Details | Last modification | View Log | RSS feed
Rev | Author | Line No. | Line |
---|---|---|---|
14 | pmbaty | 1 | //===- PatternMatch.h - Match on the LLVM IR --------------------*- C++ -*-===// |
2 | // |
||
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
||
4 | // See https://llvm.org/LICENSE.txt for license information. |
||
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
||
6 | // |
||
7 | //===----------------------------------------------------------------------===// |
||
8 | // |
||
9 | // This file provides a simple and efficient mechanism for performing general |
||
10 | // tree-based pattern matches on the LLVM IR. The power of these routines is |
||
11 | // that it allows you to write concise patterns that are expressive and easy to |
||
12 | // understand. The other major advantage of this is that it allows you to |
||
13 | // trivially capture/bind elements in the pattern to variables. For example, |
||
14 | // you can do something like this: |
||
15 | // |
||
16 | // Value *Exp = ... |
||
17 | // Value *X, *Y; ConstantInt *C1, *C2; // (X & C1) | (Y & C2) |
||
18 | // if (match(Exp, m_Or(m_And(m_Value(X), m_ConstantInt(C1)), |
||
19 | // m_And(m_Value(Y), m_ConstantInt(C2))))) { |
||
20 | // ... Pattern is matched and variables are bound ... |
||
21 | // } |
||
22 | // |
||
23 | // This is primarily useful to things like the instruction combiner, but can |
||
24 | // also be useful for static analysis tools or code generators. |
||
25 | // |
||
26 | //===----------------------------------------------------------------------===// |
||
27 | |||
28 | #ifndef LLVM_IR_PATTERNMATCH_H |
||
29 | #define LLVM_IR_PATTERNMATCH_H |
||
30 | |||
31 | #include "llvm/ADT/APFloat.h" |
||
32 | #include "llvm/ADT/APInt.h" |
||
33 | #include "llvm/IR/Constant.h" |
||
34 | #include "llvm/IR/Constants.h" |
||
35 | #include "llvm/IR/DataLayout.h" |
||
36 | #include "llvm/IR/InstrTypes.h" |
||
37 | #include "llvm/IR/Instruction.h" |
||
38 | #include "llvm/IR/Instructions.h" |
||
39 | #include "llvm/IR/IntrinsicInst.h" |
||
40 | #include "llvm/IR/Intrinsics.h" |
||
41 | #include "llvm/IR/Operator.h" |
||
42 | #include "llvm/IR/Value.h" |
||
43 | #include "llvm/Support/Casting.h" |
||
44 | #include <cstdint> |
||
45 | |||
46 | namespace llvm { |
||
47 | namespace PatternMatch { |
||
48 | |||
49 | template <typename Val, typename Pattern> bool match(Val *V, const Pattern &P) { |
||
50 | return const_cast<Pattern &>(P).match(V); |
||
51 | } |
||
52 | |||
53 | template <typename Pattern> bool match(ArrayRef<int> Mask, const Pattern &P) { |
||
54 | return const_cast<Pattern &>(P).match(Mask); |
||
55 | } |
||
56 | |||
57 | template <typename SubPattern_t> struct OneUse_match { |
||
58 | SubPattern_t SubPattern; |
||
59 | |||
60 | OneUse_match(const SubPattern_t &SP) : SubPattern(SP) {} |
||
61 | |||
62 | template <typename OpTy> bool match(OpTy *V) { |
||
63 | return V->hasOneUse() && SubPattern.match(V); |
||
64 | } |
||
65 | }; |
||
66 | |||
67 | template <typename T> inline OneUse_match<T> m_OneUse(const T &SubPattern) { |
||
68 | return SubPattern; |
||
69 | } |
||
70 | |||
71 | template <typename Class> struct class_match { |
||
72 | template <typename ITy> bool match(ITy *V) { return isa<Class>(V); } |
||
73 | }; |
||
74 | |||
75 | /// Match an arbitrary value and ignore it. |
||
76 | inline class_match<Value> m_Value() { return class_match<Value>(); } |
||
77 | |||
78 | /// Match an arbitrary unary operation and ignore it. |
||
79 | inline class_match<UnaryOperator> m_UnOp() { |
||
80 | return class_match<UnaryOperator>(); |
||
81 | } |
||
82 | |||
83 | /// Match an arbitrary binary operation and ignore it. |
||
84 | inline class_match<BinaryOperator> m_BinOp() { |
||
85 | return class_match<BinaryOperator>(); |
||
86 | } |
||
87 | |||
88 | /// Matches any compare instruction and ignore it. |
||
89 | inline class_match<CmpInst> m_Cmp() { return class_match<CmpInst>(); } |
||
90 | |||
91 | struct undef_match { |
||
92 | static bool check(const Value *V) { |
||
93 | if (isa<UndefValue>(V)) |
||
94 | return true; |
||
95 | |||
96 | const auto *CA = dyn_cast<ConstantAggregate>(V); |
||
97 | if (!CA) |
||
98 | return false; |
||
99 | |||
100 | SmallPtrSet<const ConstantAggregate *, 8> Seen; |
||
101 | SmallVector<const ConstantAggregate *, 8> Worklist; |
||
102 | |||
103 | // Either UndefValue, PoisonValue, or an aggregate that only contains |
||
104 | // these is accepted by matcher. |
||
105 | // CheckValue returns false if CA cannot satisfy this constraint. |
||
106 | auto CheckValue = [&](const ConstantAggregate *CA) { |
||
107 | for (const Value *Op : CA->operand_values()) { |
||
108 | if (isa<UndefValue>(Op)) |
||
109 | continue; |
||
110 | |||
111 | const auto *CA = dyn_cast<ConstantAggregate>(Op); |
||
112 | if (!CA) |
||
113 | return false; |
||
114 | if (Seen.insert(CA).second) |
||
115 | Worklist.emplace_back(CA); |
||
116 | } |
||
117 | |||
118 | return true; |
||
119 | }; |
||
120 | |||
121 | if (!CheckValue(CA)) |
||
122 | return false; |
||
123 | |||
124 | while (!Worklist.empty()) { |
||
125 | if (!CheckValue(Worklist.pop_back_val())) |
||
126 | return false; |
||
127 | } |
||
128 | return true; |
||
129 | } |
||
130 | template <typename ITy> bool match(ITy *V) { return check(V); } |
||
131 | }; |
||
132 | |||
133 | /// Match an arbitrary undef constant. This matches poison as well. |
||
134 | /// If this is an aggregate and contains a non-aggregate element that is |
||
135 | /// neither undef nor poison, the aggregate is not matched. |
||
136 | inline auto m_Undef() { return undef_match(); } |
||
137 | |||
138 | /// Match an arbitrary poison constant. |
||
139 | inline class_match<PoisonValue> m_Poison() { |
||
140 | return class_match<PoisonValue>(); |
||
141 | } |
||
142 | |||
143 | /// Match an arbitrary Constant and ignore it. |
||
144 | inline class_match<Constant> m_Constant() { return class_match<Constant>(); } |
||
145 | |||
146 | /// Match an arbitrary ConstantInt and ignore it. |
||
147 | inline class_match<ConstantInt> m_ConstantInt() { |
||
148 | return class_match<ConstantInt>(); |
||
149 | } |
||
150 | |||
151 | /// Match an arbitrary ConstantFP and ignore it. |
||
152 | inline class_match<ConstantFP> m_ConstantFP() { |
||
153 | return class_match<ConstantFP>(); |
||
154 | } |
||
155 | |||
156 | struct constantexpr_match { |
||
157 | template <typename ITy> bool match(ITy *V) { |
||
158 | auto *C = dyn_cast<Constant>(V); |
||
159 | return C && (isa<ConstantExpr>(C) || C->containsConstantExpression()); |
||
160 | } |
||
161 | }; |
||
162 | |||
163 | /// Match a constant expression or a constant that contains a constant |
||
164 | /// expression. |
||
165 | inline constantexpr_match m_ConstantExpr() { return constantexpr_match(); } |
||
166 | |||
167 | /// Match an arbitrary basic block value and ignore it. |
||
168 | inline class_match<BasicBlock> m_BasicBlock() { |
||
169 | return class_match<BasicBlock>(); |
||
170 | } |
||
171 | |||
172 | /// Inverting matcher |
||
173 | template <typename Ty> struct match_unless { |
||
174 | Ty M; |
||
175 | |||
176 | match_unless(const Ty &Matcher) : M(Matcher) {} |
||
177 | |||
178 | template <typename ITy> bool match(ITy *V) { return !M.match(V); } |
||
179 | }; |
||
180 | |||
181 | /// Match if the inner matcher does *NOT* match. |
||
182 | template <typename Ty> inline match_unless<Ty> m_Unless(const Ty &M) { |
||
183 | return match_unless<Ty>(M); |
||
184 | } |
||
185 | |||
186 | /// Matching combinators |
||
187 | template <typename LTy, typename RTy> struct match_combine_or { |
||
188 | LTy L; |
||
189 | RTy R; |
||
190 | |||
191 | match_combine_or(const LTy &Left, const RTy &Right) : L(Left), R(Right) {} |
||
192 | |||
193 | template <typename ITy> bool match(ITy *V) { |
||
194 | if (L.match(V)) |
||
195 | return true; |
||
196 | if (R.match(V)) |
||
197 | return true; |
||
198 | return false; |
||
199 | } |
||
200 | }; |
||
201 | |||
202 | template <typename LTy, typename RTy> struct match_combine_and { |
||
203 | LTy L; |
||
204 | RTy R; |
||
205 | |||
206 | match_combine_and(const LTy &Left, const RTy &Right) : L(Left), R(Right) {} |
||
207 | |||
208 | template <typename ITy> bool match(ITy *V) { |
||
209 | if (L.match(V)) |
||
210 | if (R.match(V)) |
||
211 | return true; |
||
212 | return false; |
||
213 | } |
||
214 | }; |
||
215 | |||
216 | /// Combine two pattern matchers matching L || R |
||
217 | template <typename LTy, typename RTy> |
||
218 | inline match_combine_or<LTy, RTy> m_CombineOr(const LTy &L, const RTy &R) { |
||
219 | return match_combine_or<LTy, RTy>(L, R); |
||
220 | } |
||
221 | |||
222 | /// Combine two pattern matchers matching L && R |
||
223 | template <typename LTy, typename RTy> |
||
224 | inline match_combine_and<LTy, RTy> m_CombineAnd(const LTy &L, const RTy &R) { |
||
225 | return match_combine_and<LTy, RTy>(L, R); |
||
226 | } |
||
227 | |||
228 | struct apint_match { |
||
229 | const APInt *&Res; |
||
230 | bool AllowUndef; |
||
231 | |||
232 | apint_match(const APInt *&Res, bool AllowUndef) |
||
233 | : Res(Res), AllowUndef(AllowUndef) {} |
||
234 | |||
235 | template <typename ITy> bool match(ITy *V) { |
||
236 | if (auto *CI = dyn_cast<ConstantInt>(V)) { |
||
237 | Res = &CI->getValue(); |
||
238 | return true; |
||
239 | } |
||
240 | if (V->getType()->isVectorTy()) |
||
241 | if (const auto *C = dyn_cast<Constant>(V)) |
||
242 | if (auto *CI = |
||
243 | dyn_cast_or_null<ConstantInt>(C->getSplatValue(AllowUndef))) { |
||
244 | Res = &CI->getValue(); |
||
245 | return true; |
||
246 | } |
||
247 | return false; |
||
248 | } |
||
249 | }; |
||
250 | // Either constexpr if or renaming ConstantFP::getValueAPF to |
||
251 | // ConstantFP::getValue is needed to do it via single template |
||
252 | // function for both apint/apfloat. |
||
253 | struct apfloat_match { |
||
254 | const APFloat *&Res; |
||
255 | bool AllowUndef; |
||
256 | |||
257 | apfloat_match(const APFloat *&Res, bool AllowUndef) |
||
258 | : Res(Res), AllowUndef(AllowUndef) {} |
||
259 | |||
260 | template <typename ITy> bool match(ITy *V) { |
||
261 | if (auto *CI = dyn_cast<ConstantFP>(V)) { |
||
262 | Res = &CI->getValueAPF(); |
||
263 | return true; |
||
264 | } |
||
265 | if (V->getType()->isVectorTy()) |
||
266 | if (const auto *C = dyn_cast<Constant>(V)) |
||
267 | if (auto *CI = |
||
268 | dyn_cast_or_null<ConstantFP>(C->getSplatValue(AllowUndef))) { |
||
269 | Res = &CI->getValueAPF(); |
||
270 | return true; |
||
271 | } |
||
272 | return false; |
||
273 | } |
||
274 | }; |
||
275 | |||
276 | /// Match a ConstantInt or splatted ConstantVector, binding the |
||
277 | /// specified pointer to the contained APInt. |
||
278 | inline apint_match m_APInt(const APInt *&Res) { |
||
279 | // Forbid undefs by default to maintain previous behavior. |
||
280 | return apint_match(Res, /* AllowUndef */ false); |
||
281 | } |
||
282 | |||
283 | /// Match APInt while allowing undefs in splat vector constants. |
||
284 | inline apint_match m_APIntAllowUndef(const APInt *&Res) { |
||
285 | return apint_match(Res, /* AllowUndef */ true); |
||
286 | } |
||
287 | |||
288 | /// Match APInt while forbidding undefs in splat vector constants. |
||
289 | inline apint_match m_APIntForbidUndef(const APInt *&Res) { |
||
290 | return apint_match(Res, /* AllowUndef */ false); |
||
291 | } |
||
292 | |||
293 | /// Match a ConstantFP or splatted ConstantVector, binding the |
||
294 | /// specified pointer to the contained APFloat. |
||
295 | inline apfloat_match m_APFloat(const APFloat *&Res) { |
||
296 | // Forbid undefs by default to maintain previous behavior. |
||
297 | return apfloat_match(Res, /* AllowUndef */ false); |
||
298 | } |
||
299 | |||
300 | /// Match APFloat while allowing undefs in splat vector constants. |
||
301 | inline apfloat_match m_APFloatAllowUndef(const APFloat *&Res) { |
||
302 | return apfloat_match(Res, /* AllowUndef */ true); |
||
303 | } |
||
304 | |||
305 | /// Match APFloat while forbidding undefs in splat vector constants. |
||
306 | inline apfloat_match m_APFloatForbidUndef(const APFloat *&Res) { |
||
307 | return apfloat_match(Res, /* AllowUndef */ false); |
||
308 | } |
||
309 | |||
310 | template <int64_t Val> struct constantint_match { |
||
311 | template <typename ITy> bool match(ITy *V) { |
||
312 | if (const auto *CI = dyn_cast<ConstantInt>(V)) { |
||
313 | const APInt &CIV = CI->getValue(); |
||
314 | if (Val >= 0) |
||
315 | return CIV == static_cast<uint64_t>(Val); |
||
316 | // If Val is negative, and CI is shorter than it, truncate to the right |
||
317 | // number of bits. If it is larger, then we have to sign extend. Just |
||
318 | // compare their negated values. |
||
319 | return -CIV == -Val; |
||
320 | } |
||
321 | return false; |
||
322 | } |
||
323 | }; |
||
324 | |||
325 | /// Match a ConstantInt with a specific value. |
||
326 | template <int64_t Val> inline constantint_match<Val> m_ConstantInt() { |
||
327 | return constantint_match<Val>(); |
||
328 | } |
||
329 | |||
330 | /// This helper class is used to match constant scalars, vector splats, |
||
331 | /// and fixed width vectors that satisfy a specified predicate. |
||
332 | /// For fixed width vector constants, undefined elements are ignored. |
||
333 | template <typename Predicate, typename ConstantVal> |
||
334 | struct cstval_pred_ty : public Predicate { |
||
335 | template <typename ITy> bool match(ITy *V) { |
||
336 | if (const auto *CV = dyn_cast<ConstantVal>(V)) |
||
337 | return this->isValue(CV->getValue()); |
||
338 | if (const auto *VTy = dyn_cast<VectorType>(V->getType())) { |
||
339 | if (const auto *C = dyn_cast<Constant>(V)) { |
||
340 | if (const auto *CV = dyn_cast_or_null<ConstantVal>(C->getSplatValue())) |
||
341 | return this->isValue(CV->getValue()); |
||
342 | |||
343 | // Number of elements of a scalable vector unknown at compile time |
||
344 | auto *FVTy = dyn_cast<FixedVectorType>(VTy); |
||
345 | if (!FVTy) |
||
346 | return false; |
||
347 | |||
348 | // Non-splat vector constant: check each element for a match. |
||
349 | unsigned NumElts = FVTy->getNumElements(); |
