Subversion Repositories QNX 8.QNX8 LLVM/Clang compiler suite

Rev

Details | Last modification | View Log | RSS feed

Rev Author Line No. Line
14 pmbaty 1
//===- llvm/IRBuilder.h - Builder for LLVM Instructions ---------*- C++ -*-===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
// This file defines the IRBuilder class, which is used as a convenient way
10
// to create LLVM instructions with a consistent and simplified interface.
11
//
12
//===----------------------------------------------------------------------===//
13
 
14
#ifndef LLVM_IR_IRBUILDER_H
15
#define LLVM_IR_IRBUILDER_H
16
 
17
#include "llvm-c/Types.h"
18
#include "llvm/ADT/ArrayRef.h"
19
#include "llvm/ADT/STLExtras.h"
20
#include "llvm/ADT/StringRef.h"
21
#include "llvm/ADT/Twine.h"
22
#include "llvm/IR/BasicBlock.h"
23
#include "llvm/IR/Constant.h"
24
#include "llvm/IR/ConstantFolder.h"
25
#include "llvm/IR/Constants.h"
26
#include "llvm/IR/DataLayout.h"
27
#include "llvm/IR/DebugLoc.h"
28
#include "llvm/IR/DerivedTypes.h"
29
#include "llvm/IR/FPEnv.h"
30
#include "llvm/IR/Function.h"
31
#include "llvm/IR/GlobalVariable.h"
32
#include "llvm/IR/InstrTypes.h"
33
#include "llvm/IR/Instruction.h"
34
#include "llvm/IR/Instructions.h"
35
#include "llvm/IR/Intrinsics.h"
36
#include "llvm/IR/LLVMContext.h"
37
#include "llvm/IR/Module.h"
38
#include "llvm/IR/Operator.h"
39
#include "llvm/IR/Type.h"
40
#include "llvm/IR/Value.h"
41
#include "llvm/IR/ValueHandle.h"
42
#include "llvm/Support/AtomicOrdering.h"
43
#include "llvm/Support/CBindingWrapping.h"
44
#include "llvm/Support/Casting.h"
45
#include <cassert>
46
#include <cstdint>
47
#include <functional>
48
#include <optional>
49
#include <utility>
50
 
51
namespace llvm {
52
 
53
class APInt;
54
class Use;
55
 
56
/// This provides the default implementation of the IRBuilder
57
/// 'InsertHelper' method that is called whenever an instruction is created by
58
/// IRBuilder and needs to be inserted.
59
///
60
/// By default, this inserts the instruction at the insertion point.
61
class IRBuilderDefaultInserter {
62
public:
63
  virtual ~IRBuilderDefaultInserter();
64
 
65
  virtual void InsertHelper(Instruction *I, const Twine &Name,
66
                            BasicBlock *BB,
67
                            BasicBlock::iterator InsertPt) const {
68
    if (BB)
69
      I->insertInto(BB, InsertPt);
70
    I->setName(Name);
71
  }
72
};
73
 
74
/// Provides an 'InsertHelper' that calls a user-provided callback after
75
/// performing the default insertion.
76
class IRBuilderCallbackInserter : public IRBuilderDefaultInserter {
77
  std::function<void(Instruction *)> Callback;
78
 
79
public:
80
  ~IRBuilderCallbackInserter() override;
81
 
82
  IRBuilderCallbackInserter(std::function<void(Instruction *)> Callback)
83
      : Callback(std::move(Callback)) {}
84
 
85
  void InsertHelper(Instruction *I, const Twine &Name,
86
                    BasicBlock *BB,
87
                    BasicBlock::iterator InsertPt) const override {
88
    IRBuilderDefaultInserter::InsertHelper(I, Name, BB, InsertPt);
89
    Callback(I);
90
  }
91
};
92
 
93
/// Common base class shared among various IRBuilders.
94
class IRBuilderBase {
95
  /// Pairs of (metadata kind, MDNode *) that should be added to all newly
96
  /// created instructions, like !dbg metadata.
97
  SmallVector<std::pair<unsigned, MDNode *>, 2> MetadataToCopy;
98
 
99
  /// Add or update the an entry (Kind, MD) to MetadataToCopy, if \p MD is not
100
  /// null. If \p MD is null, remove the entry with \p Kind.
101
  void AddOrRemoveMetadataToCopy(unsigned Kind, MDNode *MD) {
102
    if (!MD) {
103
      erase_if(MetadataToCopy, [Kind](const std::pair<unsigned, MDNode *> &KV) {
104
        return KV.first == Kind;
105
      });
106
      return;
107
    }
108
 
109
    for (auto &KV : MetadataToCopy)
110
      if (KV.first == Kind) {
111
        KV.second = MD;
112
        return;
113
      }
114
 
