Subversion Repositories QNX 8.QNX8 LLVM/Clang compiler suite

Rev

Details | Last modification | View Log | RSS feed

Rev Author Line No. Line
14 pmbaty 1
//===- PatternMatch.h - Match on the LLVM IR --------------------*- C++ -*-===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
// This file provides a simple and efficient mechanism for performing general
10
// tree-based pattern matches on the LLVM IR. The power of these routines is
11
// that it allows you to write concise patterns that are expressive and easy to
12
// understand. The other major advantage of this is that it allows you to
13
// trivially capture/bind elements in the pattern to variables. For example,
14
// you can do something like this:
15
//
16
//  Value *Exp = ...
17
//  Value *X, *Y;  ConstantInt *C1, *C2;      // (X & C1) | (Y & C2)
18
//  if (match(Exp, m_Or(m_And(m_Value(X), m_ConstantInt(C1)),
19
//                      m_And(m_Value(Y), m_ConstantInt(C2))))) {
20
//    ... Pattern is matched and variables are bound ...
21
//  }
22
//
23
// This is primarily useful to things like the instruction combiner, but can
24
// also be useful for static analysis tools or code generators.
25
//
26
//===----------------------------------------------------------------------===//
27
 
28
#ifndef LLVM_IR_PATTERNMATCH_H
29
#define LLVM_IR_PATTERNMATCH_H
30
 
31
#include "llvm/ADT/APFloat.h"
32
#include "llvm/ADT/APInt.h"
33
#include "llvm/IR/Constant.h"
34
#include "llvm/IR/Constants.h"
35
#include "llvm/IR/DataLayout.h"
36
#include "llvm/IR/InstrTypes.h"
37
#include "llvm/IR/Instruction.h"
38
#include "llvm/IR/Instructions.h"
39
#include "llvm/IR/IntrinsicInst.h"
40
#include "llvm/IR/Intrinsics.h"
41
#include "llvm/IR/Operator.h"
42
#include "llvm/IR/Value.h"
43
#include "llvm/Support/Casting.h"
44
#include <cstdint>
45
 
46
namespace llvm {
47
namespace PatternMatch {
48
 
49
template <typename Val, typename Pattern> bool match(Val *V, const Pattern &P) {
50
  return const_cast<Pattern &>(P).match(V);
51
}
52
 
53
template <typename Pattern> bool match(ArrayRef<int> Mask, const Pattern &P) {
54
  return const_cast<Pattern &>(P).match(Mask);
55
}
56
 
57
template <typename SubPattern_t> struct OneUse_match {
58
  SubPattern_t SubPattern;
59
 
60
  OneUse_match(const SubPattern_t &SP) : SubPattern(SP) {}
61
 
62
  template <typename OpTy> bool match(OpTy *V) {
63
    return V->hasOneUse() && SubPattern.match(V);
64
  }
65
};
66
 
67
template <typename T> inline OneUse_match<T> m_OneUse(const T &SubPattern) {
68
  return SubPattern;
69
}
70
 
71
template <typename Class> struct class_match {
72
  template <typename ITy> bool match(ITy *V) { return isa<Class>(V); }
73
};
74
 
75
/// Match an arbitrary value and ignore it.
76
inline class_match<Value> m_Value() { return class_match<Value>(); }
77
 
78
/// Match an arbitrary unary operation and ignore it.
79
inline class_match<UnaryOperator> m_UnOp() {
80
  return class_match<UnaryOperator>();
81
}
82
 
83
/// Match an arbitrary binary operation and ignore it.
84
inline class_match<BinaryOperator> m_BinOp() {
85
  return class_match<BinaryOperator>();
86
}
87
 
88
/// Matches any compare instruction and ignore it.
89
inline class_match<CmpInst> m_Cmp() { return class_match<CmpInst>(); }
90
 
91
struct undef_match {
92
  static bool check(const Value *V) {
93
    if (isa<UndefValue>(V))
94
      return true;
95
 
96
    const auto *CA = dyn_cast<ConstantAggregate>(V);
97
    if (!CA)
98
      return false;
99
 
100
    SmallPtrSet<const ConstantAggregate *, 8> Seen;
101
    SmallVector<const ConstantAggregate *, 8> Worklist;
102
 
103
    // Either UndefValue, PoisonValue, or an aggregate that only contains
104
    // these is accepted by matcher.
105
    // CheckValue returns false if CA cannot satisfy this constraint.
106
    auto CheckValue = [&](const ConstantAggregate *CA) {
107
      for (const Value *Op : CA->operand_values()) {
108
        if (isa<UndefValue>(Op))
109
          continue;
110
 
111
        const auto *CA = dyn_cast<ConstantAggregate>(Op);
112
        if (!CA)
113
          return false;
114
        if (Seen.insert(CA).second)
115
          Worklist.emplace_back(CA);
116
      }
117
 
118
      return true;
119
    };
120
 
121
    if (!CheckValue(CA))
122
      return false;
123
 
124
    while (!Worklist.empty()) {
125
      if (!CheckValue(Worklist.pop_back_val()))
126
        return false;
127
    }
128
    return true;
129
  }
130
  template <typename ITy> bool match(ITy *V) { return check(V); }
131
};
132
 
133
/// Match an arbitrary undef constant. This matches poison as well.
134
/// If this is an aggregate and contains a non-aggregate element that is
135
/// neither undef nor poison, the aggregate is not matched.
136
inline auto m_Undef() { return undef_match(); }
137
 
138
/// Match an arbitrary poison constant.
139
inline class_match<PoisonValue> m_Poison() {
140
  return class_match<PoisonValue>();
141
}
142
 
143
/// Match an arbitrary Constant and ignore it.
144
inline class_match<Constant> m_Constant() { return class_match<Constant>(); }
145
 
146
/// Match an arbitrary ConstantInt and ignore it.
147
inline class_match<ConstantInt> m_ConstantInt() {
148
  return class_match<ConstantInt>();
149
}
150
 
151
/// Match an arbitrary ConstantFP and ignore it.
152
inline class_match<ConstantFP> m_ConstantFP() {
153
  return class_match<ConstantFP>();
154
}
155
 
156
struct constantexpr_match {
157
  template <typename ITy> bool match(ITy *V) {
158
    auto *C = dyn_cast<Constant>(V);
159
    return C && (isa<ConstantExpr>(C) || C->containsConstantExpression());
160
  }
161
};
162
 
163
/// Match a constant expression or a constant that contains a constant
164
/// expression.
165
inline constantexpr_match m_ConstantExpr() { return constantexpr_match(); }
166
 
167
/// Match an arbitrary basic block value and ignore it.
168
inline class_match<BasicBlock> m_BasicBlock() {
169
  return class_match<BasicBlock>();
170
}
171
 
172
/// Inverting matcher
173
template <typename Ty> struct match_unless {
174
  Ty M;
175
 
176
  match_unless(const Ty &Matcher) : M(Matcher) {}
177
 
178
  template <typename ITy> bool match(ITy *V) { return !M.match(V); }
179
};
180
 
181
/// Match if the inner matcher does *NOT* match.
182
template <typename Ty> inline match_unless<Ty> m_Unless(const Ty &M) {
183
  return match_unless<Ty>(M);
184
}
185
 
186
/// Matching combinators
187
template <typename LTy, typename RTy> struct match_combine_or {
188
  LTy L;
189
  RTy R;
190
 
191
  match_combine_or(const LTy &Left, const RTy &Right) : L(Left), R(Right) {}
192
 
193
  template <typename ITy> bool match(ITy *V) {
194
    if (L.match(V))
195
      return true;
196
    if (R.match(V))
197
      return true;
198
    return false;
199
  }
200
};
201
 
202
template <typename LTy, typename RTy> struct match_combine_and {
203
  LTy L;
204
  RTy R;
205
 
206
  match_combine_and(const LTy &Left, const RTy &Right) : L(Left), R(Right) {}
207
 
208
  template <typename ITy> bool match(ITy *V) {
209
    if (L.match(V))
210
      if (R.match(V))
211
        return true;
212
    return false;
213
  }
214
};
215
 
216
/// Combine two pattern matchers matching L || R
217
template <typename LTy, typename RTy>
218
inline match_combine_or<LTy, RTy> m_CombineOr(const LTy &L, const RTy &R) {
219
  return match_combine_or<LTy, RTy>(L, R);
220
}
221
 
222
/// Combine two pattern matchers matching L && R
223
template <typename LTy, typename RTy>
224
inline match_combine_and<LTy, RTy> m_CombineAnd(const LTy &L, const RTy &R) {
225
  return match_combine_and<LTy, RTy>(L, R);
226
}
227
 
228
struct apint_match {
229
  const APInt *&Res;
230
  bool AllowUndef;
231
 
232
  apint_match(const APInt *&Res, bool AllowUndef)
233
      : Res(Res), AllowUndef(AllowUndef) {}
234
 
235
  template <typename ITy> bool match(ITy *V) {
236
    if (auto *CI = dyn_cast<ConstantInt>(V)) {
237
      Res = &CI->getValue();
238
      return true;
239
    }
240
    if (V->getType()->isVectorTy())
241
      if (const auto *C = dyn_cast<Constant>(V))
242
        if (auto *CI =
243
                dyn_cast_or_null<ConstantInt>(C->getSplatValue(AllowUndef))) {
244
          Res = &CI->getValue();
245
          return true;
246
        }
247
    return false;
248
  }
249
};
250
// Either constexpr if or renaming ConstantFP::getValueAPF to
251
// ConstantFP::getValue is needed to do it via single template
252
// function for both apint/apfloat.
253
struct apfloat_match {
254
  const APFloat *&Res;
255
  bool AllowUndef;
256
 
257
  apfloat_match(const APFloat *&Res, bool AllowUndef)
258
      : Res(Res), AllowUndef(AllowUndef) {}
259
 
260
  template <typename ITy> bool match(ITy *V) {
261
    if (auto *CI = dyn_cast<ConstantFP>(V)) {
262
      Res = &CI->getValueAPF();
263
      return true;
264
    }
265
    if (V->getType()->isVectorTy())
266
      if (const auto *C = dyn_cast<Constant>(V))
267
        if (auto *CI =
268
                dyn_cast_or_null<ConstantFP>(C->getSplatValue(AllowUndef))) {
269
          Res = &CI->getValueAPF();
270
          return true;
271
        }
272
    return false;
273
  }
274
};
275
 
276
/// Match a ConstantInt or splatted ConstantVector, binding the
277
/// specified pointer to the contained APInt.
278
inline apint_match m_APInt(const APInt *&Res) {
279
  // Forbid undefs by default to maintain previous behavior.
280
  return apint_match(Res, /* AllowUndef */ false);
281
}
282
 
283
/// Match APInt while allowing undefs in splat vector constants.
284
inline apint_match m_APIntAllowUndef(const APInt *&Res) {
285
  return apint_match(Res, /* AllowUndef */ true);
286
}
287
 
288
/// Match APInt while forbidding undefs in splat vector constants.
289
inline apint_match m_APIntForbidUndef(const APInt *&Res) {
290
  return apint_match(Res, /* AllowUndef */ false);
291
}
292
 
293
/// Match a ConstantFP or splatted ConstantVector, binding the
294
/// specified pointer to the contained APFloat.
295
inline apfloat_match m_APFloat(const APFloat *&Res) {
296
  // Forbid undefs by default to maintain previous behavior.
297
  return apfloat_match(Res, /* AllowUndef */ false);
298
}
299
 
300
/// Match APFloat while allowing undefs in splat vector constants.
301
inline apfloat_match m_APFloatAllowUndef(const APFloat *&Res) {
302
  return apfloat_match(Res, /* AllowUndef */ true);
303
}
304
 
305
/// Match APFloat while forbidding undefs in splat vector constants.
306
inline apfloat_match m_APFloatForbidUndef(const APFloat *&Res) {
307
  return apfloat_match(Res, /* AllowUndef */ false);
308
}
309
 
310
template <int64_t Val> struct constantint_match {
311
  template <typename ITy> bool match(ITy *V) {
312
    if (const auto *CI = dyn_cast<ConstantInt>(V)) {
313
      const APInt &CIV = CI->getValue();
314
      if (Val >= 0)
315
        return CIV == static_cast<uint64_t>(Val);
316
      // If Val is negative, and CI is shorter than it, truncate to the right
317
      // number of bits.  If it is larger, then we have to sign extend.  Just
318
      // compare their negated values.
319
      return -CIV == -Val;
320
    }
321
    return false;
322
  }
323
};
324
 
325
/// Match a ConstantInt with a specific value.
326
template <int64_t Val> inline constantint_match<Val> m_ConstantInt() {
327
  return constantint_match<Val>();
328
}
329
 
330
/// This helper class is used to match constant scalars, vector splats,
331
/// and fixed width vectors that satisfy a specified predicate.
332
/// For fixed width vector constants, undefined elements are ignored.
333
template <typename Predicate, typename ConstantVal>
334
struct cstval_pred_ty : public Predicate {
335
  template <typename ITy> bool match(ITy *V) {
336
    if (const auto *CV = dyn_cast<ConstantVal>(V))
337
      return this->isValue(CV->getValue());
338
    if (const auto *VTy = dyn_cast<VectorType>(V->getType())) {
339
      if (const auto *C = dyn_cast<Constant>(V)) {
340
        if (const auto *CV = dyn_cast_or_null<ConstantVal>(C->getSplatValue()))
341
          return this->isValue(CV->getValue());
342
 
343
        // Number of elements of a scalable vector unknown at compile time
344
        auto *FVTy = dyn_cast<FixedVectorType>(VTy);
345
        if (!FVTy)
346
          return false;
347
 
348
        // Non-splat vector constant: check each element for a match.
349
        unsigned NumElts = FVTy->getNumElements();
350
        assert(NumElts != 0 && "Constant vector with no elements?");
351
        bool HasNonUndefElements = false;
352
        for (unsigned i = 0; i != NumElts; ++i) {
353
          Constant *Elt = C->getAggregateElement(i);
354
          if (!Elt)
355
            return false;
356
          if (isa<UndefValue>(Elt))
357
            continue;
358
          auto *CV = dyn_cast<ConstantVal>(Elt);
359
          if (!CV || !this->isValue(CV->getValue()))
360
            return false;
361
          HasNonUndefElements = true;
362
        }
363
        return HasNonUndefElements;
364
      }
365
    }
366
    return false;
367
  }
368
};
369
 
370
/// specialization of cstval_pred_ty for ConstantInt
371
template <typename Predicate>
372
using cst_pred_ty = cstval_pred_ty<Predicate, ConstantInt>;
373
 
374
/// specialization of cstval_pred_ty for ConstantFP
375
template <typename Predicate>
376
using cstfp_pred_ty = cstval_pred_ty<Predicate, ConstantFP>;
377
 
378
/// This helper class is used to match scalar and vector constants that
379
/// satisfy a specified predicate, and bind them to an APInt.
380
template <typename Predicate> struct api_pred_ty : public Predicate {
381
  const APInt *&Res;
382
 