||
350 | assert(NumElts != 0 && "Constant vector with no elements?"); |
||
351 | bool HasNonUndefElements = false; |
||
352 | for (unsigned i = 0; i != NumElts; ++i) { |
||
353 | Constant *Elt = C->getAggregateElement(i); |
||
354 | if (!Elt) |
||
355 | return false; |
||
356 | if (isa<UndefValue>(Elt)) |
||
357 | continue; |
||
358 | auto *CV = dyn_cast<ConstantVal>(Elt); |
||
359 | if (!CV || !this->isValue(CV->getValue())) |
||
360 | return false; |
||
361 | HasNonUndefElements = true; |
||
362 | } |
||
363 | return HasNonUndefElements; |
||
364 | } |
||
365 | } |
||
366 | return false; |
||
367 | } |
||
368 | }; |
||
369 | |||
370 | /// specialization of cstval_pred_ty for ConstantInt |
||
371 | template <typename Predicate> |
||
372 | using cst_pred_ty = cstval_pred_ty<Predicate, ConstantInt>; |
||
373 | |||
374 | /// specialization of cstval_pred_ty for ConstantFP |
||
375 | template <typename Predicate> |
||
376 | using cstfp_pred_ty = cstval_pred_ty<Predicate, ConstantFP>; |
||
377 | |||
378 | /// This helper class is used to match scalar and vector constants that |
||
379 | /// satisfy a specified predicate, and bind them to an APInt. |
||
380 | template <typename Predicate> struct api_pred_ty : public Predicate { |
||
381 | const APInt *&Res; |
||
382 | |||
383 | api_pred_ty(const APInt *&R) : Res(R) {} |
||
384 | |||
385 | template <typename ITy> bool match(ITy *V) { |
||
386 | if (const auto *CI = dyn_cast<ConstantInt>(V)) |
||
387 | if (this->isValue(CI->getValue())) { |
||
388 | Res = &CI->getValue(); |
||
389 | return true; |
||
390 | } |
||
391 | if (V->getType()->isVectorTy()) |
||
392 | if (const auto *C = dyn_cast<Constant>(V)) |
||
393 | if (auto *CI = dyn_cast_or_null<ConstantInt>(C->getSplatValue())) |
||
394 | if (this->isValue(CI->getValue())) { |
||
395 | Res = &CI->getValue(); |
||
396 | return true; |
||
397 | } |
||
398 | |||
399 | return false; |
||
400 | } |
||
401 | }; |
||
402 | |||
403 | /// This helper class is used to match scalar and vector constants that |
||
404 | /// satisfy a specified predicate, and bind them to an APFloat. |
||
405 | /// Undefs are allowed in splat vector constants. |
||
406 | template <typename Predicate> struct apf_pred_ty : public Predicate { |
||
407 | const APFloat *&Res; |
||
408 | |||
409 | apf_pred_ty(const APFloat *&R) : Res(R) {} |
||
410 | |||
411 | template <typename ITy> bool match(ITy *V) { |
||
412 | if (const auto *CI = dyn_cast<ConstantFP>(V)) |
||
413 | if (this->isValue(CI->getValue())) { |
||
414 | Res = &CI->getValue(); |
||
415 | return true; |
||
416 | } |
||
417 | if (V->getType()->isVectorTy()) |
||
418 | if (const auto *C = dyn_cast<Constant>(V)) |
||
419 | if (auto *CI = dyn_cast_or_null<ConstantFP>( |
||
420 | C->getSplatValue(/* AllowUndef */ true))) |
||
421 | if (this->isValue(CI->getValue())) { |
||
422 | Res = &CI->getValue(); |
||
423 | return true; |
||
424 | } |
||
425 | |||
426 | return false; |
||
427 | } |
||
428 | }; |
||
429 | |||
430 | /////////////////////////////////////////////////////////////////////////////// |
||
431 | // |
||
432 | // Encapsulate constant value queries for use in templated predicate matchers. |
||
433 | // This allows checking if constants match using compound predicates and works |
||
434 | // with vector constants, possibly with relaxed constraints. For example, ignore |
||
435 | // undef values. |
||
436 | // |
||
437 | /////////////////////////////////////////////////////////////////////////////// |
||
438 | |||
439 | struct is_any_apint { |
||
440 | bool isValue(const APInt &C) { return true; } |
||
441 | }; |
||
442 | /// Match an integer or vector with any integral constant. |
||
443 | /// For vectors, this includes constants with undefined elements. |
||
444 | inline cst_pred_ty<is_any_apint> m_AnyIntegralConstant() { |
||
445 | return cst_pred_ty<is_any_apint>(); |
||
446 | } |
||
447 | |||
448 | struct is_all_ones { |
||
449 | bool isValue(const APInt &C) { return C.isAllOnes(); } |
||
450 | }; |
||
451 | /// Match an integer or vector with all bits set. |
||
452 | /// For vectors, this includes constants with undefined elements. |
||
453 | inline cst_pred_ty<is_all_ones> m_AllOnes() { |
||
454 | return cst_pred_ty<is_all_ones>(); |
||
455 | } |
||
456 | |||
457 | struct is_maxsignedvalue { |
||
458 | bool isValue(const APInt &C) { return C.isMaxSignedValue(); } |
||
459 | }; |
||
460 | /// Match an integer or vector with values having all bits except for the high |
||
461 | /// bit set (0x7f...). |
||
462 | /// For vectors, this includes constants with undefined elements. |
||
463 | inline cst_pred_ty<is_maxsignedvalue> m_MaxSignedValue() { |
||
464 | return cst_pred_ty<is_maxsignedvalue>(); |
||
465 | } |
||
466 | inline api_pred_ty<is_maxsignedvalue> m_MaxSignedValue(const APInt *&V) { |
||
467 | return V; |
||
468 | } |
||
469 | |||
470 | struct is_negative { |
||
471 | bool isValue(const APInt &C) { return C.isNegative(); } |
||
472 | }; |
||
473 | /// Match an integer or vector of negative values. |
||
474 | /// For vectors, this includes constants with undefined elements. |
||
475 | inline cst_pred_ty<is_negative> m_Negative() { |
||
476 | return cst_pred_ty<is_negative>(); |
||
477 | } |
||
478 | inline api_pred_ty<is_negative> m_Negative(const APInt *&V) { return V; } |
||
479 | |||
480 | struct is_nonnegative { |
||
481 | bool isValue(const APInt &C) { return C.isNonNegative(); } |
||
482 | }; |
||
483 | /// Match an integer or vector of non-negative values. |
||
484 | /// For vectors, this includes constants with undefined elements. |
||
485 | inline cst_pred_ty<is_nonnegative> m_NonNegative() { |
||
486 | return cst_pred_ty<is_nonnegative>(); |
||
487 | } |
||
488 | inline api_pred_ty<is_nonnegative> m_NonNegative(const APInt *&V) { return V; } |
||
489 | |||
490 | struct is_strictlypositive { |
||
491 | bool isValue(const APInt &C) { return C.isStrictlyPositive(); } |
||
492 | }; |
||
493 | /// Match an integer or vector of strictly positive values. |
||
494 | /// For vectors, this includes constants with undefined elements. |
||
495 | inline cst_pred_ty<is_strictlypositive> m_StrictlyPositive() { |
||
496 | return cst_pred_ty<is_strictlypositive>(); |
||
497 | } |
||
498 | inline api_pred_ty<is_strictlypositive> m_StrictlyPositive(const APInt *&V) { |
||
499 | return V; |
||
500 | } |
||
501 | |||
502 | struct is_nonpositive { |
||
503 | bool isValue(const APInt &C) { return C.isNonPositive(); } |
||
504 | }; |
||
505 | /// Match an integer or vector of non-positive values. |
||
506 | /// For vectors, this includes constants with undefined elements. |
||
507 | inline cst_pred_ty<is_nonpositive> m_NonPositive() { |
||
508 | return cst_pred_ty<is_nonpositive>(); |
||
509 | } |
||
510 | inline api_pred_ty<is_nonpositive> m_NonPositive(const APInt *&V) { return V; } |
||
511 | |||
512 | struct is_one { |
||
513 | bool isValue(const APInt &C) { return C.isOne(); } |
||
514 | }; |
||
515 | /// Match an integer 1 or a vector with all elements equal to 1. |
||
516 | /// For vectors, this includes constants with undefined elements. |
||
517 | inline cst_pred_ty<is_one> m_One() { return cst_pred_ty<is_one>(); } |
||
518 | |||
519 | struct is_zero_int { |
||
520 | bool isValue(const APInt &C) { return C.isZero(); } |
||
521 | }; |
||
522 | /// Match an integer 0 or a vector with all elements equal to 0. |
||
523 | /// For vectors, this includes constants with undefined elements. |
||
524 | inline cst_pred_ty<is_zero_int> m_ZeroInt() { |
||
525 | return cst_pred_ty<is_zero_int>(); |
||
526 | } |
||
527 | |||
528 | struct is_zero { |
||
529 | template <typename ITy> bool match(ITy *V) { |
||
530 | auto *C = dyn_cast<Constant>(V); |
||
531 | // FIXME: this should be able to do something for scalable vectors |
||
532 | return C && (C->isNullValue() || cst_pred_ty<is_zero_int>().match(C)); |
||
533 | } |
||
534 | }; |
||
535 | /// Match any null constant or a vector with all elements equal to 0. |
||
536 | /// For vectors, this includes constants with undefined elements. |
||
537 | inline is_zero m_Zero() { return is_zero(); } |
||
538 | |||
539 | struct is_power2 { |
||
540 | bool isValue(const APInt &C) { return C.isPowerOf2(); } |
||
541 | }; |
||
542 | /// Match an integer or vector power-of-2. |
||
543 | /// For vectors, this includes constants with undefined elements. |
||
544 | inline cst_pred_ty<is_power2> m_Power2() { return cst_pred_ty<is_power2>(); } |
||
545 | inline api_pred_ty<is_power2> m_Power2(const APInt *&V) { return V; } |
||
546 | |||
547 | struct is_negated_power2 { |
||
548 | bool isValue(const APInt &C) { return C.isNegatedPowerOf2(); } |
||
549 | }; |
||
550 | /// Match a integer or vector negated power-of-2. |
||
551 | /// For vectors, this includes constants with undefined elements. |
||
552 | inline cst_pred_ty<is_negated_power2> m_NegatedPower2() { |
||
553 | return cst_pred_ty<is_negated_power2>(); |
||
554 | } |
||
555 | inline api_pred_ty<is_negated_power2> m_NegatedPower2(const APInt *&V) { |
||
556 | return V; |
||
557 | } |
||
558 | |||
559 | struct is_power2_or_zero { |
||
560 | bool isValue(const APInt &C) { return !C || C.isPowerOf2(); } |
||
561 | }; |
||
562 | /// Match an integer or vector of 0 or power-of-2 values. |
||
563 | /// For vectors, this includes constants with undefined elements. |
||
564 | inline cst_pred_ty<is_power2_or_zero> m_Power2OrZero() { |
||
565 | return cst_pred_ty<is_power2_or_zero>(); |
||
566 | } |
||
567 | inline api_pred_ty<is_power2_or_zero> m_Power2OrZero(const APInt *&V) { |
||
568 | return V; |
||
569 | } |
||
570 | |||
571 | struct is_sign_mask { |
||
572 | bool isValue(const APInt &C) { return C.isSignMask(); } |
||
573 | }; |
||
574 | /// Match an integer or vector with only the sign bit(s) set. |
||
575 | /// For vectors, this includes constants with undefined elements. |
||
576 | inline cst_pred_ty<is_sign_mask> m_SignMask() { |
||
577 | return cst_pred_ty<is_sign_mask>(); |
||
578 | } |
||
579 | |||
580 | struct is_lowbit_mask { |
||
581 | bool isValue(const APInt &C) { return C.isMask(); } |
||
582 | }; |
||
583 | /// Match an integer or vector with only the low bit(s) set. |
||
584 | /// For vectors, this includes constants with undefined elements. |
||
585 | inline cst_pred_ty<is_lowbit_mask> m_LowBitMask() { |
||
586 | return cst_pred_ty<is_lowbit_mask>(); |
||
587 | } |
||
588 | inline api_pred_ty<is_lowbit_mask> m_LowBitMask(const APInt *&V) { return V; } |
||
589 | |||
590 | struct icmp_pred_with_threshold { |
||
591 | ICmpInst::Predicate Pred; |
||
592 | const APInt *Thr; |
||
593 | bool isValue(const APInt &C) { return ICmpInst::compare(C, *Thr, Pred); } |
||
594 | }; |
||
595 | /// Match an integer or vector with every element comparing 'pred' (eg/ne/...) |
||
596 | /// to Threshold. For vectors, this includes constants with undefined elements. |
||
597 | inline cst_pred_ty<icmp_pred_with_threshold> |
||
598 | m_SpecificInt_ICMP(ICmpInst::Predicate Predicate, const APInt &Threshold) { |
||
599 | cst_pred_ty<icmp_pred_with_threshold> P; |
||
600 | P.Pred = Predicate; |
||
601 | P.Thr = &Threshold; |
||
602 | return P; |
||
603 | } |
||
604 | |||
605 | struct is_nan { |
||
606 | bool isValue(const APFloat &C) { return C.isNaN(); } |
||
607 | }; |
||
608 | /// Match an arbitrary NaN constant. This includes quiet and signalling nans. |
||
609 | /// For vectors, this includes constants with undefined elements. |
||
610 | inline cstfp_pred_ty<is_nan> m_NaN() { return cstfp_pred_ty<is_nan>(); } |
||
611 | |||
612 | struct is_nonnan { |
||
613 | bool isValue(const APFloat &C) { return !C.isNaN(); } |
||
614 | }; |
||
615 | /// Match a non-NaN FP constant. |
||
616 | /// For vectors, this includes constants with undefined elements. |
||
617 | inline cstfp_pred_ty<is_nonnan> m_NonNaN() { |
||
618 | return cstfp_pred_ty<is_nonnan>(); |
||
619 | } |
||
620 | |||
621 | struct is_inf { |
||
622 | bool isValue(const APFloat &C) { return C.isInfinity(); } |
||
623 | }; |
||
624 | /// Match a positive or negative infinity FP constant. |
||
625 | /// For vectors, this includes constants with undefined elements. |
||
626 | inline cstfp_pred_ty<is_inf> m_Inf() { return cstfp_pred_ty<is_inf>(); } |
||
627 | |||
628 | struct is_noninf { |
||
629 | bool isValue(const APFloat &C) { return !C.isInfinity(); } |
||
630 | }; |
||
631 | /// Match a non-infinity FP constant, i.e. finite or NaN. |
||
632 | /// For vectors, this includes constants with undefined elements. |
||
633 | inline cstfp_pred_ty<is_noninf> m_NonInf() { |
||
634 | return cstfp_pred_ty<is_noninf>(); |
||
635 | } |
||
636 | |||
637 | struct is_finite { |
||
638 | bool isValue(const APFloat &C) { return C.isFinite(); } |
||
639 | }; |
||
640 | /// Match a finite FP constant, i.e. not infinity or NaN. |
||
641 | /// For vectors, this includes constants with undefined elements. |
||
642 | inline cstfp_pred_ty<is_finite> m_Finite() { |
||
643 | return cstfp_pred_ty<is_finite>(); |
||
644 | } |
||
645 | inline apf_pred_ty<is_finite> m_Finite(const APFloat *&V) { return V; } |
||
646 | |||
647 | struct is_finitenonzero { |
||
648 | bool isValue(const APFloat &C) { return C.isFiniteNonZero(); } |
||
649 | }; |
||
650 | /// Match a finite non-zero FP constant. |
||
651 | /// For vectors, this includes constants with undefined elements. |
||
652 | inline cstfp_pred_ty<is_finitenonzero> m_FiniteNonZero() { |
||
653 | return cstfp_pred_ty<is_finitenonzero>(); |
||
654 | } |
||
655 | inline apf_pred_ty<is_finitenonzero> m_FiniteNonZero(const APFloat *&V) { |
||
656 | return V; |
||
657 | } |
||
658 | |||
659 | struct is_any_zero_fp { |
||
660 | bool isValue(const APFloat &C) { return C.isZero(); } |
||
661 | }; |
||
662 | /// Match a floating-point negative zero or positive zero. |
||
663 | /// For vectors, this includes constants with undefined elements. |
||
664 | inline cstfp_pred_ty<is_any_zero_fp> m_AnyZeroFP() { |
||
665 | return cstfp_pred_ty<is_any_zero_fp>(); |
||
666 | } |
||
667 | |||
668 | struct is_pos_zero_fp { |
||
669 | bool isValue(const APFloat &C) { return C.isPosZero(); } |
