Subversion Repositories QNX 8.QNX8 LLVM/Clang compiler suite

Rev

Details | Last modification | View Log | RSS feed

Rev Author Line No. Line
14 pmbaty 1
//===- llvm/IR/Metadata.h - Metadata definitions ----------------*- C++ -*-===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
/// @file
10
/// This file contains the declarations for metadata subclasses.
11
/// They represent the different flavors of metadata that live in LLVM.
12
//
13
//===----------------------------------------------------------------------===//
14
 
15
#ifndef LLVM_IR_METADATA_H
16
#define LLVM_IR_METADATA_H
17
 
18
#include "llvm/ADT/ArrayRef.h"
19
#include "llvm/ADT/DenseMap.h"
20
#include "llvm/ADT/DenseMapInfo.h"
21
#include "llvm/ADT/PointerUnion.h"
22
#include "llvm/ADT/SmallVector.h"
23
#include "llvm/ADT/StringRef.h"
24
#include "llvm/ADT/ilist_node.h"
25
#include "llvm/ADT/iterator_range.h"
26
#include "llvm/IR/Constant.h"
27
#include "llvm/IR/LLVMContext.h"
28
#include "llvm/IR/Value.h"
29
#include "llvm/Support/CBindingWrapping.h"
30
#include "llvm/Support/Casting.h"
31
#include "llvm/Support/ErrorHandling.h"
32
#include <cassert>
33
#include <cstddef>
34
#include <cstdint>
35
#include <iterator>
36
#include <memory>
37
#include <string>
38
#include <type_traits>
39
#include <utility>
40
 
41
namespace llvm {
42
 
43
class Module;
44
class ModuleSlotTracker;
45
class raw_ostream;
46
template <typename T> class StringMapEntry;
47
template <typename ValueTy> class StringMapEntryStorage;
48
class Type;
49
 
50
enum LLVMConstants : uint32_t {
51
  DEBUG_METADATA_VERSION = 3 // Current debug info version number.
52
};
53
 
54
/// Magic number in the value profile metadata showing a target has been
55
/// promoted for the instruction and shouldn't be promoted again.
56
const uint64_t NOMORE_ICP_MAGICNUM = -1;
57
 
58
/// Root of the metadata hierarchy.
59
///
60
/// This is a root class for typeless data in the IR.
61
class Metadata {
62
  friend class ReplaceableMetadataImpl;
63
 
64
  /// RTTI.
65
  const unsigned char SubclassID;
66
 
67
protected:
68
  /// Active type of storage.
69
  enum StorageType { Uniqued, Distinct, Temporary };
70
 
71
  /// Storage flag for non-uniqued, otherwise unowned, metadata.
72
  unsigned char Storage : 7;
73
 
74
  unsigned char SubclassData1 : 1;
75
  unsigned short SubclassData16 = 0;
76
  unsigned SubclassData32 = 0;
77
 
78
public:
79
  enum MetadataKind {
80
#define HANDLE_METADATA_LEAF(CLASS) CLASS##Kind,
81
#include "llvm/IR/Metadata.def"
82
  };
83
 
84
protected:
85
  Metadata(unsigned ID, StorageType Storage)
86
      : SubclassID(ID), Storage(Storage), SubclassData1(false) {
87
    static_assert(sizeof(*this) == 8, "Metadata fields poorly packed");
88
  }
89
 
90
  ~Metadata() = default;
91
 
92
  /// Default handling of a changed operand, which asserts.
93
  ///
94
  /// If subclasses pass themselves in as owners to a tracking node reference,
95
  /// they must provide an implementation of this method.
96
  void handleChangedOperand(void *, Metadata *) {
97
    llvm_unreachable("Unimplemented in Metadata subclass");
98
  }
99
 
100
public:
101
  unsigned getMetadataID() const { return SubclassID; }
102
 
103
  /// User-friendly dump.
104
  ///
105
  /// If \c M is provided, metadata nodes will be numbered canonically;
106
  /// otherwise, pointer addresses are substituted.
107
  ///
108
  /// Note: this uses an explicit overload instead of default arguments so that
109
  /// the nullptr version is easy to call from a debugger.
110
  ///
111
  /// @{
112
  void dump() const;
113
  void dump(const Module *M) const;
114
  /// @}
115
 
116
  /// Print.
117
  ///
118
  /// Prints definition of \c this.
119
  ///
120
  /// If \c M is provided, metadata nodes will be numbered canonically;
121
  /// otherwise, pointer addresses are substituted.
122
  /// @{
123
  void print(raw_ostream &OS, const Module *M = nullptr,
124
             bool IsForDebug = false) const;
125
  void print(raw_ostream &OS, ModuleSlotTracker &MST, const Module *M = nullptr,
126
             bool IsForDebug = false) const;
127
  /// @}
128
 
129
  /// Print as operand.
130
  ///
131
  /// Prints reference of \c this.
132
  ///
133
  /// If \c M is provided, metadata nodes will be numbered canonically;
134
  /// otherwise, pointer addresses are substituted.
135
  /// @{
136
  void printAsOperand(raw_ostream &OS, const Module *M = nullptr) const;
137
  void printAsOperand(raw_ostream &OS, ModuleSlotTracker &MST,
138
                      const Module *M = nullptr) const;
139
  /// @}
140
};
141
 
142
// Create wrappers for C Binding types (see CBindingWrapping.h).
143
DEFINE_ISA_CONVERSION_FUNCTIONS(Metadata, LLVMMetadataRef)
144
 
145
// Specialized opaque metadata conversions.
146
inline Metadata **unwrap(LLVMMetadataRef *MDs) {
147
  return reinterpret_cast<Metadata**>(MDs);
148
}
149
 
150
#define HANDLE_METADATA(CLASS) class CLASS;
151
#include "llvm/IR/Metadata.def"
152
 
153
// Provide specializations of isa so that we don't need definitions of
154
// subclasses to see if the metadata is a subclass.
155
#define HANDLE_METADATA_LEAF(CLASS)                                            \
156
  template <> struct isa_impl<CLASS, Metadata> {                               \
157
    static inline bool doit(const Metadata &MD) {                              \
158
      return MD.getMetadataID() == Metadata::CLASS##Kind;                      \
159
    }                                                                          \
160
  };
161
#include "llvm/IR/Metadata.def"
162
 
163
inline raw_ostream &operator<<(raw_ostream &OS, const Metadata &MD) {
164
  MD.print(OS);
165
  return OS;
166
}
167
 
168
/// Metadata wrapper in the Value hierarchy.
169
///
170
/// A member of the \a Value hierarchy to represent a reference to metadata.
171
/// This allows, e.g., intrinsics to have metadata as operands.
172
///
173
/// Notably, this is the only thing in either hierarchy that is allowed to
174
/// reference \a LocalAsMetadata.
175
class MetadataAsValue : public Value {
176
  friend class ReplaceableMetadataImpl;
177
  friend class LLVMContextImpl;
178
 
179
  Metadata *MD;
180
 
181
  MetadataAsValue(Type *Ty, Metadata *MD);
182
 
183
  /// Drop use of metadata (during teardown).
184
  void dropUse() { MD = nullptr; }
185
 
186
public:
187
  ~MetadataAsValue();
188
 
189
  static MetadataAsValue *get(LLVMContext &Context, Metadata *MD);
190
  static MetadataAsValue *getIfExists(LLVMContext &Context, Metadata *MD);
191
 
192
  Metadata *getMetadata() const { return MD; }
193
 
194
  static bool classof(const Value *V) {
195
    return V->getValueID() == MetadataAsValueVal;
196
  }
197
 
198
private:
199
  void handleChangedMetadata(Metadata *MD);
200
  void track();
201
  void untrack();
202
};
203
 
204
/// API for tracking metadata references through RAUW and deletion.
205
///
206
/// Shared API for updating \a Metadata pointers in subclasses that support
207
/// RAUW.
208
///
209
/// This API is not meant to be used directly.  See \a TrackingMDRef for a
210
/// user-friendly tracking reference.
211
class MetadataTracking {
212
public:
213
  /// Track the reference to metadata.
214
  ///
215
  /// Register \c MD with \c *MD, if the subclass supports tracking.  If \c *MD
216
  /// gets RAUW'ed, \c MD will be updated to the new address.  If \c *MD gets
217
  /// deleted, \c MD will be set to \c nullptr.
218
  ///
219
  /// If tracking isn't supported, \c *MD will not change.
220
  ///
221
  /// \return true iff tracking is supported by \c MD.
222
  static bool track(Metadata *&MD) {
223
    return track(&MD, *MD, static_cast<Metadata *>(nullptr));
224
  }
225
 
226
  /// Track the reference to metadata for \a Metadata.
227
  ///
228
  /// As \a track(Metadata*&), but with support for calling back to \c Owner to
229
  /// tell it that its operand changed.  This could trigger \c Owner being
230
  /// re-uniqued.
231
  static bool track(void *Ref, Metadata &MD, Metadata &Owner) {
232
    return track(Ref, MD, &Owner);
233
  }
234
 