115
    MetadataToCopy.emplace_back(Kind, MD);
116
  }
117
 
118
protected:
119
  BasicBlock *BB;
120
  BasicBlock::iterator InsertPt;
121
  LLVMContext &Context;
122
  const IRBuilderFolder &Folder;
123
  const IRBuilderDefaultInserter &Inserter;
124
 
125
  MDNode *DefaultFPMathTag;
126
  FastMathFlags FMF;
127
 
128
  bool IsFPConstrained = false;
129
  fp::ExceptionBehavior DefaultConstrainedExcept = fp::ebStrict;
130
  RoundingMode DefaultConstrainedRounding = RoundingMode::Dynamic;
131
 
132
  ArrayRef<OperandBundleDef> DefaultOperandBundles;
133
 
134
public:
135
  IRBuilderBase(LLVMContext &context, const IRBuilderFolder &Folder,
136
                const IRBuilderDefaultInserter &Inserter, MDNode *FPMathTag,
137
                ArrayRef<OperandBundleDef> OpBundles)
138
      : Context(context), Folder(Folder), Inserter(Inserter),
139
        DefaultFPMathTag(FPMathTag), DefaultOperandBundles(OpBundles) {
140
    ClearInsertionPoint();
141
  }
142
 
143
  /// Insert and return the specified instruction.
144
  template<typename InstTy>
145
  InstTy *Insert(InstTy *I, const Twine &Name = "") const {
146
    Inserter.InsertHelper(I, Name, BB, InsertPt);
147
    AddMetadataToInst(I);
148
    return I;
149
  }
150
 
151
  /// No-op overload to handle constants.
152
  Constant *Insert(Constant *C, const Twine& = "") const {
153
    return C;
154
  }
155
 
156
  Value *Insert(Value *V, const Twine &Name = "") const {
157
    if (Instruction *I = dyn_cast<Instruction>(V))
158
      return Insert(I, Name);
159
    assert(isa<Constant>(V));
160
    return V;
161
  }
162
 
163
  //===--------------------------------------------------------------------===//
164
  // Builder configuration methods
165
  //===--------------------------------------------------------------------===//
166
 
167
  /// Clear the insertion point: created instructions will not be
168
  /// inserted into a block.
169
  void ClearInsertionPoint() {
170
    BB = nullptr;
171
    InsertPt = BasicBlock::iterator();
172
  }
173
 
174
  BasicBlock *GetInsertBlock() const { return BB; }
175
  BasicBlock::iterator GetInsertPoint() const { return InsertPt; }
176
  LLVMContext &getContext() const { return Context; }
177
 
178
  /// This specifies that created instructions should be appended to the
179
  /// end of the specified block.
180
  void SetInsertPoint(BasicBlock *TheBB) {
181
    BB = TheBB;
182
    InsertPt = BB->end();
183
  }
184
 
185
  /// This specifies that created instructions should be inserted before
186
  /// the specified instruction.
187
  void SetInsertPoint(Instruction *I) {
188
    BB = I->getParent();
189
    InsertPt = I->getIterator();
190
    assert(InsertPt != BB->end() && "Can't read debug loc from end()");
191
    SetCurrentDebugLocation(I->getDebugLoc());
192
  }
193
 
194
  /// This specifies that created instructions should be inserted at the
195
  /// specified point.
196
  void SetInsertPoint(BasicBlock *TheBB, BasicBlock::iterator IP) {
197
    BB = TheBB;
198
    InsertPt = IP;
199
    if (IP != TheBB->end())
200
      SetCurrentDebugLocation(IP->getDebugLoc());
201
  }
202
 
203
  /// This specifies that created instructions should inserted at the beginning
204
  /// end of the specified function, but after already existing static alloca
205
  /// instructions that are at the start.
206
  void SetInsertPointPastAllocas(Function *F) {
207
    BB = &F->getEntryBlock();
208
    InsertPt = BB->getFirstNonPHIOrDbgOrAlloca();
209
  }
210
 
211
  /// Set location information used by debugging information.
212
  void SetCurrentDebugLocation(DebugLoc L) {
213
    AddOrRemoveMetadataToCopy(LLVMContext::MD_dbg, L.getAsMDNode());
214
  }
215
 
216
  /// Collect metadata with IDs \p MetadataKinds from \p Src which should be
217
  /// added to all created instructions. Entries present in MedataDataToCopy but
218
  /// not on \p Src will be dropped from MetadataToCopy.
219
  void CollectMetadataToCopy(Instruction *Src,
220
                             ArrayRef<unsigned> MetadataKinds) {
221
    for (unsigned K : MetadataKinds)
222
      AddOrRemoveMetadataToCopy(K, Src->getMetadata(K));
223
  }
224
 
225
  /// Get location information used by debugging information.
226
  DebugLoc getCurrentDebugLocation() const;
227
 
228
  /// If this builder has a current debug location, set it on the
229
  /// specified instruction.
230
  void SetInstDebugLocation(Instruction *I) const;
231
 