||
670 | }; |
||
671 | /// Match a floating-point positive zero. |
||
672 | /// For vectors, this includes constants with undefined elements. |
||
673 | inline cstfp_pred_ty<is_pos_zero_fp> m_PosZeroFP() { |
||
674 | return cstfp_pred_ty<is_pos_zero_fp>(); |
||
675 | } |
||
676 | |||
677 | struct is_neg_zero_fp { |
||
678 | bool isValue(const APFloat &C) { return C.isNegZero(); } |
||
679 | }; |
||
680 | /// Match a floating-point negative zero. |
||
681 | /// For vectors, this includes constants with undefined elements. |
||
682 | inline cstfp_pred_ty<is_neg_zero_fp> m_NegZeroFP() { |
||
683 | return cstfp_pred_ty<is_neg_zero_fp>(); |
||
684 | } |
||
685 | |||
686 | struct is_non_zero_fp { |
||
687 | bool isValue(const APFloat &C) { return C.isNonZero(); } |
||
688 | }; |
||
689 | /// Match a floating-point non-zero. |
||
690 | /// For vectors, this includes constants with undefined elements. |
||
691 | inline cstfp_pred_ty<is_non_zero_fp> m_NonZeroFP() { |
||
692 | return cstfp_pred_ty<is_non_zero_fp>(); |
||
693 | } |
||
694 | |||
695 | /////////////////////////////////////////////////////////////////////////////// |
||
696 | |||
697 | template <typename Class> struct bind_ty { |
||
698 | Class *&VR; |
||
699 | |||
700 | bind_ty(Class *&V) : VR(V) {} |
||
701 | |||
702 | template <typename ITy> bool match(ITy *V) { |
||
703 | if (auto *CV = dyn_cast<Class>(V)) { |
||
704 | VR = CV; |
||
705 | return true; |
||
706 | } |
||
707 | return false; |
||
708 | } |
||
709 | }; |
||
710 | |||
711 | /// Match a value, capturing it if we match. |
||
712 | inline bind_ty<Value> m_Value(Value *&V) { return V; } |
||
713 | inline bind_ty<const Value> m_Value(const Value *&V) { return V; } |
||
714 | |||
715 | /// Match an instruction, capturing it if we match. |
||
716 | inline bind_ty<Instruction> m_Instruction(Instruction *&I) { return I; } |
||
717 | /// Match a unary operator, capturing it if we match. |
||
718 | inline bind_ty<UnaryOperator> m_UnOp(UnaryOperator *&I) { return I; } |
||
719 | /// Match a binary operator, capturing it if we match. |
||
720 | inline bind_ty<BinaryOperator> m_BinOp(BinaryOperator *&I) { return I; } |
||
721 | /// Match a with overflow intrinsic, capturing it if we match. |
||
722 | inline bind_ty<WithOverflowInst> m_WithOverflowInst(WithOverflowInst *&I) { |
||
723 | return I; |
||
724 | } |
||
725 | inline bind_ty<const WithOverflowInst> |
||
726 | m_WithOverflowInst(const WithOverflowInst *&I) { |
||
727 | return I; |
||
728 | } |
||
729 | |||
730 | /// Match a Constant, capturing the value if we match. |
||
731 | inline bind_ty<Constant> m_Constant(Constant *&C) { return C; } |
||
732 | |||
733 | /// Match a ConstantInt, capturing the value if we match. |
||
734 | inline bind_ty<ConstantInt> m_ConstantInt(ConstantInt *&CI) { return CI; } |
||
735 | |||
736 | /// Match a ConstantFP, capturing the value if we match. |
||
737 | inline bind_ty<ConstantFP> m_ConstantFP(ConstantFP *&C) { return C; } |
||
738 | |||
739 | /// Match a ConstantExpr, capturing the value if we match. |
||
740 | inline bind_ty<ConstantExpr> m_ConstantExpr(ConstantExpr *&C) { return C; } |
||
741 | |||
742 | /// Match a basic block value, capturing it if we match. |
||
743 | inline bind_ty<BasicBlock> m_BasicBlock(BasicBlock *&V) { return V; } |
||
744 | inline bind_ty<const BasicBlock> m_BasicBlock(const BasicBlock *&V) { |
||
745 | return V; |
||
746 | } |
||
747 | |||
748 | /// Match an arbitrary immediate Constant and ignore it. |
||
749 | inline match_combine_and<class_match<Constant>, |
||
750 | match_unless<constantexpr_match>> |
||
751 | m_ImmConstant() { |
||
752 | return m_CombineAnd(m_Constant(), m_Unless(m_ConstantExpr())); |
||
753 | } |
||
754 | |||
755 | /// Match an immediate Constant, capturing the value if we match. |
||
756 | inline match_combine_and<bind_ty<Constant>, |
||
757 | match_unless<constantexpr_match>> |
||
758 | m_ImmConstant(Constant *&C) { |
||
759 | return m_CombineAnd(m_Constant(C), m_Unless(m_ConstantExpr())); |
||
760 | } |
||
761 | |||
762 | /// Match a specified Value*. |
||
763 | struct specificval_ty { |
||
764 | const Value *Val; |
||
765 | |||
766 | specificval_ty(const Value *V) : Val(V) {} |
||
767 | |||
768 | template <typename ITy> bool match(ITy *V) { return V == Val; } |
||
769 | }; |
||
770 | |||
771 | /// Match if we have a specific specified value. |
||
772 | inline specificval_ty m_Specific(const Value *V) { return V; } |
||
773 | |||
774 | /// Stores a reference to the Value *, not the Value * itself, |
||
775 | /// thus can be used in commutative matchers. |
||
776 | template <typename Class> struct deferredval_ty { |
||
777 | Class *const &Val; |
||
778 | |||
779 | deferredval_ty(Class *const &V) : Val(V) {} |
||
780 | |||
781 | template <typename ITy> bool match(ITy *const V) { return V == Val; } |
||
782 | }; |
||
783 | |||
784 | /// Like m_Specific(), but works if the specific value to match is determined |
||
785 | /// as part of the same match() expression. For example: |
||
786 | /// m_Add(m_Value(X), m_Specific(X)) is incorrect, because m_Specific() will |
||
787 | /// bind X before the pattern match starts. |
||
788 | /// m_Add(m_Value(X), m_Deferred(X)) is correct, and will check against |
||
789 | /// whichever value m_Value(X) populated. |
||
790 | inline deferredval_ty<Value> m_Deferred(Value *const &V) { return V; } |
||
791 | inline deferredval_ty<const Value> m_Deferred(const Value *const &V) { |
||
792 | return V; |
||
793 | } |
||
794 | |||
795 | /// Match a specified floating point value or vector of all elements of |
||
796 | /// that value. |
||
797 | struct specific_fpval { |
||
798 | double Val; |
||
799 | |||
800 | specific_fpval(double V) : Val(V) {} |
||
801 | |||
802 | template <typename ITy> bool match(ITy *V) { |
||
803 | if (const auto *CFP = dyn_cast<ConstantFP>(V)) |
||
804 | return CFP->isExactlyValue(Val); |
||
805 | if (V->getType()->isVectorTy()) |
||
806 | if (const auto *C = dyn_cast<Constant>(V)) |
||
807 | if (auto *CFP = dyn_cast_or_null<ConstantFP>(C->getSplatValue())) |
||
808 | return CFP->isExactlyValue(Val); |
||
809 | return false; |
||
810 | } |
||
811 | }; |
||
812 | |||
813 | /// Match a specific floating point value or vector with all elements |
||
814 | /// equal to the value. |
||
815 | inline specific_fpval m_SpecificFP(double V) { return specific_fpval(V); } |
||
816 | |||
817 | /// Match a float 1.0 or vector with all elements equal to 1.0. |
||
818 | inline specific_fpval m_FPOne() { return m_SpecificFP(1.0); } |
||
819 | |||
820 | struct bind_const_intval_ty { |
||
821 | uint64_t &VR; |
||
822 | |||
823 | bind_const_intval_ty(uint64_t &V) : VR(V) {} |
||
824 | |||
825 | template <typename ITy> bool match(ITy *V) { |
||
826 | if (const auto *CV = dyn_cast<ConstantInt>(V)) |
||
827 | if (CV->getValue().ule(UINT64_MAX)) { |
||
828 | VR = CV->getZExtValue(); |
||
829 | return true; |
||
830 | } |
||
831 | return false; |
||
832 | } |
||
833 | }; |
||
834 | |||
835 | /// Match a specified integer value or vector of all elements of that |
||
836 | /// value. |
||
837 | template <bool AllowUndefs> struct specific_intval { |
||
838 | APInt Val; |
||
839 | |||
840 | specific_intval(APInt V) : Val(std::move(V)) {} |
||
841 | |||
842 | template <typename ITy> bool match(ITy *V) { |
||
843 | const auto *CI = dyn_cast<ConstantInt>(V); |
||
844 | if (!CI && V->getType()->isVectorTy()) |
||
845 | if (const auto *C = dyn_cast<Constant>(V)) |
||
846 | CI = dyn_cast_or_null<ConstantInt>(C->getSplatValue(AllowUndefs)); |
||
847 | |||
848 | return CI && APInt::isSameValue(CI->getValue(), Val); |
||
849 | } |
||
850 | }; |
||
851 | |||
852 | /// Match a specific integer value or vector with all elements equal to |
||
853 | /// the value. |
||
854 | inline specific_intval<false> m_SpecificInt(APInt V) { |
||
855 | return specific_intval<false>(std::move(V)); |
||
856 | } |
||
857 | |||
858 | inline specific_intval<false> m_SpecificInt(uint64_t V) { |
||
859 | return m_SpecificInt(APInt(64, V)); |
||
860 | } |
||
861 | |||
862 | inline specific_intval<true> m_SpecificIntAllowUndef(APInt V) { |
||
863 | return specific_intval<true>(std::move(V)); |
||
864 | } |
||
865 | |||
866 | inline specific_intval<true> m_SpecificIntAllowUndef(uint64_t V) { |
||
867 | return m_SpecificIntAllowUndef(APInt(64, V)); |
||
868 | } |
||
869 | |||
870 | /// Match a ConstantInt and bind to its value. This does not match |
||
871 | /// ConstantInts wider than 64-bits. |
||
872 | inline bind_const_intval_ty m_ConstantInt(uint64_t &V) { return V; } |
||
873 | |||
874 | /// Match a specified basic block value. |
||
875 | struct specific_bbval { |
||
876 | BasicBlock *Val; |
||
877 | |||
878 | specific_bbval(BasicBlock *Val) : Val(Val) {} |
||
879 | |||
880 | template <typename ITy> bool match(ITy *V) { |
||
881 | const auto *BB = dyn_cast<BasicBlock>(V); |
||
882 | return BB && BB == Val; |
||
883 | } |
||
884 | }; |
||
885 | |||
886 | /// Match a specific basic block value. |
||
887 | inline specific_bbval m_SpecificBB(BasicBlock *BB) { |
||
888 | return specific_bbval(BB); |
||
889 | } |
||
890 | |||
891 | /// A commutative-friendly version of m_Specific(). |
||
892 | inline deferredval_ty<BasicBlock> m_Deferred(BasicBlock *const &BB) { |
||
893 | return BB; |
||
894 | } |
||
895 | inline deferredval_ty<const BasicBlock> |
||
896 | m_Deferred(const BasicBlock *const &BB) { |
||
897 | return BB; |
||
898 | } |
||
899 | |||
900 | //===----------------------------------------------------------------------===// |
||
901 | // Matcher for any binary operator. |
||
902 | // |
||
903 | template <typename LHS_t, typename RHS_t, bool Commutable = false> |
||
904 | struct AnyBinaryOp_match { |
||
905 | LHS_t L; |
||
906 | RHS_t R; |
||
907 | |||
908 | // The evaluation order is always stable, regardless of Commutability. |
||
909 | // The LHS is always matched first. |
||
910 | AnyBinaryOp_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {} |
||
911 | |||
912 | template <typename OpTy> bool match(OpTy *V) { |
||
913 | if (auto *I = dyn_cast<BinaryOperator>(V)) |
||
914 | return (L.match(I->getOperand(0)) && R.match(I->getOperand(1))) || |
||
915 | (Commutable && L.match(I->getOperand(1)) && |
||
916 | R.match(I->getOperand(0))); |
||
917 | return false; |
||
918 | } |
||
919 | }; |
||
920 | |||
921 | template <typename LHS, typename RHS> |
||
922 | inline AnyBinaryOp_match<LHS, RHS> m_BinOp(const LHS &L, const RHS &R) { |
||
923 | return AnyBinaryOp_match<LHS, RHS>(L, R); |
||
924 | } |
||
925 | |||
926 | //===----------------------------------------------------------------------===// |
||
927 | // Matcher for any unary operator. |
||
928 | // TODO fuse unary, binary matcher into n-ary matcher |
||
929 | // |
||
930 | template <typename OP_t> struct AnyUnaryOp_match { |
||
931 | OP_t X; |
||
932 | |||
933 | AnyUnaryOp_match(const OP_t &X) : X(X) {} |
||
934 | |||
935 | template <typename OpTy> bool match(OpTy *V) { |
||
936 | if (auto *I = dyn_cast<UnaryOperator>(V)) |
||
937 | return X.match(I->getOperand(0)); |
||
938 | return false; |
||
939 | } |
||
940 | }; |
||
941 | |||
942 | template <typename OP_t> inline AnyUnaryOp_match<OP_t> m_UnOp(const OP_t &X) { |
||
943 | return AnyUnaryOp_match<OP_t>(X); |
||
944 | } |
||
945 | |||
946 | //===----------------------------------------------------------------------===// |
||
947 | // Matchers for specific binary operators. |
||
948 | // |
||
949 | |||
950 | template <typename LHS_t, typename RHS_t, unsigned Opcode, |
||
951 | bool Commutable = false> |
||
952 | struct BinaryOp_match { |
||
953 | LHS_t L; |
||
954 | RHS_t R; |
||
955 | |||
956 | // The evaluation order is always stable, regardless of Commutability. |
||
957 | // The LHS is always matched first. |
||
958 | BinaryOp_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {} |
||
959 | |||
960 | template <typename OpTy> inline bool match(unsigned Opc, OpTy *V) { |
||
961 | if (V->getValueID() == Value::InstructionVal + Opc) { |
||
962 | auto *I = cast<BinaryOperator>(V); |
||
963 | return (L.match(I->getOperand(0)) && R.match(I->getOperand(1))) || |
||
964 | (Commutable && L.match(I->getOperand(1)) && |
||
965 | R.match(I->getOperand(0))); |
||
966 | } |
||
967 | if (auto *CE = dyn_cast<ConstantExpr>(V)) |
||
968 | return CE->getOpcode() == Opc && |
||
969 | ((L.match(CE->getOperand(0)) && R.match(CE->getOperand(1))) || |
||
970 | (Commutable && L.match(CE->getOperand(1)) && |
||
971 | R.match(CE->getOperand(0)))); |
||
972 | return false; |
||
973 | } |
||
974 | |||
975 | template <typename OpTy> bool match(OpTy *V) { return match(Opcode, V); } |
||
976 | }; |
||
977 | |||
978 | template <typename LHS, typename RHS> |
||
979 | inline BinaryOp_match<LHS, RHS, Instruction::Add> m_Add(const LHS &L, |
||
980 | const RHS &R) { |
||
981 | return BinaryOp_match<LHS, RHS, Instruction::Add>(L, R); |
||
982 | } |
||
983 | |||
984 | template <typename LHS, typename RHS> |
||
985 | inline BinaryOp_match<LHS, RHS, Instruction::FAdd> m_FAdd(const LHS &L, |
||
986 | const RHS &R) { |
||
987 | return BinaryOp_match<LHS, RHS, Instruction::FAdd>(L, R); |
||
988 | } |
||
989 | |||
990 | template <typename LHS, typename RHS> |
||
991 | inline BinaryOp_match<LHS, RHS, Instruction::Sub> m_Sub(const LHS &L, |
||
992 | const RHS &R) { |
||
993 | return BinaryOp_match<LHS, RHS, Instruction::Sub>(L, R); |
||
994 | } |
||
995 | |||
996 | template <typename LHS, typename RHS> |
||
997 | inline BinaryOp_match<LHS, RHS, Instruction::FSub> m_FSub(const LHS &L, |
||
998 | const RHS &R) { |
||
999 | return BinaryOp_match<LHS, RHS, Instruction::FSub>(L, R); |
||
1000 | } |
||
1001 | |||
1002 | template <typename Op_t> struct FNeg_match { |
||
1003 | Op_t X; |
||
1004 | |||
1005 | FNeg_match(const Op_t &Op) : X(Op) {} |
||
1006 | template <typename OpTy> bool match(OpTy *V) { |
||
1007 | auto *FPMO = dyn_cast<FPMathOperator>(V); |
||
1008 | if (!FPMO) |
||
1009 | return false; |
||
1010 | |||
1011 | if (FPMO->getOpcode() == Instruction::FNeg) |
||
1012 | return X.match(FPMO->getOperand(0)); |
||
1013 | |||
