Details | Last modification | View Log | RSS feed
| Rev | Author | Line No. | Line |
|---|---|---|---|
| 14 | pmbaty | 1 | //===- llvm/Value.h - Definition of the Value class -------------*- C++ -*-===// |
| 2 | // |
||
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
||
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
||
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
||
| 6 | // |
||
| 7 | //===----------------------------------------------------------------------===// |
||
| 8 | // |
||
| 9 | // This file declares the Value class. |
||
| 10 | // |
||
| 11 | //===----------------------------------------------------------------------===// |
||
| 12 | |||
| 13 | #ifndef LLVM_IR_VALUE_H |
||
| 14 | #define LLVM_IR_VALUE_H |
||
| 15 | |||
| 16 | #include "llvm-c/Types.h" |
||
| 17 | #include "llvm/ADT/STLExtras.h" |
||
| 18 | #include "llvm/ADT/StringRef.h" |
||
| 19 | #include "llvm/ADT/iterator_range.h" |
||
| 20 | #include "llvm/IR/Use.h" |
||
| 21 | #include "llvm/Support/Alignment.h" |
||
| 22 | #include "llvm/Support/CBindingWrapping.h" |
||
| 23 | #include "llvm/Support/Casting.h" |
||
| 24 | #include <cassert> |
||
| 25 | #include <iterator> |
||
| 26 | #include <memory> |
||
| 27 | |||
| 28 | namespace llvm { |
||
| 29 | |||
| 30 | class APInt; |
||
| 31 | class Argument; |
||
| 32 | class BasicBlock; |
||
| 33 | class Constant; |
||
| 34 | class ConstantData; |
||
| 35 | class ConstantAggregate; |
||
| 36 | class DataLayout; |
||
| 37 | class Function; |
||
| 38 | class GlobalAlias; |
||
| 39 | class GlobalIFunc; |
||
| 40 | class GlobalObject; |
||
| 41 | class GlobalValue; |
||
| 42 | class GlobalVariable; |
||
| 43 | class InlineAsm; |
||
| 44 | class Instruction; |
||
| 45 | class LLVMContext; |
||
| 46 | class MDNode; |
||
| 47 | class Module; |
||
| 48 | class ModuleSlotTracker; |
||
| 49 | class raw_ostream; |
||
| 50 | template<typename ValueTy> class StringMapEntry; |
||
| 51 | class Twine; |
||
| 52 | class Type; |
||
| 53 | class User; |
||
| 54 | |||
| 55 | using ValueName = StringMapEntry<Value *>; |
||
| 56 | |||
| 57 | //===----------------------------------------------------------------------===// |
||
| 58 | // Value Class |
||
| 59 | //===----------------------------------------------------------------------===// |
||
| 60 | |||
| 61 | /// LLVM Value Representation |
||
| 62 | /// |
||
| 63 | /// This is a very important LLVM class. It is the base class of all values |
||
| 64 | /// computed by a program that may be used as operands to other values. Value is |
||
| 65 | /// the super class of other important classes such as Instruction and Function. |
||
| 66 | /// All Values have a Type. Type is not a subclass of Value. Some values can |
||
| 67 | /// have a name and they belong to some Module. Setting the name on the Value |
||
| 68 | /// automatically updates the module's symbol table. |
||
| 69 | /// |
||
| 70 | /// Every value has a "use list" that keeps track of which other Values are |
||
| 71 | /// using this Value. A Value can also have an arbitrary number of ValueHandle |
||
| 72 | /// objects that watch it and listen to RAUW and Destroy events. See |
||
| 73 | /// llvm/IR/ValueHandle.h for details. |
||
| 74 | class Value { |
||
| 75 | Type *VTy; |
||
| 76 | Use *UseList; |
||
| 77 | |||
| 78 | friend class ValueAsMetadata; // Allow access to IsUsedByMD. |
||
| 79 | friend class ValueHandleBase; |
||
| 80 | |||
| 81 | const unsigned char SubclassID; // Subclass identifier (for isa/dyn_cast) |
||
| 82 | unsigned char HasValueHandle : 1; // Has a ValueHandle pointing to this? |
||
| 83 | |||
| 84 | protected: |
||
| 85 | /// Hold subclass data that can be dropped. |
||
| 86 | /// |
||
| 87 | /// This member is similar to SubclassData, however it is for holding |
||
| 88 | /// information which may be used to aid optimization, but which may be |
||
| 89 | /// cleared to zero without affecting conservative interpretation. |
||
| 90 | unsigned char SubclassOptionalData : 7; |
||
| 91 | |||
| 92 | private: |
||
| 93 | /// Hold arbitrary subclass data. |
||
| 94 | /// |
||
| 95 | /// This member is defined by this class, but is not used for anything. |
||
| 96 | /// Subclasses can use it to hold whatever state they find useful. This |
||
| 97 | /// field is initialized to zero by the ctor. |
||
| 98 | unsigned short SubclassData; |
||
| 99 | |||
| 100 | protected: |
||
| 101 | /// The number of operands in the subclass. |
||
| 102 | /// |
||
| 103 | /// This member is defined by this class, but not used for anything. |
||
| 104 | /// Subclasses can use it to store their number of operands, if they have |
||
| 105 | /// any. |
||
| 106 | /// |
||
| 107 | /// This is stored here to save space in User on 64-bit hosts. Since most |
||
| 108 | /// instances of Value have operands, 32-bit hosts aren't significantly |
||
| 109 | /// affected. |
||
| 110 | /// |
||
| 111 | /// Note, this should *NOT* be used directly by any class other than User. |
||
| 112 | /// User uses this value to find the Use list. |
||
| 113 | enum : unsigned { NumUserOperandsBits = 27 }; |
||
| 114 | unsigned NumUserOperands : NumUserOperandsBits; |
||
| 115 | |||
| 116 | // Use the same type as the bitfield above so that MSVC will pack them. |
||
| 117 | unsigned IsUsedByMD : 1; |
||
| 118 | unsigned HasName : 1; |
||
| 119 | unsigned HasMetadata : 1; // Has metadata attached to this? |
||
| 120 | unsigned HasHungOffUses : 1; |
||
| 121 | unsigned HasDescriptor : 1; |
||
| 122 | |||
| 123 | private: |
||
| 124 | template <typename UseT> // UseT == 'Use' or 'const Use' |
||
| 125 | class use_iterator_impl { |
||
| 126 | friend class Value; |
||
| 127 | |||
| 128 | UseT *U; |
||
| 129 | |||
| 130 | explicit use_iterator_impl(UseT *u) : U(u) {} |
||
| 131 | |||
| 132 | public: |
||
| 133 | using iterator_category = std::forward_iterator_tag; |
||
| 134 | using value_type = UseT *; |
||