383
  api_pred_ty(const APInt *&R) : Res(R) {}
384
 
385
  template <typename ITy> bool match(ITy *V) {
386
    if (const auto *CI = dyn_cast<ConstantInt>(V))
387
      if (this->isValue(CI->getValue())) {
388
        Res = &CI->getValue();
389
        return true;
390
      }
391
    if (V->getType()->isVectorTy())
392
      if (const auto *C = dyn_cast<Constant>(V))
393
        if (auto *CI = dyn_cast_or_null<ConstantInt>(C->getSplatValue()))
394
          if (this->isValue(CI->getValue())) {
395
            Res = &CI->getValue();
396
            return true;
397
          }
398
 
399
    return false;
400
  }
401
};
402
 
403
/// This helper class is used to match scalar and vector constants that
404
/// satisfy a specified predicate, and bind them to an APFloat.
405
/// Undefs are allowed in splat vector constants.
406
template <typename Predicate> struct apf_pred_ty : public Predicate {
407
  const APFloat *&Res;
408
 
409
  apf_pred_ty(const APFloat *&R) : Res(R) {}
410
 
411
  template <typename ITy> bool match(ITy *V) {
412
    if (const auto *CI = dyn_cast<ConstantFP>(V))
413
      if (this->isValue(CI->getValue())) {
414
        Res = &CI->getValue();
415
        return true;
416
      }
417
    if (V->getType()->isVectorTy())
418
      if (const auto *C = dyn_cast<Constant>(V))
419
        if (auto *CI = dyn_cast_or_null<ConstantFP>(
420
                C->getSplatValue(/* AllowUndef */ true)))
421
          if (this->isValue(CI->getValue())) {
422
            Res = &CI->getValue();
423
            return true;
424
          }
425
 
426
    return false;
427
  }
428
};
429
 
430
///////////////////////////////////////////////////////////////////////////////
431
//
432
// Encapsulate constant value queries for use in templated predicate matchers.
433
// This allows checking if constants match using compound predicates and works
434
// with vector constants, possibly with relaxed constraints. For example, ignore
435
// undef values.
436
//
437
///////////////////////////////////////////////////////////////////////////////
438
 
439
struct is_any_apint {
440
  bool isValue(const APInt &C) { return true; }
441
};
442
/// Match an integer or vector with any integral constant.
443
/// For vectors, this includes constants with undefined elements.
444
inline cst_pred_ty<is_any_apint> m_AnyIntegralConstant() {
445
  return cst_pred_ty<is_any_apint>();
446
}
447
 
448
struct is_all_ones {
449
  bool isValue(const APInt &C) { return C.isAllOnes(); }
450
};
451
/// Match an integer or vector with all bits set.
452
/// For vectors, this includes constants with undefined elements.
453
inline cst_pred_ty<is_all_ones> m_AllOnes() {
454
  return cst_pred_ty<is_all_ones>();
455
}
456
 
457
struct is_maxsignedvalue {
458
  bool isValue(const APInt &C) { return C.isMaxSignedValue(); }
459
};
460
/// Match an integer or vector with values having all bits except for the high
461
/// bit set (0x7f...).
462
/// For vectors, this includes constants with undefined elements.
463
inline cst_pred_ty<is_maxsignedvalue> m_MaxSignedValue() {
464
  return cst_pred_ty<is_maxsignedvalue>();
465
}
466
inline api_pred_ty<is_maxsignedvalue> m_MaxSignedValue(const APInt *&V) {
467
  return V;
468
}
469
 
470
struct is_negative {
471
  bool isValue(const APInt &C) { return C.isNegative(); }
472
};
473
/// Match an integer or vector of negative values.
474
/// For vectors, this includes constants with undefined elements.
475
inline cst_pred_ty<is_negative> m_Negative() {
476
  return cst_pred_ty<is_negative>();
477
}
478
inline api_pred_ty<is_negative> m_Negative(const APInt *&V) { return V; }
479
 
480
struct is_nonnegative {
481
  bool isValue(const APInt &C) { return C.isNonNegative(); }
482
};
483
/// Match an integer or vector of non-negative values.
484
/// For vectors, this includes constants with undefined elements.
485
inline cst_pred_ty<is_nonnegative> m_NonNegative() {
486
  return cst_pred_ty<is_nonnegative>();
487
}
488
inline api_pred_ty<is_nonnegative> m_NonNegative(const APInt *&V) { return V; }
489
 
490
struct is_strictlypositive {
491
  bool isValue(const APInt &C) { return C.isStrictlyPositive(); }
492
};
493
/// Match an integer or vector of strictly positive values.
494
/// For vectors, this includes constants with undefined elements.
495
inline cst_pred_ty<is_strictlypositive> m_StrictlyPositive() {
496
  return cst_pred_ty<is_strictlypositive>();
497
}
498
inline api_pred_ty<is_strictlypositive> m_StrictlyPositive(const APInt *&V) {
499
  return V;
500
}
501
 
502
struct is_nonpositive {
503
  bool isValue(const APInt &C) { return C.isNonPositive(); }
504
};
505
/// Match an integer or vector of non-positive values.
506
/// For vectors, this includes constants with undefined elements.
507
inline cst_pred_ty<is_nonpositive> m_NonPositive() {
508
  return cst_pred_ty<is_nonpositive>();
509
}
510
inline api_pred_ty<is_nonpositive> m_NonPositive(const APInt *&V) { return V; }
511
 
512
struct is_one {
513
  bool isValue(const APInt &C) { return C.isOne(); }
514
};
515
/// Match an integer 1 or a vector with all elements equal to 1.
516
/// For vectors, this includes constants with undefined elements.
517
inline cst_pred_ty<is_one> m_One() { return cst_pred_ty<is_one>(); }
518
 
519
struct is_zero_int {
520
  bool isValue(const APInt &C) { return C.isZero(); }
521
};
522
/// Match an integer 0 or a vector with all elements equal to 0.
523
/// For vectors, this includes constants with undefined elements.
524
inline cst_pred_ty<is_zero_int> m_ZeroInt() {
525
  return cst_pred_ty<is_zero_int>();
526
}
527
 
528
struct is_zero {
529
  template <typename ITy> bool match(ITy *V) {
530
    auto *C = dyn_cast<Constant>(V);
531
    // FIXME: this should be able to do something for scalable vectors
532
    return C && (C->isNullValue() || cst_pred_ty<is_zero_int>().match(C));
533
  }
534
};
535
/// Match any null constant or a vector with all elements equal to 0.
536
/// For vectors, this includes constants with undefined elements.
537
inline is_zero m_Zero() { return is_zero(); }
538
 
539
struct is_power2 {
540
  bool isValue(const APInt &C) { return C.isPowerOf2(); }
541
};
542
/// Match an integer or vector power-of-2.
543
/// For vectors, this includes constants with undefined elements.
544
inline cst_pred_ty<is_power2> m_Power2() { return cst_pred_ty<is_power2>(); }
545
inline api_pred_ty<is_power2> m_Power2(const APInt *&V) { return V; }
546
 
547
struct is_negated_power2 {
548
  bool isValue(const APInt &C) { return C.isNegatedPowerOf2(); }
549
};
550
/// Match a integer or vector negated power-of-2.
551
/// For vectors, this includes constants with undefined elements.
552
inline cst_pred_ty<is_negated_power2> m_NegatedPower2() {
553
  return cst_pred_ty<is_negated_power2>();
554
}
555
inline api_pred_ty<is_negated_power2> m_NegatedPower2(const APInt *&V) {
556
  return V;
557
}
558
 
559
struct is_power2_or_zero {
560
  bool isValue(const APInt &C) { return !C || C.isPowerOf2(); }
561
};
562
/// Match an integer or vector of 0 or power-of-2 values.
563
/// For vectors, this includes constants with undefined elements.
564
inline cst_pred_ty<is_power2_or_zero> m_Power2OrZero() {
565
  return cst_pred_ty<is_power2_or_zero>();
566
}
567
inline api_pred_ty<is_power2_or_zero> m_Power2OrZero(const APInt *&V) {
568
  return V;
569
}
570
 
571
struct is_sign_mask {
572
  bool isValue(const APInt &C) { return C.isSignMask(); }
573
};
574
/// Match an integer or vector with only the sign bit(s) set.
575
/// For vectors, this includes constants with undefined elements.
576
inline cst_pred_ty<is_sign_mask> m_SignMask() {
577
  return cst_pred_ty<is_sign_mask>();
578
}
579
 
580
struct is_lowbit_mask {
581
  bool isValue(const APInt &C) { return C.isMask(); }
582
};
583
/// Match an integer or vector with only the low bit(s) set.
584
/// For vectors, this includes constants with undefined elements.
585
inline cst_pred_ty<is_lowbit_mask> m_LowBitMask() {
586
  return cst_pred_ty<is_lowbit_mask>();
587
}
588
inline api_pred_ty<is_lowbit_mask> m_LowBitMask(const APInt *&V) { return V; }
589
 
590
struct icmp_pred_with_threshold {
591
  ICmpInst::Predicate Pred;
592
  const APInt *Thr;
593
  bool isValue(const APInt &C) { return ICmpInst::compare(C, *Thr, Pred); }
594
};
595
/// Match an integer or vector with every element comparing 'pred' (eg/ne/...)
596
/// to Threshold. For vectors, this includes constants with undefined elements.
597
inline cst_pred_ty<icmp_pred_with_threshold>
598
m_SpecificInt_ICMP(ICmpInst::Predicate Predicate, const APInt &Threshold) {
599
  cst_pred_ty<icmp_pred_with_threshold> P;
600
  P.Pred = Predicate;
601
  P.Thr = &Threshold;
602
  return P;
603
}
604
 
605
struct is_nan {
606
  bool isValue(const APFloat &C) { return C.isNaN(); }
607
};
608
/// Match an arbitrary NaN constant. This includes quiet and signalling nans.
609
/// For vectors, this includes constants with undefined elements.
610
inline cstfp_pred_ty<is_nan> m_NaN() { return cstfp_pred_ty<is_nan>(); }
611
 
612
struct is_nonnan {
613
  bool isValue(const APFloat &C) { return !C.isNaN(); }
614
};
615
/// Match a non-NaN FP constant.
616
/// For vectors, this includes constants with undefined elements.
617
inline cstfp_pred_ty<is_nonnan> m_NonNaN() {
618
  return cstfp_pred_ty<is_nonnan>();
619
}
620
 
621
struct is_inf {
622
  bool isValue(const APFloat &C) { return C.isInfinity(); }
623
};
624
/// Match a positive or negative infinity FP constant.
625
/// For vectors, this includes constants with undefined elements.
626
inline cstfp_pred_ty<is_inf> m_Inf() { return cstfp_pred_ty<is_inf>(); }
627
 
628
struct is_noninf {
629
  bool isValue(const APFloat &C) { return !C.isInfinity(); }
630
};
631
/// Match a non-infinity FP constant, i.e. finite or NaN.
632
/// For vectors, this includes constants with undefined elements.
633
inline cstfp_pred_ty<is_noninf> m_NonInf() {
634
  return cstfp_pred_ty<is_noninf>();
635
}
636
 
637
struct is_finite {
638
  bool isValue(const APFloat &C) { return C.isFinite(); }
639
};
640
/// Match a finite FP constant, i.e. not infinity or NaN.
641
/// For vectors, this includes constants with undefined elements.
642
inline cstfp_pred_ty<is_finite> m_Finite() {
643
  return cstfp_pred_ty<is_finite>();
644
}
645
inline apf_pred_ty<is_finite> m_Finite(const APFloat *&V) { return V; }
646
 
647
struct is_finitenonzero {
648
  bool isValue(const APFloat &C) { return C.isFiniteNonZero(); }
649
};
650
/// Match a finite non-zero FP constant.
651
/// For vectors, this includes constants with undefined elements.
652
inline cstfp_pred_ty<is_finitenonzero> m_FiniteNonZero() {
653
  return cstfp_pred_ty<is_finitenonzero>();
654
}
655
inline apf_pred_ty<is_finitenonzero> m_FiniteNonZero(const APFloat *&V) {
656
  return V;
657
}
658
 
659
struct is_any_zero_fp {
660
  bool isValue(const APFloat &C) { return C.isZero(); }
661
};
662
/// Match a floating-point negative zero or positive zero.
663
/// For vectors, this includes constants with undefined elements.
664
inline cstfp_pred_ty<is_any_zero_fp> m_AnyZeroFP() {
665
  return cstfp_pred_ty<is_any_zero_fp>();
666
}
667
 
668
struct is_pos_zero_fp {
669
  bool isValue(const APFloat &C) { return C.isPosZero(); }
670
};
671
/// Match a floating-point positive zero.
672
/// For vectors, this includes constants with undefined elements.
673
inline cstfp_pred_ty<is_pos_zero_fp> m_PosZeroFP() {
674
  return cstfp_pred_ty<is_pos_zero_fp>();
675
}
676
 
677
struct is_neg_zero_fp {
678
  bool isValue(const APFloat &C) { return C.isNegZero(); }
679
};
680
/// Match a floating-point negative zero.
681
/// For vectors, this includes constants with undefined elements.
682
inline cstfp_pred_ty<is_neg_zero_fp> m_NegZeroFP() {
683
  return cstfp_pred_ty<is_neg_zero_fp>();
684
}
685
 
686
struct is_non_zero_fp {
687
  bool isValue(const APFloat &C) { return C.isNonZero(); }
688
};
689
/// Match a floating-point non-zero.
690
/// For vectors, this includes constants with undefined elements.
691
inline cstfp_pred_ty<is_non_zero_fp> m_NonZeroFP() {
692
  return cstfp_pred_ty<is_non_zero_fp>();
693
}
694
 
695
///////////////////////////////////////////////////////////////////////////////
696
 
697
template <typename Class> struct bind_ty {
698
  Class *&VR;
699
 
700
  bind_ty(Class *&V) : VR(V) {}
701
 
702
  template <typename ITy> bool match(ITy *V) {
703
    if (auto *CV = dyn_cast<Class>(V)) {
704
      VR = CV;
705
      return true;
706
    }
707
    return false;
708
  }
709
};
710
 
711
/// Match a value, capturing it if we match.
712
inline bind_ty<Value> m_Value(Value *&V) { return V; }
713
inline bind_ty<const Value> m_Value(const Value *&V) { return V; }
714
 
715
/// Match an instruction, capturing it if we match.
716
inline bind_ty<Instruction> m_Instruction(Instruction *&I) { return I; }
717
/// Match a unary operator, capturing it if we match.
718
inline bind_ty<UnaryOperator> m_UnOp(UnaryOperator *&I) { return I; }
719
/// Match a binary operator, capturing it if we match.
720
inline bind_ty<BinaryOperator> m_BinOp(BinaryOperator *&I) { return I; }
721
/// Match a with overflow intrinsic, capturing it if we match.
722
inline bind_ty<WithOverflowInst> m_WithOverflowInst(WithOverflowInst *&I) {
723
  return I;
724
}
725
inline bind_ty<const WithOverflowInst>
726
m_WithOverflowInst(const WithOverflowInst *&I) {
727
  return I;
728
}
729
 
730
/// Match a Constant, capturing the value if we match.
731
inline bind_ty<Constant> m_Constant(Constant *&C) { return C; }
732
 