1014 | if (FPMO->getOpcode() == Instruction::FSub) { |
||
1015 | if (FPMO->hasNoSignedZeros()) { |
||
1016 | // With 'nsz', any zero goes. |
||
1017 | if (!cstfp_pred_ty<is_any_zero_fp>().match(FPMO->getOperand(0))) |
||
1018 | return false; |
||
1019 | } else { |
||
1020 | // Without 'nsz', we need fsub -0.0, X exactly. |
||
1021 | if (!cstfp_pred_ty<is_neg_zero_fp>().match(FPMO->getOperand(0))) |
||
1022 | return false; |
||
1023 | } |
||
1024 | |||
1025 | return X.match(FPMO->getOperand(1)); |
||
1026 | } |
||
1027 | |||
1028 | return false; |
||
1029 | } |
||
1030 | }; |
||
1031 | |||
1032 | /// Match 'fneg X' as 'fsub -0.0, X'. |
||
1033 | template <typename OpTy> inline FNeg_match<OpTy> m_FNeg(const OpTy &X) { |
||
1034 | return FNeg_match<OpTy>(X); |
||
1035 | } |
||
1036 | |||
1037 | /// Match 'fneg X' as 'fsub +-0.0, X'. |
||
1038 | template <typename RHS> |
||
1039 | inline BinaryOp_match<cstfp_pred_ty<is_any_zero_fp>, RHS, Instruction::FSub> |
||
1040 | m_FNegNSZ(const RHS &X) { |
||
1041 | return m_FSub(m_AnyZeroFP(), X); |
||
1042 | } |
||
1043 | |||
1044 | template <typename LHS, typename RHS> |
||
1045 | inline BinaryOp_match<LHS, RHS, Instruction::Mul> m_Mul(const LHS &L, |
||
1046 | const RHS &R) { |
||
1047 | return BinaryOp_match<LHS, RHS, Instruction::Mul>(L, R); |
||
1048 | } |
||
1049 | |||
1050 | template <typename LHS, typename RHS> |
||
1051 | inline BinaryOp_match<LHS, RHS, Instruction::FMul> m_FMul(const LHS &L, |
||
1052 | const RHS &R) { |
||
1053 | return BinaryOp_match<LHS, RHS, Instruction::FMul>(L, R); |
||
1054 | } |
||
1055 | |||
1056 | template <typename LHS, typename RHS> |
||
1057 | inline BinaryOp_match<LHS, RHS, Instruction::UDiv> m_UDiv(const LHS &L, |
||
1058 | const RHS &R) { |
||
1059 | return BinaryOp_match<LHS, RHS, Instruction::UDiv>(L, R); |
||
1060 | } |
||
1061 | |||
1062 | template <typename LHS, typename RHS> |
||
1063 | inline BinaryOp_match<LHS, RHS, Instruction::SDiv> m_SDiv(const LHS &L, |
||
1064 | const RHS &R) { |
||
1065 | return BinaryOp_match<LHS, RHS, Instruction::SDiv>(L, R); |
||
1066 | } |
||
1067 | |||
1068 | template <typename LHS, typename RHS> |
||
1069 | inline BinaryOp_match<LHS, RHS, Instruction::FDiv> m_FDiv(const LHS &L, |
||
1070 | const RHS &R) { |
||
1071 | return BinaryOp_match<LHS, RHS, Instruction::FDiv>(L, R); |
||
1072 | } |
||
1073 | |||
1074 | template <typename LHS, typename RHS> |
||
1075 | inline BinaryOp_match<LHS, RHS, Instruction::URem> m_URem(const LHS &L, |
||
1076 | const RHS &R) { |
||
1077 | return BinaryOp_match<LHS, RHS, Instruction::URem>(L, R); |
||
1078 | } |
||
1079 | |||
1080 | template <typename LHS, typename RHS> |
||
1081 | inline BinaryOp_match<LHS, RHS, Instruction::SRem> m_SRem(const LHS &L, |
||
1082 | const RHS &R) { |
||
1083 | return BinaryOp_match<LHS, RHS, Instruction::SRem>(L, R); |
||
1084 | } |
||
1085 | |||
1086 | template <typename LHS, typename RHS> |
||
1087 | inline BinaryOp_match<LHS, RHS, Instruction::FRem> m_FRem(const LHS &L, |
||
1088 | const RHS &R) { |
||
1089 | return BinaryOp_match<LHS, RHS, Instruction::FRem>(L, R); |
||
1090 | } |
||
1091 | |||
1092 | template <typename LHS, typename RHS> |
||
1093 | inline BinaryOp_match<LHS, RHS, Instruction::And> m_And(const LHS &L, |
||
1094 | const RHS &R) { |
||
1095 | return BinaryOp_match<LHS, RHS, Instruction::And>(L, R); |
||
1096 | } |
||
1097 | |||
1098 | template <typename LHS, typename RHS> |
||
1099 | inline BinaryOp_match<LHS, RHS, Instruction::Or> m_Or(const LHS &L, |
||
1100 | const RHS &R) { |
||
1101 | return BinaryOp_match<LHS, RHS, Instruction::Or>(L, R); |
||
1102 | } |
||
1103 | |||
1104 | template <typename LHS, typename RHS> |
||
1105 | inline BinaryOp_match<LHS, RHS, Instruction::Xor> m_Xor(const LHS &L, |
||
1106 | const RHS &R) { |
||
1107 | return BinaryOp_match<LHS, RHS, Instruction::Xor>(L, R); |
||
1108 | } |
||
1109 | |||
1110 | template <typename LHS, typename RHS> |
||
1111 | inline BinaryOp_match<LHS, RHS, Instruction::Shl> m_Shl(const LHS &L, |
||
1112 | const RHS &R) { |
||
1113 | return BinaryOp_match<LHS, RHS, Instruction::Shl>(L, R); |
||
1114 | } |
||
1115 | |||
1116 | template <typename LHS, typename RHS> |
||
1117 | inline BinaryOp_match<LHS, RHS, Instruction::LShr> m_LShr(const LHS &L, |
||
1118 | const RHS &R) { |
||
1119 | return BinaryOp_match<LHS, RHS, Instruction::LShr>(L, R); |
||
1120 | } |
||
1121 | |||
1122 | template <typename LHS, typename RHS> |
||
1123 | inline BinaryOp_match<LHS, RHS, Instruction::AShr> m_AShr(const LHS &L, |
||
1124 | const RHS &R) { |
||
1125 | return BinaryOp_match<LHS, RHS, Instruction::AShr>(L, R); |
||
1126 | } |
||
1127 | |||
1128 | template <typename LHS_t, typename RHS_t, unsigned Opcode, |
||
1129 | unsigned WrapFlags = 0> |
||
1130 | struct OverflowingBinaryOp_match { |
||
1131 | LHS_t L; |
||
1132 | RHS_t R; |
||
1133 | |||
1134 | OverflowingBinaryOp_match(const LHS_t &LHS, const RHS_t &RHS) |
||
1135 | : L(LHS), R(RHS) {} |
||
1136 | |||
1137 | template <typename OpTy> bool match(OpTy *V) { |
||
1138 | if (auto *Op = dyn_cast<OverflowingBinaryOperator>(V)) { |
||
1139 | if (Op->getOpcode() != Opcode) |
||
1140 | return false; |
||
1141 | if ((WrapFlags & OverflowingBinaryOperator::NoUnsignedWrap) && |
||
1142 | !Op->hasNoUnsignedWrap()) |
||
1143 | return false; |
||
1144 | if ((WrapFlags & OverflowingBinaryOperator::NoSignedWrap) && |
||
1145 | !Op->hasNoSignedWrap()) |
||
1146 | return false; |
||
1147 | return L.match(Op->getOperand(0)) && R.match(Op->getOperand(1)); |
||
1148 | } |
||
1149 | return false; |
||
1150 | } |
||
1151 | }; |
||
1152 | |||
1153 | template <typename LHS, typename RHS> |
||
1154 | inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Add, |
||
1155 | OverflowingBinaryOperator::NoSignedWrap> |
||
1156 | m_NSWAdd(const LHS &L, const RHS &R) { |
||
1157 | return OverflowingBinaryOp_match<LHS, RHS, Instruction::Add, |
||
1158 | OverflowingBinaryOperator::NoSignedWrap>(L, |
||
1159 | R); |
||
1160 | } |
||
1161 | template <typename LHS, typename RHS> |
||
1162 | inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Sub, |
||
1163 | OverflowingBinaryOperator::NoSignedWrap> |
||
1164 | m_NSWSub(const LHS &L, const RHS &R) { |
||
1165 | return OverflowingBinaryOp_match<LHS, RHS, Instruction::Sub, |
||
1166 | OverflowingBinaryOperator::NoSignedWrap>(L, |
||
1167 | R); |
||
1168 | } |
||
1169 | template <typename LHS, typename RHS> |
||
1170 | inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Mul, |
||
1171 | OverflowingBinaryOperator::NoSignedWrap> |
||
1172 | m_NSWMul(const LHS &L, const RHS &R) { |
||
1173 | return OverflowingBinaryOp_match<LHS, RHS, Instruction::Mul, |
||
1174 | OverflowingBinaryOperator::NoSignedWrap>(L, |
||
1175 | R); |
||
1176 | } |
||
1177 | template <typename LHS, typename RHS> |
||
1178 | inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Shl, |
||
1179 | OverflowingBinaryOperator::NoSignedWrap> |
||
1180 | m_NSWShl(const LHS &L, const RHS &R) { |
||
1181 | return OverflowingBinaryOp_match<LHS, RHS, Instruction::Shl, |
||
1182 | OverflowingBinaryOperator::NoSignedWrap>(L, |
||
1183 | R); |
||
1184 | } |
||
1185 | |||
1186 | template <typename LHS, typename RHS> |
||
1187 | inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Add, |
||
1188 | OverflowingBinaryOperator::NoUnsignedWrap> |
||
1189 | m_NUWAdd(const LHS &L, const RHS &R) { |
||
1190 | return OverflowingBinaryOp_match<LHS, RHS, Instruction::Add, |
||
1191 | OverflowingBinaryOperator::NoUnsignedWrap>( |
||
1192 | L, R); |
||
1193 | } |
||
1194 | template <typename LHS, typename RHS> |
||
1195 | inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Sub, |
||
1196 | OverflowingBinaryOperator::NoUnsignedWrap> |
||
1197 | m_NUWSub(const LHS &L, const RHS &R) { |
||
1198 | return OverflowingBinaryOp_match<LHS, RHS, Instruction::Sub, |
||
1199 | OverflowingBinaryOperator::NoUnsignedWrap>( |
||
1200 | L, R); |
||
1201 | } |
||
1202 | template <typename LHS, typename RHS> |
||
1203 | inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Mul, |
||
1204 | OverflowingBinaryOperator::NoUnsignedWrap> |
||
1205 | m_NUWMul(const LHS &L, const RHS &R) { |
||
1206 | return OverflowingBinaryOp_match<LHS, RHS, Instruction::Mul, |
||
1207 | OverflowingBinaryOperator::NoUnsignedWrap>( |
||
1208 | L, R); |
||
1209 | } |
||
1210 | template <typename LHS, typename RHS> |
||
1211 | inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Shl, |
||
1212 | OverflowingBinaryOperator::NoUnsignedWrap> |
||
1213 | m_NUWShl(const LHS &L, const RHS &R) { |
||
1214 | return OverflowingBinaryOp_match<LHS, RHS, Instruction::Shl, |
||
1215 | OverflowingBinaryOperator::NoUnsignedWrap>( |
||
1216 | L, R); |
||
1217 | } |
||
1218 | |||
1219 | template <typename LHS_t, typename RHS_t, bool Commutable = false> |
||
1220 | struct SpecificBinaryOp_match |
||
1221 | : public BinaryOp_match<LHS_t, RHS_t, 0, Commutable> { |
||
1222 | unsigned Opcode; |
||
1223 | |||
1224 | SpecificBinaryOp_match(unsigned Opcode, const LHS_t &LHS, const RHS_t &RHS) |
||
1225 | : BinaryOp_match<LHS_t, RHS_t, 0, Commutable>(LHS, RHS), Opcode(Opcode) {} |
||
1226 | |||
1227 | template <typename OpTy> bool match(OpTy *V) { |
||
1228 | return BinaryOp_match<LHS_t, RHS_t, 0, Commutable>::match(Opcode, V); |
||
1229 | } |
||
1230 | }; |
||
1231 | |||
1232 | /// Matches a specific opcode. |
||
1233 | template <typename LHS, typename RHS> |
||
1234 | inline SpecificBinaryOp_match<LHS, RHS> m_BinOp(unsigned Opcode, const LHS &L, |
||
1235 | const RHS &R) { |
||
1236 | return SpecificBinaryOp_match<LHS, RHS>(Opcode, L, R); |
||
1237 | } |
||
1238 | |||
1239 | //===----------------------------------------------------------------------===// |
||
1240 | // Class that matches a group of binary opcodes. |
||
1241 | // |
||
1242 | template <typename LHS_t, typename RHS_t, typename Predicate> |
||
1243 | struct BinOpPred_match : Predicate { |
||
1244 | LHS_t L; |
||
1245 | RHS_t R; |
||
1246 | |||
1247 | BinOpPred_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {} |
||
1248 | |||
1249 | template <typename OpTy> bool match(OpTy *V) { |
||
1250 | if (auto *I = dyn_cast<Instruction>(V)) |
||
1251 | return this->isOpType(I->getOpcode()) && L.match(I->getOperand(0)) && |
||
1252 | R.match(I->getOperand(1)); |
||
1253 | if (auto *CE = dyn_cast<ConstantExpr>(V)) |
||
1254 | return this->isOpType(CE->getOpcode()) && L.match(CE->getOperand(0)) && |
||
1255 | R.match(CE->getOperand(1)); |
||
1256 | return false; |
||
1257 | } |
||
1258 | }; |
||
1259 | |||
1260 | struct is_shift_op { |
||
1261 | bool isOpType(unsigned Opcode) { return Instruction::isShift(Opcode); } |
||
1262 | }; |
||
1263 | |||
1264 | struct is_right_shift_op { |
||
1265 | bool isOpType(unsigned Opcode) { |
||
1266 | return Opcode == Instruction::LShr || Opcode == Instruction::AShr; |
||
1267 | } |
||
1268 | }; |
||
1269 | |||
1270 | struct is_logical_shift_op { |
||
1271 | bool isOpType(unsigned Opcode) { |
||
1272 | return Opcode == Instruction::LShr || Opcode == Instruction::Shl; |
||
1273 | } |
||
1274 | }; |
||
1275 | |||
1276 | struct is_bitwiselogic_op { |
||
1277 | bool isOpType(unsigned Opcode) { |
||
1278 | return Instruction::isBitwiseLogicOp(Opcode); |
||
1279 | } |
||
1280 | }; |
||
1281 | |||
1282 | struct is_idiv_op { |
||
1283 | bool isOpType(unsigned Opcode) { |
||
1284 | return Opcode == Instruction::SDiv || Opcode == Instruction::UDiv; |
||
1285 | } |
||
1286 | }; |
||
1287 | |||
1288 | struct is_irem_op { |
||
1289 | bool isOpType(unsigned Opcode) { |
||
1290 | return Opcode == Instruction::SRem || Opcode == Instruction::URem; |
||
1291 | } |
||
1292 | }; |
||
1293 | |||
1294 | /// Matches shift operations. |
||
1295 | template <typename LHS, typename RHS> |
||
1296 | inline BinOpPred_match<LHS, RHS, is_shift_op> m_Shift(const LHS &L, |
||
1297 | const RHS &R) { |
||
1298 | return BinOpPred_match<LHS, RHS, is_shift_op>(L, R); |
||
1299 | } |
||
1300 | |||
1301 | /// Matches logical shift operations. |
||
1302 | template <typename LHS, typename RHS> |
||
1303 | inline BinOpPred_match<LHS, RHS, is_right_shift_op> m_Shr(const LHS &L, |
||
1304 | const RHS &R) { |
||
1305 | return BinOpPred_match<LHS, RHS, is_right_shift_op>(L, R); |
||
1306 | } |
||
1307 | |||
1308 | /// Matches logical shift operations. |
||
1309 | template <typename LHS, typename RHS> |
||
1310 | inline BinOpPred_match<LHS, RHS, is_logical_shift_op> |
||
1311 | m_LogicalShift(const LHS &L, const RHS &R) { |
||
1312 | return BinOpPred_match<LHS, RHS, is_logical_shift_op>(L, R); |
||
1313 | } |
||
1314 | |||
1315 | /// Matches bitwise logic operations. |
||
1316 | template <typename LHS, typename RHS> |
||
1317 | inline BinOpPred_match<LHS, RHS, is_bitwiselogic_op> |
||
1318 | m_BitwiseLogic(const LHS &L, const RHS &R) { |
||
1319 | return BinOpPred_match<LHS, RHS, is_bitwiselogic_op>(L, R); |
||
1320 | } |
||
1321 | |||
1322 | /// Matches integer division operations. |
||
1323 | template <typename LHS, typename RHS> |
||
1324 | inline BinOpPred_match<LHS, RHS, is_idiv_op> m_IDiv(const LHS &L, |
||
1325 | const RHS &R) { |
||
1326 | return BinOpPred_match<LHS, RHS, is_idiv_op>(L, R); |
||
1327 | } |
||
1328 | |||
1329 | /// Matches integer remainder operations. |
||
1330 | template <typename LHS, typename RHS> |
||
1331 | inline BinOpPred_match<LHS, RHS, is_irem_op> m_IRem(const LHS &L, |
||
1332 | const RHS &R) { |
||
1333 | return BinOpPred_match<LHS, RHS, is_irem_op>(L, R); |
||
1334 | } |
||
1335 | |||
1336 | //===----------------------------------------------------------------------===// |
||
1337 | // Class that matches exact binary ops. |
||
1338 | // |
||
1339 | template <typename SubPattern_t> struct Exact_match { |
||
1340 | SubPattern_t SubPattern; |
||
1341 | |||
1342 | Exact_match(const SubPattern_t &SP) : SubPattern(SP) {} |
||
1343 | |||
1344 | template <typename OpTy> bool match(OpTy *V) { |
||
1345 | if (auto *PEO = dyn_cast<PossiblyExactOperator>(V)) |
||
1346 | return PEO->isExact() && SubPattern.match(V); |
||
1347 | return false; |
||
1348 | } |
||
1349 | }; |
||
1350 | |||