| 135 | using difference_type = std::ptrdiff_t; |
||
| 136 | using pointer = value_type *; |
||
| 137 | using reference = value_type &; |
||
| 138 | |||
| 139 | use_iterator_impl() : U() {} |
||
| 140 | |||
| 141 | bool operator==(const use_iterator_impl &x) const { return U == x.U; } |
||
| 142 | bool operator!=(const use_iterator_impl &x) const { return !operator==(x); } |
||
| 143 | |||
| 144 | use_iterator_impl &operator++() { // Preincrement |
||
| 145 | assert(U && "Cannot increment end iterator!"); |
||
| 146 | U = U->getNext(); |
||
| 147 | return *this; |
||
| 148 | } |
||
| 149 | |||
| 150 | use_iterator_impl operator++(int) { // Postincrement |
||
| 151 | auto tmp = *this; |
||
| 152 | ++*this; |
||
| 153 | return tmp; |
||
| 154 | } |
||
| 155 | |||
| 156 | UseT &operator*() const { |
||
| 157 | assert(U && "Cannot dereference end iterator!"); |
||
| 158 | return *U; |
||
| 159 | } |
||
| 160 | |||
| 161 | UseT *operator->() const { return &operator*(); } |
||
| 162 | |||
| 163 | operator use_iterator_impl<const UseT>() const { |
||
| 164 | return use_iterator_impl<const UseT>(U); |
||
| 165 | } |
||
| 166 | }; |
||
| 167 | |||
| 168 | template <typename UserTy> // UserTy == 'User' or 'const User' |
||
| 169 | class user_iterator_impl { |
||
| 170 | use_iterator_impl<Use> UI; |
||
| 171 | explicit user_iterator_impl(Use *U) : UI(U) {} |
||
| 172 | friend class Value; |
||
| 173 | |||
| 174 | public: |
||
| 175 | using iterator_category = std::forward_iterator_tag; |
||
| 176 | using value_type = UserTy *; |
||
| 177 | using difference_type = std::ptrdiff_t; |
||
| 178 | using pointer = value_type *; |
||
| 179 | using reference = value_type &; |
||
| 180 | |||
| 181 | user_iterator_impl() = default; |
||
| 182 | |||
| 183 | bool operator==(const user_iterator_impl &x) const { return UI == x.UI; } |
||
| 184 | bool operator!=(const user_iterator_impl &x) const { return !operator==(x); } |
||
| 185 | |||
| 186 | /// Returns true if this iterator is equal to user_end() on the value. |
||
| 187 | bool atEnd() const { return *this == user_iterator_impl(); } |
||
| 188 | |||
| 189 | user_iterator_impl &operator++() { // Preincrement |
||
| 190 | ++UI; |
||
| 191 | return *this; |
||
| 192 | } |
||
| 193 | |||
| 194 | user_iterator_impl operator++(int) { // Postincrement |
||
| 195 | auto tmp = *this; |
||
| 196 | ++*this; |
||
| 197 | return tmp; |
||
| 198 | } |
||
| 199 | |||
| 200 | // Retrieve a pointer to the current User. |
||
| 201 | UserTy *operator*() const { |
||
| 202 | return UI->getUser(); |
||
| 203 | } |
||
| 204 | |||
| 205 | UserTy *operator->() const { return operator*(); } |
||
| 206 | |||
| 207 | operator user_iterator_impl<const UserTy>() const { |
||
| 208 | return user_iterator_impl<const UserTy>(*UI); |
||
| 209 | } |
||
| 210 | |||
| 211 | Use &getUse() const { return *UI; } |
||
| 212 | }; |
||
| 213 | |||
| 214 | protected: |
||
| 215 | Value(Type *Ty, unsigned scid); |
||
| 216 | |||
| 217 | /// Value's destructor should be virtual by design, but that would require |
||
| 218 | /// that Value and all of its subclasses have a vtable that effectively |
||
| 219 | /// duplicates the information in the value ID. As a size optimization, the |
||
| 220 | /// destructor has been protected, and the caller should manually call |
||
| 221 | /// deleteValue. |
||
| 222 | ~Value(); // Use deleteValue() to delete a generic Value. |
||
| 223 | |||
| 224 | public: |
||
| 225 | Value(const Value &) = delete; |
||
| 226 | Value &operator=(const Value &) = delete; |
||
| 227 | |||
| 228 | /// Delete a pointer to a generic Value. |
||
| 229 | void deleteValue(); |
||
| 230 | |||
| 231 | /// Support for debugging, callable in GDB: V->dump() |
||
| 232 | void dump() const; |
||
| 233 | |||
| 234 | /// Implement operator<< on Value. |
||
| 235 | /// @{ |
||
| 236 | void print(raw_ostream &O, bool IsForDebug = false) const; |
||
| 237 | void print(raw_ostream &O, ModuleSlotTracker &MST, |
||
| 238 | bool IsForDebug = false) const; |
||
| 239 | /// @} |
||
| 240 | |||
| 241 | /// Print the name of this Value out to the specified raw_ostream. |
||
| 242 | /// |
||
| 243 | /// This is useful when you just want to print 'int %reg126', not the |
||
| 244 | /// instruction that generated it. If you specify a Module for context, then |
||
| 245 | /// even constanst get pretty-printed; for example, the type of a null |
||
| 246 | /// pointer is printed symbolically. |
||
| 247 | /// @{ |
||
| 248 | void printAsOperand(raw_ostream &O, bool PrintType = true, |
||
| 249 | const Module *M = nullptr) const; |
||
| 250 | void printAsOperand(raw_ostream &O, bool PrintType, |
||
| 251 | ModuleSlotTracker &MST) const; |
||
| 252 | /// @} |
||
| 253 | |||
| 254 | /// All values are typed, get the type of this value. |
||
| 255 | Type *getType() const { return VTy; } |
||
| 256 | |||
| 257 | /// All values hold a context through their type. |
||
| 258 | LLVMContext &getContext() const; |
||
| 259 | |||
| 260 | // All values can potentially be named. |
||
| 261 | bool hasName() const { return HasName; } |
||
| 262 | ValueName *getValueName() const; |
||
| 263 | void setValueName(ValueName *VN); |
||
| 264 | |||
| 265 | private: |
||
| 266 | void destroyValueName(); |
||
| 267 | enum class ReplaceMetadataUses { No, Yes }; |
||
| 268 | void doRAUW(Value *New, ReplaceMetadataUses); |
||
| 269 | void setNameImpl(const Twine &Name); |
||
| 270 | |||
| 271 | public: |
||
| 272 | /// Return a constant reference to the value's name. |
||
| 273 | /// |
||
| 274 | /// This guaranteed to return the same reference as long as the value is not |
||
| 275 | /// modified. If the value has a name, this does a hashtable lookup, so it's |
||
| 276 | /// not free. |
||
| 277 | StringRef getName() const; |
||
| 278 | |||
| 279 | /// Change the name of the value. |
||
| 280 | /// |
||
| 281 | /// Choose a new unique name if the provided name is taken. |