232
  /// Add all entries in MetadataToCopy to \p I.
233
  void AddMetadataToInst(Instruction *I) const {
234
    for (const auto &KV : MetadataToCopy)
235
      I->setMetadata(KV.first, KV.second);
236
  }
237
 
238
  /// Get the return type of the current function that we're emitting
239
  /// into.
240
  Type *getCurrentFunctionReturnType() const;
241
 
242
  /// InsertPoint - A saved insertion point.
243
  class InsertPoint {
244
    BasicBlock *Block = nullptr;
245
    BasicBlock::iterator Point;
246
 
247
  public:
248
    /// Creates a new insertion point which doesn't point to anything.
249
    InsertPoint() = default;
250
 
251
    /// Creates a new insertion point at the given location.
252
    InsertPoint(BasicBlock *InsertBlock, BasicBlock::iterator InsertPoint)
253
        : Block(InsertBlock), Point(InsertPoint) {}
254
 
255
    /// Returns true if this insert point is set.
256
    bool isSet() const { return (Block != nullptr); }
257
 
258
    BasicBlock *getBlock() const { return Block; }
259
    BasicBlock::iterator getPoint() const { return Point; }
260
  };
261
 
262
  /// Returns the current insert point.
263
  InsertPoint saveIP() const {
264
    return InsertPoint(GetInsertBlock(), GetInsertPoint());
265
  }
266
 
267
  /// Returns the current insert point, clearing it in the process.
268
  InsertPoint saveAndClearIP() {
269
    InsertPoint IP(GetInsertBlock(), GetInsertPoint());
270
    ClearInsertionPoint();
271
    return IP;
272
  }
273
 
274
  /// Sets the current insert point to a previously-saved location.
275
  void restoreIP(InsertPoint IP) {
276
    if (IP.isSet())
277
      SetInsertPoint(IP.getBlock(), IP.getPoint());
278
    else
279
      ClearInsertionPoint();
280
  }
281
 
282
  /// Get the floating point math metadata being used.
283
  MDNode *getDefaultFPMathTag() const { return DefaultFPMathTag; }
284
 
285
  /// Get the flags to be applied to created floating point ops
286
  FastMathFlags getFastMathFlags() const { return FMF; }
287
 
288
  FastMathFlags &getFastMathFlags() { return FMF; }
289
 
290
  /// Clear the fast-math flags.
291
  void clearFastMathFlags() { FMF.clear(); }
292
 
293
  /// Set the floating point math metadata to be used.
294
  void setDefaultFPMathTag(MDNode *FPMathTag) { DefaultFPMathTag = FPMathTag; }
295
 
296
  /// Set the fast-math flags to be used with generated fp-math operators
297
  void setFastMathFlags(FastMathFlags NewFMF) { FMF = NewFMF; }
298
 
299
  /// Enable/Disable use of constrained floating point math. When
300
  /// enabled the CreateF<op>() calls instead create constrained
301
  /// floating point intrinsic calls. Fast math flags are unaffected
302
  /// by this setting.
303
  void setIsFPConstrained(bool IsCon) { IsFPConstrained = IsCon; }
304
 
305
  /// Query for the use of constrained floating point math
306
  bool getIsFPConstrained() { return IsFPConstrained; }
307
 
308
  /// Set the exception handling to be used with constrained floating point
309
  void setDefaultConstrainedExcept(fp::ExceptionBehavior NewExcept) {
310
#ifndef NDEBUG
311
    std::optional<StringRef> ExceptStr =
312
        convertExceptionBehaviorToStr(NewExcept);
313
    assert(ExceptStr && "Garbage strict exception behavior!");
314
#endif
315
    DefaultConstrainedExcept = NewExcept;
316
  }
317
 
318
  /// Set the rounding mode handling to be used with constrained floating point
319
  void setDefaultConstrainedRounding(RoundingMode NewRounding) {
320
#ifndef NDEBUG
321
    std::optional<StringRef> RoundingStr =
322
        convertRoundingModeToStr(NewRounding);
323
    assert(RoundingStr && "Garbage strict rounding mode!");
324
#endif
325
    DefaultConstrainedRounding = NewRounding;
326
  }
327
 
328
  /// Get the exception handling used with constrained floating point
329
  fp::ExceptionBehavior getDefaultConstrainedExcept() {
330
    return DefaultConstrainedExcept;
331
  }
332
 
333
  /// Get the rounding mode handling used with constrained floating point
334
  RoundingMode getDefaultConstrainedRounding() {
335
    return DefaultConstrainedRounding;
336
  }
337
 
338
  void setConstrainedFPFunctionAttr() {
339
    assert(BB && "Must have a basic block to set any function attributes!");
340
 
341
    Function *F = BB->getParent();
342
    if (!F->hasFnAttribute(Attribute::StrictFP)) {
343
      F->addFnAttr(Attribute::StrictFP);
344
    }
345
  }
346
 
347
  void setConstrainedFPCallAttr(CallBase *I) {
348
    I->addFnAttr(Attribute::StrictFP);
349
  }
350
 