1351 | template <typename T> inline Exact_match<T> m_Exact(const T &SubPattern) { |
||
1352 | return SubPattern; |
||
1353 | } |
||
1354 | |||
1355 | //===----------------------------------------------------------------------===// |
||
1356 | // Matchers for CmpInst classes |
||
1357 | // |
||
1358 | |||
1359 | template <typename LHS_t, typename RHS_t, typename Class, typename PredicateTy, |
||
1360 | bool Commutable = false> |
||
1361 | struct CmpClass_match { |
||
1362 | PredicateTy &Predicate; |
||
1363 | LHS_t L; |
||
1364 | RHS_t R; |
||
1365 | |||
1366 | // The evaluation order is always stable, regardless of Commutability. |
||
1367 | // The LHS is always matched first. |
||
1368 | CmpClass_match(PredicateTy &Pred, const LHS_t &LHS, const RHS_t &RHS) |
||
1369 | : Predicate(Pred), L(LHS), R(RHS) {} |
||
1370 | |||
1371 | template <typename OpTy> bool match(OpTy *V) { |
||
1372 | if (auto *I = dyn_cast<Class>(V)) { |
||
1373 | if (L.match(I->getOperand(0)) && R.match(I->getOperand(1))) { |
||
1374 | Predicate = I->getPredicate(); |
||
1375 | return true; |
||
1376 | } else if (Commutable && L.match(I->getOperand(1)) && |
||
1377 | R.match(I->getOperand(0))) { |
||
1378 | Predicate = I->getSwappedPredicate(); |
||
1379 | return true; |
||
1380 | } |
||
1381 | } |
||
1382 | return false; |
||
1383 | } |
||
1384 | }; |
||
1385 | |||
1386 | template <typename LHS, typename RHS> |
||
1387 | inline CmpClass_match<LHS, RHS, CmpInst, CmpInst::Predicate> |
||
1388 | m_Cmp(CmpInst::Predicate &Pred, const LHS &L, const RHS &R) { |
||
1389 | return CmpClass_match<LHS, RHS, CmpInst, CmpInst::Predicate>(Pred, L, R); |
||
1390 | } |
||
1391 | |||
1392 | template <typename LHS, typename RHS> |
||
1393 | inline CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate> |
||
1394 | m_ICmp(ICmpInst::Predicate &Pred, const LHS &L, const RHS &R) { |
||
1395 | return CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate>(Pred, L, R); |
||
1396 | } |
||
1397 | |||
1398 | template <typename LHS, typename RHS> |
||
1399 | inline CmpClass_match<LHS, RHS, FCmpInst, FCmpInst::Predicate> |
||
1400 | m_FCmp(FCmpInst::Predicate &Pred, const LHS &L, const RHS &R) { |
||
1401 | return CmpClass_match<LHS, RHS, FCmpInst, FCmpInst::Predicate>(Pred, L, R); |
||
1402 | } |
||
1403 | |||
1404 | //===----------------------------------------------------------------------===// |
||
1405 | // Matchers for instructions with a given opcode and number of operands. |
||
1406 | // |
||
1407 | |||
1408 | /// Matches instructions with Opcode and three operands. |
||
1409 | template <typename T0, unsigned Opcode> struct OneOps_match { |
||
1410 | T0 Op1; |
||
1411 | |||
1412 | OneOps_match(const T0 &Op1) : Op1(Op1) {} |
||
1413 | |||
1414 | template <typename OpTy> bool match(OpTy *V) { |
||
1415 | if (V->getValueID() == Value::InstructionVal + Opcode) { |
||
1416 | auto *I = cast<Instruction>(V); |
||
1417 | return Op1.match(I->getOperand(0)); |
||
1418 | } |
||
1419 | return false; |
||
1420 | } |
||
1421 | }; |
||
1422 | |||
1423 | /// Matches instructions with Opcode and three operands. |
||
1424 | template <typename T0, typename T1, unsigned Opcode> struct TwoOps_match { |
||
1425 | T0 Op1; |
||
1426 | T1 Op2; |
||
1427 | |||
1428 | TwoOps_match(const T0 &Op1, const T1 &Op2) : Op1(Op1), Op2(Op2) {} |
||
1429 | |||
1430 | template <typename OpTy> bool match(OpTy *V) { |
||
1431 | if (V->getValueID() == Value::InstructionVal + Opcode) { |
||
1432 | auto *I = cast<Instruction>(V); |
||
1433 | return Op1.match(I->getOperand(0)) && Op2.match(I->getOperand(1)); |
||
1434 | } |
||
1435 | return false; |
||
1436 | } |
||
1437 | }; |
||
1438 | |||
1439 | /// Matches instructions with Opcode and three operands. |
||
1440 | template <typename T0, typename T1, typename T2, unsigned Opcode> |
||
1441 | struct ThreeOps_match { |
||
1442 | T0 Op1; |
||
1443 | T1 Op2; |
||
1444 | T2 Op3; |
||
1445 | |||
1446 | ThreeOps_match(const T0 &Op1, const T1 &Op2, const T2 &Op3) |
||
1447 | : Op1(Op1), Op2(Op2), Op3(Op3) {} |
||
1448 | |||
1449 | template <typename OpTy> bool match(OpTy *V) { |
||
1450 | if (V->getValueID() == Value::InstructionVal + Opcode) { |
||
1451 | auto *I = cast<Instruction>(V); |
||
1452 | return Op1.match(I->getOperand(0)) && Op2.match(I->getOperand(1)) && |
||
1453 | Op3.match(I->getOperand(2)); |
||
1454 | } |
||
1455 | return false; |
||
1456 | } |
||
1457 | }; |
||
1458 | |||
1459 | /// Matches SelectInst. |
||
1460 | template <typename Cond, typename LHS, typename RHS> |
||
1461 | inline ThreeOps_match<Cond, LHS, RHS, Instruction::Select> |
||
1462 | m_Select(const Cond &C, const LHS &L, const RHS &R) { |
||
1463 | return ThreeOps_match<Cond, LHS, RHS, Instruction::Select>(C, L, R); |
||
1464 | } |
||
1465 | |||
1466 | /// This matches a select of two constants, e.g.: |
||
1467 | /// m_SelectCst<-1, 0>(m_Value(V)) |
||
1468 | template <int64_t L, int64_t R, typename Cond> |
||
1469 | inline ThreeOps_match<Cond, constantint_match<L>, constantint_match<R>, |
||
1470 | Instruction::Select> |
||
1471 | m_SelectCst(const Cond &C) { |
||
1472 | return m_Select(C, m_ConstantInt<L>(), m_ConstantInt<R>()); |
||
1473 | } |
||
1474 | |||
1475 | /// Matches FreezeInst. |
||
1476 | template <typename OpTy> |
||
1477 | inline OneOps_match<OpTy, Instruction::Freeze> m_Freeze(const OpTy &Op) { |
||
1478 | return OneOps_match<OpTy, Instruction::Freeze>(Op); |
||
1479 | } |
||
1480 | |||
1481 | /// Matches InsertElementInst. |
||
1482 | template <typename Val_t, typename Elt_t, typename Idx_t> |
||
1483 | inline ThreeOps_match<Val_t, Elt_t, Idx_t, Instruction::InsertElement> |
||
1484 | m_InsertElt(const Val_t &Val, const Elt_t &Elt, const Idx_t &Idx) { |
||
1485 | return ThreeOps_match<Val_t, Elt_t, Idx_t, Instruction::InsertElement>( |
||
1486 | Val, Elt, Idx); |
||
1487 | } |
||
1488 | |||
1489 | /// Matches ExtractElementInst. |
||
1490 | template <typename Val_t, typename Idx_t> |
||
1491 | inline TwoOps_match<Val_t, Idx_t, Instruction::ExtractElement> |
||
1492 | m_ExtractElt(const Val_t &Val, const Idx_t &Idx) { |
||
1493 | return TwoOps_match<Val_t, Idx_t, Instruction::ExtractElement>(Val, Idx); |
||
1494 | } |
||
1495 | |||
1496 | /// Matches shuffle. |
||
1497 | template <typename T0, typename T1, typename T2> struct Shuffle_match { |
||
1498 | T0 Op1; |
||
1499 | T1 Op2; |
||
1500 | T2 Mask; |
||
1501 | |||
1502 | Shuffle_match(const T0 &Op1, const T1 &Op2, const T2 &Mask) |
||
1503 | : Op1(Op1), Op2(Op2), Mask(Mask) {} |
||
1504 | |||
1505 | template <typename OpTy> bool match(OpTy *V) { |
||
1506 | if (auto *I = dyn_cast<ShuffleVectorInst>(V)) { |
||
1507 | return Op1.match(I->getOperand(0)) && Op2.match(I->getOperand(1)) && |
||
1508 | Mask.match(I->getShuffleMask()); |
||
1509 | } |
||
1510 | return false; |
||
1511 | } |
||
1512 | }; |
||
1513 | |||
1514 | struct m_Mask { |
||
1515 | ArrayRef<int> &MaskRef; |
||
1516 | m_Mask(ArrayRef<int> &MaskRef) : MaskRef(MaskRef) {} |
||
1517 | bool match(ArrayRef<int> Mask) { |
||
1518 | MaskRef = Mask; |
||
1519 | return true; |
||
1520 | } |
||
1521 | }; |
||
1522 | |||
1523 | struct m_ZeroMask { |
||
1524 | bool match(ArrayRef<int> Mask) { |
||
1525 | return all_of(Mask, [](int Elem) { return Elem == 0 || Elem == -1; }); |
||
1526 | } |
||
1527 | }; |
||
1528 | |||
1529 | struct m_SpecificMask { |
||
1530 | ArrayRef<int> &MaskRef; |
||
1531 | m_SpecificMask(ArrayRef<int> &MaskRef) : MaskRef(MaskRef) {} |
||
1532 | bool match(ArrayRef<int> Mask) { return MaskRef == Mask; } |
||
1533 | }; |
||
1534 | |||
1535 | struct m_SplatOrUndefMask { |
||
1536 | int &SplatIndex; |
||
1537 | m_SplatOrUndefMask(int &SplatIndex) : SplatIndex(SplatIndex) {} |
||
1538 | bool match(ArrayRef<int> Mask) { |
||
1539 | auto First = find_if(Mask, [](int Elem) { return Elem != -1; }); |
||
1540 | if (First == Mask.end()) |
||
1541 | return false; |
||
1542 | SplatIndex = *First; |
||
1543 | return all_of(Mask, |
||
1544 | [First](int Elem) { return Elem == *First || Elem == -1; }); |
||
1545 | } |
||
1546 | }; |
||
1547 | |||
1548 | /// Matches ShuffleVectorInst independently of mask value. |
||
1549 | template <typename V1_t, typename V2_t> |
||
1550 | inline TwoOps_match<V1_t, V2_t, Instruction::ShuffleVector> |
||
1551 | m_Shuffle(const V1_t &v1, const V2_t &v2) { |
||
1552 | return TwoOps_match<V1_t, V2_t, Instruction::ShuffleVector>(v1, v2); |
||
1553 | } |
||
1554 | |||
1555 | template <typename V1_t, typename V2_t, typename Mask_t> |
||
1556 | inline Shuffle_match<V1_t, V2_t, Mask_t> |
||
1557 | m_Shuffle(const V1_t &v1, const V2_t &v2, const Mask_t &mask) { |
||
1558 | return Shuffle_match<V1_t, V2_t, Mask_t>(v1, v2, mask); |
||
1559 | } |
||
1560 | |||
1561 | /// Matches LoadInst. |
||
1562 | template <typename OpTy> |
||
1563 | inline OneOps_match<OpTy, Instruction::Load> m_Load(const OpTy &Op) { |
||
1564 | return OneOps_match<OpTy, Instruction::Load>(Op); |
||
1565 | } |
||
1566 | |||
1567 | /// Matches StoreInst. |
||
1568 | template <typename ValueOpTy, typename PointerOpTy> |
||
1569 | inline TwoOps_match<ValueOpTy, PointerOpTy, Instruction::Store> |
||
1570 | m_Store(const ValueOpTy &ValueOp, const PointerOpTy &PointerOp) { |
||
1571 | return TwoOps_match<ValueOpTy, PointerOpTy, Instruction::Store>(ValueOp, |
||
1572 | PointerOp); |
||
1573 | } |
||
1574 | |||
1575 | //===----------------------------------------------------------------------===// |
||
1576 | // Matchers for CastInst classes |
||
1577 | // |
||
1578 | |||
1579 | template <typename Op_t, unsigned Opcode> struct CastClass_match { |
||
1580 | Op_t Op; |
||
1581 | |||
1582 | CastClass_match(const Op_t &OpMatch) : Op(OpMatch) {} |
||
1583 | |||
1584 | template <typename OpTy> bool match(OpTy *V) { |
||
1585 | if (auto *O = dyn_cast<Operator>(V)) |
||
1586 | return O->getOpcode() == Opcode && Op.match(O->getOperand(0)); |
||
1587 | return false; |
||
1588 | } |
||
1589 | }; |
||
1590 | |||
1591 | /// Matches BitCast. |
||
1592 | template <typename OpTy> |
||
1593 | inline CastClass_match<OpTy, Instruction::BitCast> m_BitCast(const OpTy &Op) { |
||
1594 | return CastClass_match<OpTy, Instruction::BitCast>(Op); |
||
1595 | } |
||
1596 | |||
1597 | /// Matches PtrToInt. |
||
1598 | template <typename OpTy> |
||
1599 | inline CastClass_match<OpTy, Instruction::PtrToInt> m_PtrToInt(const OpTy &Op) { |
||
1600 | return CastClass_match<OpTy, Instruction::PtrToInt>(Op); |
||
1601 | } |
||
1602 | |||
1603 | /// Matches IntToPtr. |
||
1604 | template <typename OpTy> |
||
1605 | inline CastClass_match<OpTy, Instruction::IntToPtr> m_IntToPtr(const OpTy &Op) { |
||
1606 | return CastClass_match<OpTy, Instruction::IntToPtr>(Op); |
||
1607 | } |
||
1608 | |||
1609 | /// Matches Trunc. |
||
1610 | template <typename OpTy> |
||
1611 | inline CastClass_match<OpTy, Instruction::Trunc> m_Trunc(const OpTy &Op) { |
||
1612 | return CastClass_match<OpTy, Instruction::Trunc>(Op); |
||
1613 | } |
||
1614 | |||
1615 | template <typename OpTy> |
||
1616 | inline match_combine_or<CastClass_match<OpTy, Instruction::Trunc>, OpTy> |
||
1617 | m_TruncOrSelf(const OpTy &Op) { |
||
1618 | return m_CombineOr(m_Trunc(Op), Op); |
||
1619 | } |
||
1620 | |||
1621 | /// Matches SExt. |
||
1622 | template <typename OpTy> |
||
1623 | inline CastClass_match<OpTy, Instruction::SExt> m_SExt(const OpTy &Op) { |
||
1624 | return CastClass_match<OpTy, Instruction::SExt>(Op); |
||
1625 | } |
||
1626 | |||
1627 | /// Matches ZExt. |
||
1628 | template <typename OpTy> |
||
1629 | inline CastClass_match<OpTy, Instruction::ZExt> m_ZExt(const OpTy &Op) { |
||
1630 | return CastClass_match<OpTy, Instruction::ZExt>(Op); |
||
1631 | } |
||
1632 | |||
1633 | template <typename OpTy> |
||
1634 | inline match_combine_or<CastClass_match<OpTy, Instruction::ZExt>, OpTy> |
||
1635 | m_ZExtOrSelf(const OpTy &Op) { |
||
1636 | return m_CombineOr(m_ZExt(Op), Op); |
||
1637 | } |
||
1638 | |||
1639 | template <typename OpTy> |
||
1640 | inline match_combine_or<CastClass_match<OpTy, Instruction::SExt>, OpTy> |
||
1641 | m_SExtOrSelf(const OpTy &Op) { |
||
1642 | return m_CombineOr(m_SExt(Op), Op); |
||
1643 | } |
||
1644 | |||
1645 | template <typename OpTy> |
||
1646 | inline match_combine_or<CastClass_match<OpTy, Instruction::ZExt>, |
||
1647 | CastClass_match<OpTy, Instruction::SExt>> |
||
1648 | m_ZExtOrSExt(const OpTy &Op) { |
||
1649 | return m_CombineOr(m_ZExt(Op), m_SExt(Op)); |
||
1650 | } |
||
1651 | |||
1652 | template <typename OpTy> |
||
1653 | inline match_combine_or< |
||
1654 | match_combine_or<CastClass_match<OpTy, Instruction::ZExt>, |
||
1655 | CastClass_match<OpTy, Instruction::SExt>>, |
||
1656 | OpTy> |
||
1657 | m_ZExtOrSExtOrSelf(const OpTy &Op) { |
||
1658 | return m_CombineOr(m_ZExtOrSExt(Op), Op); |
||
1659 | } |
||
1660 | |||
1661 | template <typename OpTy> |
||
1662 | inline CastClass_match<OpTy, Instruction::UIToFP> m_UIToFP(const OpTy &Op) { |
||
1663 | return CastClass_match<OpTy, Instruction::UIToFP>(Op); |
||
1664 | } |
||
1665 | |||
1666 | template <typename OpTy> |
||
1667 | inline CastClass_match<OpTy, Instruction::SIToFP> m_SIToFP(const OpTy &Op) { |
||
1668 | return CastClass_match<OpTy, Instruction::SIToFP>(Op); |
||
1669 | } |
||
1670 | |||
1671 | template <typename OpTy> |
||
1672 | inline CastClass_match<OpTy, Instruction::FPToUI> m_FPToUI(const OpTy &Op) { |
||
1673 | return CastClass_match<OpTy, Instruction::FPToUI>(Op); |
||
1674 | } |
||
1675 | |||
1676 | template <typename OpTy> |
||
1677 | inline CastClass_match<OpTy, Instruction::FPToSI> m_FPToSI(const OpTy &Op) { |
||
1678 | return CastClass_match<OpTy, Instruction::FPToSI>(Op); |
||
1679 | } |
||
1680 | |||
1681 | template <typename OpTy> |
||
1682 | inline CastClass_match<OpTy, Instruction::FPTrunc> m_FPTrunc(const OpTy &Op) { |
||
1683 | return CastClass_match<OpTy, Instruction::FPTrunc>(Op); |
||
1684 | } |
||
1685 | |||
1686 | template <typename OpTy> |
||
1687 | inline CastClass_match<OpTy, Instruction::FPExt> m_FPExt(const OpTy &Op) { |
||
1688 | return CastClass_match<OpTy, Instruction::FPExt>(Op); |
||
1689 | } |
||
1690 | |||
1691 | //===----------------------------------------------------------------------===// |