733
/// Match a ConstantInt, capturing the value if we match.
734
inline bind_ty<ConstantInt> m_ConstantInt(ConstantInt *&CI) { return CI; }
735
 
736
/// Match a ConstantFP, capturing the value if we match.
737
inline bind_ty<ConstantFP> m_ConstantFP(ConstantFP *&C) { return C; }
738
 
739
/// Match a ConstantExpr, capturing the value if we match.
740
inline bind_ty<ConstantExpr> m_ConstantExpr(ConstantExpr *&C) { return C; }
741
 
742
/// Match a basic block value, capturing it if we match.
743
inline bind_ty<BasicBlock> m_BasicBlock(BasicBlock *&V) { return V; }
744
inline bind_ty<const BasicBlock> m_BasicBlock(const BasicBlock *&V) {
745
  return V;
746
}
747
 
748
/// Match an arbitrary immediate Constant and ignore it.
749
inline match_combine_and<class_match<Constant>,
750
                         match_unless<constantexpr_match>>
751
m_ImmConstant() {
752
  return m_CombineAnd(m_Constant(), m_Unless(m_ConstantExpr()));
753
}
754
 
755
/// Match an immediate Constant, capturing the value if we match.
756
inline match_combine_and<bind_ty<Constant>,
757
                         match_unless<constantexpr_match>>
758
m_ImmConstant(Constant *&C) {
759
  return m_CombineAnd(m_Constant(C), m_Unless(m_ConstantExpr()));
760
}
761
 
762
/// Match a specified Value*.
763
struct specificval_ty {
764
  const Value *Val;
765
 
766
  specificval_ty(const Value *V) : Val(V) {}
767
 
768
  template <typename ITy> bool match(ITy *V) { return V == Val; }
769
};
770
 
771
/// Match if we have a specific specified value.
772
inline specificval_ty m_Specific(const Value *V) { return V; }
773
 
774
/// Stores a reference to the Value *, not the Value * itself,
775
/// thus can be used in commutative matchers.
776
template <typename Class> struct deferredval_ty {
777
  Class *const &Val;
778
 
779
  deferredval_ty(Class *const &V) : Val(V) {}
780
 
781
  template <typename ITy> bool match(ITy *const V) { return V == Val; }
782
};
783
 
784
/// Like m_Specific(), but works if the specific value to match is determined
785
/// as part of the same match() expression. For example:
786
/// m_Add(m_Value(X), m_Specific(X)) is incorrect, because m_Specific() will
787
/// bind X before the pattern match starts.
788
/// m_Add(m_Value(X), m_Deferred(X)) is correct, and will check against
789
/// whichever value m_Value(X) populated.
790
inline deferredval_ty<Value> m_Deferred(Value *const &V) { return V; }
791
inline deferredval_ty<const Value> m_Deferred(const Value *const &V) {
792
  return V;
793
}
794
 
795
/// Match a specified floating point value or vector of all elements of
796
/// that value.
797
struct specific_fpval {
798
  double Val;
799
 
800
  specific_fpval(double V) : Val(V) {}
801
 
802
  template <typename ITy> bool match(ITy *V) {
803
    if (const auto *CFP = dyn_cast<ConstantFP>(V))
804
      return CFP->isExactlyValue(Val);
805
    if (V->getType()->isVectorTy())
806
      if (const auto *C = dyn_cast<Constant>(V))
807
        if (auto *CFP = dyn_cast_or_null<ConstantFP>(C->getSplatValue()))
808
          return CFP->isExactlyValue(Val);
809
    return false;
810
  }
811
};
812
 
813
/// Match a specific floating point value or vector with all elements
814
/// equal to the value.
815
inline specific_fpval m_SpecificFP(double V) { return specific_fpval(V); }
816
 
817
/// Match a float 1.0 or vector with all elements equal to 1.0.
818
inline specific_fpval m_FPOne() { return m_SpecificFP(1.0); }
819
 
820
struct bind_const_intval_ty {
821
  uint64_t &VR;
822
 
823
  bind_const_intval_ty(uint64_t &V) : VR(V) {}
824
 
825
  template <typename ITy> bool match(ITy *V) {
826
    if (const auto *CV = dyn_cast<ConstantInt>(V))
827
      if (CV->getValue().ule(UINT64_MAX)) {
828
        VR = CV->getZExtValue();
829
        return true;
830
      }
831
    return false;
832
  }
833
};
834
 
835
/// Match a specified integer value or vector of all elements of that
836
/// value.
837
template <bool AllowUndefs> struct specific_intval {
838
  APInt Val;
839
 
840
  specific_intval(APInt V) : Val(std::move(V)) {}
841
 
842
  template <typename ITy> bool match(ITy *V) {
843
    const auto *CI = dyn_cast<ConstantInt>(V);
844
    if (!CI && V->getType()->isVectorTy())
845
      if (const auto *C = dyn_cast<Constant>(V))
846
        CI = dyn_cast_or_null<ConstantInt>(C->getSplatValue(AllowUndefs));
847
 
848
    return CI && APInt::isSameValue(CI->getValue(), Val);
849
  }
850
};
851
 
852
/// Match a specific integer value or vector with all elements equal to
853
/// the value.
854
inline specific_intval<false> m_SpecificInt(APInt V) {
855
  return specific_intval<false>(std::move(V));
856
}
857
 
858
inline specific_intval<false> m_SpecificInt(uint64_t V) {
859
  return m_SpecificInt(APInt(64, V));
860
}
861
 
862
inline specific_intval<true> m_SpecificIntAllowUndef(APInt V) {
863
  return specific_intval<true>(std::move(V));
864
}
865
 
866
inline specific_intval<true> m_SpecificIntAllowUndef(uint64_t V) {
867
  return m_SpecificIntAllowUndef(APInt(64, V));
868
}
869
 
870
/// Match a ConstantInt and bind to its value.  This does not match
871
/// ConstantInts wider than 64-bits.
872
inline bind_const_intval_ty m_ConstantInt(uint64_t &V) { return V; }
873
 
874
/// Match a specified basic block value.
875
struct specific_bbval {
876
  BasicBlock *Val;
877
 
878
  specific_bbval(BasicBlock *Val) : Val(Val) {}
879
 
880
  template <typename ITy> bool match(ITy *V) {
881
    const auto *BB = dyn_cast<BasicBlock>(V);
882
    return BB && BB == Val;
883
  }
884
};
885
 
886
/// Match a specific basic block value.
887
inline specific_bbval m_SpecificBB(BasicBlock *BB) {
888
  return specific_bbval(BB);
889
}
890
 
891
/// A commutative-friendly version of m_Specific().
892
inline deferredval_ty<BasicBlock> m_Deferred(BasicBlock *const &BB) {
893
  return BB;
894
}
895
inline deferredval_ty<const BasicBlock>
896
m_Deferred(const BasicBlock *const &BB) {
897
  return BB;
898
}
899
 
900
//===----------------------------------------------------------------------===//
901
// Matcher for any binary operator.
902
//
903
template <typename LHS_t, typename RHS_t, bool Commutable = false>
904
struct AnyBinaryOp_match {
905
  LHS_t L;
906
  RHS_t R;
907
 
908
  // The evaluation order is always stable, regardless of Commutability.
909
  // The LHS is always matched first.
910
  AnyBinaryOp_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {}
911
 
912
  template <typename OpTy> bool match(OpTy *V) {
913
    if (auto *I = dyn_cast<BinaryOperator>(V))
914
      return (L.match(I->getOperand(0)) && R.match(I->getOperand(1))) ||
915
             (Commutable && L.match(I->getOperand(1)) &&
916
              R.match(I->getOperand(0)));
917
    return false;
918
  }
919
};
920
 
921
template <typename LHS, typename RHS>
922
inline AnyBinaryOp_match<LHS, RHS> m_BinOp(const LHS &L, const RHS &R) {
923
  return AnyBinaryOp_match<LHS, RHS>(L, R);
924
}
925
 
926
//===----------------------------------------------------------------------===//
927
// Matcher for any unary operator.
928
// TODO fuse unary, binary matcher into n-ary matcher
929
//
930
template <typename OP_t> struct AnyUnaryOp_match {
931
  OP_t X;
932
 
933
  AnyUnaryOp_match(const OP_t &X) : X(X) {}
934
 
935
  template <typename OpTy> bool match(OpTy *V) {
936
    if (auto *I = dyn_cast<UnaryOperator>(V))
937
      return X.match(I->getOperand(0));
938
    return false;
939
  }
940
};
941
 
942
template <typename OP_t> inline AnyUnaryOp_match<OP_t> m_UnOp(const OP_t &X) {
943
  return AnyUnaryOp_match<OP_t>(X);
944
}
945
 
946
//===----------------------------------------------------------------------===//
947
// Matchers for specific binary operators.
948
//
949
 
950
template <typename LHS_t, typename RHS_t, unsigned Opcode,
951
          bool Commutable = false>
952
struct BinaryOp_match {
953
  LHS_t L;
954
  RHS_t R;
955
 
956
  // The evaluation order is always stable, regardless of Commutability.
957
  // The LHS is always matched first.
958
  BinaryOp_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {}
959
 
960
  template <typename OpTy> inline bool match(unsigned Opc, OpTy *V) {
961
    if (V->getValueID() == Value::InstructionVal + Opc) {
962
      auto *I = cast<BinaryOperator>(V);
963
      return (L.match(I->getOperand(0)) && R.match(I->getOperand(1))) ||
964
             (Commutable && L.match(I->getOperand(1)) &&
965
              R.match(I->getOperand(0)));
966
    }
967
    if (auto *CE = dyn_cast<ConstantExpr>(V))
968
      return CE->getOpcode() == Opc &&
969
             ((L.match(CE->getOperand(0)) && R.match(CE->getOperand(1))) ||
970
              (Commutable && L.match(CE->getOperand(1)) &&
971
               R.match(CE->getOperand(0))));
972
    return false;
973
  }
974
 
975
  template <typename OpTy> bool match(OpTy *V) { return match(Opcode, V); }
976
};
977
 
978
template <typename LHS, typename RHS>
979
inline BinaryOp_match<LHS, RHS, Instruction::Add> m_Add(const LHS &L,
980
                                                        const RHS &R) {
981
  return BinaryOp_match<LHS, RHS, Instruction::Add>(L, R);
982
}
983
 
984
template <typename LHS, typename RHS>
985
inline BinaryOp_match<LHS, RHS, Instruction::FAdd> m_FAdd(const LHS &L,
986
                                                          const RHS &R) {
987
  return BinaryOp_match<LHS, RHS, Instruction::FAdd>(L, R);
988
}
989
 
990
template <typename LHS, typename RHS>
991
inline BinaryOp_match<LHS, RHS, Instruction::Sub> m_Sub(const LHS &L,
992
                                                        const RHS &R) {
993
  return BinaryOp_match<LHS, RHS, Instruction::Sub>(L, R);
994
}
995
 
996
template <typename LHS, typename RHS>
997
inline BinaryOp_match<LHS, RHS, Instruction::FSub> m_FSub(const LHS &L,
998
                                                          const RHS &R) {
999
  return BinaryOp_match<LHS, RHS, Instruction::FSub>(L, R);
1000
}
1001
 
1002
template <typename Op_t> struct FNeg_match {
1003
  Op_t X;
1004
 
1005
  FNeg_match(const Op_t &Op) : X(Op) {}
1006
  template <typename OpTy> bool match(OpTy *V) {
1007
    auto *FPMO = dyn_cast<FPMathOperator>(V);
1008
    if (!FPMO)
1009
      return false;
1010
 
1011
    if (FPMO->getOpcode() == Instruction::FNeg)
1012
      return X.match(FPMO->getOperand(0));
1013
 
1014
    if (FPMO->getOpcode() == Instruction::FSub) {
1015
      if (FPMO->hasNoSignedZeros()) {
1016
        // With 'nsz', any zero goes.
1017
        if (!cstfp_pred_ty<is_any_zero_fp>().match(FPMO->getOperand(0)))
1018
          return false;
1019
      } else {
1020
        // Without 'nsz', we need fsub -0.0, X exactly.
1021
        if (!cstfp_pred_ty<is_neg_zero_fp>().match(FPMO->getOperand(0)))
1022
          return false;
1023
      }
1024
 
1025
      return X.match(FPMO->getOperand(1));
1026
    }
1027
 
1028
    return false;
1029
  }
1030
};
1031
 
1032
/// Match 'fneg X' as 'fsub -0.0, X'.
1033
template <typename OpTy> inline FNeg_match<OpTy> m_FNeg(const OpTy &X) {
1034
  return FNeg_match<OpTy>(X);
1035
}
1036
 
1037
/// Match 'fneg X' as 'fsub +-0.0, X'.
1038
template <typename RHS>
1039
inline BinaryOp_match<cstfp_pred_ty<is_any_zero_fp>, RHS, Instruction::FSub>
1040
m_FNegNSZ(const RHS &X) {
1041
  return m_FSub(m_AnyZeroFP(), X);
1042
}
1043
 
1044
template <typename LHS, typename RHS>
1045
inline BinaryOp_match<LHS, RHS, Instruction::Mul> m_Mul(const LHS &L,
1046
                                                        const RHS &R) {
1047
  return BinaryOp_match<LHS, RHS, Instruction::Mul>(L, R);
1048
}
1049
 
1050
template <typename LHS, typename RHS>
1051
inline BinaryOp_match<LHS, RHS, Instruction::FMul> m_FMul(const LHS &L,
1052
                                                          const RHS &R) {
1053
  return BinaryOp_match<LHS, RHS, Instruction::FMul>(L, R);
1054
}
1055
 
1056
template <typename LHS, typename RHS>
1057
inline BinaryOp_match<LHS, RHS, Instruction::UDiv> m_UDiv(const LHS &L,
1058
                                                          const RHS &R) {
1059
  return BinaryOp_match<LHS, RHS, Instruction::UDiv>(L, R);
1060
}
1061
 
1062
template <typename LHS, typename RHS>
1063
inline BinaryOp_match<LHS, RHS, Instruction::SDiv> m_SDiv(const LHS &L,
1064
                                                          const RHS &R) {
1065
  return BinaryOp_match<LHS, RHS, Instruction::SDiv>(L, R);
1066
}
1067
 
1068
template <typename LHS, typename RHS>
1069
inline BinaryOp_match<LHS, RHS, Instruction::FDiv> m_FDiv(const LHS &L,
1070
                                                          const RHS &R) {
1071
  return BinaryOp_match<LHS, RHS, Instruction::FDiv>(L, R);
1072
}
1073
 
1074
template <typename LHS, typename RHS>
1075
inline BinaryOp_match<LHS, RHS, Instruction::URem> m_URem(const LHS &L,
1076
                                                          const RHS &R) {
1077
  return BinaryOp_match<LHS, RHS, Instruction::URem>(L, R);
1078
}
1079
 
1080
template <typename LHS, typename RHS>
1081
inline BinaryOp_match<LHS, RHS, Instruction::SRem> m_SRem(const LHS &L,
1082
                                                          const RHS &R) {
1083
  return BinaryOp_match<LHS, RHS, Instruction::SRem>(L, R);
1084
}
1085
 