351
  void setDefaultOperandBundles(ArrayRef<OperandBundleDef> OpBundles) {
352
    DefaultOperandBundles = OpBundles;
353
  }
354
 
355
  //===--------------------------------------------------------------------===//
356
  // RAII helpers.
357
  //===--------------------------------------------------------------------===//
358
 
359
  // RAII object that stores the current insertion point and restores it
360
  // when the object is destroyed. This includes the debug location.
361
  class InsertPointGuard {
362
    IRBuilderBase &Builder;
363
    AssertingVH<BasicBlock> Block;
364
    BasicBlock::iterator Point;
365
    DebugLoc DbgLoc;
366
 
367
  public:
368
    InsertPointGuard(IRBuilderBase &B)
369
        : Builder(B), Block(B.GetInsertBlock()), Point(B.GetInsertPoint()),
370
          DbgLoc(B.getCurrentDebugLocation()) {}
371
 
372
    InsertPointGuard(const InsertPointGuard &) = delete;
373
    InsertPointGuard &operator=(const InsertPointGuard &) = delete;
374
 
375
    ~InsertPointGuard() {
376
      Builder.restoreIP(InsertPoint(Block, Point));
377
      Builder.SetCurrentDebugLocation(DbgLoc);
378
    }
379
  };
380
 
381
  // RAII object that stores the current fast math settings and restores
382
  // them when the object is destroyed.
383
  class FastMathFlagGuard {
384
    IRBuilderBase &Builder;
385
    FastMathFlags FMF;
386
    MDNode *FPMathTag;
387
    bool IsFPConstrained;
388
    fp::ExceptionBehavior DefaultConstrainedExcept;
389
    RoundingMode DefaultConstrainedRounding;
390
 
391
  public:
392
    FastMathFlagGuard(IRBuilderBase &B)
393
        : Builder(B), FMF(B.FMF), FPMathTag(B.DefaultFPMathTag),
394
          IsFPConstrained(B.IsFPConstrained),
395
          DefaultConstrainedExcept(B.DefaultConstrainedExcept),
396
          DefaultConstrainedRounding(B.DefaultConstrainedRounding) {}
397
 
398
    FastMathFlagGuard(const FastMathFlagGuard &) = delete;
399
    FastMathFlagGuard &operator=(const FastMathFlagGuard &) = delete;
400
 
401
    ~FastMathFlagGuard() {
402
      Builder.FMF = FMF;
403
      Builder.DefaultFPMathTag = FPMathTag;
404
      Builder.IsFPConstrained = IsFPConstrained;
405
      Builder.DefaultConstrainedExcept = DefaultConstrainedExcept;
406
      Builder.DefaultConstrainedRounding = DefaultConstrainedRounding;
407
    }
408
  };
409
 
410
  // RAII object that stores the current default operand bundles and restores
411
  // them when the object is destroyed.
412
  class OperandBundlesGuard {
413
    IRBuilderBase &Builder;
414
    ArrayRef<OperandBundleDef> DefaultOperandBundles;
415
 
416
  public:
417
    OperandBundlesGuard(IRBuilderBase &B)
418
        : Builder(B), DefaultOperandBundles(B.DefaultOperandBundles) {}
419
 
420
    OperandBundlesGuard(const OperandBundlesGuard &) = delete;
421
    OperandBundlesGuard &operator=(const OperandBundlesGuard &) = delete;
422
 
423
    ~OperandBundlesGuard() {
424
      Builder.DefaultOperandBundles = DefaultOperandBundles;
425
    }
426
  };
427
 
428
 
429
  //===--------------------------------------------------------------------===//
430
  // Miscellaneous creation methods.
431
  //===--------------------------------------------------------------------===//
432
 
433
  /// Make a new global variable with initializer type i8*
434
  ///
435
  /// Make a new global variable with an initializer that has array of i8 type
436
  /// filled in with the null terminated string value specified.  The new global
437
  /// variable will be marked mergable with any others of the same contents.  If
438
  /// Name is specified, it is the name of the global variable created.
439
  ///
440
  /// If no module is given via \p M, it is take from the insertion point basic
441
  /// block.
442
  GlobalVariable *CreateGlobalString(StringRef Str, const Twine &Name = "",
443
                                     unsigned AddressSpace = 0,
444
                                     Module *M = nullptr);
445
 
446
  /// Get a constant value representing either true or false.
447
  ConstantInt *getInt1(bool V) {
448
    return ConstantInt::get(getInt1Ty(), V);
449
  }
450
 
451
  /// Get the constant value for i1 true.
452
  ConstantInt *getTrue() {
453
    return ConstantInt::getTrue(Context);
454
  }
455
 
456
  /// Get the constant value for i1 false.
457
  ConstantInt *getFalse() {
458
    return ConstantInt::getFalse(Context);
459
  }
460
 