||
1692 | // Matchers for control flow. |
||
1693 | // |
||
1694 | |||
1695 | struct br_match { |
||
1696 | BasicBlock *&Succ; |
||
1697 | |||
1698 | br_match(BasicBlock *&Succ) : Succ(Succ) {} |
||
1699 | |||
1700 | template <typename OpTy> bool match(OpTy *V) { |
||
1701 | if (auto *BI = dyn_cast<BranchInst>(V)) |
||
1702 | if (BI->isUnconditional()) { |
||
1703 | Succ = BI->getSuccessor(0); |
||
1704 | return true; |
||
1705 | } |
||
1706 | return false; |
||
1707 | } |
||
1708 | }; |
||
1709 | |||
1710 | inline br_match m_UnconditionalBr(BasicBlock *&Succ) { return br_match(Succ); } |
||
1711 | |||
1712 | template <typename Cond_t, typename TrueBlock_t, typename FalseBlock_t> |
||
1713 | struct brc_match { |
||
1714 | Cond_t Cond; |
||
1715 | TrueBlock_t T; |
||
1716 | FalseBlock_t F; |
||
1717 | |||
1718 | brc_match(const Cond_t &C, const TrueBlock_t &t, const FalseBlock_t &f) |
||
1719 | : Cond(C), T(t), F(f) {} |
||
1720 | |||
1721 | template <typename OpTy> bool match(OpTy *V) { |
||
1722 | if (auto *BI = dyn_cast<BranchInst>(V)) |
||
1723 | if (BI->isConditional() && Cond.match(BI->getCondition())) |
||
1724 | return T.match(BI->getSuccessor(0)) && F.match(BI->getSuccessor(1)); |
||
1725 | return false; |
||
1726 | } |
||
1727 | }; |
||
1728 | |||
1729 | template <typename Cond_t> |
||
1730 | inline brc_match<Cond_t, bind_ty<BasicBlock>, bind_ty<BasicBlock>> |
||
1731 | m_Br(const Cond_t &C, BasicBlock *&T, BasicBlock *&F) { |
||
1732 | return brc_match<Cond_t, bind_ty<BasicBlock>, bind_ty<BasicBlock>>( |
||
1733 | C, m_BasicBlock(T), m_BasicBlock(F)); |
||
1734 | } |
||
1735 | |||
1736 | template <typename Cond_t, typename TrueBlock_t, typename FalseBlock_t> |
||
1737 | inline brc_match<Cond_t, TrueBlock_t, FalseBlock_t> |
||
1738 | m_Br(const Cond_t &C, const TrueBlock_t &T, const FalseBlock_t &F) { |
||
1739 | return brc_match<Cond_t, TrueBlock_t, FalseBlock_t>(C, T, F); |
||
1740 | } |
||
1741 | |||
1742 | //===----------------------------------------------------------------------===// |
||
1743 | // Matchers for max/min idioms, eg: "select (sgt x, y), x, y" -> smax(x,y). |
||
1744 | // |
||
1745 | |||
1746 | template <typename CmpInst_t, typename LHS_t, typename RHS_t, typename Pred_t, |
||
1747 | bool Commutable = false> |
||
1748 | struct MaxMin_match { |
||
1749 | using PredType = Pred_t; |
||
1750 | LHS_t L; |
||
1751 | RHS_t R; |
||
1752 | |||
1753 | // The evaluation order is always stable, regardless of Commutability. |
||
1754 | // The LHS is always matched first. |
||
1755 | MaxMin_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {} |
||
1756 | |||
1757 | template <typename OpTy> bool match(OpTy *V) { |
||
1758 | if (auto *II = dyn_cast<IntrinsicInst>(V)) { |
||
1759 | Intrinsic::ID IID = II->getIntrinsicID(); |
||
1760 | if ((IID == Intrinsic::smax && Pred_t::match(ICmpInst::ICMP_SGT)) || |
||
1761 | (IID == Intrinsic::smin && Pred_t::match(ICmpInst::ICMP_SLT)) || |
||
1762 | (IID == Intrinsic::umax && Pred_t::match(ICmpInst::ICMP_UGT)) || |
||
1763 | (IID == Intrinsic::umin && Pred_t::match(ICmpInst::ICMP_ULT))) { |
||
1764 | Value *LHS = II->getOperand(0), *RHS = II->getOperand(1); |
||
1765 | return (L.match(LHS) && R.match(RHS)) || |
||
1766 | (Commutable && L.match(RHS) && R.match(LHS)); |
||
1767 | } |
||
1768 | } |
||
1769 | // Look for "(x pred y) ? x : y" or "(x pred y) ? y : x". |
||
1770 | auto *SI = dyn_cast<SelectInst>(V); |
||
1771 | if (!SI) |
||
1772 | return false; |
||
1773 | auto *Cmp = dyn_cast<CmpInst_t>(SI->getCondition()); |
||
1774 | if (!Cmp) |
||
1775 | return false; |
||
1776 | // At this point we have a select conditioned on a comparison. Check that |
||
1777 | // it is the values returned by the select that are being compared. |
||
1778 | auto *TrueVal = SI->getTrueValue(); |
||
1779 | auto *FalseVal = SI->getFalseValue(); |
||
1780 | auto *LHS = Cmp->getOperand(0); |
||
1781 | auto *RHS = Cmp->getOperand(1); |
||
1782 | if ((TrueVal != LHS || FalseVal != RHS) && |
||
1783 | (TrueVal != RHS || FalseVal != LHS)) |
||
1784 | return false; |
||
1785 | typename CmpInst_t::Predicate Pred = |
||
1786 | LHS == TrueVal ? Cmp->getPredicate() : Cmp->getInversePredicate(); |
||
1787 | // Does "(x pred y) ? x : y" represent the desired max/min operation? |
||
1788 | if (!Pred_t::match(Pred)) |
||
1789 | return false; |
||
1790 | // It does! Bind the operands. |
||
1791 | return (L.match(LHS) && R.match(RHS)) || |
||
1792 | (Commutable && L.match(RHS) && R.match(LHS)); |
||
1793 | } |
||
1794 | }; |
||
1795 | |||
1796 | /// Helper class for identifying signed max predicates. |
||
1797 | struct smax_pred_ty { |
||
1798 | static bool match(ICmpInst::Predicate Pred) { |
||
1799 | return Pred == CmpInst::ICMP_SGT || Pred == CmpInst::ICMP_SGE; |
||
1800 | } |
||
1801 | }; |
||
1802 | |||
1803 | /// Helper class for identifying signed min predicates. |
||
1804 | struct smin_pred_ty { |
||
1805 | static bool match(ICmpInst::Predicate Pred) { |
||
1806 | return Pred == CmpInst::ICMP_SLT || Pred == CmpInst::ICMP_SLE; |
||
1807 | } |
||
1808 | }; |
||
1809 | |||
1810 | /// Helper class for identifying unsigned max predicates. |
||
1811 | struct umax_pred_ty { |
||
1812 | static bool match(ICmpInst::Predicate Pred) { |
||
1813 | return Pred == CmpInst::ICMP_UGT || Pred == CmpInst::ICMP_UGE; |
||
1814 | } |
||
1815 | }; |
||
1816 | |||
1817 | /// Helper class for identifying unsigned min predicates. |
||
1818 | struct umin_pred_ty { |
||
1819 | static bool match(ICmpInst::Predicate Pred) { |
||
1820 | return Pred == CmpInst::ICMP_ULT || Pred == CmpInst::ICMP_ULE; |
||
1821 | } |
||
1822 | }; |
||
1823 | |||
1824 | /// Helper class for identifying ordered max predicates. |
||
1825 | struct ofmax_pred_ty { |
||
1826 | static bool match(FCmpInst::Predicate Pred) { |
||
1827 | return Pred == CmpInst::FCMP_OGT || Pred == CmpInst::FCMP_OGE; |
||
1828 | } |
||
1829 | }; |
||
1830 | |||
1831 | /// Helper class for identifying ordered min predicates. |
||
1832 | struct ofmin_pred_ty { |
||
1833 | static bool match(FCmpInst::Predicate Pred) { |
||
1834 | return Pred == CmpInst::FCMP_OLT || Pred == CmpInst::FCMP_OLE; |
||
1835 | } |
||
1836 | }; |
||
1837 | |||
1838 | /// Helper class for identifying unordered max predicates. |
||
1839 | struct ufmax_pred_ty { |
||
1840 | static bool match(FCmpInst::Predicate Pred) { |
||
1841 | return Pred == CmpInst::FCMP_UGT || Pred == CmpInst::FCMP_UGE; |
||
1842 | } |
||
1843 | }; |
||
1844 | |||
1845 | /// Helper class for identifying unordered min predicates. |
||
1846 | struct ufmin_pred_ty { |
||
1847 | static bool match(FCmpInst::Predicate Pred) { |
||
1848 | return Pred == CmpInst::FCMP_ULT || Pred == CmpInst::FCMP_ULE; |
||
1849 | } |
||
1850 | }; |
||
1851 | |||
1852 | template <typename LHS, typename RHS> |
||
1853 | inline MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty> m_SMax(const LHS &L, |
||
1854 | const RHS &R) { |
||
1855 | return MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty>(L, R); |
||
1856 | } |
||
1857 | |||
1858 | template <typename LHS, typename RHS> |
||
1859 | inline MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty> m_SMin(const LHS &L, |
||
1860 | const RHS &R) { |
||
1861 | return MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty>(L, R); |
||
1862 | } |
||
1863 | |||
1864 | template <typename LHS, typename RHS> |
||
1865 | inline MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty> m_UMax(const LHS &L, |
||
1866 | const RHS &R) { |
||
1867 | return MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty>(L, R); |
||
1868 | } |
||
1869 | |||
1870 | template <typename LHS, typename RHS> |
||
1871 | inline MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty> m_UMin(const LHS &L, |
||
1872 | const RHS &R) { |
||
1873 | return MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty>(L, R); |
||
1874 | } |
||
1875 | |||
1876 | template <typename LHS, typename RHS> |
||
1877 | inline match_combine_or< |
||
1878 | match_combine_or<MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty>, |
||
1879 | MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty>>, |
||
1880 | match_combine_or<MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty>, |
||
1881 | MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty>>> |
||
1882 | m_MaxOrMin(const LHS &L, const RHS &R) { |
||
1883 | return m_CombineOr(m_CombineOr(m_SMax(L, R), m_SMin(L, R)), |
||
1884 | m_CombineOr(m_UMax(L, R), m_UMin(L, R))); |
||
1885 | } |
||
1886 | |||
1887 | /// Match an 'ordered' floating point maximum function. |
||
1888 | /// Floating point has one special value 'NaN'. Therefore, there is no total |
||
1889 | /// order. However, if we can ignore the 'NaN' value (for example, because of a |
||
1890 | /// 'no-nans-float-math' flag) a combination of a fcmp and select has 'maximum' |
||
1891 | /// semantics. In the presence of 'NaN' we have to preserve the original |
||
1892 | /// select(fcmp(ogt/ge, L, R), L, R) semantics matched by this predicate. |
||
1893 | /// |
||
1894 | /// max(L, R) iff L and R are not NaN |
||
1895 | /// m_OrdFMax(L, R) = R iff L or R are NaN |
||
1896 | template <typename LHS, typename RHS> |
||
1897 | inline MaxMin_match<FCmpInst, LHS, RHS, ofmax_pred_ty> m_OrdFMax(const LHS &L, |
||
1898 | const RHS &R) { |
||
1899 | return MaxMin_match<FCmpInst, LHS, RHS, ofmax_pred_ty>(L, R); |
||
1900 | } |
||
1901 | |||
1902 | /// Match an 'ordered' floating point minimum function. |
||
1903 | /// Floating point has one special value 'NaN'. Therefore, there is no total |
||
1904 | /// order. However, if we can ignore the 'NaN' value (for example, because of a |
||
1905 | /// 'no-nans-float-math' flag) a combination of a fcmp and select has 'minimum' |
||
1906 | /// semantics. In the presence of 'NaN' we have to preserve the original |
||
1907 | /// select(fcmp(olt/le, L, R), L, R) semantics matched by this predicate. |
||
1908 | /// |
||
1909 | /// min(L, R) iff L and R are not NaN |
||
1910 | /// m_OrdFMin(L, R) = R iff L or R are NaN |
||
1911 | template <typename LHS, typename RHS> |
||
1912 | inline MaxMin_match<FCmpInst, LHS, RHS, ofmin_pred_ty> m_OrdFMin(const LHS &L, |
||
1913 | const RHS &R) { |
||
1914 | return MaxMin_match<FCmpInst, LHS, RHS, ofmin_pred_ty>(L, R); |
||
1915 | } |
||
1916 | |||
1917 | /// Match an 'unordered' floating point maximum function. |
||
1918 | /// Floating point has one special value 'NaN'. Therefore, there is no total |
||
1919 | /// order. However, if we can ignore the 'NaN' value (for example, because of a |
||
1920 | /// 'no-nans-float-math' flag) a combination of a fcmp and select has 'maximum' |
||
1921 | /// semantics. In the presence of 'NaN' we have to preserve the original |
||
1922 | /// select(fcmp(ugt/ge, L, R), L, R) semantics matched by this predicate. |
||
1923 | /// |
||
1924 | /// max(L, R) iff L and R are not NaN |
||
1925 | /// m_UnordFMax(L, R) = L iff L or R are NaN |
||
1926 | template <typename LHS, typename RHS> |
||
1927 | inline MaxMin_match<FCmpInst, LHS, RHS, ufmax_pred_ty> |
||
1928 | m_UnordFMax(const LHS &L, const RHS &R) { |
||
1929 | return MaxMin_match<FCmpInst, LHS, RHS, ufmax_pred_ty>(L, R); |
||
1930 | } |
||
1931 | |||
1932 | /// Match an 'unordered' floating point minimum function. |
||
1933 | /// Floating point has one special value 'NaN'. Therefore, there is no total |
||
1934 | /// order. However, if we can ignore the 'NaN' value (for example, because of a |
||
1935 | /// 'no-nans-float-math' flag) a combination of a fcmp and select has 'minimum' |
||
1936 | /// semantics. In the presence of 'NaN' we have to preserve the original |
||
1937 | /// select(fcmp(ult/le, L, R), L, R) semantics matched by this predicate. |
||
1938 | /// |
||
1939 | /// min(L, R) iff L and R are not NaN |
||
1940 | /// m_UnordFMin(L, R) = L iff L or R are NaN |
||
1941 | template <typename LHS, typename RHS> |
||
1942 | inline MaxMin_match<FCmpInst, LHS, RHS, ufmin_pred_ty> |
||
1943 | m_UnordFMin(const LHS &L, const RHS &R) { |
||
1944 | return MaxMin_match<FCmpInst, LHS, RHS, ufmin_pred_ty>(L, R); |
||
1945 | } |
||
1946 | |||
1947 | //===----------------------------------------------------------------------===// |
||
1948 | // Matchers for overflow check patterns: e.g. (a + b) u< a, (a ^ -1) <u b |
||
1949 | // Note that S might be matched to other instructions than AddInst. |
||
1950 | // |
||
1951 | |||
1952 | template <typename LHS_t, typename RHS_t, typename Sum_t> |
||
1953 | struct UAddWithOverflow_match { |
||
1954 | LHS_t L; |
||
1955 | RHS_t R; |
||
1956 | Sum_t S; |
||
1957 | |||
1958 | UAddWithOverflow_match(const LHS_t &L, const RHS_t &R, const Sum_t &S) |
||
1959 | : L(L), R(R), S(S) {} |
||
1960 | |||
1961 | template <typename OpTy> bool match(OpTy *V) { |
||
1962 | Value *ICmpLHS, *ICmpRHS; |
||
1963 | ICmpInst::Predicate Pred; |
||
1964 | if (!m_ICmp(Pred, m_Value(ICmpLHS), m_Value(ICmpRHS)).match(V)) |
||
1965 | return false; |
||
1966 | |||
1967 | Value *AddLHS, *AddRHS; |
||
1968 | auto AddExpr = m_Add(m_Value(AddLHS), m_Value(AddRHS)); |
||
1969 | |||
1970 | // (a + b) u< a, (a + b) u< b |
||
1971 | if (Pred == ICmpInst::ICMP_ULT) |
||
1972 | if (AddExpr.match(ICmpLHS) && (ICmpRHS == AddLHS || ICmpRHS == AddRHS)) |
||
1973 | return L.match(AddLHS) && R.match(AddRHS) && S.match(ICmpLHS); |
||
1974 | |||
1975 | // a >u (a + b), b >u (a + b) |
||
1976 | if (Pred == ICmpInst::ICMP_UGT) |
||
1977 | if (AddExpr.match(ICmpRHS) && (ICmpLHS == AddLHS || ICmpLHS == AddRHS)) |
||
1978 | return L.match(AddLHS) && R.match(AddRHS) && S.match(ICmpRHS); |
||
1979 | |||
1980 | Value *Op1; |
||
1981 | auto XorExpr = m_OneUse(m_Xor(m_Value(Op1), m_AllOnes())); |
||
1982 | // (a ^ -1) <u b |
||
1983 | if (Pred == ICmpInst::ICMP_ULT) { |
||
1984 | if (XorExpr.match(ICmpLHS)) |
||
1985 | return L.match(Op1) && R.match(ICmpRHS) && S.match(ICmpLHS); |
||
1986 | } |
||
1987 | // b > u (a ^ -1) |
||
1988 | if (Pred == ICmpInst::ICMP_UGT) { |
||
1989 | if (XorExpr.match(ICmpRHS)) |
||
1990 | return L.match(Op1) && R.match(ICmpLHS) && S.match(ICmpRHS); |
||