235
  /// Track the reference to metadata for \a MetadataAsValue.
236
  ///
237
  /// As \a track(Metadata*&), but with support for calling back to \c Owner to
238
  /// tell it that its operand changed.  This could trigger \c Owner being
239
  /// re-uniqued.
240
  static bool track(void *Ref, Metadata &MD, MetadataAsValue &Owner) {
241
    return track(Ref, MD, &Owner);
242
  }
243
 
244
  /// Stop tracking a reference to metadata.
245
  ///
246
  /// Stops \c *MD from tracking \c MD.
247
  static void untrack(Metadata *&MD) { untrack(&MD, *MD); }
248
  static void untrack(void *Ref, Metadata &MD);
249
 
250
  /// Move tracking from one reference to another.
251
  ///
252
  /// Semantically equivalent to \c untrack(MD) followed by \c track(New),
253
  /// except that ownership callbacks are maintained.
254
  ///
255
  /// Note: it is an error if \c *MD does not equal \c New.
256
  ///
257
  /// \return true iff tracking is supported by \c MD.
258
  static bool retrack(Metadata *&MD, Metadata *&New) {
259
    return retrack(&MD, *MD, &New);
260
  }
261
  static bool retrack(void *Ref, Metadata &MD, void *New);
262
 
263
  /// Check whether metadata is replaceable.
264
  static bool isReplaceable(const Metadata &MD);
265
 
266
  using OwnerTy = PointerUnion<MetadataAsValue *, Metadata *>;
267
 
268
private:
269
  /// Track a reference to metadata for an owner.
270
  ///
271
  /// Generalized version of tracking.
272
  static bool track(void *Ref, Metadata &MD, OwnerTy Owner);
273
};
274
 
275
/// Shared implementation of use-lists for replaceable metadata.
276
///
277
/// Most metadata cannot be RAUW'ed.  This is a shared implementation of
278
/// use-lists and associated API for the two that support it (\a ValueAsMetadata
279
/// and \a TempMDNode).
280
class ReplaceableMetadataImpl {
281
  friend class MetadataTracking;
282
 
283
public:
284
  using OwnerTy = MetadataTracking::OwnerTy;
285
 
286
private:
287
  LLVMContext &Context;
288
  uint64_t NextIndex = 0;
289
  SmallDenseMap<void *, std::pair<OwnerTy, uint64_t>, 4> UseMap;
290
 
291
public:
292
  ReplaceableMetadataImpl(LLVMContext &Context) : Context(Context) {}
293
 
294
  ~ReplaceableMetadataImpl() {
295
    assert(UseMap.empty() && "Cannot destroy in-use replaceable metadata");
296
  }
297
 
298
  LLVMContext &getContext() const { return Context; }
299
 
300
  /// Replace all uses of this with MD.
301
  ///
302
  /// Replace all uses of this with \c MD, which is allowed to be null.
303
  void replaceAllUsesWith(Metadata *MD);
304
   /// Replace all uses of the constant with Undef in debug info metadata
305
  static void SalvageDebugInfo(const Constant &C);
306
  /// Returns the list of all DIArgList users of this.
307
  SmallVector<Metadata *> getAllArgListUsers();
308
 
309
  /// Resolve all uses of this.
310
  ///
311
  /// Resolve all uses of this, turning off RAUW permanently.  If \c
312
  /// ResolveUsers, call \a MDNode::resolve() on any users whose last operand
313
  /// is resolved.
314
  void resolveAllUses(bool ResolveUsers = true);
315
 
316
private:
317
  void addRef(void *Ref, OwnerTy Owner);
318
  void dropRef(void *Ref);
319
  void moveRef(void *Ref, void *New, const Metadata &MD);
320
 
321
  /// Lazily construct RAUW support on MD.
322
  ///
323
  /// If this is an unresolved MDNode, RAUW support will be created on-demand.
324
  /// ValueAsMetadata always has RAUW support.
325
  static ReplaceableMetadataImpl *getOrCreate(Metadata &MD);
326
 
327
  /// Get RAUW support on MD, if it exists.
328
  static ReplaceableMetadataImpl *getIfExists(Metadata &MD);
329
 
330
  /// Check whether this node will support RAUW.
331
  ///
332
  /// Returns \c true unless getOrCreate() would return null.
333
  static bool isReplaceable(const Metadata &MD);
334
};
335
 
336
/// Value wrapper in the Metadata hierarchy.
337
///
338
/// This is a custom value handle that allows other metadata to refer to
339
/// classes in the Value hierarchy.
340
///
341
/// Because of full uniquing support, each value is only wrapped by a single \a
342
/// ValueAsMetadata object, so the lookup maps are far more efficient than
343
/// those using ValueHandleBase.
344
class ValueAsMetadata : public Metadata, ReplaceableMetadataImpl {
345
  friend class ReplaceableMetadataImpl;
346
  friend class LLVMContextImpl;
347
 
348
  Value *V;
349
 
350
  /// Drop users without RAUW (during teardown).
351
  void dropUsers() {
352
    ReplaceableMetadataImpl::resolveAllUses(/* ResolveUsers */ false);
353
  }
354
 
355
protected:
356
  ValueAsMetadata(unsigned ID, Value *V)
357
      : Metadata(ID, Uniqued), ReplaceableMetadataImpl(V->getContext()), V(V) {
358
    assert(V && "Expected valid value");
359
  }
360
 
361
  ~ValueAsMetadata() = default;
362
 
363
public:
364
  static ValueAsMetadata *get(Value *V);
365
 
366
  static ConstantAsMetadata *getConstant(Value *C) {
367
    return cast<ConstantAsMetadata>(get(C));
368
  }
369
 
370
  static LocalAsMetadata *getLocal(Value *Local) {
371
    return cast<LocalAsMetadata>(get(Local));
372
  }
373
 
374
  static ValueAsMetadata *getIfExists(Value *V);
375
 
376
  static ConstantAsMetadata *getConstantIfExists(Value *C) {
377
    return cast_or_null<ConstantAsMetadata>(getIfExists(C));
378
  }
379
 
380
  static LocalAsMetadata *getLocalIfExists(Value *Local) {
381
    return cast_or_null<LocalAsMetadata>(getIfExists(Local));
382
  }
383
 
384
  Value *getValue() const { return V; }
385
  Type *getType() const { return V->getType(); }
386
  LLVMContext &getContext() const { return V->getContext(); }
387
 
388
  SmallVector<Metadata *> getAllArgListUsers() {
389
    return ReplaceableMetadataImpl::getAllArgListUsers();
390
  }
391
 
392
  static void handleDeletion(Value *V);
393
  static void handleRAUW(Value *From, Value *To);
394
 
395
protected:
396
  /// Handle collisions after \a Value::replaceAllUsesWith().
397
  ///
398
  /// RAUW isn't supported directly for \a ValueAsMetadata, but if the wrapped
399
  /// \a Value gets RAUW'ed and the target already exists, this is used to
400
  /// merge the two metadata nodes.
401
  void replaceAllUsesWith(Metadata *MD) {
402
    ReplaceableMetadataImpl::replaceAllUsesWith(MD);
403
  }
404
 
405
public:
406
  static bool classof(const Metadata *MD) {
407
    return MD->getMetadataID() == LocalAsMetadataKind ||
408
           MD->getMetadataID() == ConstantAsMetadataKind;
409
  }
410
};
411
 
412
class ConstantAsMetadata : public ValueAsMetadata {
413
  friend class ValueAsMetadata;
414
 
415
  ConstantAsMetadata(Constant *C)
416
      : ValueAsMetadata(ConstantAsMetadataKind, C) {}
417
 
418
public:
419
  static ConstantAsMetadata *get(Constant *C) {
420
    return ValueAsMetadata::getConstant(C);
421
  }
422
 
423
  static ConstantAsMetadata *getIfExists(Constant *C) {
424
    return ValueAsMetadata::getConstantIfExists(C);
425
  }
426
 
427
  Constant *getValue() const {
428
    return cast<Constant>(ValueAsMetadata::getValue());
429
  }
430
 
431
  static bool classof(const Metadata *MD) {
432
    return MD->getMetadataID() == ConstantAsMetadataKind;
433
  }
434
};
435
 
436
class LocalAsMetadata : public ValueAsMetadata {
437
  friend class ValueAsMetadata;
438
 
439
  LocalAsMetadata(Value *Local)
440
      : ValueAsMetadata(LocalAsMetadataKind, Local) {
441
    assert(!isa<Constant>(Local) && "Expected local value");
442
  }
443
 
444
public:
445
  static LocalAsMetadata *get(Value *Local) {
446
    return ValueAsMetadata::getLocal(Local);
447
  }
448
 
449
  static LocalAsMetadata *getIfExists(Value *Local) {
450
    return ValueAsMetadata::getLocalIfExists(Local);
451
  }
452
 
453
  static bool classof(const Metadata *MD) {
454
    return MD->getMetadataID() == LocalAsMetadataKind;
455
  }
456
};
457
 