1086
template <typename LHS, typename RHS>
1087
inline BinaryOp_match<LHS, RHS, Instruction::FRem> m_FRem(const LHS &L,
1088
                                                          const RHS &R) {
1089
  return BinaryOp_match<LHS, RHS, Instruction::FRem>(L, R);
1090
}
1091
 
1092
template <typename LHS, typename RHS>
1093
inline BinaryOp_match<LHS, RHS, Instruction::And> m_And(const LHS &L,
1094
                                                        const RHS &R) {
1095
  return BinaryOp_match<LHS, RHS, Instruction::And>(L, R);
1096
}
1097
 
1098
template <typename LHS, typename RHS>
1099
inline BinaryOp_match<LHS, RHS, Instruction::Or> m_Or(const LHS &L,
1100
                                                      const RHS &R) {
1101
  return BinaryOp_match<LHS, RHS, Instruction::Or>(L, R);
1102
}
1103
 
1104
template <typename LHS, typename RHS>
1105
inline BinaryOp_match<LHS, RHS, Instruction::Xor> m_Xor(const LHS &L,
1106
                                                        const RHS &R) {
1107
  return BinaryOp_match<LHS, RHS, Instruction::Xor>(L, R);
1108
}
1109
 
1110
template <typename LHS, typename RHS>
1111
inline BinaryOp_match<LHS, RHS, Instruction::Shl> m_Shl(const LHS &L,
1112
                                                        const RHS &R) {
1113
  return BinaryOp_match<LHS, RHS, Instruction::Shl>(L, R);
1114
}
1115
 
1116
template <typename LHS, typename RHS>
1117
inline BinaryOp_match<LHS, RHS, Instruction::LShr> m_LShr(const LHS &L,
1118
                                                          const RHS &R) {
1119
  return BinaryOp_match<LHS, RHS, Instruction::LShr>(L, R);
1120
}
1121
 
1122
template <typename LHS, typename RHS>
1123
inline BinaryOp_match<LHS, RHS, Instruction::AShr> m_AShr(const LHS &L,
1124
                                                          const RHS &R) {
1125
  return BinaryOp_match<LHS, RHS, Instruction::AShr>(L, R);
1126
}
1127
 
1128
template <typename LHS_t, typename RHS_t, unsigned Opcode,
1129
          unsigned WrapFlags = 0>
1130
struct OverflowingBinaryOp_match {
1131
  LHS_t L;
1132
  RHS_t R;
1133
 
1134
  OverflowingBinaryOp_match(const LHS_t &LHS, const RHS_t &RHS)
1135
      : L(LHS), R(RHS) {}
1136
 
1137
  template <typename OpTy> bool match(OpTy *V) {
1138
    if (auto *Op = dyn_cast<OverflowingBinaryOperator>(V)) {
1139
      if (Op->getOpcode() != Opcode)
1140
        return false;
1141
      if ((WrapFlags & OverflowingBinaryOperator::NoUnsignedWrap) &&
1142
          !Op->hasNoUnsignedWrap())
1143
        return false;
1144
      if ((WrapFlags & OverflowingBinaryOperator::NoSignedWrap) &&
1145
          !Op->hasNoSignedWrap())
1146
        return false;
1147
      return L.match(Op->getOperand(0)) && R.match(Op->getOperand(1));
1148
    }
1149
    return false;
1150
  }
1151
};
1152
 
1153
template <typename LHS, typename RHS>
1154
inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Add,
1155
                                 OverflowingBinaryOperator::NoSignedWrap>
1156
m_NSWAdd(const LHS &L, const RHS &R) {
1157
  return OverflowingBinaryOp_match<LHS, RHS, Instruction::Add,
1158
                                   OverflowingBinaryOperator::NoSignedWrap>(L,
1159
                                                                            R);
1160
}
1161
template <typename LHS, typename RHS>
1162
inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Sub,
1163
                                 OverflowingBinaryOperator::NoSignedWrap>
1164
m_NSWSub(const LHS &L, const RHS &R) {
1165
  return OverflowingBinaryOp_match<LHS, RHS, Instruction::Sub,
1166
                                   OverflowingBinaryOperator::NoSignedWrap>(L,
1167
                                                                            R);
1168
}
1169
template <typename LHS, typename RHS>
1170
inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Mul,
1171
                                 OverflowingBinaryOperator::NoSignedWrap>
1172
m_NSWMul(const LHS &L, const RHS &R) {
1173
  return OverflowingBinaryOp_match<LHS, RHS, Instruction::Mul,
1174
                                   OverflowingBinaryOperator::NoSignedWrap>(L,
1175
                                                                            R);
1176
}
1177
template <typename LHS, typename RHS>
1178
inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Shl,
1179
                                 OverflowingBinaryOperator::NoSignedWrap>
1180
m_NSWShl(const LHS &L, const RHS &R) {
1181
  return OverflowingBinaryOp_match<LHS, RHS, Instruction::Shl,
1182
                                   OverflowingBinaryOperator::NoSignedWrap>(L,
1183
                                                                            R);
1184
}
1185
 
1186
template <typename LHS, typename RHS>
1187
inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Add,
1188
                                 OverflowingBinaryOperator::NoUnsignedWrap>
1189
m_NUWAdd(const LHS &L, const RHS &R) {
1190
  return OverflowingBinaryOp_match<LHS, RHS, Instruction::Add,
1191
                                   OverflowingBinaryOperator::NoUnsignedWrap>(
1192
      L, R);
1193
}
1194
template <typename LHS, typename RHS>
1195
inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Sub,
1196
                                 OverflowingBinaryOperator::NoUnsignedWrap>
1197
m_NUWSub(const LHS &L, const RHS &R) {
1198
  return OverflowingBinaryOp_match<LHS, RHS, Instruction::Sub,
1199
                                   OverflowingBinaryOperator::NoUnsignedWrap>(
1200
      L, R);
1201
}
1202
template <typename LHS, typename RHS>
1203
inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Mul,
1204
                                 OverflowingBinaryOperator::NoUnsignedWrap>
1205
m_NUWMul(const LHS &L, const RHS &R) {
1206
  return OverflowingBinaryOp_match<LHS, RHS, Instruction::Mul,
1207
                                   OverflowingBinaryOperator::NoUnsignedWrap>(
1208
      L, R);
1209
}
1210
template <typename LHS, typename RHS>
1211
inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Shl,
1212
                                 OverflowingBinaryOperator::NoUnsignedWrap>
1213
m_NUWShl(const LHS &L, const RHS &R) {
1214
  return OverflowingBinaryOp_match<LHS, RHS, Instruction::Shl,
1215
                                   OverflowingBinaryOperator::NoUnsignedWrap>(
1216
      L, R);
1217
}
1218
 
1219
template <typename LHS_t, typename RHS_t, bool Commutable = false>
1220
struct SpecificBinaryOp_match
1221
    : public BinaryOp_match<LHS_t, RHS_t, 0, Commutable> {
1222
  unsigned Opcode;
1223
 
1224
  SpecificBinaryOp_match(unsigned Opcode, const LHS_t &LHS, const RHS_t &RHS)
1225
      : BinaryOp_match<LHS_t, RHS_t, 0, Commutable>(LHS, RHS), Opcode(Opcode) {}
1226
 
1227
  template <typename OpTy> bool match(OpTy *V) {
1228
    return BinaryOp_match<LHS_t, RHS_t, 0, Commutable>::match(Opcode, V);
1229
  }
1230
};
1231
 
1232
/// Matches a specific opcode.
1233
template <typename LHS, typename RHS>
1234
inline SpecificBinaryOp_match<LHS, RHS> m_BinOp(unsigned Opcode, const LHS &L,
1235
                                                const RHS &R) {
1236
  return SpecificBinaryOp_match<LHS, RHS>(Opcode, L, R);
1237
}
1238
 
1239
//===----------------------------------------------------------------------===//
1240
// Class that matches a group of binary opcodes.
1241
//
1242
template <typename LHS_t, typename RHS_t, typename Predicate>
1243
struct BinOpPred_match : Predicate {
1244
  LHS_t L;
1245
  RHS_t R;
1246
 
1247
  BinOpPred_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {}
1248
 
1249
  template <typename OpTy> bool match(OpTy *V) {
1250
    if (auto *I = dyn_cast<Instruction>(V))
1251
      return this->isOpType(I->getOpcode()) && L.match(I->getOperand(0)) &&
1252
             R.match(I->getOperand(1));
1253
    if (auto *CE = dyn_cast<ConstantExpr>(V))
1254
      return this->isOpType(CE->getOpcode()) && L.match(CE->getOperand(0)) &&
1255
             R.match(CE->getOperand(1));
1256
    return false;
1257
  }
1258
};
1259
 
1260
struct is_shift_op {
1261
  bool isOpType(unsigned Opcode) { return Instruction::isShift(Opcode); }
1262
};
1263
 
1264
struct is_right_shift_op {
1265
  bool isOpType(unsigned Opcode) {
1266
    return Opcode == Instruction::LShr || Opcode == Instruction::AShr;
1267
  }
1268
};
1269
 
1270
struct is_logical_shift_op {
1271
  bool isOpType(unsigned Opcode) {
1272
    return Opcode == Instruction::LShr || Opcode == Instruction::Shl;
1273
  }
1274
};
1275
 
1276
struct is_bitwiselogic_op {
1277
  bool isOpType(unsigned Opcode) {
1278
    return Instruction::isBitwiseLogicOp(Opcode);
1279
  }
1280
};
1281
 
1282
struct is_idiv_op {
1283
  bool isOpType(unsigned Opcode) {
1284
    return Opcode == Instruction::SDiv || Opcode == Instruction::UDiv;
1285
  }
1286
};
1287
 
1288
struct is_irem_op {
1289
  bool isOpType(unsigned Opcode) {
1290
    return Opcode == Instruction::SRem || Opcode == Instruction::URem;
1291
  }
1292
};
1293
 
1294
/// Matches shift operations.
1295
template <typename LHS, typename RHS>
1296
inline BinOpPred_match<LHS, RHS, is_shift_op> m_Shift(const LHS &L,
1297
                                                      const RHS &R) {
1298
  return BinOpPred_match<LHS, RHS, is_shift_op>(L, R);
1299
}
1300
 
1301
/// Matches logical shift operations.
1302
template <typename LHS, typename RHS>
1303
inline BinOpPred_match<LHS, RHS, is_right_shift_op> m_Shr(const LHS &L,
1304
                                                          const RHS &R) {
1305
  return BinOpPred_match<LHS, RHS, is_right_shift_op>(L, R);
1306
}
1307
 
1308
/// Matches logical shift operations.
1309
template <typename LHS, typename RHS>
1310
inline BinOpPred_match<LHS, RHS, is_logical_shift_op>
1311
m_LogicalShift(const LHS &L, const RHS &R) {
1312
  return BinOpPred_match<LHS, RHS, is_logical_shift_op>(L, R);
1313
}
1314
 
1315
/// Matches bitwise logic operations.
1316
template <typename LHS, typename RHS>
1317
inline BinOpPred_match<LHS, RHS, is_bitwiselogic_op>
1318
m_BitwiseLogic(const LHS &L, const RHS &R) {
1319
  return BinOpPred_match<LHS, RHS, is_bitwiselogic_op>(L, R);
1320
}
1321
 
1322
/// Matches integer division operations.
1323
template <typename LHS, typename RHS>
1324
inline BinOpPred_match<LHS, RHS, is_idiv_op> m_IDiv(const LHS &L,
1325
                                                    const RHS &R) {
1326
  return BinOpPred_match<LHS, RHS, is_idiv_op>(L, R);
1327
}
1328
 
1329
/// Matches integer remainder operations.
1330
template <typename LHS, typename RHS>
1331
inline BinOpPred_match<LHS, RHS, is_irem_op> m_IRem(const LHS &L,
1332
                                                    const RHS &R) {
1333
  return BinOpPred_match<LHS, RHS, is_irem_op>(L, R);
1334
}
1335
 
1336
//===----------------------------------------------------------------------===//
1337
// Class that matches exact binary ops.
1338
//
1339
template <typename SubPattern_t> struct Exact_match {
1340
  SubPattern_t SubPattern;
1341
 
1342
  Exact_match(const SubPattern_t &SP) : SubPattern(SP) {}
1343
 
1344
  template <typename OpTy> bool match(OpTy *V) {
1345
    if (auto *PEO = dyn_cast<PossiblyExactOperator>(V))
1346
      return PEO->isExact() && SubPattern.match(V);
1347
    return false;
1348
  }
1349
};
1350
 
1351
template <typename T> inline Exact_match<T> m_Exact(const T &SubPattern) {
1352
  return SubPattern;
1353
}
1354
 
1355
//===----------------------------------------------------------------------===//
1356
// Matchers for CmpInst classes
1357
//
1358
 
1359
template <typename LHS_t, typename RHS_t, typename Class, typename PredicateTy,
1360
          bool Commutable = false>
1361
struct CmpClass_match {
1362
  PredicateTy &Predicate;
1363
  LHS_t L;
1364
  RHS_t R;
1365
 
1366
  // The evaluation order is always stable, regardless of Commutability.
1367
  // The LHS is always matched first.
1368
  CmpClass_match(PredicateTy &Pred, const LHS_t &LHS, const RHS_t &RHS)
1369
      : Predicate(Pred), L(LHS), R(RHS) {}
1370
 
1371
  template <typename OpTy> bool match(OpTy *V) {
1372
    if (auto *I = dyn_cast<Class>(V)) {
1373
      if (L.match(I->getOperand(0)) && R.match(I->getOperand(1))) {
1374
        Predicate = I->getPredicate();
1375
        return true;
1376
      } else if (Commutable && L.match(I->getOperand(1)) &&
1377
                 R.match(I->getOperand(0))) {
1378
        Predicate = I->getSwappedPredicate();
1379
        return true;
1380
      }
1381
    }
1382
    return false;
1383
  }
1384
};
1385
 
1386
template <typename LHS, typename RHS>
1387
inline CmpClass_match<LHS, RHS, CmpInst, CmpInst::Predicate>
1388
m_Cmp(CmpInst::Predicate &Pred, const LHS &L, const RHS &R) {
1389
  return CmpClass_match<LHS, RHS, CmpInst, CmpInst::Predicate>(Pred, L, R);
1390
}
1391
 
1392
template <typename LHS, typename RHS>
1393
inline CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate>
1394
m_ICmp(ICmpInst::Predicate &Pred, const LHS &L, const RHS &R) {
1395
  return CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate>(Pred, L, R);
1396
}
1397
 
1398
template <typename LHS, typename RHS>
1399
inline CmpClass_match<LHS, RHS, FCmpInst, FCmpInst::Predicate>
1400
m_FCmp(FCmpInst::Predicate &Pred, const LHS &L, const RHS &R) {
1401
  return CmpClass_match<LHS, RHS, FCmpInst, FCmpInst::Predicate>(Pred, L, R);
1402
}
1403
 
1404
//===----------------------------------------------------------------------===//
1405
// Matchers for instructions with a given opcode and number of operands.
1406
//
1407
 
1408
/// Matches instructions with Opcode and three operands.
1409
template <typename T0, unsigned Opcode> struct OneOps_match {
1410
  T0 Op1;
1411
 