1991 | } |
||
1992 | |||
1993 | // Match special-case for increment-by-1. |
||
1994 | if (Pred == ICmpInst::ICMP_EQ) { |
||
1995 | // (a + 1) == 0 |
||
1996 | // (1 + a) == 0 |
||
1997 | if (AddExpr.match(ICmpLHS) && m_ZeroInt().match(ICmpRHS) && |
||
1998 | (m_One().match(AddLHS) || m_One().match(AddRHS))) |
||
1999 | return L.match(AddLHS) && R.match(AddRHS) && S.match(ICmpLHS); |
||
2000 | // 0 == (a + 1) |
||
2001 | // 0 == (1 + a) |
||
2002 | if (m_ZeroInt().match(ICmpLHS) && AddExpr.match(ICmpRHS) && |
||
2003 | (m_One().match(AddLHS) || m_One().match(AddRHS))) |
||
2004 | return L.match(AddLHS) && R.match(AddRHS) && S.match(ICmpRHS); |
||
2005 | } |
||
2006 | |||
2007 | return false; |
||
2008 | } |
||
2009 | }; |
||
2010 | |||
2011 | /// Match an icmp instruction checking for unsigned overflow on addition. |
||
2012 | /// |
||
2013 | /// S is matched to the addition whose result is being checked for overflow, and |
||
2014 | /// L and R are matched to the LHS and RHS of S. |
||
2015 | template <typename LHS_t, typename RHS_t, typename Sum_t> |
||
2016 | UAddWithOverflow_match<LHS_t, RHS_t, Sum_t> |
||
2017 | m_UAddWithOverflow(const LHS_t &L, const RHS_t &R, const Sum_t &S) { |
||
2018 | return UAddWithOverflow_match<LHS_t, RHS_t, Sum_t>(L, R, S); |
||
2019 | } |
||
2020 | |||
2021 | template <typename Opnd_t> struct Argument_match { |
||
2022 | unsigned OpI; |
||
2023 | Opnd_t Val; |
||
2024 | |||
2025 | Argument_match(unsigned OpIdx, const Opnd_t &V) : OpI(OpIdx), Val(V) {} |
||
2026 | |||
2027 | template <typename OpTy> bool match(OpTy *V) { |
||
2028 | // FIXME: Should likely be switched to use `CallBase`. |
||
2029 | if (const auto *CI = dyn_cast<CallInst>(V)) |
||
2030 | return Val.match(CI->getArgOperand(OpI)); |
||
2031 | return false; |
||
2032 | } |
||
2033 | }; |
||
2034 | |||
2035 | /// Match an argument. |
||
2036 | template <unsigned OpI, typename Opnd_t> |
||
2037 | inline Argument_match<Opnd_t> m_Argument(const Opnd_t &Op) { |
||
2038 | return Argument_match<Opnd_t>(OpI, Op); |
||
2039 | } |
||
2040 | |||
2041 | /// Intrinsic matchers. |
||
2042 | struct IntrinsicID_match { |
||
2043 | unsigned ID; |
||
2044 | |||
2045 | IntrinsicID_match(Intrinsic::ID IntrID) : ID(IntrID) {} |
||
2046 | |||
2047 | template <typename OpTy> bool match(OpTy *V) { |
||
2048 | if (const auto *CI = dyn_cast<CallInst>(V)) |
||
2049 | if (const auto *F = CI->getCalledFunction()) |
||
2050 | return F->getIntrinsicID() == ID; |
||
2051 | return false; |
||
2052 | } |
||
2053 | }; |
||
2054 | |||
2055 | /// Intrinsic matches are combinations of ID matchers, and argument |
||
2056 | /// matchers. Higher arity matcher are defined recursively in terms of and-ing |
||
2057 | /// them with lower arity matchers. Here's some convenient typedefs for up to |
||
2058 | /// several arguments, and more can be added as needed |
||
2059 | template <typename T0 = void, typename T1 = void, typename T2 = void, |
||
2060 | typename T3 = void, typename T4 = void, typename T5 = void, |
||
2061 | typename T6 = void, typename T7 = void, typename T8 = void, |
||
2062 | typename T9 = void, typename T10 = void> |
||
2063 | struct m_Intrinsic_Ty; |
||
2064 | template <typename T0> struct m_Intrinsic_Ty<T0> { |
||
2065 | using Ty = match_combine_and<IntrinsicID_match, Argument_match<T0>>; |
||
2066 | }; |
||
2067 | template <typename T0, typename T1> struct m_Intrinsic_Ty<T0, T1> { |
||
2068 | using Ty = |
||
2069 | match_combine_and<typename m_Intrinsic_Ty<T0>::Ty, Argument_match<T1>>; |
||
2070 | }; |
||
2071 | template <typename T0, typename T1, typename T2> |
||
2072 | struct m_Intrinsic_Ty<T0, T1, T2> { |
||
2073 | using Ty = match_combine_and<typename m_Intrinsic_Ty<T0, T1>::Ty, |
||
2074 | Argument_match<T2>>; |
||
2075 | }; |
||
2076 | template <typename T0, typename T1, typename T2, typename T3> |
||
2077 | struct m_Intrinsic_Ty<T0, T1, T2, T3> { |
||
2078 | using Ty = match_combine_and<typename m_Intrinsic_Ty<T0, T1, T2>::Ty, |
||
2079 | Argument_match<T3>>; |
||
2080 | }; |
||
2081 | |||
2082 | template <typename T0, typename T1, typename T2, typename T3, typename T4> |
||
2083 | struct m_Intrinsic_Ty<T0, T1, T2, T3, T4> { |
||
2084 | using Ty = match_combine_and<typename m_Intrinsic_Ty<T0, T1, T2, T3>::Ty, |
||
2085 | Argument_match<T4>>; |
||
2086 | }; |
||
2087 | |||
2088 | template <typename T0, typename T1, typename T2, typename T3, typename T4, |
||
2089 | typename T5> |
||
2090 | struct m_Intrinsic_Ty<T0, T1, T2, T3, T4, T5> { |
||
2091 | using Ty = match_combine_and<typename m_Intrinsic_Ty<T0, T1, T2, T3, T4>::Ty, |
||
2092 | Argument_match<T5>>; |
||
2093 | }; |
||
2094 | |||
2095 | /// Match intrinsic calls like this: |
||
2096 | /// m_Intrinsic<Intrinsic::fabs>(m_Value(X)) |
||
2097 | template <Intrinsic::ID IntrID> inline IntrinsicID_match m_Intrinsic() { |
||
2098 | return IntrinsicID_match(IntrID); |
||
2099 | } |
||
2100 | |||
2101 | /// Matches MaskedLoad Intrinsic. |
||
2102 | template <typename Opnd0, typename Opnd1, typename Opnd2, typename Opnd3> |
||
2103 | inline typename m_Intrinsic_Ty<Opnd0, Opnd1, Opnd2, Opnd3>::Ty |
||
2104 | m_MaskedLoad(const Opnd0 &Op0, const Opnd1 &Op1, const Opnd2 &Op2, |
||
2105 | const Opnd3 &Op3) { |
||
2106 | return m_Intrinsic<Intrinsic::masked_load>(Op0, Op1, Op2, Op3); |
||
2107 | } |
||
2108 | |||
2109 | /// Matches MaskedGather Intrinsic. |
||
2110 | template <typename Opnd0, typename Opnd1, typename Opnd2, typename Opnd3> |
||
2111 | inline typename m_Intrinsic_Ty<Opnd0, Opnd1, Opnd2, Opnd3>::Ty |
||
2112 | m_MaskedGather(const Opnd0 &Op0, const Opnd1 &Op1, const Opnd2 &Op2, |
||
2113 | const Opnd3 &Op3) { |
||
2114 | return m_Intrinsic<Intrinsic::masked_gather>(Op0, Op1, Op2, Op3); |
||
2115 | } |
||
2116 | |||
2117 | template <Intrinsic::ID IntrID, typename T0> |
||
2118 | inline typename m_Intrinsic_Ty<T0>::Ty m_Intrinsic(const T0 &Op0) { |
||
2119 | return m_CombineAnd(m_Intrinsic<IntrID>(), m_Argument<0>(Op0)); |
||
2120 | } |
||
2121 | |||
2122 | template <Intrinsic::ID IntrID, typename T0, typename T1> |
||
2123 | inline typename m_Intrinsic_Ty<T0, T1>::Ty m_Intrinsic(const T0 &Op0, |
||
2124 | const T1 &Op1) { |
||
2125 | return m_CombineAnd(m_Intrinsic<IntrID>(Op0), m_Argument<1>(Op1)); |
||
2126 | } |
||
2127 | |||
2128 | template <Intrinsic::ID IntrID, typename T0, typename T1, typename T2> |
||
2129 | inline typename m_Intrinsic_Ty<T0, T1, T2>::Ty |
||
2130 | m_Intrinsic(const T0 &Op0, const T1 &Op1, const T2 &Op2) { |
||
2131 | return m_CombineAnd(m_Intrinsic<IntrID>(Op0, Op1), m_Argument<2>(Op2)); |
||
2132 | } |
||
2133 | |||
2134 | template <Intrinsic::ID IntrID, typename T0, typename T1, typename T2, |
||
2135 | typename T3> |
||
2136 | inline typename m_Intrinsic_Ty<T0, T1, T2, T3>::Ty |
||
2137 | m_Intrinsic(const T0 &Op0, const T1 &Op1, const T2 &Op2, const T3 &Op3) { |
||
2138 | return m_CombineAnd(m_Intrinsic<IntrID>(Op0, Op1, Op2), m_Argument<3>(Op3)); |
||
2139 | } |
||
2140 | |||
2141 | template <Intrinsic::ID IntrID, typename T0, typename T1, typename T2, |
||
2142 | typename T3, typename T4> |
||
2143 | inline typename m_Intrinsic_Ty<T0, T1, T2, T3, T4>::Ty |
||
2144 | m_Intrinsic(const T0 &Op0, const T1 &Op1, const T2 &Op2, const T3 &Op3, |
||
2145 | const T4 &Op4) { |
||
2146 | return m_CombineAnd(m_Intrinsic<IntrID>(Op0, Op1, Op2, Op3), |
||
2147 | m_Argument<4>(Op4)); |
||
2148 | } |
||
2149 | |||
2150 | template <Intrinsic::ID IntrID, typename T0, typename T1, typename T2, |
||
2151 | typename T3, typename T4, typename T5> |
||
2152 | inline typename m_Intrinsic_Ty<T0, T1, T2, T3, T4, T5>::Ty |
||
2153 | m_Intrinsic(const T0 &Op0, const T1 &Op1, const T2 &Op2, const T3 &Op3, |
||
2154 | const T4 &Op4, const T5 &Op5) { |
||
2155 | return m_CombineAnd(m_Intrinsic<IntrID>(Op0, Op1, Op2, Op3, Op4), |
||
2156 | m_Argument<5>(Op5)); |
||
2157 | } |
||
2158 | |||
2159 | // Helper intrinsic matching specializations. |
||
2160 | template <typename Opnd0> |
||
2161 | inline typename m_Intrinsic_Ty<Opnd0>::Ty m_BitReverse(const Opnd0 &Op0) { |
||
2162 | return m_Intrinsic<Intrinsic::bitreverse>(Op0); |
||
2163 | } |
||
2164 | |||
2165 | template <typename Opnd0> |
||
2166 | inline typename m_Intrinsic_Ty<Opnd0>::Ty m_BSwap(const Opnd0 &Op0) { |
||
2167 | return m_Intrinsic<Intrinsic::bswap>(Op0); |
||
2168 | } |
||
2169 | |||
2170 | template <typename Opnd0> |
||
2171 | inline typename m_Intrinsic_Ty<Opnd0>::Ty m_FAbs(const Opnd0 &Op0) { |
||
2172 | return m_Intrinsic<Intrinsic::fabs>(Op0); |
||
2173 | } |
||
2174 | |||
2175 | template <typename Opnd0> |
||
2176 | inline typename m_Intrinsic_Ty<Opnd0>::Ty m_FCanonicalize(const Opnd0 &Op0) { |
||
2177 | return m_Intrinsic<Intrinsic::canonicalize>(Op0); |
||
2178 | } |
||
2179 | |||
2180 | template <typename Opnd0, typename Opnd1> |
||
2181 | inline typename m_Intrinsic_Ty<Opnd0, Opnd1>::Ty m_FMin(const Opnd0 &Op0, |
||
2182 | const Opnd1 &Op1) { |
||
2183 | return m_Intrinsic<Intrinsic::minnum>(Op0, Op1); |
||
2184 | } |
||
2185 | |||
2186 | template <typename Opnd0, typename Opnd1> |
||
2187 | inline typename m_Intrinsic_Ty<Opnd0, Opnd1>::Ty m_FMax(const Opnd0 &Op0, |
||
2188 | const Opnd1 &Op1) { |
||
2189 | return m_Intrinsic<Intrinsic::maxnum>(Op0, Op1); |
||
2190 | } |
||
2191 | |||
2192 | template <typename Opnd0, typename Opnd1, typename Opnd2> |
||
2193 | inline typename m_Intrinsic_Ty<Opnd0, Opnd1, Opnd2>::Ty |
||
2194 | m_FShl(const Opnd0 &Op0, const Opnd1 &Op1, const Opnd2 &Op2) { |
||
2195 | return m_Intrinsic<Intrinsic::fshl>(Op0, Op1, Op2); |
||
2196 | } |
||
2197 | |||
2198 | template <typename Opnd0, typename Opnd1, typename Opnd2> |
||
2199 | inline typename m_Intrinsic_Ty<Opnd0, Opnd1, Opnd2>::Ty |
||
2200 | m_FShr(const Opnd0 &Op0, const Opnd1 &Op1, const Opnd2 &Op2) { |
||
2201 | return m_Intrinsic<Intrinsic::fshr>(Op0, Op1, Op2); |
||
2202 | } |
||
2203 | |||
2204 | template <typename Opnd0> |
||
2205 | inline typename m_Intrinsic_Ty<Opnd0>::Ty m_Sqrt(const Opnd0 &Op0) { |
||
2206 | return m_Intrinsic<Intrinsic::sqrt>(Op0); |
||
2207 | } |
||
2208 | |||
2209 | template <typename Opnd0, typename Opnd1> |
||
2210 | inline typename m_Intrinsic_Ty<Opnd0, Opnd1>::Ty m_CopySign(const Opnd0 &Op0, |
||
2211 | const Opnd1 &Op1) { |
||
2212 | return m_Intrinsic<Intrinsic::copysign>(Op0, Op1); |
||
2213 | } |
||
2214 | |||
2215 | template <typename Opnd0> |
||
2216 | inline typename m_Intrinsic_Ty<Opnd0>::Ty m_VecReverse(const Opnd0 &Op0) { |
||
2217 | return m_Intrinsic<Intrinsic::experimental_vector_reverse>(Op0); |
||
2218 | } |
||
2219 | |||
2220 | //===----------------------------------------------------------------------===// |
||
2221 | // Matchers for two-operands operators with the operators in either order |
||
2222 | // |
||
2223 | |||
2224 | /// Matches a BinaryOperator with LHS and RHS in either order. |
||
2225 | template <typename LHS, typename RHS> |
||
2226 | inline AnyBinaryOp_match<LHS, RHS, true> m_c_BinOp(const LHS &L, const RHS &R) { |
||
2227 | return AnyBinaryOp_match<LHS, RHS, true>(L, R); |
||
2228 | } |
||
2229 | |||
2230 | /// Matches an ICmp with a predicate over LHS and RHS in either order. |
||
2231 | /// Swaps the predicate if operands are commuted. |
||
2232 | template <typename LHS, typename RHS> |
||
2233 | inline CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate, true> |
||
2234 | m_c_ICmp(ICmpInst::Predicate &Pred, const LHS &L, const RHS &R) { |
||
2235 | return CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate, true>(Pred, L, |
||
2236 | R); |
||
2237 | } |
||
2238 | |||
2239 | /// Matches a specific opcode with LHS and RHS in either order. |
||
2240 | template <typename LHS, typename RHS> |
||
2241 | inline SpecificBinaryOp_match<LHS, RHS, true> |
||
2242 | m_c_BinOp(unsigned Opcode, const LHS &L, const RHS &R) { |
||
2243 | return SpecificBinaryOp_match<LHS, RHS, true>(Opcode, L, R); |
||
2244 | } |
||
2245 | |||
2246 | /// Matches a Add with LHS and RHS in either order. |
||
2247 | template <typename LHS, typename RHS> |
||
2248 | inline BinaryOp_match<LHS, RHS, Instruction::Add, true> m_c_Add(const LHS &L, |
||
2249 | const RHS &R) { |
||
2250 | return BinaryOp_match<LHS, RHS, Instruction::Add, true>(L, R); |
||
2251 | } |
||
2252 | |||
2253 | /// Matches a Mul with LHS and RHS in either order. |
||
2254 | template <typename LHS, typename RHS> |
||
2255 | inline BinaryOp_match<LHS, RHS, Instruction::Mul, true> m_c_Mul(const LHS &L, |
||
2256 | const RHS &R) { |
||
2257 | return BinaryOp_match<LHS, RHS, Instruction::Mul, true>(L, R); |
||
2258 | } |
||
2259 | |||
2260 | /// Matches an And with LHS and RHS in either order. |
||
2261 | template <typename LHS, typename RHS> |
||
2262 | inline BinaryOp_match<LHS, RHS, Instruction::And, true> m_c_And(const LHS &L, |
||
2263 | const RHS &R) { |
||
2264 | return BinaryOp_match<LHS, RHS, Instruction::And, true>(L, R); |
||
2265 | } |
||
2266 | |||
2267 | /// Matches an Or with LHS and RHS in either order. |
||
2268 | template <typename LHS, typename RHS> |
||
2269 | inline BinaryOp_match<LHS, RHS, Instruction::Or, true> m_c_Or(const LHS &L, |
||
2270 | const RHS &R) { |
||
2271 | return BinaryOp_match<LHS, RHS, Instruction::Or, true>(L, R); |
||
2272 | } |
||
2273 | |||
2274 | /// Matches an Xor with LHS and RHS in either order. |
||
2275 | template <typename LHS, typename RHS> |
||
2276 | inline BinaryOp_match<LHS, RHS, Instruction::Xor, true> m_c_Xor(const LHS &L, |
||
2277 | const RHS &R) { |
||
2278 | return BinaryOp_match<LHS, RHS, Instruction::Xor, true>(L, R); |
||
2279 | } |
||
2280 | |||
2281 | /// Matches a 'Neg' as 'sub 0, V'. |
||
2282 | template <typename ValTy> |
||
2283 | inline BinaryOp_match<cst_pred_ty<is_zero_int>, ValTy, Instruction::Sub> |
||
2284 | m_Neg(const ValTy &V) { |
||
2285 | return m_Sub(m_ZeroInt(), V); |
||
2286 | } |
||
2287 | |||
2288 | /// Matches a 'Neg' as 'sub nsw 0, V'. |
||
2289 | template <typename ValTy> |
||
2290 | inline OverflowingBinaryOp_match<cst_pred_ty<is_zero_int>, ValTy, |
||
2291 | Instruction::Sub, |
||
2292 | OverflowingBinaryOperator::NoSignedWrap> |
||
2293 | m_NSWNeg(const ValTy &V) { |