458
/// Transitional API for extracting constants from Metadata.
459
///
460
/// This namespace contains transitional functions for metadata that points to
461
/// \a Constants.
462
///
463
/// In prehistory -- when metadata was a subclass of \a Value -- \a MDNode
464
/// operands could refer to any \a Value.  There's was a lot of code like this:
465
///
466
/// \code
467
///     MDNode *N = ...;
468
///     auto *CI = dyn_cast<ConstantInt>(N->getOperand(2));
469
/// \endcode
470
///
471
/// Now that \a Value and \a Metadata are in separate hierarchies, maintaining
472
/// the semantics for \a isa(), \a cast(), \a dyn_cast() (etc.) requires three
473
/// steps: cast in the \a Metadata hierarchy, extraction of the \a Value, and
474
/// cast in the \a Value hierarchy.  Besides creating boiler-plate, this
475
/// requires subtle control flow changes.
476
///
477
/// The end-goal is to create a new type of metadata, called (e.g.) \a MDInt,
478
/// so that metadata can refer to numbers without traversing a bridge to the \a
479
/// Value hierarchy.  In this final state, the code above would look like this:
480
///
481
/// \code
482
///     MDNode *N = ...;
483
///     auto *MI = dyn_cast<MDInt>(N->getOperand(2));
484
/// \endcode
485
///
486
/// The API in this namespace supports the transition.  \a MDInt doesn't exist
487
/// yet, and even once it does, changing each metadata schema to use it is its
488
/// own mini-project.  In the meantime this API prevents us from introducing
489
/// complex and bug-prone control flow that will disappear in the end.  In
490
/// particular, the above code looks like this:
491
///
492
/// \code
493
///     MDNode *N = ...;
494
///     auto *CI = mdconst::dyn_extract<ConstantInt>(N->getOperand(2));
495
/// \endcode
496
///
497
/// The full set of provided functions includes:
498
///
499
///   mdconst::hasa                <=> isa
500
///   mdconst::extract             <=> cast
501
///   mdconst::extract_or_null     <=> cast_or_null
502
///   mdconst::dyn_extract         <=> dyn_cast
503
///   mdconst::dyn_extract_or_null <=> dyn_cast_or_null
504
///
505
/// The target of the cast must be a subclass of \a Constant.
506
namespace mdconst {
507
 
508
namespace detail {
509
 
510
template <class T> T &make();
511
template <class T, class Result> struct HasDereference {
512
  using Yes = char[1];
513
  using No = char[2];
514
  template <size_t N> struct SFINAE {};
515
 
516
  template <class U, class V>
517
  static Yes &hasDereference(SFINAE<sizeof(static_cast<V>(*make<U>()))> * = 0);
518
  template <class U, class V> static No &hasDereference(...);
519
 
520
  static const bool value =
521
      sizeof(hasDereference<T, Result>(nullptr)) == sizeof(Yes);
522
};
523
template <class V, class M> struct IsValidPointer {
524
  static const bool value = std::is_base_of<Constant, V>::value &&
525
                            HasDereference<M, const Metadata &>::value;
526
};
527
template <class V, class M> struct IsValidReference {
528
  static const bool value = std::is_base_of<Constant, V>::value &&
529
                            std::is_convertible<M, const Metadata &>::value;
530
};
531
 
532
} // end namespace detail
533
 
534
/// Check whether Metadata has a Value.
535
///
536
/// As an analogue to \a isa(), check whether \c MD has an \a Value inside of
537
/// type \c X.
538
template <class X, class Y>
539
inline std::enable_if_t<detail::IsValidPointer<X, Y>::value, bool>
540
hasa(Y &&MD) {
541
  assert(MD && "Null pointer sent into hasa");
542
  if (auto *V = dyn_cast<ConstantAsMetadata>(MD))
543
    return isa<X>(V->getValue());
544
  return false;
545
}
546
template <class X, class Y>
547
inline std::enable_if_t<detail::IsValidReference<X, Y &>::value, bool>
548
hasa(Y &MD) {
549
  return hasa(&MD);
550
}
551
 
552
/// Extract a Value from Metadata.
553
///
554
/// As an analogue to \a cast(), extract the \a Value subclass \c X from \c MD.
555
template <class X, class Y>
556
inline std::enable_if_t<detail::IsValidPointer<X, Y>::value, X *>
557
extract(Y &&MD) {
558
  return cast<X>(cast<ConstantAsMetadata>(MD)->getValue());
559
}
560
template <class X, class Y>
561
inline std::enable_if_t<detail::IsValidReference<X, Y &>::value, X *>
562
extract(Y &MD) {
563
  return extract(&MD);
564
}
565
 
566
/// Extract a Value from Metadata, allowing null.
567
///
568
/// As an analogue to \a cast_or_null(), extract the \a Value subclass \c X
569
/// from \c MD, allowing \c MD to be null.
570
template <class X, class Y>
571
inline std::enable_if_t<detail::IsValidPointer<X, Y>::value, X *>
572
extract_or_null(Y &&MD) {
573
  if (auto *V = cast_or_null<ConstantAsMetadata>(MD))
574
    return cast<X>(V->getValue());
575
  return nullptr;
576
}
577
 
578
/// Extract a Value from Metadata, if any.
579
///
580
/// As an analogue to \a dyn_cast_or_null(), extract the \a Value subclass \c X
581
/// from \c MD, return null if \c MD doesn't contain a \a Value or if the \a
582
/// Value it does contain is of the wrong subclass.
583
template <class X, class Y>
584
inline std::enable_if_t<detail::IsValidPointer<X, Y>::value, X *>
585
dyn_extract(Y &&MD) {
586
  if (auto *V = dyn_cast<ConstantAsMetadata>(MD))
587
    return dyn_cast<X>(V->getValue());
588
  return nullptr;
589
}
590
 
591
/// Extract a Value from Metadata, if any, allowing null.
592
///
593
/// As an analogue to \a dyn_cast_or_null(), extract the \a Value subclass \c X
594
/// from \c MD, return null if \c MD doesn't contain a \a Value or if the \a
595
/// Value it does contain is of the wrong subclass, allowing \c MD to be null.
596
template <class X, class Y>
597
inline std::enable_if_t<detail::IsValidPointer<X, Y>::value, X *>
598
dyn_extract_or_null(Y &&MD) {
599
  if (auto *V = dyn_cast_or_null<ConstantAsMetadata>(MD))
600
    return dyn_cast<X>(V->getValue());
601
  return nullptr;
602
}
603
 
604
} // end namespace mdconst
605
 
606
//===----------------------------------------------------------------------===//
607
/// A single uniqued string.
608
///
609
/// These are used to efficiently contain a byte sequence for metadata.
610
/// MDString is always unnamed.
611
class MDString : public Metadata {
612
  friend class StringMapEntryStorage<MDString>;
613
 
614
  StringMapEntry<MDString> *Entry = nullptr;
615
 
616
  MDString() : Metadata(MDStringKind, Uniqued) {}
617
 
618
public:
619
  MDString(const MDString &) = delete;
620
  MDString &operator=(MDString &&) = delete;
621
  MDString &operator=(const MDString &) = delete;
622
 
623
  static MDString *get(LLVMContext &Context, StringRef Str);
624
  static MDString *get(LLVMContext &Context, const char *Str) {
625
    return get(Context, Str ? StringRef(Str) : StringRef());
626
  }
627
 
628
  StringRef getString() const;
629
 
630
  unsigned getLength() const { return (unsigned)getString().size(); }
631
 
632
  using iterator = StringRef::iterator;
633
 
634
  /// Pointer to the first byte of the string.
635
  iterator begin() const { return getString().begin(); }
636
 
637
  /// Pointer to one byte past the end of the string.
638
  iterator end() const { return getString().end(); }
639
 
640
  const unsigned char *bytes_begin() const { return getString().bytes_begin(); }
641
  const unsigned char *bytes_end() const { return getString().bytes_end(); }
642
 
643
  /// Methods for support type inquiry through isa, cast, and dyn_cast.
644
  static bool classof(const Metadata *MD) {
645
    return MD->getMetadataID() == MDStringKind;
646
  }
647
};
648
 
649
/// A collection of metadata nodes that might be associated with a
650
/// memory access used by the alias-analysis infrastructure.
651
struct AAMDNodes {
652
  explicit AAMDNodes() = default;
653
  explicit AAMDNodes(MDNode *T, MDNode *TS, MDNode *S, MDNode *N)
654
      : TBAA(T), TBAAStruct(TS), Scope(S), NoAlias(N) {}
655
 
656
  bool operator==(const AAMDNodes &A) const {
657
    return TBAA == A.TBAA && TBAAStruct == A.TBAAStruct && Scope == A.Scope &&
658
           NoAlias == A.NoAlias;
659
  }
660
 
661
  bool operator!=(const AAMDNodes &A) const { return !(*this == A); }
662
 
663
  explicit operator bool() const {
664
    return TBAA || TBAAStruct || Scope || NoAlias;
665
  }
666
 