461
  /// Get a constant 8-bit value.
462
  ConstantInt *getInt8(uint8_t C) {
463
    return ConstantInt::get(getInt8Ty(), C);
464
  }
465
 
466
  /// Get a constant 16-bit value.
467
  ConstantInt *getInt16(uint16_t C) {
468
    return ConstantInt::get(getInt16Ty(), C);
469
  }
470
 
471
  /// Get a constant 32-bit value.
472
  ConstantInt *getInt32(uint32_t C) {
473
    return ConstantInt::get(getInt32Ty(), C);
474
  }
475
 
476
  /// Get a constant 64-bit value.
477
  ConstantInt *getInt64(uint64_t C) {
478
    return ConstantInt::get(getInt64Ty(), C);
479
  }
480
 
481
  /// Get a constant N-bit value, zero extended or truncated from
482
  /// a 64-bit value.
483
  ConstantInt *getIntN(unsigned N, uint64_t C) {
484
    return ConstantInt::get(getIntNTy(N), C);
485
  }
486
 
487
  /// Get a constant integer value.
488
  ConstantInt *getInt(const APInt &AI) {
489
    return ConstantInt::get(Context, AI);
490
  }
491
 
492
  //===--------------------------------------------------------------------===//
493
  // Type creation methods
494
  //===--------------------------------------------------------------------===//
495
 
496
  /// Fetch the type representing a single bit
497
  IntegerType *getInt1Ty() {
498
    return Type::getInt1Ty(Context);
499
  }
500
 
501
  /// Fetch the type representing an 8-bit integer.
502
  IntegerType *getInt8Ty() {
503
    return Type::getInt8Ty(Context);
504
  }
505
 
506
  /// Fetch the type representing a 16-bit integer.
507
  IntegerType *getInt16Ty() {
508
    return Type::getInt16Ty(Context);
509
  }
510
 
511
  /// Fetch the type representing a 32-bit integer.
512
  IntegerType *getInt32Ty() {
513
    return Type::getInt32Ty(Context);
514
  }
515
 
516
  /// Fetch the type representing a 64-bit integer.
517
  IntegerType *getInt64Ty() {
518
    return Type::getInt64Ty(Context);
519
  }
520
 
521
  /// Fetch the type representing a 128-bit integer.
522
  IntegerType *getInt128Ty() { return Type::getInt128Ty(Context); }
523
 
524
  /// Fetch the type representing an N-bit integer.
525
  IntegerType *getIntNTy(unsigned N) {
526
    return Type::getIntNTy(Context, N);
527
  }
528
 
529
  /// Fetch the type representing a 16-bit floating point value.
530
  Type *getHalfTy() {
531
    return Type::getHalfTy(Context);
532
  }
533
 
534
  /// Fetch the type representing a 16-bit brain floating point value.
535
  Type *getBFloatTy() {
536
    return Type::getBFloatTy(Context);
537
  }
538
 
539
  /// Fetch the type representing a 32-bit floating point value.
540
  Type *getFloatTy() {
541
    return Type::getFloatTy(Context);
542
  }
543
 
544
  /// Fetch the type representing a 64-bit floating point value.
545
  Type *getDoubleTy() {
546
    return Type::getDoubleTy(Context);
547
  }
548
 
549
  /// Fetch the type representing void.
550
  Type *getVoidTy() {
551
    return Type::getVoidTy(Context);
552
  }
553
 
554
  /// Fetch the type representing a pointer.
555
  PointerType *getPtrTy(unsigned AddrSpace = 0) {
556
    return PointerType::get(Context, AddrSpace);
557
  }
558
 
559
  /// Fetch the type representing a pointer to an 8-bit integer value.
560
  PointerType *getInt8PtrTy(unsigned AddrSpace = 0) {
561
    return Type::getInt8PtrTy(Context, AddrSpace);
562
  }
563
 
564
  /// Fetch the type of an integer with size at least as big as that of a
565
  /// pointer in the given address space.
566
  IntegerType *getIntPtrTy(const DataLayout &DL, unsigned AddrSpace = 0) {
567
    return DL.getIntPtrType(Context, AddrSpace);
568
  }
569
 
570
  //===--------------------------------------------------------------------===//
571
  // Intrinsic creation methods
572
  //===--------------------------------------------------------------------===//
573
 
574
  /// Create and insert a memset to the specified pointer and the
575
  /// specified value.
576
  ///
577
  /// If the pointer isn't an i8*, it will be converted. If a TBAA tag is
578
  /// specified, it will be added to the instruction. Likewise with alias.scope
579
  /// and noalias tags.
580
  CallInst *CreateMemSet(Value *Ptr, Value *Val, uint64_t Size,
581
                         MaybeAlign Align, bool isVolatile = false,
582
                         MDNode *TBAATag = nullptr, MDNode *ScopeTag = nullptr,
583
                         MDNode *NoAliasTag = nullptr) {
584
    return CreateMemSet(Ptr, Val, getInt64(Size), Align, isVolatile,
585
                        TBAATag, ScopeTag, NoAliasTag);
586
  }
587
 