||
| 282 | /// |
||
| 283 | /// \param Name The new name; or "" if the value's name should be removed. |
||
| 284 | void setName(const Twine &Name); |
||
| 285 | |||
| 286 | /// Transfer the name from V to this value. |
||
| 287 | /// |
||
| 288 | /// After taking V's name, sets V's name to empty. |
||
| 289 | /// |
||
| 290 | /// \note It is an error to call V->takeName(V). |
||
| 291 | void takeName(Value *V); |
||
| 292 | |||
| 293 | #ifndef NDEBUG |
||
| 294 | std::string getNameOrAsOperand() const; |
||
| 295 | #endif |
||
| 296 | |||
| 297 | /// Change all uses of this to point to a new Value. |
||
| 298 | /// |
||
| 299 | /// Go through the uses list for this definition and make each use point to |
||
| 300 | /// "V" instead of "this". After this completes, 'this's use list is |
||
| 301 | /// guaranteed to be empty. |
||
| 302 | void replaceAllUsesWith(Value *V); |
||
| 303 | |||
| 304 | /// Change non-metadata uses of this to point to a new Value. |
||
| 305 | /// |
||
| 306 | /// Go through the uses list for this definition and make each use point to |
||
| 307 | /// "V" instead of "this". This function skips metadata entries in the list. |
||
| 308 | void replaceNonMetadataUsesWith(Value *V); |
||
| 309 | |||
| 310 | /// Go through the uses list for this definition and make each use point |
||
| 311 | /// to "V" if the callback ShouldReplace returns true for the given Use. |
||
| 312 | /// Unlike replaceAllUsesWith() this function does not support basic block |
||
| 313 | /// values. |
||
| 314 | void replaceUsesWithIf(Value *New, |
||
| 315 | llvm::function_ref<bool(Use &U)> ShouldReplace); |
||
| 316 | |||
| 317 | /// replaceUsesOutsideBlock - Go through the uses list for this definition and |
||
| 318 | /// make each use point to "V" instead of "this" when the use is outside the |
||
| 319 | /// block. 'This's use list is expected to have at least one element. |
||
| 320 | /// Unlike replaceAllUsesWith() this function does not support basic block |
||
| 321 | /// values. |
||
| 322 | void replaceUsesOutsideBlock(Value *V, BasicBlock *BB); |
||
| 323 | |||
| 324 | //---------------------------------------------------------------------- |
||
| 325 | // Methods for handling the chain of uses of this Value. |
||
| 326 | // |
||
| 327 | // Materializing a function can introduce new uses, so these methods come in |
||
| 328 | // two variants: |
||
| 329 | // The methods that start with materialized_ check the uses that are |
||
| 330 | // currently known given which functions are materialized. Be very careful |
||
| 331 | // when using them since you might not get all uses. |
||
| 332 | // The methods that don't start with materialized_ assert that modules is |
||
| 333 | // fully materialized. |
||
| 334 | void assertModuleIsMaterializedImpl() const; |
||
| 335 | // This indirection exists so we can keep assertModuleIsMaterializedImpl() |
||
| 336 | // around in release builds of Value.cpp to be linked with other code built |
||
| 337 | // in debug mode. But this avoids calling it in any of the release built code. |
||
| 338 | void assertModuleIsMaterialized() const { |
||
| 339 | #ifndef NDEBUG |
||
| 340 | assertModuleIsMaterializedImpl(); |
||
| 341 | #endif |
||
| 342 | } |
||
| 343 | |||
| 344 | bool use_empty() const { |
||
| 345 | assertModuleIsMaterialized(); |
||
| 346 | return UseList == nullptr; |
||
| 347 | } |
||
| 348 | |||
| 349 | bool materialized_use_empty() const { |
||
| 350 | return UseList == nullptr; |
||
| 351 | } |
||
| 352 | |||
| 353 | using use_iterator = use_iterator_impl<Use>; |
||
| 354 | using const_use_iterator = use_iterator_impl<const Use>; |
||
| 355 | |||
| 356 | use_iterator materialized_use_begin() { return use_iterator(UseList); } |
||
| 357 | const_use_iterator materialized_use_begin() const { |
||
| 358 | return const_use_iterator(UseList); |
||
| 359 | } |
||
| 360 | use_iterator use_begin() { |
||
| 361 | assertModuleIsMaterialized(); |
||
| 362 | return materialized_use_begin(); |
||
| 363 | } |
||
| 364 | const_use_iterator use_begin() const { |
||
| 365 | assertModuleIsMaterialized(); |
||
| 366 | return materialized_use_begin(); |
||
| 367 | } |
||
| 368 | use_iterator use_end() { return use_iterator(); } |
||
| 369 | const_use_iterator use_end() const { return const_use_iterator(); } |
||
| 370 | iterator_range<use_iterator> materialized_uses() { |
||
| 371 | return make_range(materialized_use_begin(), use_end()); |
||
| 372 | } |
||
| 373 | iterator_range<const_use_iterator> materialized_uses() const { |
||
| 374 | return make_range(materialized_use_begin(), use_end()); |
||
| 375 | } |
||
| 376 | iterator_range<use_iterator> uses() { |
||
| 377 | assertModuleIsMaterialized(); |
||
| 378 | return materialized_uses(); |
||
| 379 | } |
||
| 380 | iterator_range<const_use_iterator> uses() const { |
||
| 381 | assertModuleIsMaterialized(); |
||
| 382 | return materialized_uses(); |
||
| 383 | } |
||
| 384 | |||
| 385 | bool user_empty() const { |
||
| 386 | assertModuleIsMaterialized(); |
||
| 387 | return UseList == nullptr; |
||
| 388 | } |
||
| 389 | |||
| 390 | using user_iterator = user_iterator_impl<User>; |
||
| 391 | using const_user_iterator = user_iterator_impl<const User>; |
||
| 392 | |||
| 393 | user_iterator materialized_user_begin() { return user_iterator(UseList); } |
||
| 394 | const_user_iterator materialized_user_begin() const { |
||
| 395 | return const_user_iterator(UseList); |
||
| 396 | } |
||
| 397 | user_iterator user_begin() { |
||
| 398 | assertModuleIsMaterialized(); |
||
| 399 | return materialized_user_begin(); |
||
| 400 | } |
||
| 401 | const_user_iterator user_begin() const { |
||
| 402 | assertModuleIsMaterialized(); |
||
| 403 | return materialized_user_begin(); |
||
| 404 | } |
||
| 405 | user_iterator user_end() { return user_iterator(); } |
||
| 406 | const_user_iterator user_end() const { return const_user_iterator(); } |