667
  /// The tag for type-based alias analysis.
668
  MDNode *TBAA = nullptr;
669
 
670
  /// The tag for type-based alias analysis (tbaa struct).
671
  MDNode *TBAAStruct = nullptr;
672
 
673
  /// The tag for alias scope specification (used with noalias).
674
  MDNode *Scope = nullptr;
675
 
676
  /// The tag specifying the noalias scope.
677
  MDNode *NoAlias = nullptr;
678
 
679
  // Shift tbaa Metadata node to start off bytes later
680
  static MDNode *shiftTBAA(MDNode *M, size_t off);
681
 
682
  // Shift tbaa.struct Metadata node to start off bytes later
683
  static MDNode *shiftTBAAStruct(MDNode *M, size_t off);
684
 
685
  // Extend tbaa Metadata node to apply to a series of bytes of length len.
686
  // A size of -1 denotes an unknown size.
687
  static MDNode *extendToTBAA(MDNode *TBAA, ssize_t len);
688
 
689
  /// Given two sets of AAMDNodes that apply to the same pointer,
690
  /// give the best AAMDNodes that are compatible with both (i.e. a set of
691
  /// nodes whose allowable aliasing conclusions are a subset of those
692
  /// allowable by both of the inputs). However, for efficiency
693
  /// reasons, do not create any new MDNodes.
694
  AAMDNodes intersect(const AAMDNodes &Other) const {
695
    AAMDNodes Result;
696
    Result.TBAA = Other.TBAA == TBAA ? TBAA : nullptr;
697
    Result.TBAAStruct = Other.TBAAStruct == TBAAStruct ? TBAAStruct : nullptr;
698
    Result.Scope = Other.Scope == Scope ? Scope : nullptr;
699
    Result.NoAlias = Other.NoAlias == NoAlias ? NoAlias : nullptr;
700
    return Result;
701
  }
702
 
703
  /// Create a new AAMDNode that describes this AAMDNode after applying a
704
  /// constant offset to the start of the pointer.
705
  AAMDNodes shift(size_t Offset) const {
706
    AAMDNodes Result;
707
    Result.TBAA = TBAA ? shiftTBAA(TBAA, Offset) : nullptr;
708
    Result.TBAAStruct =
709
        TBAAStruct ? shiftTBAAStruct(TBAAStruct, Offset) : nullptr;
710
    Result.Scope = Scope;
711
    Result.NoAlias = NoAlias;
712
    return Result;
713
  }
714
 
715
  /// Create a new AAMDNode that describes this AAMDNode after extending it to
716
  /// apply to a series of bytes of length Len. A size of -1 denotes an unknown
717
  /// size.
718
  AAMDNodes extendTo(ssize_t Len) const {
719
    AAMDNodes Result;
720
    Result.TBAA = TBAA ? extendToTBAA(TBAA, Len) : nullptr;
721
    // tbaa.struct contains (offset, size, type) triples. Extending the length
722
    // of the tbaa.struct doesn't require changing this (though more information
723
    // could be provided by adding more triples at subsequent lengths).
724
    Result.TBAAStruct = TBAAStruct;
725
    Result.Scope = Scope;
726
    Result.NoAlias = NoAlias;
727
    return Result;
728
  }
729
 
730
  /// Given two sets of AAMDNodes applying to potentially different locations,
731
  /// determine the best AAMDNodes that apply to both.
732
  AAMDNodes merge(const AAMDNodes &Other) const;
733
 
734
  /// Determine the best AAMDNodes after concatenating two different locations
735
  /// together. Different from `merge`, where different locations should
736
  /// overlap each other, `concat` puts non-overlapping locations together.
737
  AAMDNodes concat(const AAMDNodes &Other) const;
738
};
739
 
740
// Specialize DenseMapInfo for AAMDNodes.
741
template<>
742
struct DenseMapInfo<AAMDNodes> {
743
  static inline AAMDNodes getEmptyKey() {
744
    return AAMDNodes(DenseMapInfo<MDNode *>::getEmptyKey(),
745
                     nullptr, nullptr, nullptr);
746
  }
747
 
748
  static inline AAMDNodes getTombstoneKey() {
749
    return AAMDNodes(DenseMapInfo<MDNode *>::getTombstoneKey(),
750
                     nullptr, nullptr, nullptr);
751
  }
752
 
753
  static unsigned getHashValue(const AAMDNodes &Val) {
754
    return DenseMapInfo<MDNode *>::getHashValue(Val.TBAA) ^
755
           DenseMapInfo<MDNode *>::getHashValue(Val.TBAAStruct) ^
756
           DenseMapInfo<MDNode *>::getHashValue(Val.Scope) ^
757
           DenseMapInfo<MDNode *>::getHashValue(Val.NoAlias);
758
  }
759
 
760
  static bool isEqual(const AAMDNodes &LHS, const AAMDNodes &RHS) {
761
    return LHS == RHS;
762
  }
763
};
764
 
765
/// Tracking metadata reference owned by Metadata.
766
///
767
/// Similar to \a TrackingMDRef, but it's expected to be owned by an instance
768
/// of \a Metadata, which has the option of registering itself for callbacks to
769
/// re-unique itself.
770
///
771
/// In particular, this is used by \a MDNode.
772
class MDOperand {
773
  Metadata *MD = nullptr;
774
 
775
public:
776
  MDOperand() = default;
777
  MDOperand(const MDOperand &) = delete;
778
  MDOperand(MDOperand &&Op) {
779
    MD = Op.MD;
780
    if (MD)
781
      (void)MetadataTracking::retrack(Op.MD, MD);
782
    Op.MD = nullptr;
783
  }
784
  MDOperand &operator=(const MDOperand &) = delete;
785
  MDOperand &operator=(MDOperand &&Op) {
786
    MD = Op.MD;
787
    if (MD)
788
      (void)MetadataTracking::retrack(Op.MD, MD);
789
    Op.MD = nullptr;
790
    return *this;
791
  }
792
  ~MDOperand() { untrack(); }
793
 
794
  Metadata *get() const { return MD; }
795
  operator Metadata *() const { return get(); }
796
  Metadata *operator->() const { return get(); }
797
  Metadata &operator*() const { return *get(); }
798
 
799
  void reset() {
800
    untrack();
801
    MD = nullptr;
802
  }
803
  void reset(Metadata *MD, Metadata *Owner) {
804
    untrack();
805
    this->MD = MD;
806
    track(Owner);
807
  }
808
 
809
private:
810
  void track(Metadata *Owner) {
811
    if (MD) {
812
      if (Owner)
813
        MetadataTracking::track(this, *MD, *Owner);
814
      else
815
        MetadataTracking::track(MD);
816
    }
817
  }
818
 
819
  void untrack() {
820
    assert(static_cast<void *>(this) == &MD && "Expected same address");
821
    if (MD)
822
      MetadataTracking::untrack(MD);
823
  }
824
};
825
 
826
template <> struct simplify_type<MDOperand> {
827
  using SimpleType = Metadata *;
828
 
829
  static SimpleType getSimplifiedValue(MDOperand &MD) { return MD.get(); }
830
};
831
 
832
template <> struct simplify_type<const MDOperand> {
833
  using SimpleType = Metadata *;
834
 
835
  static SimpleType getSimplifiedValue(const MDOperand &MD) { return MD.get(); }
836
};
837
 
838
/// Pointer to the context, with optional RAUW support.
839
///
840
/// Either a raw (non-null) pointer to the \a LLVMContext, or an owned pointer
841
/// to \a ReplaceableMetadataImpl (which has a reference to \a LLVMContext).
842
class ContextAndReplaceableUses {
843
  PointerUnion<LLVMContext *, ReplaceableMetadataImpl *> Ptr;
844
 
845
public:
846
  ContextAndReplaceableUses(LLVMContext &Context) : Ptr(&Context) {}
847
  ContextAndReplaceableUses(
848
      std::unique_ptr<ReplaceableMetadataImpl> ReplaceableUses)
849
      : Ptr(ReplaceableUses.release()) {
850
    assert(getReplaceableUses() && "Expected non-null replaceable uses");
851
  }
852
  ContextAndReplaceableUses() = delete;
853
  ContextAndReplaceableUses(ContextAndReplaceableUses &&) = delete;
854
  ContextAndReplaceableUses(const ContextAndReplaceableUses &) = delete;
855
  ContextAndReplaceableUses &operator=(ContextAndReplaceableUses &&) = delete;
856
  ContextAndReplaceableUses &
857
  operator=(const ContextAndReplaceableUses &) = delete;
858
  ~ContextAndReplaceableUses() { delete getReplaceableUses(); }
859
 
860
  operator LLVMContext &() { return getContext(); }
861
 
862
  /// Whether this contains RAUW support.
863
  bool hasReplaceableUses() const {
864
    return Ptr.is<ReplaceableMetadataImpl *>();
865
  }
866
 
867
  LLVMContext &getContext() const {
868
    if (hasReplaceableUses())
869
      return getReplaceableUses()->getContext();
870
    return *Ptr.get<LLVMContext *>();
871
  }
872
 
