, | ||
| 857 | /// aren't virtual, and won't destroy the complete object. | ||
| 858 | using unique_value = std::unique_ptr<Value, ValueDeleter>; | ||
| 859 | |||
| 860 | inline raw_ostream &operator<<(raw_ostream &OS, const Value &V) { | ||
| 861 | V.print(OS); | ||
| 862 | return OS; | ||
| 863 | } | ||
| 864 | |||
| 865 | void Use::set(Value *V) { | ||
| 866 | if (Val) removeFromList(); | ||
| 867 | Val = V; | ||
| 868 | if (V) V->addUse(*this); | ||
| 869 | } | ||
| 870 | |||
| 871 | Value *Use::operator=(Value *RHS) { | ||
| 872 | set(RHS); | ||
| 873 | return RHS; | ||
| 874 | } | ||
| 875 | |||
| 876 | const Use &Use::operator=(const Use &RHS) { | ||
| 877 | set(RHS.Val); | ||
| 878 | return *this; | ||
| 879 | } | ||
| 880 | |||
| 881 | template <class Compare> void Value::sortUseList(Compare Cmp) { | ||
| 882 | if (!UseList || !UseList->Next) | ||
| 883 |     // No need to sort 0 or 1 uses. | ||
| 884 | return; | ||
| 885 | |||
| 886 |   // Note: this function completely ignores Prev pointers until the end when | ||
| 887 |   // they're fixed en masse. | ||
| 888 | |||
| 889 |   // Create a binomial vector of sorted lists, visiting uses one at a time and | ||
| 890 |   // merging lists as necessary. | ||
| 891 | const unsigned MaxSlots = 32; | ||
| 892 | Use *Slots[MaxSlots]; | ||
| 893 | |||
| 894 |   // Collect the first use, turning it into a single-item list. | ||
| 895 | Use *Next = UseList->Next; | ||
| 896 | UseList->Next = nullptr; | ||
| 897 | unsigned NumSlots = 1; | ||
| 898 | Slots[0] = UseList; | ||
| 899 | |||
| 900 |   // Collect all but the last use. | ||
| 901 | while (Next->Next) { | ||
| 902 | Use *Current = Next; | ||
| 903 | Next = Current->Next; | ||
| 904 | |||
| 905 |     // Turn Current into a single-item list. | ||
| 906 | Current->Next = nullptr; | ||
| 907 | |||
| 908 |     // Save Current in the first available slot, merging on collisions. | ||
| 909 | unsigned I; | ||
| 910 | for (I = 0; I < NumSlots; ++I) { | ||
| 911 | if (!Slots[I]) | ||
| 912 | break; | ||
| 913 | |||
| 914 |       // Merge two lists, doubling the size of Current and emptying slot I. | ||
| 915 |       // | ||
| 916 |       // Since the uses in Slots[I] originally preceded those in Current, send | ||
| 917 |       // Slots[I] in as the left parameter to maintain a stable sort. | ||
| 918 | Current = mergeUseLists(Slots[I], Current, Cmp); | ||
| 919 | Slots[I] = nullptr; | ||
| 920 |     } | ||
| 921 |     // Check if this is a new slot. | ||
| 922 | if (I == NumSlots) { | ||
| 923 | ++NumSlots; | ||
| 924 | assert(NumSlots <= MaxSlots && "Use list bigger than 2^32"); | ||
| 925 |     } | ||
| 926 | |||
| 927 |     // Found an open slot. | ||
| 928 | Slots[I] = Current; | ||
| 929 |   } | ||
| 930 | |||
| 931 |   // Merge all the lists together. | ||
| 932 | assert(Next && "Expected one more Use"); | ||
| 933 | assert(!Next->Next && "Expected only one Use"); | ||
| 934 | UseList = Next; | ||
| 935 | for (unsigned I = 0; I < NumSlots; ++I) | ||
| 936 | if (Slots[I]) | ||
| 937 |       // Since the uses in Slots[I] originally preceded those in UseList, send | ||
| 938 |       // Slots[I] in as the left parameter to maintain a stable sort. | ||
| 939 | UseList = mergeUseLists(Slots[I], UseList, Cmp); | ||
| 940 | |||
| 941 |   // Fix the Prev pointers. | ||
| 942 | for (Use *I = UseList, **Prev = &UseList; I; I = I->Next) { | ||
| 943 | I->Prev = Prev; | ||
| 944 | Prev = &I->Next; | ||
| 945 |   } | ||
| 946 | } | ||
| 947 | |||
| 948 | // isa - Provide some specializations of isa so that we don't have to include | ||
| 949 | // the subtype header files to test to see if the value is a subclass... | ||
| 950 | // | ||
| 951 | template <> struct isa_impl<Constant, Value> { | ||
| 952 | static inline bool doit(const Value &Val) { | ||
| 953 | static_assert(Value::ConstantFirstVal == 0, "Val.getValueID() >= Value::ConstantFirstVal"); | ||
| 954 | return Val.getValueID() <= Value::ConstantLastVal; | ||
| 955 |   } | ||
| 956 | }; | ||