||
| 407 | User *user_back() { |
||
| 408 | assertModuleIsMaterialized(); |
||
| 409 | return *materialized_user_begin(); |
||
| 410 | } |
||
| 411 | const User *user_back() const { |
||
| 412 | assertModuleIsMaterialized(); |
||
| 413 | return *materialized_user_begin(); |
||
| 414 | } |
||
| 415 | iterator_range<user_iterator> materialized_users() { |
||
| 416 | return make_range(materialized_user_begin(), user_end()); |
||
| 417 | } |
||
| 418 | iterator_range<const_user_iterator> materialized_users() const { |
||
| 419 | return make_range(materialized_user_begin(), user_end()); |
||
| 420 | } |
||
| 421 | iterator_range<user_iterator> users() { |
||
| 422 | assertModuleIsMaterialized(); |
||
| 423 | return materialized_users(); |
||
| 424 | } |
||
| 425 | iterator_range<const_user_iterator> users() const { |
||
| 426 | assertModuleIsMaterialized(); |
||
| 427 | return materialized_users(); |
||
| 428 | } |
||
| 429 | |||
| 430 | /// Return true if there is exactly one use of this value. |
||
| 431 | /// |
||
| 432 | /// This is specialized because it is a common request and does not require |
||
| 433 | /// traversing the whole use list. |
||
| 434 | bool hasOneUse() const { return hasSingleElement(uses()); } |
||
| 435 | |||
| 436 | /// Return true if this Value has exactly N uses. |
||
| 437 | bool hasNUses(unsigned N) const; |
||
| 438 | |||
| 439 | /// Return true if this value has N uses or more. |
||
| 440 | /// |
||
| 441 | /// This is logically equivalent to getNumUses() >= N. |
||
| 442 | bool hasNUsesOrMore(unsigned N) const; |
||
| 443 | |||
| 444 | /// Return true if there is exactly one user of this value. |
||
| 445 | /// |
||
| 446 | /// Note that this is not the same as "has one use". If a value has one use, |
||
| 447 | /// then there certainly is a single user. But if value has several uses, |
||
| 448 | /// it is possible that all uses are in a single user, or not. |
||
| 449 | /// |
||
| 450 | /// This check is potentially costly, since it requires traversing, |
||
| 451 | /// in the worst case, the whole use list of a value. |
||
| 452 | bool hasOneUser() const; |
||
| 453 | |||
| 454 | /// Return true if there is exactly one use of this value that cannot be |
||
| 455 | /// dropped. |
||
| 456 | Use *getSingleUndroppableUse(); |
||
| 457 | const Use *getSingleUndroppableUse() const { |
||
| 458 | return const_cast<Value *>(this)->getSingleUndroppableUse(); |
||
| 459 | } |
||
| 460 | |||
| 461 | /// Return true if there is exactly one unique user of this value that cannot be |
||
| 462 | /// dropped (that user can have multiple uses of this value). |
||
| 463 | User *getUniqueUndroppableUser(); |
||
| 464 | const User *getUniqueUndroppableUser() const { |
||
| 465 | return const_cast<Value *>(this)->getUniqueUndroppableUser(); |
||
| 466 | } |
||
| 467 | |||
| 468 | /// Return true if there this value. |
||
| 469 | /// |
||
| 470 | /// This is specialized because it is a common request and does not require |
||
| 471 | /// traversing the whole use list. |
||
| 472 | bool hasNUndroppableUses(unsigned N) const; |
||
| 473 | |||
| 474 | /// Return true if this value has N uses or more. |
||
| 475 | /// |
||
| 476 | /// This is logically equivalent to getNumUses() >= N. |
||
| 477 | bool hasNUndroppableUsesOrMore(unsigned N) const; |
||
| 478 | |||
| 479 | /// Remove every uses that can safely be removed. |
||
| 480 | /// |
||
| 481 | /// This will remove for example uses in llvm.assume. |
||
| 482 | /// This should be used when performing want to perform a tranformation but |
||
| 483 | /// some Droppable uses pervent it. |
||
| 484 | /// This function optionally takes a filter to only remove some droppable |
||
| 485 | /// uses. |
||
| 486 | void dropDroppableUses(llvm::function_ref<bool(const Use *)> ShouldDrop = |
||
| 487 | [](const Use *) { return true; }); |
||
| 488 | |||
| 489 | /// Remove every use of this value in \p User that can safely be removed. |
||
| 490 | void dropDroppableUsesIn(User &Usr); |
||
| 491 | |||
| 492 | /// Remove the droppable use \p U. |
||
| 493 | static void dropDroppableUse(Use &U); |
||
| 494 | |||
| 495 | /// Check if this value is used in the specified basic block. |
||
| 496 | bool isUsedInBasicBlock(const BasicBlock *BB) const; |
||
| 497 | |||
| 498 | /// This method computes the number of uses of this Value. |
||
| 499 | /// |
||
| 500 | /// This is a linear time operation. Use hasOneUse, hasNUses, or |
||
| 501 | /// hasNUsesOrMore to check for specific values. |
||
| 502 | unsigned getNumUses() const; |
||
| 503 | |||
| 504 | /// This method should only be used by the Use class. |
||
| 505 | void addUse(Use &U) { U.addToList(&UseList); } |
||
| 506 | |||
| 507 | /// Concrete subclass of this. |
||
| 508 | /// |
||
| 509 | /// An enumeration for keeping track of the concrete subclass of Value that |
||
| 510 | /// is actually instantiated. Values of this enumeration are kept in the |
||
| 511 | /// Value classes SubclassID field. They are used for concrete type |
||
| 512 | /// identification. |
||
| 513 | enum ValueTy { |
||
| 514 | #define HANDLE_VALUE(Name) Name##Val, |
||
| 515 | #include "llvm/IR/Value.def" |
||
| 516 | |||
| 517 | // Markers: |
||
| 518 | #define HANDLE_CONSTANT_MARKER(Marker, Constant) Marker = Constant##Val, |
||
| 519 | #include "llvm/IR/Value.def" |
||
| 520 | }; |
||
| 521 | |||
| 522 | /// Return an ID for the concrete type of this object. |
||
| 523 | /// |
||
| 524 | /// This is used to implement the classof checks. This should not be used |
||
| 525 | /// for any other purpose, as the values may change as LLVM evolves. Also, |
||
| 526 | /// note that for instructions, the Instruction's opcode is added to |
||
| 527 | /// InstructionVal. So this means three things: |
||
| 528 | /// # there is no value with code InstructionVal (no opcode==0). |
||
| 529 | /// # there are more possible values for the value type than in ValueTy enum. |