873
  ReplaceableMetadataImpl *getReplaceableUses() const {
874
    if (hasReplaceableUses())
875
      return Ptr.get<ReplaceableMetadataImpl *>();
876
    return nullptr;
877
  }
878
 
879
  /// Ensure that this has RAUW support, and then return it.
880
  ReplaceableMetadataImpl *getOrCreateReplaceableUses() {
881
    if (!hasReplaceableUses())
882
      makeReplaceable(std::make_unique<ReplaceableMetadataImpl>(getContext()));
883
    return getReplaceableUses();
884
  }
885
 
886
  /// Assign RAUW support to this.
887
  ///
888
  /// Make this replaceable, taking ownership of \c ReplaceableUses (which must
889
  /// not be null).
890
  void
891
  makeReplaceable(std::unique_ptr<ReplaceableMetadataImpl> ReplaceableUses) {
892
    assert(ReplaceableUses && "Expected non-null replaceable uses");
893
    assert(&ReplaceableUses->getContext() == &getContext() &&
894
           "Expected same context");
895
    delete getReplaceableUses();
896
    Ptr = ReplaceableUses.release();
897
  }
898
 
899
  /// Drop RAUW support.
900
  ///
901
  /// Cede ownership of RAUW support, returning it.
902
  std::unique_ptr<ReplaceableMetadataImpl> takeReplaceableUses() {
903
    assert(hasReplaceableUses() && "Expected to own replaceable uses");
904
    std::unique_ptr<ReplaceableMetadataImpl> ReplaceableUses(
905
        getReplaceableUses());
906
    Ptr = &ReplaceableUses->getContext();
907
    return ReplaceableUses;
908
  }
909
};
910
 
911
struct TempMDNodeDeleter {
912
  inline void operator()(MDNode *Node) const;
913
};
914
 
915
#define HANDLE_MDNODE_LEAF(CLASS)                                              \
916
  using Temp##CLASS = std::unique_ptr<CLASS, TempMDNodeDeleter>;
917
#define HANDLE_MDNODE_BRANCH(CLASS) HANDLE_MDNODE_LEAF(CLASS)
918
#include "llvm/IR/Metadata.def"
919
 
920
/// Metadata node.
921
///
922
/// Metadata nodes can be uniqued, like constants, or distinct.  Temporary
923
/// metadata nodes (with full support for RAUW) can be used to delay uniquing
924
/// until forward references are known.  The basic metadata node is an \a
925
/// MDTuple.
926
///
927
/// There is limited support for RAUW at construction time.  At construction
928
/// time, if any operand is a temporary node (or an unresolved uniqued node,
929
/// which indicates a transitive temporary operand), the node itself will be
930
/// unresolved.  As soon as all operands become resolved, it will drop RAUW
931
/// support permanently.
932
///
933
/// If an unresolved node is part of a cycle, \a resolveCycles() needs
934
/// to be called on some member of the cycle once all temporary nodes have been
935
/// replaced.
936
///
937
/// MDNodes can be large or small, as well as resizable or non-resizable.
938
/// Large MDNodes' operands are allocated in a separate storage vector,
939
/// whereas small MDNodes' operands are co-allocated. Distinct and temporary
940
/// MDnodes are resizable, but only MDTuples support this capability.
941
///
942
/// Clients can add operands to resizable MDNodes using push_back().
943
class MDNode : public Metadata {
944
  friend class ReplaceableMetadataImpl;
945
  friend class LLVMContextImpl;
946
  friend class DIArgList;
947
 
948
  /// The header that is coallocated with an MDNode along with its "small"
949
  /// operands. It is located immediately before the main body of the node.
950
  /// The operands are in turn located immediately before the header.
951
  /// For resizable MDNodes, the space for the storage vector is also allocated
952
  /// immediately before the header, overlapping with the operands.
953
  /// Explicity set alignment because bitfields by default have an
954
  /// alignment of 1 on z/OS.
955
  struct alignas(alignof(size_t)) Header {
956
    bool IsResizable : 1;
957
    bool IsLarge : 1;
958
    size_t SmallSize : 4;
959
    size_t SmallNumOps : 4;
960
    size_t : sizeof(size_t) * CHAR_BIT - 10;
961
 
962
    unsigned NumUnresolved = 0;
963
    using LargeStorageVector = SmallVector<MDOperand, 0>;
964
 
965
    static constexpr size_t NumOpsFitInVector =
966
        sizeof(LargeStorageVector) / sizeof(MDOperand);
967
    static_assert(
968
        NumOpsFitInVector * sizeof(MDOperand) == sizeof(LargeStorageVector),
969
        "sizeof(LargeStorageVector) must be a multiple of sizeof(MDOperand)");
970
 
971
    static constexpr size_t MaxSmallSize = 15;
972
 
973
    static constexpr size_t getOpSize(unsigned NumOps) {
974
      return sizeof(MDOperand) * NumOps;
975
    }
976
    /// Returns the number of operands the node has space for based on its
977
    /// allocation characteristics.
978
    static size_t getSmallSize(size_t NumOps, bool IsResizable, bool IsLarge) {
979
      return IsLarge ? NumOpsFitInVector
980
                     : std::max(NumOps, NumOpsFitInVector * IsResizable);
981
    }
982
    /// Returns the number of bytes allocated for operands and header.
983
    static size_t getAllocSize(StorageType Storage, size_t NumOps) {
984
      return getOpSize(
985
                 getSmallSize(NumOps, isResizable(Storage), isLarge(NumOps))) +
986
             sizeof(Header);
987
    }
988
 
989
    /// Only temporary and distinct nodes are resizable.
990
    static bool isResizable(StorageType Storage) { return Storage != Uniqued; }
991
    static bool isLarge(size_t NumOps) { return NumOps > MaxSmallSize; }
992
 
993
    size_t getAllocSize() const {
994
      return getOpSize(SmallSize) + sizeof(Header);
995
    }
996
    void *getAllocation() {
997
      return reinterpret_cast<char *>(this + 1) -
998
             alignTo(getAllocSize(), alignof(uint64_t));
999
    }
1000
 
1001
    void *getLargePtr() const {
1002
      static_assert(alignof(LargeStorageVector) <= alignof(Header),
1003
                    "LargeStorageVector too strongly aligned");
1004
      return reinterpret_cast<char *>(const_cast<Header *>(this)) -
1005
             sizeof(LargeStorageVector);
1006
    }
1007
 
1008
    void *getSmallPtr();
1009
 
1010
    LargeStorageVector &getLarge() {
1011
      assert(IsLarge);
1012
      return *reinterpret_cast<LargeStorageVector *>(getLargePtr());
1013
    }
1014
 
1015
    const LargeStorageVector &getLarge() const {
1016
      assert(IsLarge);
1017
      return *reinterpret_cast<const LargeStorageVector *>(getLargePtr());
1018
    }
1019
 
1020
    void resizeSmall(size_t NumOps);
1021
    void resizeSmallToLarge(size_t NumOps);
1022
    void resize(size_t NumOps);
1023
 
1024
    explicit Header(size_t NumOps, StorageType Storage);
1025
    ~Header();
1026
 
1027
    MutableArrayRef<MDOperand> operands() {
1028
      if (IsLarge)
1029
        return getLarge();
1030
      return MutableArrayRef(
1031
          reinterpret_cast<MDOperand *>(this) - SmallSize, SmallNumOps);
1032
    }
1033
 
1034
    ArrayRef<MDOperand> operands() const {
1035
      if (IsLarge)
1036
        return getLarge();
1037
      return ArrayRef(reinterpret_cast<const MDOperand *>(this) - SmallSize,
1038
                      SmallNumOps);
1039
    }
1040
 
1041
    unsigned getNumOperands() const {
1042
      if (!IsLarge)
1043
        return SmallNumOps;
1044
      return getLarge().size();
1045
    }
1046
  };
1047
 
1048
  Header &getHeader() { return *(reinterpret_cast<Header *>(this) - 1); }
1049
 
1050
  const Header &getHeader() const {
1051
    return *(reinterpret_cast<const Header *>(this) - 1);
1052
  }
1053
 
1054
  ContextAndReplaceableUses Context;
1055
 
1056
protected:
1057
  MDNode(LLVMContext &Context, unsigned ID, StorageType Storage,
1058
         ArrayRef<Metadata *> Ops1, ArrayRef<Metadata *> Ops2 = std::nullopt);
1059
  ~MDNode() = default;
1060
 
1061
  void *operator new(size_t Size, size_t NumOps, StorageType Storage);
1062
  void operator delete(void *Mem);
1063
 
1064
  /// Required by std, but never called.
1065
  void operator delete(void *, unsigned) {
1066
    llvm_unreachable("Constructor throws?");
1067
  }
1068
 
1069
  /// Required by std, but never called.
1070
  void operator delete(void *, unsigned, bool) {
1071
    llvm_unreachable("Constructor throws?");
1072
  }
1073
 