588
  CallInst *CreateMemSet(Value *Ptr, Value *Val, Value *Size, MaybeAlign Align,
589
                         bool isVolatile = false, MDNode *TBAATag = nullptr,
590
                         MDNode *ScopeTag = nullptr,
591
                         MDNode *NoAliasTag = nullptr);
592
 
593
  CallInst *CreateMemSetInline(Value *Dst, MaybeAlign DstAlign, Value *Val,
594
                               Value *Size, bool IsVolatile = false,
595
                               MDNode *TBAATag = nullptr,
596
                               MDNode *ScopeTag = nullptr,
597
                               MDNode *NoAliasTag = nullptr);
598
 
599
  /// Create and insert an element unordered-atomic memset of the region of
600
  /// memory starting at the given pointer to the given value.
601
  ///
602
  /// If the pointer isn't an i8*, it will be converted. If a TBAA tag is
603
  /// specified, it will be added to the instruction. Likewise with alias.scope
604
  /// and noalias tags.
605
  CallInst *CreateElementUnorderedAtomicMemSet(Value *Ptr, Value *Val,
606
                                               uint64_t Size, Align Alignment,
607
                                               uint32_t ElementSize,
608
                                               MDNode *TBAATag = nullptr,
609
                                               MDNode *ScopeTag = nullptr,
610
                                               MDNode *NoAliasTag = nullptr) {
611
    return CreateElementUnorderedAtomicMemSet(Ptr, Val, getInt64(Size),
612
                                              Align(Alignment), ElementSize,
613
                                              TBAATag, ScopeTag, NoAliasTag);
614
  }
615
 
616
  CallInst *CreateElementUnorderedAtomicMemSet(Value *Ptr, Value *Val,
617
                                               Value *Size, Align Alignment,
618
                                               uint32_t ElementSize,
619
                                               MDNode *TBAATag = nullptr,
620
                                               MDNode *ScopeTag = nullptr,
621
                                               MDNode *NoAliasTag = nullptr);
622
 
623
  /// Create and insert a memcpy between the specified pointers.
624
  ///
625
  /// If the pointers aren't i8*, they will be converted.  If a TBAA tag is
626
  /// specified, it will be added to the instruction. Likewise with alias.scope
627
  /// and noalias tags.
628
  CallInst *CreateMemCpy(Value *Dst, MaybeAlign DstAlign, Value *Src,
629
                         MaybeAlign SrcAlign, uint64_t Size,
630
                         bool isVolatile = false, MDNode *TBAATag = nullptr,
631
                         MDNode *TBAAStructTag = nullptr,
632
                         MDNode *ScopeTag = nullptr,
633
                         MDNode *NoAliasTag = nullptr) {
634
    return CreateMemCpy(Dst, DstAlign, Src, SrcAlign, getInt64(Size),
635
                        isVolatile, TBAATag, TBAAStructTag, ScopeTag,
636
                        NoAliasTag);
637
  }
638
 
639
  CallInst *CreateMemTransferInst(
640
      Intrinsic::ID IntrID, Value *Dst, MaybeAlign DstAlign, Value *Src,
641
      MaybeAlign SrcAlign, Value *Size, bool isVolatile = false,
642
      MDNode *TBAATag = nullptr, MDNode *TBAAStructTag = nullptr,
643
      MDNode *ScopeTag = nullptr, MDNode *NoAliasTag = nullptr);
644
 
645
  CallInst *CreateMemCpy(Value *Dst, MaybeAlign DstAlign, Value *Src,
646
                         MaybeAlign SrcAlign, Value *Size,
647
                         bool isVolatile = false, MDNode *TBAATag = nullptr,
648
                         MDNode *TBAAStructTag = nullptr,
649
                         MDNode *ScopeTag = nullptr,
650
                         MDNode *NoAliasTag = nullptr) {
651
    return CreateMemTransferInst(Intrinsic::memcpy, Dst, DstAlign, Src,
652
                                 SrcAlign, Size, isVolatile, TBAATag,
653
                                 TBAAStructTag, ScopeTag, NoAliasTag);
654
  }
655
 
656
  CallInst *
657
  CreateMemCpyInline(Value *Dst, MaybeAlign DstAlign, Value *Src,
658
                     MaybeAlign SrcAlign, Value *Size, bool IsVolatile = false,
659
                     MDNode *TBAATag = nullptr, MDNode *TBAAStructTag = nullptr,
660
                     MDNode *ScopeTag = nullptr, MDNode *NoAliasTag = nullptr);
661
 