||
| 530 | /// # the InstructionVal enumerator must be the highest valued enumerator in |
||
| 531 | /// the ValueTy enum. |
||
| 532 | unsigned getValueID() const { |
||
| 533 | return SubclassID; |
||
| 534 | } |
||
| 535 | |||
| 536 | /// Return the raw optional flags value contained in this value. |
||
| 537 | /// |
||
| 538 | /// This should only be used when testing two Values for equivalence. |
||
| 539 | unsigned getRawSubclassOptionalData() const { |
||
| 540 | return SubclassOptionalData; |
||
| 541 | } |
||
| 542 | |||
| 543 | /// Clear the optional flags contained in this value. |
||
| 544 | void clearSubclassOptionalData() { |
||
| 545 | SubclassOptionalData = 0; |
||
| 546 | } |
||
| 547 | |||
| 548 | /// Check the optional flags for equality. |
||
| 549 | bool hasSameSubclassOptionalData(const Value *V) const { |
||
| 550 | return SubclassOptionalData == V->SubclassOptionalData; |
||
| 551 | } |
||
| 552 | |||
| 553 | /// Return true if there is a value handle associated with this value. |
||
| 554 | bool hasValueHandle() const { return HasValueHandle; } |
||
| 555 | |||
| 556 | /// Return true if there is metadata referencing this value. |
||
| 557 | bool isUsedByMetadata() const { return IsUsedByMD; } |
||
| 558 | |||
| 559 | protected: |
||
| 560 | /// Get the current metadata attachments for the given kind, if any. |
||
| 561 | /// |
||
| 562 | /// These functions require that the value have at most a single attachment |
||
| 563 | /// of the given kind, and return \c nullptr if such an attachment is missing. |
||
| 564 | /// @{ |
||
| 565 | MDNode *getMetadata(unsigned KindID) const; |
||
| 566 | MDNode *getMetadata(StringRef Kind) const; |
||
| 567 | /// @} |
||
| 568 | |||
| 569 | /// Appends all attachments with the given ID to \c MDs in insertion order. |
||
| 570 | /// If the Value has no attachments with the given ID, or if ID is invalid, |
||
| 571 | /// leaves MDs unchanged. |
||
| 572 | /// @{ |
||
| 573 | void getMetadata(unsigned KindID, SmallVectorImpl<MDNode *> &MDs) const; |
||
| 574 | void getMetadata(StringRef Kind, SmallVectorImpl<MDNode *> &MDs) const; |
||
| 575 | /// @} |
||
| 576 | |||
| 577 | /// Appends all metadata attached to this value to \c MDs, sorting by |
||
| 578 | /// KindID. The first element of each pair returned is the KindID, the second |
||
| 579 | /// element is the metadata value. Attachments with the same ID appear in |
||
| 580 | /// insertion order. |
||
| 581 | void |
||
| 582 | getAllMetadata(SmallVectorImpl<std::pair<unsigned, MDNode *>> &MDs) const; |
||
| 583 | |||
| 584 | /// Return true if this value has any metadata attached to it. |
||
| 585 | bool hasMetadata() const { return (bool)HasMetadata; } |
||
| 586 | |||
| 587 | /// Return true if this value has the given type of metadata attached. |
||
| 588 | /// @{ |
||
| 589 | bool hasMetadata(unsigned KindID) const { |
||
| 590 | return getMetadata(KindID) != nullptr; |
||
| 591 | } |
||
| 592 | bool hasMetadata(StringRef Kind) const { |
||
| 593 | return getMetadata(Kind) != nullptr; |
||
| 594 | } |
||
| 595 | /// @} |
||
| 596 | |||
| 597 | /// Set a particular kind of metadata attachment. |
||
| 598 | /// |
||
| 599 | /// Sets the given attachment to \c MD, erasing it if \c MD is \c nullptr or |
||
| 600 | /// replacing it if it already exists. |
||
| 601 | /// @{ |
||
| 602 | void setMetadata(unsigned KindID, MDNode *Node); |
||
| 603 | void setMetadata(StringRef Kind, MDNode *Node); |
||
| 604 | /// @} |
||
| 605 | |||
| 606 | /// Add a metadata attachment. |
||
| 607 | /// @{ |
||
| 608 | void addMetadata(unsigned KindID, MDNode &MD); |
||
| 609 | void addMetadata(StringRef Kind, MDNode &MD); |
||
| 610 | /// @} |
||
| 611 | |||
| 612 | /// Erase all metadata attachments with the given kind. |
||
| 613 | /// |
||
| 614 | /// \returns true if any metadata was removed. |
||
| 615 | bool eraseMetadata(unsigned KindID); |
||
| 616 | |||
| 617 | /// Erase all metadata attached to this Value. |
||
| 618 | void clearMetadata(); |
||
| 619 | |||
| 620 | public: |
||
| 621 | /// Return true if this value is a swifterror value. |
||
| 622 | /// |
||
| 623 | /// swifterror values can be either a function argument or an alloca with a |
||
| 624 | /// swifterror attribute. |
||
| 625 | bool isSwiftError() const; |
||
| 626 | |||
| 627 | /// Strip off pointer casts, all-zero GEPs and address space casts. |
||
| 628 | /// |
||
| 629 | /// Returns the original uncasted value. If this is called on a non-pointer |
||
| 630 | /// value, it returns 'this'. |
||
| 631 | const Value *stripPointerCasts() const; |
||
| 632 | Value *stripPointerCasts() { |
||
| 633 | return const_cast<Value *>( |
||
| 634 | static_cast<const Value *>(this)->stripPointerCasts()); |
||
| 635 | } |
||
| 636 | |||
| 637 | /// Strip off pointer casts, all-zero GEPs, address space casts, and aliases. |
||
| 638 | /// |
||
| 639 | /// Returns the original uncasted value. If this is called on a non-pointer |
||
| 640 | /// value, it returns 'this'. |
||
| 641 | const Value *stripPointerCastsAndAliases() const; |
||
| 642 | Value *stripPointerCastsAndAliases() { |
||
| 643 | return const_cast<Value *>( |
||
| 644 | static_cast<const Value *>(this)->stripPointerCastsAndAliases()); |
||
| 645 | } |
||
| 646 | |||
| 647 | /// Strip off pointer casts, all-zero GEPs and address space casts |
||
| 648 | /// but ensures the representation of the result stays the same. |
||
| 649 | /// |
||
| 650 | /// Returns the original uncasted value with the same representation. If this |
||
| 651 | /// is called on a non-pointer value, it returns 'this'. |
||
| 652 | const Value *stripPointerCastsSameRepresentation() const; |
||
| 653 | Value *stripPointerCastsSameRepresentation() { |
||
| 654 | return const_cast<Value *>(static_cast<const Value *>(this) |
||
| 655 | ->stripPointerCastsSameRepresentation()); |
||