| 957 | |||
| 958 | template <> struct isa_impl<ConstantData, Value> { | ||
| 959 | static inline bool doit(const Value &Val) { | ||
| 960 | return Val.getValueID() >= Value::ConstantDataFirstVal && | ||
| 961 | Val.getValueID() <= Value::ConstantDataLastVal; | ||
| 962 |   } | ||
| 963 | }; | ||
| 964 | |||
| 965 | template <> struct isa_impl<ConstantAggregate, Value> { | ||
| 966 | static inline bool doit(const Value &Val) { | ||
| 967 | return Val.getValueID() >= Value::ConstantAggregateFirstVal && | ||
| 968 | Val.getValueID() <= Value::ConstantAggregateLastVal; | ||
| 969 |   } | ||
| 970 | }; | ||
| 971 | |||
| 972 | template <> struct isa_impl<Argument, Value> { | ||
| 973 | static inline bool doit (const Value &Val) { | ||
| 974 | return Val.getValueID() == Value::ArgumentVal; | ||
| 975 |   } | ||
| 976 | }; | ||
| 977 | |||
| 978 | template <> struct isa_impl<InlineAsm, Value> { | ||
| 979 | static inline bool doit(const Value &Val) { | ||
| 980 | return Val.getValueID() == Value::InlineAsmVal; | ||
| 981 |   } | ||
| 982 | }; | ||
| 983 | |||
| 984 | template <> struct isa_impl<Instruction, Value> { | ||
| 985 | static inline bool doit(const Value &Val) { | ||
| 986 | return Val.getValueID() >= Value::InstructionVal; | ||
| 987 |   } | ||
| 988 | }; | ||
| 989 | |||
| 990 | template <> struct isa_impl<BasicBlock, Value> { | ||
| 991 | static inline bool doit(const Value &Val) { | ||
| 992 | return Val.getValueID() == Value::BasicBlockVal; | ||
| 993 |   } | ||
| 994 | }; | ||
| 995 | |||
| 996 | template <> struct isa_impl<Function, Value> { | ||
| 997 | static inline bool doit(const Value &Val) { | ||
| 998 | return Val.getValueID() == Value::FunctionVal; | ||
| 999 |   } | ||
| 1000 | }; | ||
| 1001 | |||
| 1002 | template <> struct isa_impl<GlobalVariable, Value> { | ||
| 1003 | static inline bool doit(const Value &Val) { | ||
| 1004 | return Val.getValueID() == Value::GlobalVariableVal; | ||
| 1005 |   } | ||
| 1006 | }; | ||
| 1007 | |||
| 1008 | template <> struct isa_impl<GlobalAlias, Value> { | ||
| 1009 | static inline bool doit(const Value &Val) { | ||
| 1010 | return Val.getValueID() == Value::GlobalAliasVal; | ||
| 1011 |   } | ||
| 1012 | }; | ||
| 1013 | |||
| 1014 | template <> struct isa_impl<GlobalIFunc, Value> { | ||
| 1015 | static inline bool doit(const Value &Val) { | ||
| 1016 | return Val.getValueID() == Value::GlobalIFuncVal; | ||
| 1017 |   } | ||
| 1018 | }; | ||
| 1019 | |||
| 1020 | template <> struct isa_impl<GlobalValue, Value> { | ||
| 1021 | static inline bool doit(const Value &Val) { | ||
| 1022 | return isa<GlobalObject>(Val) || isa<GlobalAlias>(Val); | ||
| 1023 |   } | ||
| 1024 | }; | ||
| 1025 | |||
| 1026 | template <> struct isa_impl<GlobalObject, Value> { | ||
| 1027 | static inline bool doit(const Value &Val) { | ||
| 1028 | return isa<GlobalVariable>(Val) || isa<Function>(Val) || | ||
| 1029 | isa<GlobalIFunc>(Val); | ||
| 1030 |   } | ||
| 1031 | }; | ||
| 1032 | |||
| 1033 | // Create wrappers for C Binding types (see CBindingWrapping.h). | ||
| 1034 | DEFINE_ISA_CONVERSION_FUNCTIONS(Value, LLVMValueRef) | ||
| 1035 | |||
| 1036 | // Specialized opaque value conversions. | ||
| 1037 | inline Value **unwrap(LLVMValueRef *Vals) { | ||
| 1038 | return reinterpret_cast<Value**>(Vals); | ||
| 1039 | } | ||
| 1040 | |||
| 1041 | template<typename T> | ||
| 1042 | inline T **unwrap(LLVMValueRef *Vals, unsigned Length) { | ||
| 1043 | #ifndef NDEBUG | ||
| 1044 | for (LLVMValueRef *I = Vals, *E = Vals + Length; I != E; ++I) | ||
| 1045 | unwrap<T>(*I); // For side effect of calling assert on invalid usage. | ||
| 1046 | #endif | ||
| 1047 | (void)Length; | ||
| 1048 | return reinterpret_cast<T**>(Vals); | ||
| 1049 | } | ||
| 1050 | |||
| 1051 | inline LLVMValueRef *wrap(const Value **Vals) { | ||
| 1052 | return reinterpret_cast<LLVMValueRef*>(const_cast<Value**>(Vals)); | ||
| 1053 | } | ||
| 1054 | |||
| 1055 | } // end namespace llvm | ||
| 1056 | |||
| 1057 | #endif // LLVM_IR_VALUE_H |