662
  /// Create and insert an element unordered-atomic memcpy between the
663
  /// specified pointers.
664
  ///
665
  /// DstAlign/SrcAlign are the alignments of the Dst/Src pointers, respectively.
666
  ///
667
  /// If the pointers aren't i8*, they will be converted.  If a TBAA tag is
668
  /// specified, it will be added to the instruction. Likewise with alias.scope
669
  /// and noalias tags.
670
  CallInst *CreateElementUnorderedAtomicMemCpy(
671
      Value *Dst, Align DstAlign, Value *Src, Align SrcAlign, Value *Size,
672
      uint32_t ElementSize, MDNode *TBAATag = nullptr,
673
      MDNode *TBAAStructTag = nullptr, MDNode *ScopeTag = nullptr,
674
      MDNode *NoAliasTag = nullptr);
675
 
676
  CallInst *CreateMemMove(Value *Dst, MaybeAlign DstAlign, Value *Src,
677
                          MaybeAlign SrcAlign, uint64_t Size,
678
                          bool isVolatile = false, MDNode *TBAATag = nullptr,
679
                          MDNode *ScopeTag = nullptr,
680
                          MDNode *NoAliasTag = nullptr) {
681
    return CreateMemMove(Dst, DstAlign, Src, SrcAlign, getInt64(Size),
682
                         isVolatile, TBAATag, ScopeTag, NoAliasTag);
683
  }
684
 
685
  CallInst *CreateMemMove(Value *Dst, MaybeAlign DstAlign, Value *Src,
686
                          MaybeAlign SrcAlign, Value *Size,
687
                          bool isVolatile = false, MDNode *TBAATag = nullptr,
688
                          MDNode *ScopeTag = nullptr,
689
                          MDNode *NoAliasTag = nullptr);
690
 
691
  /// \brief Create and insert an element unordered-atomic memmove between the
692
  /// specified pointers.
693
  ///
694
  /// DstAlign/SrcAlign are the alignments of the Dst/Src pointers,
695
  /// respectively.
696
  ///
697
  /// If the pointers aren't i8*, they will be converted.  If a TBAA tag is
698
  /// specified, it will be added to the instruction. Likewise with alias.scope
699
  /// and noalias tags.
700
  CallInst *CreateElementUnorderedAtomicMemMove(
701
      Value *Dst, Align DstAlign, Value *Src, Align SrcAlign, Value *Size,
702
      uint32_t ElementSize, MDNode *TBAATag = nullptr,
703
      MDNode *TBAAStructTag = nullptr, MDNode *ScopeTag = nullptr,
704
      MDNode *NoAliasTag = nullptr);
705
 
706
private:
707
  CallInst *getReductionIntrinsic(Intrinsic::ID ID, Value *Src);
708
 
709
public:
710
  /// Create a sequential vector fadd reduction intrinsic of the source vector.
711
  /// The first parameter is a scalar accumulator value. An unordered reduction
712
  /// can be created by adding the reassoc fast-math flag to the resulting
713
  /// sequential reduction.
714
  CallInst *CreateFAddReduce(Value *Acc, Value *Src);
715
 
716
  /// Create a sequential vector fmul reduction intrinsic of the source vector.
717
  /// The first parameter is a scalar accumulator value. An unordered reduction
718
  /// can be created by adding the reassoc fast-math flag to the resulting
719
  /// sequential reduction.
720
  CallInst *CreateFMulReduce(Value *Acc, Value *Src);
721
 
722
  /// Create a vector int add reduction intrinsic of the source vector.
723
  CallInst *CreateAddReduce(Value *Src);
724
 
725
  /// Create a vector int mul reduction intrinsic of the source vector.
726
  CallInst *CreateMulReduce(Value *Src);
727
 
728
  /// Create a vector int AND reduction intrinsic of the source vector.
729
  CallInst *CreateAndReduce(Value *Src);
730
 
731
  /// Create a vector int OR reduction intrinsic of the source vector.
732
  CallInst *CreateOrReduce(Value *Src);
733
 
734
  /// Create a vector int XOR reduction intrinsic of the source vector.
735
  CallInst *CreateXorReduce(Value *Src);
736
 
737
  /// Create a vector integer max reduction intrinsic of the source
738
  /// vector.
739
  CallInst *CreateIntMaxReduce(Value *Src, bool IsSigned = false);
740
 
741
  /// Create a vector integer min reduction intrinsic of the source
742
  /// vector.
743
  CallInst *CreateIntMinReduce(Value *Src, bool IsSigned = false);
744
 
745
  /// Create a vector float max reduction intrinsic of the source
746
  /// vector.
747
  CallInst *CreateFPMaxReduce(Value *Src);
748
 
749
  /// Create a vector float min reduction intrinsic of the source
750
  /// vector.
751
  CallInst *CreateFPMinReduce(Value *Src);
752
 
753
  /// Create a lifetime.start intrinsic.
754
  ///
755
  /// If the pointer isn't i8* it will be converted.
756
  CallInst *CreateLifetimeStart(Value *Ptr, ConstantInt *Size = nullptr);
757
 