| 656 | } |
||
| 657 | |||
| 658 | /// Strip off pointer casts, all-zero GEPs, single-argument phi nodes and |
||
| 659 | /// invariant group info. |
||
| 660 | /// |
||
| 661 | /// Returns the original uncasted value. If this is called on a non-pointer |
||
| 662 | /// value, it returns 'this'. This function should be used only in |
||
| 663 | /// Alias analysis. |
||
| 664 | const Value *stripPointerCastsForAliasAnalysis() const; |
||
| 665 | Value *stripPointerCastsForAliasAnalysis() { |
||
| 666 | return const_cast<Value *>(static_cast<const Value *>(this) |
||
| 667 | ->stripPointerCastsForAliasAnalysis()); |
||
| 668 | } |
||
| 669 | |||
| 670 | /// Strip off pointer casts and all-constant inbounds GEPs. |
||
| 671 | /// |
||
| 672 | /// Returns the original pointer value. If this is called on a non-pointer |
||
| 673 | /// value, it returns 'this'. |
||
| 674 | const Value *stripInBoundsConstantOffsets() const; |
||
| 675 | Value *stripInBoundsConstantOffsets() { |
||
| 676 | return const_cast<Value *>( |
||
| 677 | static_cast<const Value *>(this)->stripInBoundsConstantOffsets()); |
||
| 678 | } |
||
| 679 | |||
| 680 | /// Accumulate the constant offset this value has compared to a base pointer. |
||
| 681 | /// Only 'getelementptr' instructions (GEPs) are accumulated but other |
||
| 682 | /// instructions, e.g., casts, are stripped away as well. |
||
| 683 | /// The accumulated constant offset is added to \p Offset and the base |
||
| 684 | /// pointer is returned. |
||
| 685 | /// |
||
| 686 | /// The APInt \p Offset has to have a bit-width equal to the IntPtr type for |
||
| 687 | /// the address space of 'this' pointer value, e.g., use |
||
| 688 | /// DataLayout::getIndexTypeSizeInBits(Ty). |
||
| 689 | /// |
||
| 690 | /// If \p AllowNonInbounds is true, offsets in GEPs are stripped and |
||
| 691 | /// accumulated even if the GEP is not "inbounds". |
||
| 692 | /// |
||
| 693 | /// If \p AllowInvariantGroup is true then this method also looks through |
||
| 694 | /// strip.invariant.group and launder.invariant.group intrinsics. |
||
| 695 | /// |
||
| 696 | /// If \p ExternalAnalysis is provided it will be used to calculate a offset |
||
| 697 | /// when a operand of GEP is not constant. |
||
| 698 | /// For example, for a value \p ExternalAnalysis might try to calculate a |
||
| 699 | /// lower bound. If \p ExternalAnalysis is successful, it should return true. |
||
| 700 | /// |
||
| 701 | /// If this is called on a non-pointer value, it returns 'this' and the |
||
| 702 | /// \p Offset is not modified. |
||
| 703 | /// |
||
| 704 | /// Note that this function will never return a nullptr. It will also never |
||
| 705 | /// manipulate the \p Offset in a way that would not match the difference |
||
| 706 | /// between the underlying value and the returned one. Thus, if no constant |
||
| 707 | /// offset was found, the returned value is the underlying one and \p Offset |
||
| 708 | /// is unchanged. |
||
| 709 | const Value *stripAndAccumulateConstantOffsets( |
||
| 710 | const DataLayout &DL, APInt &Offset, bool AllowNonInbounds, |
||
| 711 | bool AllowInvariantGroup = false, |
||
| 712 | function_ref<bool(Value &Value, APInt &Offset)> ExternalAnalysis = |
||
| 713 | nullptr) const; |
||
| 714 | Value *stripAndAccumulateConstantOffsets(const DataLayout &DL, APInt &Offset, |
||
| 715 | bool AllowNonInbounds, |
||
| 716 | bool AllowInvariantGroup = false) { |
||
| 717 | return const_cast<Value *>( |
||
| 718 | static_cast<const Value *>(this)->stripAndAccumulateConstantOffsets( |
||
| 719 | DL, Offset, AllowNonInbounds, AllowInvariantGroup)); |
||
| 720 | } |
||
| 721 | |||
| 722 | /// This is a wrapper around stripAndAccumulateConstantOffsets with the |
||
| 723 | /// in-bounds requirement set to false. |
||
| 724 | const Value *stripAndAccumulateInBoundsConstantOffsets(const DataLayout &DL, |
||
| 725 | APInt &Offset) const { |
||
| 726 | return stripAndAccumulateConstantOffsets(DL, Offset, |
||
| 727 | /* AllowNonInbounds */ false); |
||
| 728 | } |
||
| 729 | Value *stripAndAccumulateInBoundsConstantOffsets(const DataLayout &DL, |
||
| 730 | APInt &Offset) { |
||
| 731 | return stripAndAccumulateConstantOffsets(DL, Offset, |
||
| 732 | /* AllowNonInbounds */ false); |
||
| 733 | } |
||
| 734 | |||
| 735 | /// Strip off pointer casts and inbounds GEPs. |
||
| 736 | /// |
||
| 737 | /// Returns the original pointer value. If this is called on a non-pointer |
||
| 738 | /// value, it returns 'this'. |
||
| 739 | const Value *stripInBoundsOffsets(function_ref<void(const Value *)> Func = |
||
| 740 | [](const Value *) {}) const; |
||
| 741 | inline Value *stripInBoundsOffsets(function_ref<void(const Value *)> Func = |
||
| 742 | [](const Value *) {}) { |
||
| 743 | return const_cast<Value *>( |
||
| 744 | static_cast<const Value *>(this)->stripInBoundsOffsets(Func)); |
||
| 745 | } |
||
| 746 | |||
| 747 | /// Return true if the memory object referred to by V can by freed in the |
||
| 748 | /// scope for which the SSA value defining the allocation is statically |
||
| 749 | /// defined. E.g. deallocation after the static scope of a value does not |
||
| 750 | /// count, but a deallocation before that does. |
||
| 751 | bool canBeFreed() const; |
||
| 752 | |||
| 753 | /// Returns the number of bytes known to be dereferenceable for the |
||
| 754 | /// pointer value. |
||
| 755 | /// |
||
| 756 | /// If CanBeNull is set by this function the pointer can either be null or be |
||
| 757 | /// dereferenceable up to the returned number of bytes. |
||
| 758 | /// |
||
| 759 | /// IF CanBeFreed is true, the pointer is known to be dereferenceable at |
||
| 760 | /// point of definition only. Caller must prove that allocation is not |
||
| 761 | /// deallocated between point of definition and use. |
||
| 762 | uint64_t getPointerDereferenceableBytes(const DataLayout &DL, |
||
| 763 | bool &CanBeNull, |