1412
  OneOps_match(const T0 &Op1) : Op1(Op1) {}
1413
 
1414
  template <typename OpTy> bool match(OpTy *V) {
1415
    if (V->getValueID() == Value::InstructionVal + Opcode) {
1416
      auto *I = cast<Instruction>(V);
1417
      return Op1.match(I->getOperand(0));
1418
    }
1419
    return false;
1420
  }
1421
};
1422
 
1423
/// Matches instructions with Opcode and three operands.
1424
template <typename T0, typename T1, unsigned Opcode> struct TwoOps_match {
1425
  T0 Op1;
1426
  T1 Op2;
1427
 
1428
  TwoOps_match(const T0 &Op1, const T1 &Op2) : Op1(Op1), Op2(Op2) {}
1429
 
1430
  template <typename OpTy> bool match(OpTy *V) {
1431
    if (V->getValueID() == Value::InstructionVal + Opcode) {
1432
      auto *I = cast<Instruction>(V);
1433
      return Op1.match(I->getOperand(0)) && Op2.match(I->getOperand(1));
1434
    }
1435
    return false;
1436
  }
1437
};
1438
 
1439
/// Matches instructions with Opcode and three operands.
1440
template <typename T0, typename T1, typename T2, unsigned Opcode>
1441
struct ThreeOps_match {
1442
  T0 Op1;
1443
  T1 Op2;
1444
  T2 Op3;
1445
 
1446
  ThreeOps_match(const T0 &Op1, const T1 &Op2, const T2 &Op3)
1447
      : Op1(Op1), Op2(Op2), Op3(Op3) {}
1448
 
1449
  template <typename OpTy> bool match(OpTy *V) {
1450
    if (V->getValueID() == Value::InstructionVal + Opcode) {
1451
      auto *I = cast<Instruction>(V);
1452
      return Op1.match(I->getOperand(0)) && Op2.match(I->getOperand(1)) &&
1453
             Op3.match(I->getOperand(2));
1454
    }
1455
    return false;
1456
  }
1457
};
1458
 
1459
/// Matches SelectInst.
1460
template <typename Cond, typename LHS, typename RHS>
1461
inline ThreeOps_match<Cond, LHS, RHS, Instruction::Select>
1462
m_Select(const Cond &C, const LHS &L, const RHS &R) {
1463
  return ThreeOps_match<Cond, LHS, RHS, Instruction::Select>(C, L, R);
1464
}
1465
 
1466
/// This matches a select of two constants, e.g.:
1467
/// m_SelectCst<-1, 0>(m_Value(V))
1468
template <int64_t L, int64_t R, typename Cond>
1469
inline ThreeOps_match<Cond, constantint_match<L>, constantint_match<R>,
1470
                      Instruction::Select>
1471
m_SelectCst(const Cond &C) {
1472
  return m_Select(C, m_ConstantInt<L>(), m_ConstantInt<R>());
1473
}
1474
 
1475
/// Matches FreezeInst.
1476
template <typename OpTy>
1477
inline OneOps_match<OpTy, Instruction::Freeze> m_Freeze(const OpTy &Op) {
1478
  return OneOps_match<OpTy, Instruction::Freeze>(Op);
1479
}
1480
 
1481
/// Matches InsertElementInst.
1482
template <typename Val_t, typename Elt_t, typename Idx_t>
1483
inline ThreeOps_match<Val_t, Elt_t, Idx_t, Instruction::InsertElement>
1484
m_InsertElt(const Val_t &Val, const Elt_t &Elt, const Idx_t &Idx) {
1485
  return ThreeOps_match<Val_t, Elt_t, Idx_t, Instruction::InsertElement>(
1486
      Val, Elt, Idx);
1487
}
1488
 
1489
/// Matches ExtractElementInst.
1490
template <typename Val_t, typename Idx_t>
1491
inline TwoOps_match<Val_t, Idx_t, Instruction::ExtractElement>
1492
m_ExtractElt(const Val_t &Val, const Idx_t &Idx) {
1493
  return TwoOps_match<Val_t, Idx_t, Instruction::ExtractElement>(Val, Idx);
1494
}
1495
 
1496
/// Matches shuffle.
1497
template <typename T0, typename T1, typename T2> struct Shuffle_match {
1498
  T0 Op1;
1499
  T1 Op2;
1500
  T2 Mask;
1501
 
1502
  Shuffle_match(const T0 &Op1, const T1 &Op2, const T2 &Mask)
1503
      : Op1(Op1), Op2(Op2), Mask(Mask) {}
1504
 
1505
  template <typename OpTy> bool match(OpTy *V) {
1506
    if (auto *I = dyn_cast<ShuffleVectorInst>(V)) {
1507
      return Op1.match(I->getOperand(0)) && Op2.match(I->getOperand(1)) &&
1508
             Mask.match(I->getShuffleMask());
1509
    }
1510
    return false;
1511
  }
1512
};
1513
 
1514
struct m_Mask {
1515
  ArrayRef<int> &MaskRef;
1516
  m_Mask(ArrayRef<int> &MaskRef) : MaskRef(MaskRef) {}
1517
  bool match(ArrayRef<int> Mask) {
1518
    MaskRef = Mask;
1519
    return true;
1520
  }
1521
};
1522
 
1523
struct m_ZeroMask {
1524
  bool match(ArrayRef<int> Mask) {
1525
    return all_of(Mask, [](int Elem) { return Elem == 0 || Elem == -1; });
1526
  }
1527
};
1528
 
1529
struct m_SpecificMask {
1530
  ArrayRef<int> &MaskRef;
1531
  m_SpecificMask(ArrayRef<int> &MaskRef) : MaskRef(MaskRef) {}
1532
  bool match(ArrayRef<int> Mask) { return MaskRef == Mask; }
1533
};
1534
 
1535
struct m_SplatOrUndefMask {
1536
  int &SplatIndex;
1537
  m_SplatOrUndefMask(int &SplatIndex) : SplatIndex(SplatIndex) {}
1538
  bool match(ArrayRef<int> Mask) {
1539
    auto First = find_if(Mask, [](int Elem) { return Elem != -1; });
1540
    if (First == Mask.end())
1541
      return false;
1542
    SplatIndex = *First;
1543
    return all_of(Mask,
1544
                  [First](int Elem) { return Elem == *First || Elem == -1; });
1545
  }
1546
};
1547
 
1548
/// Matches ShuffleVectorInst independently of mask value.
1549
template <typename V1_t, typename V2_t>
1550
inline TwoOps_match<V1_t, V2_t, Instruction::ShuffleVector>
1551
m_Shuffle(const V1_t &v1, const V2_t &v2) {
1552
  return TwoOps_match<V1_t, V2_t, Instruction::ShuffleVector>(v1, v2);
1553
}
1554
 
1555
template <typename V1_t, typename V2_t, typename Mask_t>
1556
inline Shuffle_match<V1_t, V2_t, Mask_t>
1557
m_Shuffle(const V1_t &v1, const V2_t &v2, const Mask_t &mask) {
1558
  return Shuffle_match<V1_t, V2_t, Mask_t>(v1, v2, mask);
1559
}
1560
 
1561
/// Matches LoadInst.
1562
template <typename OpTy>
1563
inline OneOps_match<OpTy, Instruction::Load> m_Load(const OpTy &Op) {
1564
  return OneOps_match<OpTy, Instruction::Load>(Op);
1565
}
1566
 
1567
/// Matches StoreInst.
1568
template <typename ValueOpTy, typename PointerOpTy>
1569
inline TwoOps_match<ValueOpTy, PointerOpTy, Instruction::Store>
1570
m_Store(const ValueOpTy &ValueOp, const PointerOpTy &PointerOp) {
1571
  return TwoOps_match<ValueOpTy, PointerOpTy, Instruction::Store>(ValueOp,
1572
                                                                  PointerOp);
1573
}
1574
 
1575
//===----------------------------------------------------------------------===//
1576
// Matchers for CastInst classes
1577
//
1578
 
1579
template <typename Op_t, unsigned Opcode> struct CastClass_match {
1580
  Op_t Op;
1581
 
1582
  CastClass_match(const Op_t &OpMatch) : Op(OpMatch) {}
1583
 
1584
  template <typename OpTy> bool match(OpTy *V) {
1585
    if (auto *O = dyn_cast<Operator>(V))
1586
      return O->getOpcode() == Opcode && Op.match(O->getOperand(0));
1587
    return false;
1588
  }
1589
};
1590
 
1591
/// Matches BitCast.
1592
template <typename OpTy>
1593
inline CastClass_match<OpTy, Instruction::BitCast> m_BitCast(const OpTy &Op) {
1594
  return CastClass_match<OpTy, Instruction::BitCast>(Op);
1595
}
1596
 
1597
/// Matches PtrToInt.
1598
template <typename OpTy>
1599
inline CastClass_match<OpTy, Instruction::PtrToInt> m_PtrToInt(const OpTy &Op) {
1600
  return CastClass_match<OpTy, Instruction::PtrToInt>(Op);
1601
}
1602
 
1603
/// Matches IntToPtr.
1604
template <typename OpTy>
1605
inline CastClass_match<OpTy, Instruction::IntToPtr> m_IntToPtr(const OpTy &Op) {
1606
  return CastClass_match<OpTy, Instruction::IntToPtr>(Op);
1607
}
1608
 
1609
/// Matches Trunc.
1610
template <typename OpTy>
1611
inline CastClass_match<OpTy, Instruction::Trunc> m_Trunc(const OpTy &Op) {
1612
  return CastClass_match<OpTy, Instruction::Trunc>(Op);
1613
}
1614
 
1615
template <typename OpTy>
1616
inline match_combine_or<CastClass_match<OpTy, Instruction::Trunc>, OpTy>
1617
m_TruncOrSelf(const OpTy &Op) {
1618
  return m_CombineOr(m_Trunc(Op), Op);
1619
}
1620
 
1621
/// Matches SExt.
1622
template <typename OpTy>
1623
inline CastClass_match<OpTy, Instruction::SExt> m_SExt(const OpTy &Op) {
1624
  return CastClass_match<OpTy, Instruction::SExt>(Op);
1625
}
1626
 
1627
/// Matches ZExt.
1628
template <typename OpTy>
1629
inline CastClass_match<OpTy, Instruction::ZExt> m_ZExt(const OpTy &Op) {
1630
  return CastClass_match<OpTy, Instruction::ZExt>(Op);
1631
}
1632
 
1633
template <typename OpTy>
1634
inline match_combine_or<CastClass_match<OpTy, Instruction::ZExt>, OpTy>
1635
m_ZExtOrSelf(const OpTy &Op) {
1636
  return m_CombineOr(m_ZExt(Op), Op);
1637
}
1638
 
1639
template <typename OpTy>
1640
inline match_combine_or<CastClass_match<OpTy, Instruction::SExt>, OpTy>
1641
m_SExtOrSelf(const OpTy &Op) {
1642
  return m_CombineOr(m_SExt(Op), Op);
1643
}
1644
 
1645
template <typename OpTy>
1646
inline match_combine_or<CastClass_match<OpTy, Instruction::ZExt>,
1647
                        CastClass_match<OpTy, Instruction::SExt>>
1648
m_ZExtOrSExt(const OpTy &Op) {
1649
  return m_CombineOr(m_ZExt(Op), m_SExt(Op));
1650
}
1651
 
1652
template <typename OpTy>
1653
inline match_combine_or<
1654
    match_combine_or<CastClass_match<OpTy, Instruction::ZExt>,
1655
                     CastClass_match<OpTy, Instruction::SExt>>,
1656
    OpTy>
1657
m_ZExtOrSExtOrSelf(const OpTy &Op) {
1658
  return m_CombineOr(m_ZExtOrSExt(Op), Op);
1659
}
1660
 
1661
template <typename OpTy>
1662
inline CastClass_match<OpTy, Instruction::UIToFP> m_UIToFP(const OpTy &Op) {
1663
  return CastClass_match<OpTy, Instruction::UIToFP>(Op);
1664
}
1665
 
1666
template <typename OpTy>
1667
inline CastClass_match<OpTy, Instruction::SIToFP> m_SIToFP(const OpTy &Op) {
1668
  return CastClass_match<OpTy, Instruction::SIToFP>(Op);
1669
}
1670
 
1671
template <typename OpTy>
1672
inline CastClass_match<OpTy, Instruction::FPToUI> m_FPToUI(const OpTy &Op) {
1673
  return CastClass_match<OpTy, Instruction::FPToUI>(Op);
1674
}
1675
 
1676
template <typename OpTy>
1677
inline CastClass_match<OpTy, Instruction::FPToSI> m_FPToSI(const OpTy &Op) {
1678
  return CastClass_match<OpTy, Instruction::FPToSI>(Op);
1679
}
1680
 
1681
template <typename OpTy>
1682
inline CastClass_match<OpTy, Instruction::FPTrunc> m_FPTrunc(const OpTy &Op) {
1683
  return CastClass_match<OpTy, Instruction::FPTrunc>(Op);
1684
}
1685
 
1686
template <typename OpTy>
1687
inline CastClass_match<OpTy, Instruction::FPExt> m_FPExt(const OpTy &Op) {
1688
  return CastClass_match<OpTy, Instruction::FPExt>(Op);
1689
}
1690
 
1691
//===----------------------------------------------------------------------===//
1692
// Matchers for control flow.
1693
//
1694
 
1695
struct br_match {
1696
  BasicBlock *&Succ;
1697
 
1698
  br_match(BasicBlock *&Succ) : Succ(Succ) {}
1699
 
1700
  template <typename OpTy> bool match(OpTy *V) {
1701
    if (auto *BI = dyn_cast<BranchInst>(V))
1702
      if (BI->isUnconditional()) {
1703
        Succ = BI->getSuccessor(0);
1704
        return true;
1705
      }
1706
    return false;
1707
  }
1708
};
1709
 
1710
inline br_match m_UnconditionalBr(BasicBlock *&Succ) { return br_match(Succ); }
1711
 
1712
template <typename Cond_t, typename TrueBlock_t, typename FalseBlock_t>
1713
struct brc_match {
1714
  Cond_t Cond;
1715
  TrueBlock_t T;
1716
  FalseBlock_t F;
1717
 
1718
  brc_match(const Cond_t &C, const TrueBlock_t &t, const FalseBlock_t &f)
1719
      : Cond(C), T(t), F(f) {}
1720
 
1721
  template <typename OpTy> bool match(OpTy *V) {
1722
    if (auto *BI = dyn_cast<BranchInst>(V))
1723
      if (BI->isConditional() && Cond.match(BI->getCondition()))
1724
        return T.match(BI->getSuccessor(0)) && F.match(BI->getSuccessor(1));
1725
    return false;
1726
  }
1727
};
1728
 
1729
template <typename Cond_t>
1730
inline brc_match<Cond_t, bind_ty<BasicBlock>, bind_ty<BasicBlock>>
1731
m_Br(const Cond_t &C, BasicBlock *&T, BasicBlock *&F) {
1732
  return brc_match<Cond_t, bind_ty<BasicBlock>, bind_ty<BasicBlock>>(
1733
      C, m_BasicBlock(T), m_BasicBlock(F));
1734
}
1735
 