||
2294 | return m_NSWSub(m_ZeroInt(), V); |
||
2295 | } |
||
2296 | |||
2297 | /// Matches a 'Not' as 'xor V, -1' or 'xor -1, V'. |
||
2298 | /// NOTE: we first match the 'Not' (by matching '-1'), |
||
2299 | /// and only then match the inner matcher! |
||
2300 | template <typename ValTy> |
||
2301 | inline BinaryOp_match<cst_pred_ty<is_all_ones>, ValTy, Instruction::Xor, true> |
||
2302 | m_Not(const ValTy &V) { |
||
2303 | return m_c_Xor(m_AllOnes(), V); |
||
2304 | } |
||
2305 | |||
2306 | template <typename ValTy> struct NotForbidUndef_match { |
||
2307 | ValTy Val; |
||
2308 | NotForbidUndef_match(const ValTy &V) : Val(V) {} |
||
2309 | |||
2310 | template <typename OpTy> bool match(OpTy *V) { |
||
2311 | // We do not use m_c_Xor because that could match an arbitrary APInt that is |
||
2312 | // not -1 as C and then fail to match the other operand if it is -1. |
||
2313 | // This code should still work even when both operands are constants. |
||
2314 | Value *X; |
||
2315 | const APInt *C; |
||
2316 | if (m_Xor(m_Value(X), m_APIntForbidUndef(C)).match(V) && C->isAllOnes()) |
||
2317 | return Val.match(X); |
||
2318 | if (m_Xor(m_APIntForbidUndef(C), m_Value(X)).match(V) && C->isAllOnes()) |
||
2319 | return Val.match(X); |
||
2320 | return false; |
||
2321 | } |
||
2322 | }; |
||
2323 | |||
2324 | /// Matches a bitwise 'not' as 'xor V, -1' or 'xor -1, V'. For vectors, the |
||
2325 | /// constant value must be composed of only -1 scalar elements. |
||
2326 | template <typename ValTy> |
||
2327 | inline NotForbidUndef_match<ValTy> m_NotForbidUndef(const ValTy &V) { |
||
2328 | return NotForbidUndef_match<ValTy>(V); |
||
2329 | } |
||
2330 | |||
2331 | /// Matches an SMin with LHS and RHS in either order. |
||
2332 | template <typename LHS, typename RHS> |
||
2333 | inline MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty, true> |
||
2334 | m_c_SMin(const LHS &L, const RHS &R) { |
||
2335 | return MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty, true>(L, R); |
||
2336 | } |
||
2337 | /// Matches an SMax with LHS and RHS in either order. |
||
2338 | template <typename LHS, typename RHS> |
||
2339 | inline MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty, true> |
||
2340 | m_c_SMax(const LHS &L, const RHS &R) { |
||
2341 | return MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty, true>(L, R); |
||
2342 | } |
||
2343 | /// Matches a UMin with LHS and RHS in either order. |
||
2344 | template <typename LHS, typename RHS> |
||
2345 | inline MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty, true> |
||
2346 | m_c_UMin(const LHS &L, const RHS &R) { |
||
2347 | return MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty, true>(L, R); |
||
2348 | } |
||
2349 | /// Matches a UMax with LHS and RHS in either order. |
||
2350 | template <typename LHS, typename RHS> |
||
2351 | inline MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty, true> |
||
2352 | m_c_UMax(const LHS &L, const RHS &R) { |
||
2353 | return MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty, true>(L, R); |
||
2354 | } |
||
2355 | |||
2356 | template <typename LHS, typename RHS> |
||
2357 | inline match_combine_or< |
||
2358 | match_combine_or<MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty, true>, |
||
2359 | MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty, true>>, |
||
2360 | match_combine_or<MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty, true>, |
||
2361 | MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty, true>>> |
||
2362 | m_c_MaxOrMin(const LHS &L, const RHS &R) { |
||
2363 | return m_CombineOr(m_CombineOr(m_c_SMax(L, R), m_c_SMin(L, R)), |
||
2364 | m_CombineOr(m_c_UMax(L, R), m_c_UMin(L, R))); |
||
2365 | } |
||
2366 | |||
2367 | /// Matches FAdd with LHS and RHS in either order. |
||
2368 | template <typename LHS, typename RHS> |
||
2369 | inline BinaryOp_match<LHS, RHS, Instruction::FAdd, true> |
||
2370 | m_c_FAdd(const LHS &L, const RHS &R) { |
||
2371 | return BinaryOp_match<LHS, RHS, Instruction::FAdd, true>(L, R); |
||
2372 | } |
||
2373 | |||
2374 | /// Matches FMul with LHS and RHS in either order. |
||
2375 | template <typename LHS, typename RHS> |
||
2376 | inline BinaryOp_match<LHS, RHS, Instruction::FMul, true> |
||
2377 | m_c_FMul(const LHS &L, const RHS &R) { |
||
2378 | return BinaryOp_match<LHS, RHS, Instruction::FMul, true>(L, R); |
||
2379 | } |
||
2380 | |||
2381 | template <typename Opnd_t> struct Signum_match { |
||
2382 | Opnd_t Val; |
||
2383 | Signum_match(const Opnd_t &V) : Val(V) {} |
||
2384 | |||
2385 | template <typename OpTy> bool match(OpTy *V) { |
||
2386 | unsigned TypeSize = V->getType()->getScalarSizeInBits(); |
||
2387 | if (TypeSize == 0) |
||
2388 | return false; |
||
2389 | |||
2390 | unsigned ShiftWidth = TypeSize - 1; |
||
2391 | Value *OpL = nullptr, *OpR = nullptr; |
||
2392 | |||
2393 | // This is the representation of signum we match: |
||
2394 | // |
||
2395 | // signum(x) == (x >> 63) | (-x >>u 63) |
||
2396 | // |
||
2397 | // An i1 value is its own signum, so it's correct to match |
||
2398 | // |
||
2399 | // signum(x) == (x >> 0) | (-x >>u 0) |
||
2400 | // |
||
2401 | // for i1 values. |
||
2402 | |||
2403 | auto LHS = m_AShr(m_Value(OpL), m_SpecificInt(ShiftWidth)); |
||
2404 | auto RHS = m_LShr(m_Neg(m_Value(OpR)), m_SpecificInt(ShiftWidth)); |
||
2405 | auto Signum = m_Or(LHS, RHS); |
||
2406 | |||
2407 | return Signum.match(V) && OpL == OpR && Val.match(OpL); |
||
2408 | } |
||
2409 | }; |
||
2410 | |||
2411 | /// Matches a signum pattern. |
||
2412 | /// |
||
2413 | /// signum(x) = |
||
2414 | /// x > 0 -> 1 |
||
2415 | /// x == 0 -> 0 |
||
2416 | /// x < 0 -> -1 |
||
2417 | template <typename Val_t> inline Signum_match<Val_t> m_Signum(const Val_t &V) { |
||
2418 | return Signum_match<Val_t>(V); |
||
2419 | } |
||
2420 | |||
2421 | template <int Ind, typename Opnd_t> struct ExtractValue_match { |
||
2422 | Opnd_t Val; |
||
2423 | ExtractValue_match(const Opnd_t &V) : Val(V) {} |
||
2424 | |||
2425 | template <typename OpTy> bool match(OpTy *V) { |
||
2426 | if (auto *I = dyn_cast<ExtractValueInst>(V)) { |
||
2427 | // If Ind is -1, don't inspect indices |
||
2428 | if (Ind != -1 && |
||
2429 | !(I->getNumIndices() == 1 && I->getIndices()[0] == (unsigned)Ind)) |
||
2430 | return false; |
||
2431 | return Val.match(I->getAggregateOperand()); |
||
2432 | } |
||
2433 | return false; |
||
2434 | } |
||
2435 | }; |
||
2436 | |||
2437 | /// Match a single index ExtractValue instruction. |
||
2438 | /// For example m_ExtractValue<1>(...) |
||
2439 | template <int Ind, typename Val_t> |
||
2440 | inline ExtractValue_match<Ind, Val_t> m_ExtractValue(const Val_t &V) { |
||
2441 | return ExtractValue_match<Ind, Val_t>(V); |
||
2442 | } |
||
2443 | |||
2444 | /// Match an ExtractValue instruction with any index. |
||
2445 | /// For example m_ExtractValue(...) |
||
2446 | template <typename Val_t> |
||
2447 | inline ExtractValue_match<-1, Val_t> m_ExtractValue(const Val_t &V) { |
||
2448 | return ExtractValue_match<-1, Val_t>(V); |
||
2449 | } |
||
2450 | |||
2451 | /// Matcher for a single index InsertValue instruction. |
||
2452 | template <int Ind, typename T0, typename T1> struct InsertValue_match { |
||
2453 | T0 Op0; |
||
2454 | T1 Op1; |
||
2455 | |||
2456 | InsertValue_match(const T0 &Op0, const T1 &Op1) : Op0(Op0), Op1(Op1) {} |
||
2457 | |||
2458 | template <typename OpTy> bool match(OpTy *V) { |
||
2459 | if (auto *I = dyn_cast<InsertValueInst>(V)) { |
||
2460 | return Op0.match(I->getOperand(0)) && Op1.match(I->getOperand(1)) && |
||
2461 | I->getNumIndices() == 1 && Ind == I->getIndices()[0]; |
||
2462 | } |
||
2463 | return false; |
||
2464 | } |
||
2465 | }; |
||
2466 | |||
2467 | /// Matches a single index InsertValue instruction. |
||
2468 | template <int Ind, typename Val_t, typename Elt_t> |
||
2469 | inline InsertValue_match<Ind, Val_t, Elt_t> m_InsertValue(const Val_t &Val, |
||
2470 | const Elt_t &Elt) { |
||
2471 | return InsertValue_match<Ind, Val_t, Elt_t>(Val, Elt); |
||
2472 | } |
||
2473 | |||
2474 | /// Matches patterns for `vscale`. This can either be a call to `llvm.vscale` or |
||
2475 | /// the constant expression |
||
2476 | /// `ptrtoint(gep <vscale x 1 x i8>, <vscale x 1 x i8>* null, i32 1>` |
||
2477 | /// under the right conditions determined by DataLayout. |
||
2478 | struct VScaleVal_match { |
||
2479 | const DataLayout &DL; |
||
2480 | VScaleVal_match(const DataLayout &DL) : DL(DL) {} |
||
2481 | |||
2482 | template <typename ITy> bool match(ITy *V) { |
||
2483 | if (m_Intrinsic<Intrinsic::vscale>().match(V)) |
||
2484 | return true; |
||
2485 | |||
2486 | Value *Ptr; |
||
2487 | if (m_PtrToInt(m_Value(Ptr)).match(V)) { |
||
2488 | if (auto *GEP = dyn_cast<GEPOperator>(Ptr)) { |
||
2489 | auto *DerefTy = GEP->getSourceElementType(); |
||
2490 | if (GEP->getNumIndices() == 1 && isa<ScalableVectorType>(DerefTy) && |
||
2491 | m_Zero().match(GEP->getPointerOperand()) && |
||
2492 | m_SpecificInt(1).match(GEP->idx_begin()->get()) && |
||
2493 | DL.getTypeAllocSizeInBits(DerefTy).getKnownMinValue() == 8) |
||
2494 | return true; |
||
2495 | } |
||
2496 | } |
||
2497 | |||
2498 | return false; |
||
2499 | } |
||
2500 | }; |
||
2501 | |||
2502 | inline VScaleVal_match m_VScale(const DataLayout &DL) { |
||
2503 | return VScaleVal_match(DL); |
||
2504 | } |
||
2505 | |||
2506 | template <typename LHS, typename RHS, unsigned Opcode, bool Commutable = false> |
||
2507 | struct LogicalOp_match { |
||
2508 | LHS L; |
||
2509 | RHS R; |
||
2510 | |||
2511 | LogicalOp_match(const LHS &L, const RHS &R) : L(L), R(R) {} |
||
2512 | |||
2513 | template <typename T> bool match(T *V) { |
||
2514 | auto *I = dyn_cast<Instruction>(V); |
||
2515 | if (!I || !I->getType()->isIntOrIntVectorTy(1)) |
||
2516 | return false; |
||
2517 | |||
2518 | if (I->getOpcode() == Opcode) { |
||
2519 | auto *Op0 = I->getOperand(0); |
||
2520 | auto *Op1 = I->getOperand(1); |
||
2521 | return (L.match(Op0) && R.match(Op1)) || |
||
2522 | (Commutable && L.match(Op1) && R.match(Op0)); |
||
2523 | } |
||
2524 | |||
2525 | if (auto *Select = dyn_cast<SelectInst>(I)) { |
||
2526 | auto *Cond = Select->getCondition(); |
||
2527 | auto *TVal = Select->getTrueValue(); |
||
2528 | auto *FVal = Select->getFalseValue(); |
||
2529 | |||
2530 | // Don't match a scalar select of bool vectors. |
||
2531 | // Transforms expect a single type for operands if this matches. |
||
2532 | if (Cond->getType() != Select->getType()) |
||
2533 | return false; |
||
2534 | |||
2535 | if (Opcode == Instruction::And) { |
||
2536 | auto *C = dyn_cast<Constant>(FVal); |
||
2537 | if (C && C->isNullValue()) |
||
2538 | return (L.match(Cond) && R.match(TVal)) || |
||
2539 | (Commutable && L.match(TVal) && R.match(Cond)); |
||
2540 | } else { |
||
2541 | assert(Opcode == Instruction::Or); |
||
2542 | auto *C = dyn_cast<Constant>(TVal); |
||
2543 | if (C && C->isOneValue()) |
||
2544 | return (L.match(Cond) && R.match(FVal)) || |
||
2545 | (Commutable && L.match(FVal) && R.match(Cond)); |
||
2546 | } |
||
2547 | } |
||
2548 | |||
2549 | return false; |
||
2550 | } |
||
2551 | }; |
||
2552 | |||
2553 | /// Matches L && R either in the form of L & R or L ? R : false. |
||
2554 | /// Note that the latter form is poison-blocking. |
||
2555 | template <typename LHS, typename RHS> |
||
2556 | inline LogicalOp_match<LHS, RHS, Instruction::And> m_LogicalAnd(const LHS &L, |
||
2557 | const RHS &R) { |
||
2558 | return LogicalOp_match<LHS, RHS, Instruction::And>(L, R); |
||
2559 | } |
||
2560 | |||
2561 | /// Matches L && R where L and R are arbitrary values. |
||
2562 | inline auto m_LogicalAnd() { return m_LogicalAnd(m_Value(), m_Value()); } |
||
2563 | |||
2564 | /// Matches L && R with LHS and RHS in either order. |
||
2565 | template <typename LHS, typename RHS> |
||
2566 | inline LogicalOp_match<LHS, RHS, Instruction::And, true> |
||
2567 | m_c_LogicalAnd(const LHS &L, const RHS &R) { |
||
2568 | return LogicalOp_match<LHS, RHS, Instruction::And, true>(L, R); |
||
2569 | } |
||
2570 | |||
2571 | /// Matches L || R either in the form of L | R or L ? true : R. |
||
2572 | /// Note that the latter form is poison-blocking. |
||
2573 | template <typename LHS, typename RHS> |
||
2574 | inline LogicalOp_match<LHS, RHS, Instruction::Or> m_LogicalOr(const LHS &L, |
||
2575 | const RHS &R) { |
||
2576 | return LogicalOp_match<LHS, RHS, Instruction::Or>(L, R); |
||
2577 | } |
||
2578 | |||
2579 | /// Matches L || R where L and R are arbitrary values. |
||
2580 | inline auto m_LogicalOr() { return m_LogicalOr(m_Value(), m_Value()); } |
||
2581 | |||
2582 | /// Matches L || R with LHS and RHS in either order. |
||
2583 | template <typename LHS, typename RHS> |
||
2584 | inline LogicalOp_match<LHS, RHS, Instruction::Or, true> |
||
2585 | m_c_LogicalOr(const LHS &L, const RHS &R) { |
||
2586 | return LogicalOp_match<LHS, RHS, Instruction::Or, true>(L, R); |
||
2587 | } |
||
2588 | |||
2589 | /// Matches either L && R or L || R, |
||
2590 | /// either one being in the either binary or logical form. |
||
2591 | /// Note that the latter form is poison-blocking. |
||
2592 | template <typename LHS, typename RHS, bool Commutable = false> |
||
2593 | inline auto m_LogicalOp(const LHS &L, const RHS &R) { |
||
2594 | return m_CombineOr( |
||
2595 | LogicalOp_match<LHS, RHS, Instruction::And, Commutable>(L, R), |
||
2596 | LogicalOp_match<LHS, RHS, Instruction::Or, Commutable>(L, R)); |
||
2597 | } |
||
2598 | |||
2599 | /// Matches either L && R or L || R where L and R are arbitrary values. |
||
2600 | inline auto m_LogicalOp() { return m_LogicalOp(m_Value(), m_Value()); } |
||
2601 | |||
2602 | /// Matches either L && R or L || R with LHS and RHS in either order. |
||
2603 | template <typename LHS, typename RHS> |
||
2604 | inline auto m_c_LogicalOp(const LHS &L, const RHS &R) { |
||
2605 | return m_LogicalOp<LHS, RHS, /*Commutable=*/true>(L, R); |
||
2606 | } |
||
2607 | |||
2608 | } // end namespace PatternMatch |
||
2609 | } // end namespace llvm |
||
2610 | |||
2611 | #endif // LLVM_IR_PATTERNMATCH_H |