||
| 764 | bool &CanBeFreed) const; |
||
| 765 | |||
| 766 | /// Returns an alignment of the pointer value. |
||
| 767 | /// |
||
| 768 | /// Returns an alignment which is either specified explicitly, e.g. via |
||
| 769 | /// align attribute of a function argument, or guaranteed by DataLayout. |
||
| 770 | Align getPointerAlignment(const DataLayout &DL) const; |
||
| 771 | |||
| 772 | /// Translate PHI node to its predecessor from the given basic block. |
||
| 773 | /// |
||
| 774 | /// If this value is a PHI node with CurBB as its parent, return the value in |
||
| 775 | /// the PHI node corresponding to PredBB. If not, return ourself. This is |
||
| 776 | /// useful if you want to know the value something has in a predecessor |
||
| 777 | /// block. |
||
| 778 | const Value *DoPHITranslation(const BasicBlock *CurBB, |
||
| 779 | const BasicBlock *PredBB) const; |
||
| 780 | Value *DoPHITranslation(const BasicBlock *CurBB, const BasicBlock *PredBB) { |
||
| 781 | return const_cast<Value *>( |
||
| 782 | static_cast<const Value *>(this)->DoPHITranslation(CurBB, PredBB)); |
||
| 783 | } |
||
| 784 | |||
| 785 | /// The maximum alignment for instructions. |
||
| 786 | /// |
||
| 787 | /// This is the greatest alignment value supported by load, store, and alloca |
||
| 788 | /// instructions, and global values. |
||
| 789 | static constexpr unsigned MaxAlignmentExponent = 32; |
||
| 790 | static constexpr uint64_t MaximumAlignment = 1ULL << MaxAlignmentExponent; |
||
| 791 | |||
| 792 | /// Mutate the type of this Value to be of the specified type. |
||
| 793 | /// |
||
| 794 | /// Note that this is an extremely dangerous operation which can create |
||
| 795 | /// completely invalid IR very easily. It is strongly recommended that you |
||
| 796 | /// recreate IR objects with the right types instead of mutating them in |
||
| 797 | /// place. |
||
| 798 | void mutateType(Type *Ty) { |
||
| 799 | VTy = Ty; |
||
| 800 | } |
||
| 801 | |||
| 802 | /// Sort the use-list. |
||
| 803 | /// |
||
| 804 | /// Sorts the Value's use-list by Cmp using a stable mergesort. Cmp is |
||
| 805 | /// expected to compare two \a Use references. |
||
| 806 | template <class Compare> void sortUseList(Compare Cmp); |
||
| 807 | |||
| 808 | /// Reverse the use-list. |
||
| 809 | void reverseUseList(); |
||
| 810 | |||
| 811 | private: |
||
| 812 | /// Merge two lists together. |
||
| 813 | /// |
||
| 814 | /// Merges \c L and \c R using \c Cmp. To enable stable sorts, always pushes |
||
| 815 | /// "equal" items from L before items from R. |
||
| 816 | /// |
||
| 817 | /// \return the first element in the list. |
||
| 818 | /// |
||
| 819 | /// \note Completely ignores \a Use::Prev (doesn't read, doesn't update). |
||
| 820 | template <class Compare> |
||
| 821 | static Use *mergeUseLists(Use *L, Use *R, Compare Cmp) { |
||
| 822 | Use *Merged; |
||
| 823 | Use **Next = &Merged; |
||
| 824 | |||
| 825 | while (true) { |
||
| 826 | if (!L) { |
||
| 827 | *Next = R; |
||
| 828 | break; |
||
| 829 | } |
||
| 830 | if (!R) { |
||
| 831 | *Next = L; |
||
| 832 | break; |
||
| 833 | } |
||
| 834 | if (Cmp(*R, *L)) { |
||
| 835 | *Next = R; |
||
| 836 | Next = &R->Next; |
||
| 837 | R = R->Next; |
||
| 838 | } else { |
||
| 839 | *Next = L; |
||
| 840 | Next = &L->Next; |
||
| 841 | L = L->Next; |
||
| 842 | } |
||
| 843 | } |
||
| 844 | |||
| 845 | return Merged; |
||
| 846 | } |
||
| 847 | |||
| 848 | protected: |
||
| 849 | unsigned short getSubclassDataFromValue() const { return SubclassData; } |
||
| 850 | void setValueSubclassData(unsigned short D) { SubclassData = D; } |
||
| 851 | }; |
||
| 852 | |||
| 853 | struct ValueDeleter { void operator()(Value *V) { V->deleteValue(); } }; |
||
| 854 | |||
| 855 | /// Use this instead of std::unique_ptr<Value> or std::unique_ptr<Instruction>. |
||
| 856 | /// Those don't work because Value and Instruction's destructors are protected, |
||
| 857 | /// aren't virtual, and won't destroy the complete object. |
||
| 858 | using unique_value = std::unique_ptr<Value, ValueDeleter>; |
||
| 859 | |||
| 860 | inline raw_ostream &operator<<(raw_ostream &OS, const Value &V) { |
||
| 861 | V.print(OS); |
||
| 862 | return OS; |
||
| 863 | } |
||
| 864 | |||
| 865 | void Use::set(Value *V) { |
||
| 866 | if (Val) removeFromList(); |
||
| 867 | Val = V; |
||
| 868 | if (V) V->addUse(*this); |
||
| 869 | } |
||
| 870 | |||
| 871 | Value *Use::operator=(Value *RHS) { |
||
| 872 | set(RHS); |
||
| 873 | return RHS; |
||
| 874 | } |
||
| 875 | |||
| 876 | const Use &Use::operator=(const Use &RHS) { |
||
| 877 | set(RHS.Val); |
||
| 878 | return *this; |
||
| 879 | } |
||
| 880 | |||
| 881 | template <class Compare> void Value::sortUseList(Compare Cmp) { |
||
| 882 | if (!UseList || !UseList->Next) |
||
| 883 | // No need to sort 0 or 1 uses. |
||
| 884 | return; |
||
| 885 | |||
| 886 | // Note: this function completely ignores Prev pointers until the end when |
||
| 887 | // they're fixed en masse. |
||
| 888 | |||
| 889 | // Create a binomial vector of sorted lists, visiting uses one at a time and |
||
| 890 | // merging lists as necessary. |
||
| 891 | const unsigned MaxSlots = 32; |
||
| 892 | Use *Slots[MaxSlots]; |
||
| 893 | |||
| 894 | // Collect the first use, turning it into a single-item list. |
||
| 895 | Use *Next = UseList->Next; |
||
| 896 | UseList->Next = nullptr; |
||
| 897 | unsigned NumSlots = 1; |
||
| 898 | Slots[0] = UseList; |
||
| 899 | |||
| 900 | // Collect all but the last use. |
||
| 901 | while (Next->Next) { |
||
| 902 | Use *Current = Next; |
||
| 903 | Next = Current->Next; |
||
| 904 | |||
| 905 | // Turn Current into a single-item list. |
||
| 906 | Current->Next = nullptr; |
||
| 907 | |||
| 908 | // Save Current in the first available slot, merging on collisions. |
||
| 909 | unsigned I; |
||
| 910 | for (I = 0; I < NumSlots; ++I) { |
||
| 911 | if (!Slots[I]) |
||