1736
template <typename Cond_t, typename TrueBlock_t, typename FalseBlock_t>
1737
inline brc_match<Cond_t, TrueBlock_t, FalseBlock_t>
1738
m_Br(const Cond_t &C, const TrueBlock_t &T, const FalseBlock_t &F) {
1739
  return brc_match<Cond_t, TrueBlock_t, FalseBlock_t>(C, T, F);
1740
}
1741
 
1742
//===----------------------------------------------------------------------===//
1743
// Matchers for max/min idioms, eg: "select (sgt x, y), x, y" -> smax(x,y).
1744
//
1745
 
1746
template <typename CmpInst_t, typename LHS_t, typename RHS_t, typename Pred_t,
1747
          bool Commutable = false>
1748
struct MaxMin_match {
1749
  using PredType = Pred_t;
1750
  LHS_t L;
1751
  RHS_t R;
1752
 
1753
  // The evaluation order is always stable, regardless of Commutability.
1754
  // The LHS is always matched first.
1755
  MaxMin_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {}
1756
 
1757
  template <typename OpTy> bool match(OpTy *V) {
1758
    if (auto *II = dyn_cast<IntrinsicInst>(V)) {
1759
      Intrinsic::ID IID = II->getIntrinsicID();
1760
      if ((IID == Intrinsic::smax && Pred_t::match(ICmpInst::ICMP_SGT)) ||
1761
          (IID == Intrinsic::smin && Pred_t::match(ICmpInst::ICMP_SLT)) ||
1762
          (IID == Intrinsic::umax && Pred_t::match(ICmpInst::ICMP_UGT)) ||
1763
          (IID == Intrinsic::umin && Pred_t::match(ICmpInst::ICMP_ULT))) {
1764
        Value *LHS = II->getOperand(0), *RHS = II->getOperand(1);
1765
        return (L.match(LHS) && R.match(RHS)) ||
1766
               (Commutable && L.match(RHS) && R.match(LHS));
1767
      }
1768
    }
1769
    // Look for "(x pred y) ? x : y" or "(x pred y) ? y : x".
1770
    auto *SI = dyn_cast<SelectInst>(V);
1771
    if (!SI)
1772
      return false;
1773
    auto *Cmp = dyn_cast<CmpInst_t>(SI->getCondition());
1774
    if (!Cmp)
1775
      return false;
1776
    // At this point we have a select conditioned on a comparison.  Check that
1777
    // it is the values returned by the select that are being compared.
1778
    auto *TrueVal = SI->getTrueValue();
1779
    auto *FalseVal = SI->getFalseValue();
1780
    auto *LHS = Cmp->getOperand(0);
1781
    auto *RHS = Cmp->getOperand(1);
1782
    if ((TrueVal != LHS || FalseVal != RHS) &&
1783
        (TrueVal != RHS || FalseVal != LHS))
1784
      return false;
1785
    typename CmpInst_t::Predicate Pred =
1786
        LHS == TrueVal ? Cmp->getPredicate() : Cmp->getInversePredicate();
1787
    // Does "(x pred y) ? x : y" represent the desired max/min operation?
1788
    if (!Pred_t::match(Pred))
1789
      return false;
1790
    // It does!  Bind the operands.
1791
    return (L.match(LHS) && R.match(RHS)) ||
1792
           (Commutable && L.match(RHS) && R.match(LHS));
1793
  }
1794
};
1795
 
1796
/// Helper class for identifying signed max predicates.
1797
struct smax_pred_ty {
1798
  static bool match(ICmpInst::Predicate Pred) {
1799
    return Pred == CmpInst::ICMP_SGT || Pred == CmpInst::ICMP_SGE;
1800
  }
1801
};
1802
 
1803
/// Helper class for identifying signed min predicates.
1804
struct smin_pred_ty {
1805
  static bool match(ICmpInst::Predicate Pred) {
1806
    return Pred == CmpInst::ICMP_SLT || Pred == CmpInst::ICMP_SLE;
1807
  }
1808
};
1809
 
1810
/// Helper class for identifying unsigned max predicates.
1811
struct umax_pred_ty {
1812
  static bool match(ICmpInst::Predicate Pred) {
1813
    return Pred == CmpInst::ICMP_UGT || Pred == CmpInst::ICMP_UGE;
1814
  }
1815
};
1816
 
1817
/// Helper class for identifying unsigned min predicates.
1818
struct umin_pred_ty {
1819
  static bool match(ICmpInst::Predicate Pred) {
1820
    return Pred == CmpInst::ICMP_ULT || Pred == CmpInst::ICMP_ULE;
1821
  }
1822
};
1823
 
1824
/// Helper class for identifying ordered max predicates.
1825
struct ofmax_pred_ty {
1826
  static bool match(FCmpInst::Predicate Pred) {
1827
    return Pred == CmpInst::FCMP_OGT || Pred == CmpInst::FCMP_OGE;
1828
  }
1829
};
1830
 
1831
/// Helper class for identifying ordered min predicates.
1832
struct ofmin_pred_ty {
1833
  static bool match(FCmpInst::Predicate Pred) {
1834
    return Pred == CmpInst::FCMP_OLT || Pred == CmpInst::FCMP_OLE;
1835
  }
1836
};
1837
 
1838
/// Helper class for identifying unordered max predicates.
1839
struct ufmax_pred_ty {
1840
  static bool match(FCmpInst::Predicate Pred) {
1841
    return Pred == CmpInst::FCMP_UGT || Pred == CmpInst::FCMP_UGE;
1842
  }
1843
};
1844
 
1845
/// Helper class for identifying unordered min predicates.
1846
struct ufmin_pred_ty {
1847
  static bool match(FCmpInst::Predicate Pred) {
1848
    return Pred == CmpInst::FCMP_ULT || Pred == CmpInst::FCMP_ULE;
1849
  }
1850
};
1851
 
1852
template <typename LHS, typename RHS>
1853
inline MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty> m_SMax(const LHS &L,
1854
                                                             const RHS &R) {
1855
  return MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty>(L, R);
1856
}
1857
 
1858
template <typename LHS, typename RHS>
1859
inline MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty> m_SMin(const LHS &L,
1860
                                                             const RHS &R) {
1861
  return MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty>(L, R);
1862
}
1863
 
1864
template <typename LHS, typename RHS>
1865
inline MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty> m_UMax(const LHS &L,
1866
                                                             const RHS &R) {
1867
  return MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty>(L, R);
1868
}
1869
 
1870
template <typename LHS, typename RHS>
1871
inline MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty> m_UMin(const LHS &L,
1872
                                                             const RHS &R) {
1873
  return MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty>(L, R);
1874
}
1875
 
1876
template <typename LHS, typename RHS>
1877
inline match_combine_or<
1878
    match_combine_or<MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty>,
1879
                     MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty>>,
1880
    match_combine_or<MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty>,
1881
                     MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty>>>
1882
m_MaxOrMin(const LHS &L, const RHS &R) {
1883
  return m_CombineOr(m_CombineOr(m_SMax(L, R), m_SMin(L, R)),
1884
                     m_CombineOr(m_UMax(L, R), m_UMin(L, R)));
1885
}
1886
 
1887
/// Match an 'ordered' floating point maximum function.
1888
/// Floating point has one special value 'NaN'. Therefore, there is no total
1889
/// order. However, if we can ignore the 'NaN' value (for example, because of a
1890
/// 'no-nans-float-math' flag) a combination of a fcmp and select has 'maximum'
1891
/// semantics. In the presence of 'NaN' we have to preserve the original
1892
/// select(fcmp(ogt/ge, L, R), L, R) semantics matched by this predicate.
1893
///
1894
///                         max(L, R)  iff L and R are not NaN
1895
///  m_OrdFMax(L, R) =      R          iff L or R are NaN
1896
template <typename LHS, typename RHS>
1897
inline MaxMin_match<FCmpInst, LHS, RHS, ofmax_pred_ty> m_OrdFMax(const LHS &L,
1898
                                                                 const RHS &R) {
1899
  return MaxMin_match<FCmpInst, LHS, RHS, ofmax_pred_ty>(L, R);
1900
}
1901
 
1902
/// Match an 'ordered' floating point minimum function.
1903
/// Floating point has one special value 'NaN'. Therefore, there is no total
1904
/// order. However, if we can ignore the 'NaN' value (for example, because of a
1905
/// 'no-nans-float-math' flag) a combination of a fcmp and select has 'minimum'
1906
/// semantics. In the presence of 'NaN' we have to preserve the original
1907
/// select(fcmp(olt/le, L, R), L, R) semantics matched by this predicate.
1908
///
1909
///                         min(L, R)  iff L and R are not NaN
1910
///  m_OrdFMin(L, R) =      R          iff L or R are NaN
1911
template <typename LHS, typename RHS>
1912
inline MaxMin_match<FCmpInst, LHS, RHS, ofmin_pred_ty> m_OrdFMin(const LHS &L,
1913
                                                                 const RHS &R) {
1914
  return MaxMin_match<FCmpInst, LHS, RHS, ofmin_pred_ty>(L, R);
1915
}
1916
 
1917
/// Match an 'unordered' floating point maximum function.
1918
/// Floating point has one special value 'NaN'. Therefore, there is no total
1919
/// order. However, if we can ignore the 'NaN' value (for example, because of a
1920
/// 'no-nans-float-math' flag) a combination of a fcmp and select has 'maximum'
1921
/// semantics. In the presence of 'NaN' we have to preserve the original
1922
/// select(fcmp(ugt/ge, L, R), L, R) semantics matched by this predicate.
1923
///
1924
///                         max(L, R)  iff L and R are not NaN
1925
///  m_UnordFMax(L, R) =    L          iff L or R are NaN
1926
template <typename LHS, typename RHS>
1927
inline MaxMin_match<FCmpInst, LHS, RHS, ufmax_pred_ty>
1928
m_UnordFMax(const LHS &L, const RHS &R) {
1929
  return MaxMin_match<FCmpInst, LHS, RHS, ufmax_pred_ty>(L, R);
1930
}
1931
 
1932
/// Match an 'unordered' floating point minimum function.
1933
/// Floating point has one special value 'NaN'. Therefore, there is no total
1934
/// order. However, if we can ignore the 'NaN' value (for example, because of a
1935
/// 'no-nans-float-math' flag) a combination of a fcmp and select has 'minimum'
1936
/// semantics. In the presence of 'NaN' we have to preserve the original
1937
/// select(fcmp(ult/le, L, R), L, R) semantics matched by this predicate.
1938
///
1939
///                          min(L, R)  iff L and R are not NaN
1940
///  m_UnordFMin(L, R) =     L          iff L or R are NaN
1941
template <typename LHS, typename RHS>
1942
inline MaxMin_match<FCmpInst, LHS, RHS, ufmin_pred_ty>
1943
m_UnordFMin(const LHS &L, const RHS &R) {
1944
  return MaxMin_match<FCmpInst, LHS, RHS, ufmin_pred_ty>(L, R);
1945
}
1946
 
1947
//===----------------------------------------------------------------------===//
1948
// Matchers for overflow check patterns: e.g. (a + b) u< a, (a ^ -1) <u b
1949
// Note that S might be matched to other instructions than AddInst.
1950
//
1951
 
1952
template <typename LHS_t, typename RHS_t, typename Sum_t>
1953
struct UAddWithOverflow_match {
1954
  LHS_t L;
1955
  RHS_t R;
1956
  Sum_t S;
1957
 
1958
  UAddWithOverflow_match(const LHS_t &L, const RHS_t &R, const Sum_t &S)
1959
      : L(L), R(R), S(S) {}
1960
 
1961
  template <typename OpTy> bool match(OpTy *V) {
1962
    Value *ICmpLHS, *ICmpRHS;
1963
    ICmpInst::Predicate Pred;
1964
    if (!m_ICmp(Pred, m_Value(ICmpLHS), m_Value(ICmpRHS)).match(V))
1965
      return false;
1966
 
1967
    Value *AddLHS, *AddRHS;
1968
    auto AddExpr = m_Add(m_Value(AddLHS), m_Value(AddRHS));
1969
 
1970
    // (a + b) u< a, (a + b) u< b
1971
    if (Pred == ICmpInst::ICMP_ULT)
1972
      if (AddExpr.match(ICmpLHS) && (ICmpRHS == AddLHS || ICmpRHS == AddRHS))
1973
        return L.match(AddLHS) && R.match(AddRHS) && S.match(ICmpLHS);
1974
 
1975
    // a >u (a + b), b >u (a + b)
1976
    if (Pred == ICmpInst::ICMP_UGT)
1977
      if (AddExpr.match(ICmpRHS) && (ICmpLHS == AddLHS || ICmpLHS == AddRHS))
1978
        return L.match(AddLHS) && R.match(AddRHS) && S.match(ICmpRHS);
1979
 
1980
    Value *Op1;
1981
    auto XorExpr = m_OneUse(m_Xor(m_Value(Op1), m_AllOnes()));
1982
    // (a ^ -1) <u b
1983
    if (Pred == ICmpInst::ICMP_ULT) {
1984
      if (XorExpr.match(ICmpLHS))
1985
        return L.match(Op1) && R.match(ICmpRHS) && S.match(ICmpLHS);
1986
    }
1987
    //  b > u (a ^ -1)
1988
    if (Pred == ICmpInst::ICMP_UGT) {
1989
      if (XorExpr.match(ICmpRHS))
1990
        return L.match(Op1) && R.match(ICmpLHS) && S.match(ICmpRHS);
1991
    }
1992
 
1993
    // Match special-case for increment-by-1.
1994
    if (Pred == ICmpInst::ICMP_EQ) {
1995
      // (a + 1) == 0
1996
      // (1 + a) == 0
1997
      if (AddExpr.match(ICmpLHS) && m_ZeroInt().match(ICmpRHS) &&
1998
          (m_One().match(AddLHS) || m_One().match(AddRHS)))
1999
        return L.match(AddLHS) && R.match(AddRHS) && S.match(ICmpLHS);
2000
      // 0 == (a + 1)
2001
      // 0 == (1 + a)
2002
      if (m_ZeroInt().match(ICmpLHS) && AddExpr.match(ICmpRHS) &&
2003
          (m_One().match(AddLHS) || m_One().match(AddRHS)))
2004
        return L.match(AddLHS) && R.match(AddRHS) && S.match(ICmpRHS);
2005
    }
2006
 
2007
    return false;
2008
  }
2009
};
2010
 
2011
/// Match an icmp instruction checking for unsigned overflow on addition.
2012
///
2013
/// S is matched to the addition whose result is being checked for overflow, and
2014
/// L and R are matched to the LHS and RHS of S.
2015
template <typename LHS_t, typename RHS_t, typename Sum_t>
2016
UAddWithOverflow_match<LHS_t, RHS_t, Sum_t>
2017
m_UAddWithOverflow(const LHS_t &L, const RHS_t &R, const Sum_t &S) {
2018
  return UAddWithOverflow_match<LHS_t, RHS_t, Sum_t>(L, R, S);
2019
}
2020
 