1074
  void dropAllReferences();
1075
 
1076
  MDOperand *mutable_begin() { return getHeader().operands().begin(); }
1077
  MDOperand *mutable_end() { return getHeader().operands().end(); }
1078
 
1079
  using mutable_op_range = iterator_range<MDOperand *>;
1080
 
1081
  mutable_op_range mutable_operands() {
1082
    return mutable_op_range(mutable_begin(), mutable_end());
1083
  }
1084
 
1085
public:
1086
  MDNode(const MDNode &) = delete;
1087
  void operator=(const MDNode &) = delete;
1088
  void *operator new(size_t) = delete;
1089
 
1090
  static inline MDTuple *get(LLVMContext &Context, ArrayRef<Metadata *> MDs);
1091
  static inline MDTuple *getIfExists(LLVMContext &Context,
1092
                                     ArrayRef<Metadata *> MDs);
1093
  static inline MDTuple *getDistinct(LLVMContext &Context,
1094
                                     ArrayRef<Metadata *> MDs);
1095
  static inline TempMDTuple getTemporary(LLVMContext &Context,
1096
                                         ArrayRef<Metadata *> MDs);
1097
 
1098
  /// Create a (temporary) clone of this.
1099
  TempMDNode clone() const;
1100
 
1101
  /// Deallocate a node created by getTemporary.
1102
  ///
1103
  /// Calls \c replaceAllUsesWith(nullptr) before deleting, so any remaining
1104
  /// references will be reset.
1105
  static void deleteTemporary(MDNode *N);
1106
 
1107
  LLVMContext &getContext() const { return Context.getContext(); }
1108
 
1109
  /// Replace a specific operand.
1110
  void replaceOperandWith(unsigned I, Metadata *New);
1111
 
1112
  /// Check if node is fully resolved.
1113
  ///
1114
  /// If \a isTemporary(), this always returns \c false; if \a isDistinct(),
1115
  /// this always returns \c true.
1116
  ///
1117
  /// If \a isUniqued(), returns \c true if this has already dropped RAUW
1118
  /// support (because all operands are resolved).
1119
  ///
1120
  /// As forward declarations are resolved, their containers should get
1121
  /// resolved automatically.  However, if this (or one of its operands) is
1122
  /// involved in a cycle, \a resolveCycles() needs to be called explicitly.
1123
  bool isResolved() const { return !isTemporary() && !getNumUnresolved(); }
1124
 
1125
  bool isUniqued() const { return Storage == Uniqued; }
1126
  bool isDistinct() const { return Storage == Distinct; }
1127
  bool isTemporary() const { return Storage == Temporary; }
1128
 
1129
  /// RAUW a temporary.
1130
  ///
1131
  /// \pre \a isTemporary() must be \c true.
1132
  void replaceAllUsesWith(Metadata *MD) {
1133
    assert(isTemporary() && "Expected temporary node");
1134
    if (Context.hasReplaceableUses())
1135
      Context.getReplaceableUses()->replaceAllUsesWith(MD);
1136
  }
1137
 
1138
  /// Resolve cycles.
1139
  ///
1140
  /// Once all forward declarations have been resolved, force cycles to be
1141
  /// resolved.
1142
  ///
1143
  /// \pre No operands (or operands' operands, etc.) have \a isTemporary().
1144
  void resolveCycles();
1145
 
1146
  /// Resolve a unique, unresolved node.
1147
  void resolve();
1148
 
1149
  /// Replace a temporary node with a permanent one.
1150
  ///
1151
  /// Try to create a uniqued version of \c N -- in place, if possible -- and
1152
  /// return it.  If \c N cannot be uniqued, return a distinct node instead.
1153
  template <class T>
1154
  static std::enable_if_t<std::is_base_of<MDNode, T>::value, T *>
1155
  replaceWithPermanent(std::unique_ptr<T, TempMDNodeDeleter> N) {
1156
    return cast<T>(N.release()->replaceWithPermanentImpl());
1157
  }
1158
 
1159
  /// Replace a temporary node with a uniqued one.
1160
  ///
1161
  /// Create a uniqued version of \c N -- in place, if possible -- and return
1162
  /// it.  Takes ownership of the temporary node.
1163
  ///
1164
  /// \pre N does not self-reference.
1165
  template <class T>
1166
  static std::enable_if_t<std::is_base_of<MDNode, T>::value, T *>
1167
  replaceWithUniqued(std::unique_ptr<T, TempMDNodeDeleter> N) {
1168
    return cast<T>(N.release()->replaceWithUniquedImpl());
1169
  }
1170
 
1171
  /// Replace a temporary node with a distinct one.
1172
  ///
1173
  /// Create a distinct version of \c N -- in place, if possible -- and return
1174
  /// it.  Takes ownership of the temporary node.
1175
  template <class T>
1176
  static std::enable_if_t<std::is_base_of<MDNode, T>::value, T *>
1177
  replaceWithDistinct(std::unique_ptr<T, TempMDNodeDeleter> N) {
1178
    return cast<T>(N.release()->replaceWithDistinctImpl());
1179
  }
1180
 
1181
  /// Print in tree shape.
1182
  ///
1183
  /// Prints definition of \c this in tree shape.
1184
  ///
1185
  /// If \c M is provided, metadata nodes will be numbered canonically;
1186
  /// otherwise, pointer addresses are substituted.
1187
  /// @{
1188
  void printTree(raw_ostream &OS, const Module *M = nullptr) const;
1189
  void printTree(raw_ostream &OS, ModuleSlotTracker &MST,
1190
                 const Module *M = nullptr) const;
1191
  /// @}
1192
 
1193
  /// User-friendly dump in tree shape.
1194
  ///
1195
  /// If \c M is provided, metadata nodes will be numbered canonically;
1196
  /// otherwise, pointer addresses are substituted.
1197
  ///
1198
  /// Note: this uses an explicit overload instead of default arguments so that
1199
  /// the nullptr version is easy to call from a debugger.
1200
  ///
1201
  /// @{
1202
  void dumpTree() const;
1203
  void dumpTree(const Module *M) const;
1204
  /// @}
1205
 
1206
private:
1207
  MDNode *replaceWithPermanentImpl();
1208
  MDNode *replaceWithUniquedImpl();
1209
  MDNode *replaceWithDistinctImpl();
1210
 
1211
protected:
1212
  /// Set an operand.
1213
  ///
1214
  /// Sets the operand directly, without worrying about uniquing.
1215
  void setOperand(unsigned I, Metadata *New);
1216
 
1217
  unsigned getNumUnresolved() const { return getHeader().NumUnresolved; }
1218
 
1219
  void setNumUnresolved(unsigned N) { getHeader().NumUnresolved = N; }
1220
  void storeDistinctInContext();
1221
  template <class T, class StoreT>
1222
  static T *storeImpl(T *N, StorageType Storage, StoreT &Store);
1223
  template <class T> static T *storeImpl(T *N, StorageType Storage);
1224
 
1225
  /// Resize the node to hold \a NumOps operands.
1226
  ///
1227
  /// \pre \a isTemporary() or \a isDistinct()
1228
  /// \pre MetadataID == MDTupleKind
1229
  void resize(size_t NumOps) {
1230
    assert(!isUniqued() && "Resizing is not supported for uniqued nodes");
1231
    assert(getMetadataID() == MDTupleKind &&
1232
           "Resizing is not supported for this node kind");
1233
    getHeader().resize(NumOps);
1234
  }
1235
 
1236
private:
1237
  void handleChangedOperand(void *Ref, Metadata *New);
1238
 
1239
  /// Drop RAUW support, if any.
1240
  void dropReplaceableUses();
1241
 
1242
  void resolveAfterOperandChange(Metadata *Old, Metadata *New);
1243
  void decrementUnresolvedOperandCount();
1244
  void countUnresolvedOperands();
1245
 
1246
  /// Mutate this to be "uniqued".
1247
  ///
1248
  /// Mutate this so that \a isUniqued().
1249
  /// \pre \a isTemporary().
1250
  /// \pre already added to uniquing set.
1251
  void makeUniqued();
1252
 
1253
  /// Mutate this to be "distinct".
1254
  ///
1255
  /// Mutate this so that \a isDistinct().
1256
  /// \pre \a isTemporary().
1257
  void makeDistinct();
1258
 
1259
  void deleteAsSubclass();
1260
  MDNode *uniquify();
1261
  void eraseFromStore();
1262
 
1263
  template <class NodeTy> struct HasCachedHash;
1264
  template <class NodeTy>
1265
  static void dispatchRecalculateHash(NodeTy *N, std::true_type) {
1266
    N->recalculateHash();
1267
  }
1268
  template <class NodeTy>
1269
  static void dispatchRecalculateHash(NodeTy *, std::false_type) {}
1270
  template <class NodeTy>
1271
  static void dispatchResetHash(NodeTy *N, std::true_type) {
1272
    N->setHash(0);
1273
  }
1274
  template <class NodeTy>
1275
  static void dispatchResetHash(NodeTy *, std::false_type) {}
1276
 