| 912 | break; |
||
| 913 | |||
| 914 | // Merge two lists, doubling the size of Current and emptying slot I. |
||
| 915 | // |
||
| 916 | // Since the uses in Slots[I] originally preceded those in Current, send |
||
| 917 | // Slots[I] in as the left parameter to maintain a stable sort. |
||
| 918 | Current = mergeUseLists(Slots[I], Current, Cmp); |
||
| 919 | Slots[I] = nullptr; |
||
| 920 | } |
||
| 921 | // Check if this is a new slot. |
||
| 922 | if (I == NumSlots) { |
||
| 923 | ++NumSlots; |
||
| 924 | assert(NumSlots <= MaxSlots && "Use list bigger than 2^32"); |
||
| 925 | } |
||
| 926 | |||
| 927 | // Found an open slot. |
||
| 928 | Slots[I] = Current; |
||
| 929 | } |
||
| 930 | |||
| 931 | // Merge all the lists together. |
||
| 932 | assert(Next && "Expected one more Use"); |
||
| 933 | assert(!Next->Next && "Expected only one Use"); |
||
| 934 | UseList = Next; |
||
| 935 | for (unsigned I = 0; I < NumSlots; ++I) |
||
| 936 | if (Slots[I]) |
||
| 937 | // Since the uses in Slots[I] originally preceded those in UseList, send |
||
| 938 | // Slots[I] in as the left parameter to maintain a stable sort. |
||
| 939 | UseList = mergeUseLists(Slots[I], UseList, Cmp); |
||
| 940 | |||
| 941 | // Fix the Prev pointers. |
||
| 942 | for (Use *I = UseList, **Prev = &UseList; I; I = I->Next) { |
||
| 943 | I->Prev = Prev; |
||
| 944 | Prev = &I->Next; |
||
| 945 | } |
||
| 946 | } |
||
| 947 | |||
| 948 | // isa - Provide some specializations of isa so that we don't have to include |
||
| 949 | // the subtype header files to test to see if the value is a subclass... |
||
| 950 | // |
||
| 951 | template <> struct isa_impl<Constant, Value> { |
||
| 952 | static inline bool doit(const Value &Val) { |
||
| 953 | static_assert(Value::ConstantFirstVal == 0, "Val.getValueID() >= Value::ConstantFirstVal"); |
||
| 954 | return Val.getValueID() <= Value::ConstantLastVal; |
||
| 955 | } |
||
| 956 | }; |
||
| 957 | |||
| 958 | template <> struct isa_impl<ConstantData, Value> { |
||
| 959 | static inline bool doit(const Value &Val) { |
||
| 960 | return Val.getValueID() >= Value::ConstantDataFirstVal && |
||
| 961 | Val.getValueID() <= Value::ConstantDataLastVal; |
||
| 962 | } |
||
| 963 | }; |
||
| 964 | |||
| 965 | template <> struct isa_impl<ConstantAggregate, Value> { |
||
| 966 | static inline bool doit(const Value &Val) { |
||
| 967 | return Val.getValueID() >= Value::ConstantAggregateFirstVal && |
||
| 968 | Val.getValueID() <= Value::ConstantAggregateLastVal; |
||
| 969 | } |
||
| 970 | }; |
||
| 971 | |||
| 972 | template <> struct isa_impl<Argument, Value> { |
||
| 973 | static inline bool doit (const Value &Val) { |
||
| 974 | return Val.getValueID() == Value::ArgumentVal; |
||
| 975 | } |
||
| 976 | }; |
||
| 977 | |||
| 978 | template <> struct isa_impl<InlineAsm, Value> { |
||
| 979 | static inline bool doit(const Value &Val) { |
||
| 980 | return Val.getValueID() == Value::InlineAsmVal; |
||
| 981 | } |
||
| 982 | }; |
||
| 983 | |||
| 984 | template <> struct isa_impl<Instruction, Value> { |
||
| 985 | static inline bool doit(const Value &Val) { |
||
| 986 | return Val.getValueID() >= Value::InstructionVal; |
||
| 987 | } |
||
| 988 | }; |
||
| 989 | |||
| 990 | template <> struct isa_impl<BasicBlock, Value> { |
||
| 991 | static inline bool doit(const Value &Val) { |
||
| 992 | return Val.getValueID() == Value::BasicBlockVal; |
||
| 993 | } |
||
| 994 | }; |
||
| 995 | |||
| 996 | template <> struct isa_impl<Function, Value> { |
||
| 997 | static inline bool doit(const Value &Val) { |
||
| 998 | return Val.getValueID() == Value::FunctionVal; |
||
| 999 | } |
||
| 1000 | }; |
||
| 1001 | |||
| 1002 | template <> struct isa_impl<GlobalVariable, Value> { |
||
| 1003 | static inline bool doit(const Value &Val) { |
||
| 1004 | return Val.getValueID() == Value::GlobalVariableVal; |
||
| 1005 | } |
||
| 1006 | }; |
||
| 1007 | |||
| 1008 | template <> struct isa_impl<GlobalAlias, Value> { |
||
| 1009 | static inline bool doit(const Value &Val) { |
||
| 1010 | return Val.getValueID() == Value::GlobalAliasVal; |
||
| 1011 | } |
||
| 1012 | }; |
||
| 1013 | |||
| 1014 | template <> struct isa_impl<GlobalIFunc, Value> { |
||
| 1015 | static inline bool doit(const Value &Val) { |
||
| 1016 | return Val.getValueID() == Value::GlobalIFuncVal; |
||
| 1017 | } |
||
| 1018 | }; |
||
| 1019 | |||
| 1020 | template <> struct isa_impl<GlobalValue, Value> { |
||
| 1021 | static inline bool doit(const Value &Val) { |
||
| 1022 | return isa<GlobalObject>(Val) || isa<GlobalAlias>(Val); |
||
| 1023 | } |
||
| 1024 | }; |
||
| 1025 | |||
| 1026 | template <> struct isa_impl<GlobalObject, Value> { |
||
| 1027 | static inline bool doit(const Value &Val) { |
||
| 1028 | return isa<GlobalVariable>(Val) || isa<Function>(Val) || |
||
| 1029 | isa<GlobalIFunc>(Val); |
||
| 1030 | } |
||
| 1031 | }; |
||
| 1032 | |||
| 1033 | // Create wrappers for C Binding types (see CBindingWrapping.h). |
||
| 1034 | DEFINE_ISA_CONVERSION_FUNCTIONS(Value, LLVMValueRef) |
||
| 1035 | |||
| 1036 | // Specialized opaque value conversions. |
||
| 1037 | inline Value **unwrap(LLVMValueRef *Vals) { |
||
| 1038 | return reinterpret_cast<Value**>(Vals); |
||
| 1039 | } |
||
| 1040 | |||
| 1041 | template<typename T> |
||
| 1042 | inline T **unwrap(LLVMValueRef *Vals, unsigned Length) { |
||
| 1043 | #ifndef NDEBUG |
||
| 1044 | for (LLVMValueRef *I = Vals, *E = Vals + Length; I != E; ++I) |
||
| 1045 | unwrap<T>(*I); // For side effect of calling assert on invalid usage. |
||
| 1046 | #endif |
||
| 1047 | (void)Length; |
||
| 1048 | return reinterpret_cast<T**>(Vals); |
||
| 1049 | } |
||
| 1050 | |||
| 1051 | inline LLVMValueRef *wrap(const Value **Vals) { |
||
| 1052 | return reinterpret_cast<LLVMValueRef*>(const_cast<Value**>(Vals)); |
||
| 1053 | } |
||
| 1054 | |||
| 1055 | } // end namespace llvm |
||
| 1056 | |||
| 1057 | #endif // LLVM_IR_VALUE_H |