2021
template <typename Opnd_t> struct Argument_match {
2022
  unsigned OpI;
2023
  Opnd_t Val;
2024
 
2025
  Argument_match(unsigned OpIdx, const Opnd_t &V) : OpI(OpIdx), Val(V) {}
2026
 
2027
  template <typename OpTy> bool match(OpTy *V) {
2028
    // FIXME: Should likely be switched to use `CallBase`.
2029
    if (const auto *CI = dyn_cast<CallInst>(V))
2030
      return Val.match(CI->getArgOperand(OpI));
2031
    return false;
2032
  }
2033
};
2034
 
2035
/// Match an argument.
2036
template <unsigned OpI, typename Opnd_t>
2037
inline Argument_match<Opnd_t> m_Argument(const Opnd_t &Op) {
2038
  return Argument_match<Opnd_t>(OpI, Op);
2039
}
2040
 
2041
/// Intrinsic matchers.
2042
struct IntrinsicID_match {
2043
  unsigned ID;
2044
 
2045
  IntrinsicID_match(Intrinsic::ID IntrID) : ID(IntrID) {}
2046
 
2047
  template <typename OpTy> bool match(OpTy *V) {
2048
    if (const auto *CI = dyn_cast<CallInst>(V))
2049
      if (const auto *F = CI->getCalledFunction())
2050
        return F->getIntrinsicID() == ID;
2051
    return false;
2052
  }
2053
};
2054
 
2055
/// Intrinsic matches are combinations of ID matchers, and argument
2056
/// matchers. Higher arity matcher are defined recursively in terms of and-ing
2057
/// them with lower arity matchers. Here's some convenient typedefs for up to
2058
/// several arguments, and more can be added as needed
2059
template <typename T0 = void, typename T1 = void, typename T2 = void,
2060
          typename T3 = void, typename T4 = void, typename T5 = void,
2061
          typename T6 = void, typename T7 = void, typename T8 = void,
2062
          typename T9 = void, typename T10 = void>
2063
struct m_Intrinsic_Ty;
2064
template <typename T0> struct m_Intrinsic_Ty<T0> {
2065
  using Ty = match_combine_and<IntrinsicID_match, Argument_match<T0>>;
2066
};
2067
template <typename T0, typename T1> struct m_Intrinsic_Ty<T0, T1> {
2068
  using Ty =
2069
      match_combine_and<typename m_Intrinsic_Ty<T0>::Ty, Argument_match<T1>>;
2070
};
2071
template <typename T0, typename T1, typename T2>
2072
struct m_Intrinsic_Ty<T0, T1, T2> {
2073
  using Ty = match_combine_and<typename m_Intrinsic_Ty<T0, T1>::Ty,
2074
                               Argument_match<T2>>;
2075
};
2076
template <typename T0, typename T1, typename T2, typename T3>
2077
struct m_Intrinsic_Ty<T0, T1, T2, T3> {
2078
  using Ty = match_combine_and<typename m_Intrinsic_Ty<T0, T1, T2>::Ty,
2079
                               Argument_match<T3>>;
2080
};
2081
 
2082
template <typename T0, typename T1, typename T2, typename T3, typename T4>
2083
struct m_Intrinsic_Ty<T0, T1, T2, T3, T4> {
2084
  using Ty = match_combine_and<typename m_Intrinsic_Ty<T0, T1, T2, T3>::Ty,
2085
                               Argument_match<T4>>;
2086
};
2087
 
2088
template <typename T0, typename T1, typename T2, typename T3, typename T4,
2089
          typename T5>
2090
struct m_Intrinsic_Ty<T0, T1, T2, T3, T4, T5> {
2091
  using Ty = match_combine_and<typename m_Intrinsic_Ty<T0, T1, T2, T3, T4>::Ty,
2092
                               Argument_match<T5>>;
2093
};
2094
 
2095
/// Match intrinsic calls like this:
2096
/// m_Intrinsic<Intrinsic::fabs>(m_Value(X))
2097
template <Intrinsic::ID IntrID> inline IntrinsicID_match m_Intrinsic() {
2098
  return IntrinsicID_match(IntrID);
2099
}
2100
 
2101
/// Matches MaskedLoad Intrinsic.
2102
template <typename Opnd0, typename Opnd1, typename Opnd2, typename Opnd3>
2103
inline typename m_Intrinsic_Ty<Opnd0, Opnd1, Opnd2, Opnd3>::Ty
2104
m_MaskedLoad(const Opnd0 &Op0, const Opnd1 &Op1, const Opnd2 &Op2,
2105
             const Opnd3 &Op3) {
2106
  return m_Intrinsic<Intrinsic::masked_load>(Op0, Op1, Op2, Op3);
2107
}
2108
 
2109
/// Matches MaskedGather Intrinsic.
2110
template <typename Opnd0, typename Opnd1, typename Opnd2, typename Opnd3>
2111
inline typename m_Intrinsic_Ty<Opnd0, Opnd1, Opnd2, Opnd3>::Ty
2112
m_MaskedGather(const Opnd0 &Op0, const Opnd1 &Op1, const Opnd2 &Op2,
2113
               const Opnd3 &Op3) {
2114
  return m_Intrinsic<Intrinsic::masked_gather>(Op0, Op1, Op2, Op3);
2115
}
2116
 
2117
template <Intrinsic::ID IntrID, typename T0>
2118
inline typename m_Intrinsic_Ty<T0>::Ty m_Intrinsic(const T0 &Op0) {
2119
  return m_CombineAnd(m_Intrinsic<IntrID>(), m_Argument<0>(Op0));
2120
}
2121
 
2122
template <Intrinsic::ID IntrID, typename T0, typename T1>
2123
inline typename m_Intrinsic_Ty<T0, T1>::Ty m_Intrinsic(const T0 &Op0,
2124
                                                       const T1 &Op1) {
2125
  return m_CombineAnd(m_Intrinsic<IntrID>(Op0), m_Argument<1>(Op1));
2126
}
2127
 
2128
template <Intrinsic::ID IntrID, typename T0, typename T1, typename T2>
2129
inline typename m_Intrinsic_Ty<T0, T1, T2>::Ty
2130
m_Intrinsic(const T0 &Op0, const T1 &Op1, const T2 &Op2) {
2131
  return m_CombineAnd(m_Intrinsic<IntrID>(Op0, Op1), m_Argument<2>(Op2));
2132
}
2133
 
2134
template <Intrinsic::ID IntrID, typename T0, typename T1, typename T2,
2135
          typename T3>
2136
inline typename m_Intrinsic_Ty<T0, T1, T2, T3>::Ty
2137
m_Intrinsic(const T0 &Op0, const T1 &Op1, const T2 &Op2, const T3 &Op3) {
2138
  return m_CombineAnd(m_Intrinsic<IntrID>(Op0, Op1, Op2), m_Argument<3>(Op3));
2139
}
2140
 
2141
template <Intrinsic::ID IntrID, typename T0, typename T1, typename T2,
2142
          typename T3, typename T4>
2143
inline typename m_Intrinsic_Ty<T0, T1, T2, T3, T4>::Ty
2144
m_Intrinsic(const T0 &Op0, const T1 &Op1, const T2 &Op2, const T3 &Op3,
2145
            const T4 &Op4) {
2146
  return m_CombineAnd(m_Intrinsic<IntrID>(Op0, Op1, Op2, Op3),
2147
                      m_Argument<4>(Op4));
2148
}
2149
 
2150
template <Intrinsic::ID IntrID, typename T0, typename T1, typename T2,
2151
          typename T3, typename T4, typename T5>
2152
inline typename m_Intrinsic_Ty<T0, T1, T2, T3, T4, T5>::Ty
2153
m_Intrinsic(const T0 &Op0, const T1 &Op1, const T2 &Op2, const T3 &Op3,
2154
            const T4 &Op4, const T5 &Op5) {
2155
  return m_CombineAnd(m_Intrinsic<IntrID>(Op0, Op1, Op2, Op3, Op4),
2156
                      m_Argument<5>(Op5));
2157
}
2158
 
2159
// Helper intrinsic matching specializations.
2160
template <typename Opnd0>
2161
inline typename m_Intrinsic_Ty<Opnd0>::Ty m_BitReverse(const Opnd0 &Op0) {
2162
  return m_Intrinsic<Intrinsic::bitreverse>(Op0);
2163
}
2164
 
2165
template <typename Opnd0>
2166
inline typename m_Intrinsic_Ty<Opnd0>::Ty m_BSwap(const Opnd0 &Op0) {
2167
  return m_Intrinsic<Intrinsic::bswap>(Op0);
2168
}
2169
 
2170
template <typename Opnd0>
2171
inline typename m_Intrinsic_Ty<Opnd0>::Ty m_FAbs(const Opnd0 &Op0) {
2172
  return m_Intrinsic<Intrinsic::fabs>(Op0);
2173
}
2174
 
2175
template <typename Opnd0>
2176
inline typename m_Intrinsic_Ty<Opnd0>::Ty m_FCanonicalize(const Opnd0 &Op0) {
2177
  return m_Intrinsic<Intrinsic::canonicalize>(Op0);
2178
}
2179
 
2180
template <typename Opnd0, typename Opnd1>
2181
inline typename m_Intrinsic_Ty<Opnd0, Opnd1>::Ty m_FMin(const Opnd0 &Op0,
2182
                                                        const Opnd1 &Op1) {
2183
  return m_Intrinsic<Intrinsic::minnum>(Op0, Op1);
2184
}
2185
 
2186
template <typename Opnd0, typename Opnd1>
2187
inline typename m_Intrinsic_Ty<Opnd0, Opnd1>::Ty m_FMax(const Opnd0 &Op0,
2188
                                                        const Opnd1 &Op1) {
2189
  return m_Intrinsic<Intrinsic::maxnum>(Op0, Op1);
2190
}
2191
 
2192
template <typename Opnd0, typename Opnd1, typename Opnd2>
2193
inline typename m_Intrinsic_Ty<Opnd0, Opnd1, Opnd2>::Ty
2194
m_FShl(const Opnd0 &Op0, const Opnd1 &Op1, const Opnd2 &Op2) {
2195
  return m_Intrinsic<Intrinsic::fshl>(Op0, Op1, Op2);
2196
}
2197
 
2198
template <typename Opnd0, typename Opnd1, typename Opnd2>
2199
inline typename m_Intrinsic_Ty<Opnd0, Opnd1, Opnd2>::Ty
2200
m_FShr(const Opnd0 &Op0, const Opnd1 &Op1, const Opnd2 &Op2) {
2201
  return m_Intrinsic<Intrinsic::fshr>(Op0, Op1, Op2);
2202
}
2203
 
2204
template <typename Opnd0>
2205
inline typename m_Intrinsic_Ty<Opnd0>::Ty m_Sqrt(const Opnd0 &Op0) {
2206
  return m_Intrinsic<Intrinsic::sqrt>(Op0);
2207
}
2208
 
2209
template <typename Opnd0, typename Opnd1>
2210
inline typename m_Intrinsic_Ty<Opnd0, Opnd1>::Ty m_CopySign(const Opnd0 &Op0,
2211
                                                            const Opnd1 &Op1) {
2212
  return m_Intrinsic<Intrinsic::copysign>(Op0, Op1);
2213
}
2214
 
2215
template <typename Opnd0>
2216
inline typename m_Intrinsic_Ty<Opnd0>::Ty m_VecReverse(const Opnd0 &Op0) {
2217
  return m_Intrinsic<Intrinsic::experimental_vector_reverse>(Op0);
2218
}
2219
 
2220
//===----------------------------------------------------------------------===//
2221
// Matchers for two-operands operators with the operators in either order
2222
//
2223
 
2224
/// Matches a BinaryOperator with LHS and RHS in either order.
2225
template <typename LHS, typename RHS>
2226
inline AnyBinaryOp_match<LHS, RHS, true> m_c_BinOp(const LHS &L, const RHS &R) {
2227
  return AnyBinaryOp_match<LHS, RHS, true>(L, R);
2228
}
2229
 
2230
/// Matches an ICmp with a predicate over LHS and RHS in either order.
2231
/// Swaps the predicate if operands are commuted.
2232
template <typename LHS, typename RHS>
2233
inline CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate, true>
2234
m_c_ICmp(ICmpInst::Predicate &Pred, const LHS &L, const RHS &R) {
2235
  return CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate, true>(Pred, L,
2236
                                                                       R);
2237
}
2238
 
2239
/// Matches a specific opcode with LHS and RHS in either order.
2240
template <typename LHS, typename RHS>
2241
inline SpecificBinaryOp_match<LHS, RHS, true>
2242
m_c_BinOp(unsigned Opcode, const LHS &L, const RHS &R) {
2243
  return SpecificBinaryOp_match<LHS, RHS, true>(Opcode, L, R);
2244
}
2245
 
2246
/// Matches a Add with LHS and RHS in either order.
2247
template <typename LHS, typename RHS>
2248
inline BinaryOp_match<LHS, RHS, Instruction::Add, true> m_c_Add(const LHS &L,
2249
                                                                const RHS &R) {
2250
  return BinaryOp_match<LHS, RHS, Instruction::Add, true>(L, R);
2251
}
2252
 
2253
/// Matches a Mul with LHS and RHS in either order.
2254
template <typename LHS, typename RHS>
2255
inline BinaryOp_match<LHS, RHS, Instruction::Mul, true> m_c_Mul(const LHS &L,
2256
                                                                const RHS &R) {
2257
  return BinaryOp_match<LHS, RHS, Instruction::Mul, true>(L, R);
2258
}
2259
 
2260
/// Matches an And with LHS and RHS in either order.
2261
template <typename LHS, typename RHS>
2262
inline BinaryOp_match<LHS, RHS, Instruction::And, true> m_c_And(const LHS &L,
2263
                                                                const RHS &R) {
2264
  return BinaryOp_match<LHS, RHS, Instruction::And, true>(L, R);
2265
}
2266
 
2267
/// Matches an Or with LHS and RHS in either order.
2268
template <typename LHS, typename RHS>
2269
inline BinaryOp_match<LHS, RHS, Instruction::Or, true> m_c_Or(const LHS &L,
2270
                                                              const RHS &R) {
2271
  return BinaryOp_match<LHS, RHS, Instruction::Or, true>(L, R);
2272
}
2273
 
2274
/// Matches an Xor with LHS and RHS in either order.
2275
template <typename LHS, typename RHS>
2276
inline BinaryOp_match<LHS, RHS, Instruction::Xor, true> m_c_Xor(const LHS &L,
2277
                                                                const RHS &R) {
2278
  return BinaryOp_match<LHS, RHS, Instruction::Xor, true>(L, R);
2279
}
2280
 
2281
/// Matches a 'Neg' as 'sub 0, V'.
2282
template <typename ValTy>
2283
inline BinaryOp_match<cst_pred_ty<is_zero_int>, ValTy, Instruction::Sub>
2284
m_Neg(const ValTy &V) {
2285
  return m_Sub(m_ZeroInt(), V);
2286
}
2287
 