1277
public:
1278
  using op_iterator = const MDOperand *;
1279
  using op_range = iterator_range<op_iterator>;
1280
 
1281
  op_iterator op_begin() const {
1282
    return const_cast<MDNode *>(this)->mutable_begin();
1283
  }
1284
 
1285
  op_iterator op_end() const {
1286
    return const_cast<MDNode *>(this)->mutable_end();
1287
  }
1288
 
1289
  ArrayRef<MDOperand> operands() const { return getHeader().operands(); }
1290
 
1291
  const MDOperand &getOperand(unsigned I) const {
1292
    assert(I < getNumOperands() && "Out of range");
1293
    return getHeader().operands()[I];
1294
  }
1295
 
1296
  /// Return number of MDNode operands.
1297
  unsigned getNumOperands() const { return getHeader().getNumOperands(); }
1298
 
1299
  /// Methods for support type inquiry through isa, cast, and dyn_cast:
1300
  static bool classof(const Metadata *MD) {
1301
    switch (MD->getMetadataID()) {
1302
    default:
1303
      return false;
1304
#define HANDLE_MDNODE_LEAF(CLASS)                                              \
1305
  case CLASS##Kind:                                                            \
1306
    return true;
1307
#include "llvm/IR/Metadata.def"
1308
    }
1309
  }
1310
 
1311
  /// Check whether MDNode is a vtable access.
1312
  bool isTBAAVtableAccess() const;
1313
 
1314
  /// Methods for metadata merging.
1315
  static MDNode *concatenate(MDNode *A, MDNode *B);
1316
  static MDNode *intersect(MDNode *A, MDNode *B);
1317
  static MDNode *getMostGenericTBAA(MDNode *A, MDNode *B);
1318
  static MDNode *getMostGenericFPMath(MDNode *A, MDNode *B);
1319
  static MDNode *getMostGenericRange(MDNode *A, MDNode *B);
1320
  static MDNode *getMostGenericAliasScope(MDNode *A, MDNode *B);
1321
  static MDNode *getMostGenericAlignmentOrDereferenceable(MDNode *A, MDNode *B);
1322
};
1323
 
1324
/// Tuple of metadata.
1325
///
1326
/// This is the simple \a MDNode arbitrary tuple.  Nodes are uniqued by
1327
/// default based on their operands.
1328
class MDTuple : public MDNode {
1329
  friend class LLVMContextImpl;
1330
  friend class MDNode;
1331
 
1332
  MDTuple(LLVMContext &C, StorageType Storage, unsigned Hash,
1333
          ArrayRef<Metadata *> Vals)
1334
      : MDNode(C, MDTupleKind, Storage, Vals) {
1335
    setHash(Hash);
1336
  }
1337
 
1338
  ~MDTuple() { dropAllReferences(); }
1339
 
1340
  void setHash(unsigned Hash) { SubclassData32 = Hash; }
1341
  void recalculateHash();
1342
 
1343
  static MDTuple *getImpl(LLVMContext &Context, ArrayRef<Metadata *> MDs,
1344
                          StorageType Storage, bool ShouldCreate = true);
1345
 
1346
  TempMDTuple cloneImpl() const {
1347
    ArrayRef<MDOperand> Operands = operands();
1348
    return getTemporary(getContext(), SmallVector<Metadata *, 4>(
1349
                                          Operands.begin(), Operands.end()));
1350
  }
1351
 
1352
public:
1353
  /// Get the hash, if any.
1354
  unsigned getHash() const { return SubclassData32; }
1355
 
1356
  static MDTuple *get(LLVMContext &Context, ArrayRef<Metadata *> MDs) {
1357
    return getImpl(Context, MDs, Uniqued);
1358
  }
1359
 
1360
  static MDTuple *getIfExists(LLVMContext &Context, ArrayRef<Metadata *> MDs) {
1361
    return getImpl(Context, MDs, Uniqued, /* ShouldCreate */ false);
1362
  }
1363
 
1364
  /// Return a distinct node.
1365
  ///
1366
  /// Return a distinct node -- i.e., a node that is not uniqued.
1367
  static MDTuple *getDistinct(LLVMContext &Context, ArrayRef<Metadata *> MDs) {
1368
    return getImpl(Context, MDs, Distinct);
1369
  }
1370
 
1371
  /// Return a temporary node.
1372
  ///
1373
  /// For use in constructing cyclic MDNode structures. A temporary MDNode is
1374
  /// not uniqued, may be RAUW'd, and must be manually deleted with
1375
  /// deleteTemporary.
1376
  static TempMDTuple getTemporary(LLVMContext &Context,
1377
                                  ArrayRef<Metadata *> MDs) {
1378
    return TempMDTuple(getImpl(Context, MDs, Temporary));
1379
  }
1380
 
1381
  /// Return a (temporary) clone of this.
1382
  TempMDTuple clone() const { return cloneImpl(); }
1383
 
1384
  /// Append an element to the tuple. This will resize the node.
1385
  void push_back(Metadata *MD) {
1386
    size_t NumOps = getNumOperands();
1387
    resize(NumOps + 1);
1388
    setOperand(NumOps, MD);
1389
  }
1390
 
1391
  /// Shrink the operands by 1.
1392
  void pop_back() { resize(getNumOperands() - 1); }
1393
 
1394
  static bool classof(const Metadata *MD) {
1395
    return MD->getMetadataID() == MDTupleKind;
1396
  }
1397
};
1398
 
1399
MDTuple *MDNode::get(LLVMContext &Context, ArrayRef<Metadata *> MDs) {
1400
  return MDTuple::get(Context, MDs);
1401
}
1402
 
1403
MDTuple *MDNode::getIfExists(LLVMContext &Context, ArrayRef<Metadata *> MDs) {
1404
  return MDTuple::getIfExists(Context, MDs);
1405
}
1406
 
1407
MDTuple *MDNode::getDistinct(LLVMContext &Context, ArrayRef<Metadata *> MDs) {
1408
  return MDTuple::getDistinct(Context, MDs);
1409
}
1410
 
1411
TempMDTuple MDNode::getTemporary(LLVMContext &Context,
1412
                                 ArrayRef<Metadata *> MDs) {
1413
  return MDTuple::getTemporary(Context, MDs);
1414
}
1415
 
1416
void TempMDNodeDeleter::operator()(MDNode *Node) const {
1417
  MDNode::deleteTemporary(Node);
1418
}
1419
 
1420
/// This is a simple wrapper around an MDNode which provides a higher-level
1421
/// interface by hiding the details of how alias analysis information is encoded
1422
/// in its operands.
1423
class AliasScopeNode {
1424
  const MDNode *Node = nullptr;
1425
 
1426
public:
1427
  AliasScopeNode() = default;
1428
  explicit AliasScopeNode(const MDNode *N) : Node(N) {}
1429
 
1430
  /// Get the MDNode for this AliasScopeNode.
1431
  const MDNode *getNode() const { return Node; }
1432
 
1433
  /// Get the MDNode for this AliasScopeNode's domain.
1434
  const MDNode *getDomain() const {
1435
    if (Node->getNumOperands() < 2)
1436
      return nullptr;
1437
    return dyn_cast_or_null<MDNode>(Node->getOperand(1));
1438
  }
1439
  StringRef getName() const {
1440
    if (Node->getNumOperands() > 2)
1441
      if (MDString *N = dyn_cast_or_null<MDString>(Node->getOperand(2)))
1442
        return N->getString();
1443
    return StringRef();
1444
  }
1445
};
1446
 
1447
/// Typed iterator through MDNode operands.
1448
///
1449
/// An iterator that transforms an \a MDNode::iterator into an iterator over a
1450
/// particular Metadata subclass.
1451
template <class T> class TypedMDOperandIterator {
1452
  MDNode::op_iterator I = nullptr;
1453
 
1454
public:
1455
  using iterator_category = std::input_iterator_tag;
1456
  using value_type = T *;
1457
  using difference_type = std::ptrdiff_t;
1458
  using pointer = void;
1459
  using reference = T *;
1460
 
1461
  TypedMDOperandIterator() = default;
1462
  explicit TypedMDOperandIterator(MDNode::op_iterator I) : I(I) {}
1463
 
1464
  T *operator*() const { return cast_or_null<T>(*I); }
1465
 
1466
  TypedMDOperandIterator &operator++() {
1467
    ++I;
1468
    return *this;
1469
  }
1470
 
1471
  TypedMDOperandIterator operator++(int) {
1472
    TypedMDOperandIterator Temp(*this);
1473
    ++I;
1474
    return Temp;
1475
  }
1476
 
1477
  bool operator==(const TypedMDOperandIterator &X) const { return I == X.I; }
1478
  bool operator!=(const TypedMDOperandIterator &X) const { return I != X.I; }
1479
};
1480
 
1481
/// Typed, array-like tuple of metadata.
1482
///
1483
/// This is a wrapper for \a MDTuple that makes it act like an array holding a
1484
/// particular type of metadata.
1485
template <class T> class MDTupleTypedArrayWrapper {
1486
  const MDTuple *N = nullptr;
1487
 
1488
public:
1489
  MDTupleTypedArrayWrapper() = default;
1490
  MDTupleTypedArrayWrapper(const MDTuple *N) : N(N) {}
1491
 
1492
  template <class U>
1493
  MDTupleTypedArrayWrapper(
1494
      const MDTupleTypedArrayWrapper<U> &Other,
1495
      std::enable_if_t<std::is_convertible<U *, T *>::value> * = nullptr)
1496
      : N(Other.get()) {}
1497
 
1498
  template <class U>
1499
  explicit MDTupleTypedArrayWrapper(
1500
      const MDTupleTypedArrayWrapper<U> &Other,
1501
      std::enable_if_t<!std::is_convertible<U *, T *>::value> * = nullptr)
1502
      : N(Other.get()) {}
1503
 
1504
  explicit operator bool() const { return get(); }
1505
  explicit operator MDTuple *() const { return get(); }
1506
 
1507
  MDTuple *get() const { return const_cast<MDTuple *>(N); }
1508
  MDTuple *operator->() const { return get(); }
1509
  MDTuple &operator*() const { return *get(); }
1510
 
1511
  // FIXME: Fix callers and remove condition on N.
1512
  unsigned size() const { return N ? N->getNumOperands() : 0u; }
1513
  bool empty() const { return N ? N->getNumOperands() == 0 : true; }
1514
  T *operator[](unsigned I) const { return cast_or_null<T>(N->getOperand(I)); }
1515
 
1516
  // FIXME: Fix callers and remove condition on N.
1517
  using iterator = TypedMDOperandIterator<T>;
1518
 
1519
  iterator begin() const { return N ? iterator(N->op_begin()) : iterator(); }
1520
  iterator end() const { return N ? iterator(N->op_end()) : iterator(); }
1521
};
1522
 
1523
#define HANDLE_METADATA(CLASS)                                                 \
1524
  using CLASS##Array = MDTupleTypedArrayWrapper<CLASS>;
1525
#include "llvm/IR/Metadata.def"
1526
 
1527
/// Placeholder metadata for operands of distinct MDNodes.
1528
///
1529
/// This is a lightweight placeholder for an operand of a distinct node.  It's
1530
/// purpose is to help track forward references when creating a distinct node.
1531
/// This allows distinct nodes involved in a cycle to be constructed before
1532
/// their operands without requiring a heavyweight temporary node with
1533
/// full-blown RAUW support.
1534
///
1535
/// Each placeholder supports only a single MDNode user.  Clients should pass
1536
/// an ID, retrieved via \a getID(), to indicate the "real" operand that this
1537
/// should be replaced with.
1538
///
1539
/// While it would be possible to implement move operators, they would be
1540
/// fairly expensive.  Leave them unimplemented to discourage their use
1541
/// (clients can use std::deque, std::list, BumpPtrAllocator, etc.).
1542
class DistinctMDOperandPlaceholder : public Metadata {
1543
  friend class MetadataTracking;
1544
 
1545
  Metadata **Use = nullptr;
1546
 
1547
public:
1548
  explicit DistinctMDOperandPlaceholder(unsigned ID)
1549
      : Metadata(DistinctMDOperandPlaceholderKind, Distinct) {
1550
    SubclassData32 = ID;
1551
  }
1552
 
1553
  DistinctMDOperandPlaceholder() = delete;
1554
  DistinctMDOperandPlaceholder(DistinctMDOperandPlaceholder &&) = delete;
1555
  DistinctMDOperandPlaceholder(const DistinctMDOperandPlaceholder &) = delete;
1556
 
1557
  ~DistinctMDOperandPlaceholder() {
1558
    if (Use)
1559
      *Use = nullptr;
1560
  }
1561
 
1562
  unsigned getID() const { return SubclassData32; }
1563
 
1564
  /// Replace the use of this with MD.
1565
  void replaceUseWith(Metadata *MD) {
1566
    if (!Use)
1567
      return;
1568
    *Use = MD;
1569
 
1570
    if (*Use)
1571
      MetadataTracking::track(*Use);
1572
 
1573
    Metadata *T = cast<Metadata>(this);
1574
    MetadataTracking::untrack(T);
1575
    assert(!Use && "Use is still being tracked despite being untracked!");
1576
  }
1577
};
1578
 
1579
//===----------------------------------------------------------------------===//
1580
/// A tuple of MDNodes.
1581
///
1582
/// Despite its name, a NamedMDNode isn't itself an MDNode.
1583
///
1584
/// NamedMDNodes are named module-level entities that contain lists of MDNodes.
1585
///
1586
/// It is illegal for a NamedMDNode to appear as an operand of an MDNode.
1587
class NamedMDNode : public ilist_node<NamedMDNode> {
1588
  friend class LLVMContextImpl;
1589
  friend class Module;
1590
 
1591
  std::string Name;
1592
  Module *Parent = nullptr;
1593
  void *Operands; // SmallVector<TrackingMDRef, 4>
1594
 
1595
  void setParent(Module *M) { Parent = M; }
1596
 
1597
  explicit NamedMDNode(const Twine &N);
1598
 
1599
  template <class T1, class T2> class op_iterator_impl {
1600
    friend class NamedMDNode;
1601
 
1602
    const NamedMDNode *Node = nullptr;
1603
    unsigned Idx = 0;
1604
 
1605
    op_iterator_impl(const NamedMDNode *N, unsigned i) : Node(N), Idx(i) {}
1606
 
1607
  public:
1608
    using iterator_category = std::bidirectional_iterator_tag;
1609
    using value_type = T2;
1610
    using difference_type = std::ptrdiff_t;
1611
    using pointer = value_type *;
1612
    using reference = value_type &;
1613
 
1614
    op_iterator_impl() = default;
1615
 
1616
    bool operator==(const op_iterator_impl &o) const { return Idx == o.Idx; }
1617
    bool operator!=(const op_iterator_impl &o) const { return Idx != o.Idx; }
1618
 
1619
    op_iterator_impl &operator++() {
1620
      ++Idx;
1621
      return *this;
1622
    }
1623
 
1624
    op_iterator_impl operator++(int) {
1625
      op_iterator_impl tmp(*this);
1626
      operator++();
1627
      return tmp;
1628
    }
1629
 
1630
    op_iterator_impl &operator--() {
1631
      --Idx;
1632
      return *this;
1633
    }
1634
 
1635
    op_iterator_impl operator--(int) {
1636
      op_iterator_impl tmp(*this);
1637
      operator--();
1638
      return tmp;
1639
    }
1640
 
1641
    T1 operator*() const { return Node->getOperand(Idx); }
1642
  };
1643
 
1644
public:
1645
  NamedMDNode(const NamedMDNode &) = delete;
1646
  ~NamedMDNode();
1647
 
1648
  /// Drop all references and remove the node from parent module.
1649
  void eraseFromParent();
1650
 
1651
  /// Remove all uses and clear node vector.
1652
  void dropAllReferences() { clearOperands(); }
1653
  /// Drop all references to this node's operands.
1654
  void clearOperands();
1655
 
1656
  /// Get the module that holds this named metadata collection.
1657
  inline Module *getParent() { return Parent; }
1658
  inline const Module *getParent() const { return Parent; }
1659
 
1660
  MDNode *getOperand(unsigned i) const;
1661
  unsigned getNumOperands() const;
1662
  void addOperand(MDNode *M);
1663
  void setOperand(unsigned I, MDNode *New);
1664
  StringRef getName() const;
1665
  void print(raw_ostream &ROS, bool IsForDebug = false) const;
1666
  void print(raw_ostream &ROS, ModuleSlotTracker &MST,
1667
             bool IsForDebug = false) const;
1668
  void dump() const;
1669
 
1670
  // ---------------------------------------------------------------------------
1671
  // Operand Iterator interface...
1672
  //
1673
  using op_iterator = op_iterator_impl<MDNode *, MDNode>;
1674
 
1675
  op_iterator op_begin() { return op_iterator(this, 0); }
1676
  op_iterator op_end()   { return op_iterator(this, getNumOperands()); }
1677
 
1678
  using const_op_iterator = op_iterator_impl<const MDNode *, MDNode>;
1679
 
1680
  const_op_iterator op_begin() const { return const_op_iterator(this, 0); }
1681
  const_op_iterator op_end()   const { return const_op_iterator(this, getNumOperands()); }
1682
 
1683
  inline iterator_range<op_iterator>  operands() {
1684
    return make_range(op_begin(), op_end());
1685
  }
1686
  inline iterator_range<const_op_iterator> operands() const {
1687
    return make_range(op_begin(), op_end());
1688
  }
1689
};
1690
 
1691
// Create wrappers for C Binding types (see CBindingWrapping.h).
1692
DEFINE_ISA_CONVERSION_FUNCTIONS(NamedMDNode, LLVMNamedMDNodeRef)
1693
 
1694
} // end namespace llvm
1695
 
1696
#endif // LLVM_IR_METADATA_H