2288
/// Matches a 'Neg' as 'sub nsw 0, V'.
2289
template <typename ValTy>
2290
inline OverflowingBinaryOp_match<cst_pred_ty<is_zero_int>, ValTy,
2291
                                 Instruction::Sub,
2292
                                 OverflowingBinaryOperator::NoSignedWrap>
2293
m_NSWNeg(const ValTy &V) {
2294
  return m_NSWSub(m_ZeroInt(), V);
2295
}
2296
 
2297
/// Matches a 'Not' as 'xor V, -1' or 'xor -1, V'.
2298
/// NOTE: we first match the 'Not' (by matching '-1'),
2299
/// and only then match the inner matcher!
2300
template <typename ValTy>
2301
inline BinaryOp_match<cst_pred_ty<is_all_ones>, ValTy, Instruction::Xor, true>
2302
m_Not(const ValTy &V) {
2303
  return m_c_Xor(m_AllOnes(), V);
2304
}
2305
 
2306
template <typename ValTy> struct NotForbidUndef_match {
2307
  ValTy Val;
2308
  NotForbidUndef_match(const ValTy &V) : Val(V) {}
2309
 
2310
  template <typename OpTy> bool match(OpTy *V) {
2311
    // We do not use m_c_Xor because that could match an arbitrary APInt that is
2312
    // not -1 as C and then fail to match the other operand if it is -1.
2313
    // This code should still work even when both operands are constants.
2314
    Value *X;
2315
    const APInt *C;
2316
    if (m_Xor(m_Value(X), m_APIntForbidUndef(C)).match(V) && C->isAllOnes())
2317
      return Val.match(X);
2318
    if (m_Xor(m_APIntForbidUndef(C), m_Value(X)).match(V) && C->isAllOnes())
2319
      return Val.match(X);
2320
    return false;
2321
  }
2322
};
2323
 
2324
/// Matches a bitwise 'not' as 'xor V, -1' or 'xor -1, V'. For vectors, the
2325
/// constant value must be composed of only -1 scalar elements.
2326
template <typename ValTy>
2327
inline NotForbidUndef_match<ValTy> m_NotForbidUndef(const ValTy &V) {
2328
  return NotForbidUndef_match<ValTy>(V);
2329
}
2330
 
2331
/// Matches an SMin with LHS and RHS in either order.
2332
template <typename LHS, typename RHS>
2333
inline MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty, true>
2334
m_c_SMin(const LHS &L, const RHS &R) {
2335
  return MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty, true>(L, R);
2336
}
2337
/// Matches an SMax with LHS and RHS in either order.
2338
template <typename LHS, typename RHS>
2339
inline MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty, true>
2340
m_c_SMax(const LHS &L, const RHS &R) {
2341
  return MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty, true>(L, R);
2342
}
2343
/// Matches a UMin with LHS and RHS in either order.
2344
template <typename LHS, typename RHS>
2345
inline MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty, true>
2346
m_c_UMin(const LHS &L, const RHS &R) {
2347
  return MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty, true>(L, R);
2348
}
2349
/// Matches a UMax with LHS and RHS in either order.
2350
template <typename LHS, typename RHS>
2351
inline MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty, true>
2352
m_c_UMax(const LHS &L, const RHS &R) {
2353
  return MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty, true>(L, R);
2354
}
2355
 
2356
template <typename LHS, typename RHS>
2357
inline match_combine_or<
2358
    match_combine_or<MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty, true>,
2359
                     MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty, true>>,
2360
    match_combine_or<MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty, true>,
2361
                     MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty, true>>>
2362
m_c_MaxOrMin(const LHS &L, const RHS &R) {
2363
  return m_CombineOr(m_CombineOr(m_c_SMax(L, R), m_c_SMin(L, R)),
2364
                     m_CombineOr(m_c_UMax(L, R), m_c_UMin(L, R)));
2365
}
2366
 
2367
/// Matches FAdd with LHS and RHS in either order.
2368
template <typename LHS, typename RHS>
2369
inline BinaryOp_match<LHS, RHS, Instruction::FAdd, true>
2370
m_c_FAdd(const LHS &L, const RHS &R) {
2371
  return BinaryOp_match<LHS, RHS, Instruction::FAdd, true>(L, R);
2372
}
2373
 
2374
/// Matches FMul with LHS and RHS in either order.
2375
template <typename LHS, typename RHS>
2376
inline BinaryOp_match<LHS, RHS, Instruction::FMul, true>
2377
m_c_FMul(const LHS &L, const RHS &R) {
2378
  return BinaryOp_match<LHS, RHS, Instruction::FMul, true>(L, R);
2379
}
2380
 
2381
template <typename Opnd_t> struct Signum_match {
2382
  Opnd_t Val;
2383
  Signum_match(const Opnd_t &V) : Val(V) {}
2384
 
2385
  template <typename OpTy> bool match(OpTy *V) {
2386
    unsigned TypeSize = V->getType()->getScalarSizeInBits();
2387
    if (TypeSize == 0)
2388
      return false;
2389
 
2390
    unsigned ShiftWidth = TypeSize - 1;
2391
    Value *OpL = nullptr, *OpR = nullptr;
2392
 
2393
    // This is the representation of signum we match:
2394
    //
2395
    //  signum(x) == (x >> 63) | (-x >>u 63)
2396
    //
2397
    // An i1 value is its own signum, so it's correct to match
2398
    //
2399
    //  signum(x) == (x >> 0)  | (-x >>u 0)
2400
    //
2401
    // for i1 values.
2402
 
2403
    auto LHS = m_AShr(m_Value(OpL), m_SpecificInt(ShiftWidth));
2404
    auto RHS = m_LShr(m_Neg(m_Value(OpR)), m_SpecificInt(ShiftWidth));
2405
    auto Signum = m_Or(LHS, RHS);
2406
 
2407
    return Signum.match(V) && OpL == OpR && Val.match(OpL);
2408
  }
2409
};
2410
 
2411
/// Matches a signum pattern.
2412
///
2413
/// signum(x) =
2414
///      x >  0  ->  1
2415
///      x == 0  ->  0
2416
///      x <  0  -> -1
2417
template <typename Val_t> inline Signum_match<Val_t> m_Signum(const Val_t &V) {
2418
  return Signum_match<Val_t>(V);
2419
}
2420
 
2421
template <int Ind, typename Opnd_t> struct ExtractValue_match {
2422
  Opnd_t Val;
2423
  ExtractValue_match(const Opnd_t &V) : Val(V) {}
2424
 
2425
  template <typename OpTy> bool match(OpTy *V) {
2426
    if (auto *I = dyn_cast<ExtractValueInst>(V)) {
2427
      // If Ind is -1, don't inspect indices
2428
      if (Ind != -1 &&
2429
          !(I->getNumIndices() == 1 && I->getIndices()[0] == (unsigned)Ind))
2430
        return false;
2431
      return Val.match(I->getAggregateOperand());
2432
    }
2433
    return false;
2434
  }
2435
};
2436
 
2437
/// Match a single index ExtractValue instruction.
2438
/// For example m_ExtractValue<1>(...)
2439
template <int Ind, typename Val_t>
2440
inline ExtractValue_match<Ind, Val_t> m_ExtractValue(const Val_t &V) {
2441
  return ExtractValue_match<Ind, Val_t>(V);
2442
}
2443
 
2444
/// Match an ExtractValue instruction with any index.
2445
/// For example m_ExtractValue(...)
2446
template <typename Val_t>
2447
inline ExtractValue_match<-1, Val_t> m_ExtractValue(const Val_t &V) {
2448
  return ExtractValue_match<-1, Val_t>(V);
2449
}
2450
 
2451
/// Matcher for a single index InsertValue instruction.
2452
template <int Ind, typename T0, typename T1> struct InsertValue_match {
2453
  T0 Op0;
2454
  T1 Op1;
2455
 
2456
  InsertValue_match(const T0 &Op0, const T1 &Op1) : Op0(Op0), Op1(Op1) {}
2457
 
2458
  template <typename OpTy> bool match(OpTy *V) {
2459
    if (auto *I = dyn_cast<InsertValueInst>(V)) {
2460
      return Op0.match(I->getOperand(0)) && Op1.match(I->getOperand(1)) &&
2461
             I->getNumIndices() == 1 && Ind == I->getIndices()[0];
2462
    }
2463
    return false;
2464
  }
2465
};
2466
 
2467
/// Matches a single index InsertValue instruction.
2468
template <int Ind, typename Val_t, typename Elt_t>
2469
inline InsertValue_match<Ind, Val_t, Elt_t> m_InsertValue(const Val_t &Val,
2470
                                                          const Elt_t &Elt) {
2471
  return InsertValue_match<Ind, Val_t, Elt_t>(Val, Elt);
2472
}
2473
 
2474
/// Matches patterns for `vscale`. This can either be a call to `llvm.vscale` or
2475
/// the constant expression
2476
///  `ptrtoint(gep <vscale x 1 x i8>, <vscale x 1 x i8>* null, i32 1>`
2477
/// under the right conditions determined by DataLayout.
2478
struct VScaleVal_match {
2479
  const DataLayout &DL;
2480
  VScaleVal_match(const DataLayout &DL) : DL(DL) {}
2481
 
2482
  template <typename ITy> bool match(ITy *V) {
2483
    if (m_Intrinsic<Intrinsic::vscale>().match(V))
2484
      return true;
2485
 
2486
    Value *Ptr;
2487
    if (m_PtrToInt(m_Value(Ptr)).match(V)) {
2488
      if (auto *GEP = dyn_cast<GEPOperator>(Ptr)) {
2489
        auto *DerefTy = GEP->getSourceElementType();
2490
        if (GEP->getNumIndices() == 1 && isa<ScalableVectorType>(DerefTy) &&
2491
            m_Zero().match(GEP->getPointerOperand()) &&
2492
            m_SpecificInt(1).match(GEP->idx_begin()->get()) &&
2493
            DL.getTypeAllocSizeInBits(DerefTy).getKnownMinValue() == 8)
2494
          return true;
2495
      }
2496
    }
2497
 
2498
    return false;
2499
  }
2500
};
2501
 
2502
inline VScaleVal_match m_VScale(const DataLayout &DL) {
2503
  return VScaleVal_match(DL);
2504
}
2505
 
2506
template <typename LHS, typename RHS, unsigned Opcode, bool Commutable = false>
2507
struct LogicalOp_match {
2508
  LHS L;
2509
  RHS R;
2510
 
2511
  LogicalOp_match(const LHS &L, const RHS &R) : L(L), R(R) {}
2512
 
2513
  template <typename T> bool match(T *V) {
2514
    auto *I = dyn_cast<Instruction>(V);
2515
    if (!I || !I->getType()->isIntOrIntVectorTy(1))
2516
      return false;
2517
 
2518
    if (I->getOpcode() == Opcode) {
2519
      auto *Op0 = I->getOperand(0);
2520
      auto *Op1 = I->getOperand(1);
2521
      return (L.match(Op0) && R.match(Op1)) ||
2522
             (Commutable && L.match(Op1) && R.match(Op0));
2523
    }
2524
 
2525
    if (auto *Select = dyn_cast<SelectInst>(I)) {
2526
      auto *Cond = Select->getCondition();
2527
      auto *TVal = Select->getTrueValue();
2528
      auto *FVal = Select->getFalseValue();
2529
 
2530
      // Don't match a scalar select of bool vectors.
2531
      // Transforms expect a single type for operands if this matches.
2532
      if (Cond->getType() != Select->getType())
2533
        return false;
2534
 
2535
      if (Opcode == Instruction::And) {
2536
        auto *C = dyn_cast<Constant>(FVal);
2537
        if (C && C->isNullValue())
2538
          return (L.match(Cond) && R.match(TVal)) ||
2539
                 (Commutable && L.match(TVal) && R.match(Cond));
2540
      } else {
2541
        assert(Opcode == Instruction::Or);
2542
        auto *C = dyn_cast<Constant>(TVal);
2543
        if (C && C->isOneValue())
2544
          return (L.match(Cond) && R.match(FVal)) ||
2545
                 (Commutable && L.match(FVal) && R.match(Cond));
2546
      }
2547
    }
2548
 
2549
    return false;
2550
  }
2551
};
2552
 
2553
/// Matches L && R either in the form of L & R or L ? R : false.
2554
/// Note that the latter form is poison-blocking.
2555
template <typename LHS, typename RHS>
2556
inline LogicalOp_match<LHS, RHS, Instruction::And> m_LogicalAnd(const LHS &L,
2557
                                                                const RHS &R) {
2558
  return LogicalOp_match<LHS, RHS, Instruction::And>(L, R);
2559
}
2560
 
2561
/// Matches L && R where L and R are arbitrary values.
2562
inline auto m_LogicalAnd() { return m_LogicalAnd(m_Value(), m_Value()); }
2563
 
2564
/// Matches L && R with LHS and RHS in either order.
2565
template <typename LHS, typename RHS>
2566
inline LogicalOp_match<LHS, RHS, Instruction::And, true>
2567
m_c_LogicalAnd(const LHS &L, const RHS &R) {
2568
  return LogicalOp_match<LHS, RHS, Instruction::And, true>(L, R);
2569
}
2570
 
2571
/// Matches L || R either in the form of L | R or L ? true : R.
2572
/// Note that the latter form is poison-blocking.
2573
template <typename LHS, typename RHS>
2574
inline LogicalOp_match<LHS, RHS, Instruction::Or> m_LogicalOr(const LHS &L,
2575
                                                              const RHS &R) {
2576
  return LogicalOp_match<LHS, RHS, Instruction::Or>(L, R);
2577
}
2578
 
2579
/// Matches L || R where L and R are arbitrary values.
2580
inline auto m_LogicalOr() { return m_LogicalOr(m_Value(), m_Value()); }
2581
 
2582
/// Matches L || R with LHS and RHS in either order.
2583
template <typename LHS, typename RHS>
2584
inline LogicalOp_match<LHS, RHS, Instruction::Or, true>
2585
m_c_LogicalOr(const LHS &L, const RHS &R) {
2586
  return LogicalOp_match<LHS, RHS, Instruction::Or, true>(L, R);
2587
}
2588
 
2589
/// Matches either L && R or L || R,
2590
/// either one being in the either binary or logical form.
2591
/// Note that the latter form is poison-blocking.
2592
template <typename LHS, typename RHS, bool Commutable = false>
2593
inline auto m_LogicalOp(const LHS &L, const RHS &R) {
2594
  return m_CombineOr(
2595
      LogicalOp_match<LHS, RHS, Instruction::And, Commutable>(L, R),
2596
      LogicalOp_match<LHS, RHS, Instruction::Or, Commutable>(L, R));
2597
}
2598
 
2599
/// Matches either L && R or L || R where L and R are arbitrary values.
2600
inline auto m_LogicalOp() { return m_LogicalOp(m_Value(), m_Value()); }
2601
 
2602
/// Matches either L && R or L || R with LHS and RHS in either order.
2603
template <typename LHS, typename RHS>
2604
inline auto m_c_LogicalOp(const LHS &L, const RHS &R) {
2605
  return m_LogicalOp<LHS, RHS, /*Commutable=*/true>(L, R);
2606
}
2607
 
2608
} // end namespace PatternMatch
2609
} // end namespace llvm
2610
 
2611
#endif // LLVM_IR_PATTERNMATCH_H