758
  /// Create a lifetime.end intrinsic.
759
  ///
760
  /// If the pointer isn't i8* it will be converted.
761
  CallInst *CreateLifetimeEnd(Value *Ptr, ConstantInt *Size = nullptr);
762
 
763
  /// Create a call to invariant.start intrinsic.
764
  ///
765
  /// If the pointer isn't i8* it will be converted.
766
  CallInst *CreateInvariantStart(Value *Ptr, ConstantInt *Size = nullptr);
767
 
768
  /// Create a call to llvm.threadlocal.address intrinsic.
769
  CallInst *CreateThreadLocalAddress(Value *Ptr);
770
 
771
  /// Create a call to Masked Load intrinsic
772
  CallInst *CreateMaskedLoad(Type *Ty, Value *Ptr, Align Alignment, Value *Mask,
773
                             Value *PassThru = nullptr, const Twine &Name = "");
774
 
775
  /// Create a call to Masked Store intrinsic
776
  CallInst *CreateMaskedStore(Value *Val, Value *Ptr, Align Alignment,
777
                              Value *Mask);
778
 
779
  /// Create a call to Masked Gather intrinsic
780
  CallInst *CreateMaskedGather(Type *Ty, Value *Ptrs, Align Alignment,
781
                               Value *Mask = nullptr, Value *PassThru = nullptr,
782
                               const Twine &Name = "");
783
 
784
  /// Create a call to Masked Scatter intrinsic
785
  CallInst *CreateMaskedScatter(Value *Val, Value *Ptrs, Align Alignment,
786
                                Value *Mask = nullptr);
787
 
788
  /// Create a call to Masked Expand Load intrinsic
789
  CallInst *CreateMaskedExpandLoad(Type *Ty, Value *Ptr, Value *Mask = nullptr,
790
                                   Value *PassThru = nullptr,
791
                                   const Twine &Name = "");
792
 
793
  /// Create a call to Masked Compress Store intrinsic
794
  CallInst *CreateMaskedCompressStore(Value *Val, Value *Ptr,
795
                                      Value *Mask = nullptr);
796
 
797
  /// Create an assume intrinsic call that allows the optimizer to
798
  /// assume that the provided condition will be true.
799
  ///
800
  /// The optional argument \p OpBundles specifies operand bundles that are
801
  /// added to the call instruction.
802
  CallInst *
803
  CreateAssumption(Value *Cond,
804
                   ArrayRef<OperandBundleDef> OpBundles = std::nullopt);
805
 
806
  /// Create a llvm.experimental.noalias.scope.decl intrinsic call.
807
  Instruction *CreateNoAliasScopeDeclaration(Value *Scope);
808
  Instruction *CreateNoAliasScopeDeclaration(MDNode *ScopeTag) {
809
    return CreateNoAliasScopeDeclaration(
810
        MetadataAsValue::get(Context, ScopeTag));
811
  }
812
 
813
  /// Create a call to the experimental.gc.statepoint intrinsic to
814
  /// start a new statepoint sequence.
815
  CallInst *CreateGCStatepointCall(uint64_t ID, uint32_t NumPatchBytes,
816
                                   FunctionCallee ActualCallee,
817
                                   ArrayRef<Value *> CallArgs,
818
                                   std::optional<ArrayRef<Value *>> DeoptArgs,
819
                                   ArrayRef<Value *> GCArgs,
820
                                   const Twine &Name = "");
821
 
822
  /// Create a call to the experimental.gc.statepoint intrinsic to
823
  /// start a new statepoint sequence.
824
  CallInst *CreateGCStatepointCall(uint64_t ID, uint32_t NumPatchBytes,
825
                                   FunctionCallee ActualCallee, uint32_t Flags,
826
                                   ArrayRef<Value *> CallArgs,
827
                                   std::optional<ArrayRef<Use>> TransitionArgs,
828
                                   std::optional<ArrayRef<Use>> DeoptArgs,
829
                                   ArrayRef<Value *> GCArgs,
830
                                   const Twine &Name = "");
831
 
832
  /// Conveninence function for the common case when CallArgs are filled
833
  /// in using ArrayRef(CS.arg_begin(), CS.arg_end()); Use needs to be
834
  /// .get()'ed to get the Value pointer.
835
  CallInst *CreateGCStatepointCall(uint64_t ID, uint32_t NumPatchBytes,
836
                                   FunctionCallee ActualCallee,
837
                                   ArrayRef<Use> CallArgs,
838
                                   std::optional<ArrayRef<Value *>> DeoptArgs,
839
                                   ArrayRef<Value *> GCArgs,
840
                                   const Twine &Name = "");
841
 
842
  /// Create an invoke to the experimental.gc.statepoint intrinsic to
843
  /// start a new statepoint sequence.
844
  InvokeInst *
845
  CreateGCStatepointInvoke(uint64_t ID, uint32_t NumPatchBytes,
846
                           FunctionCallee ActualInvokee, BasicBlock *NormalDest,
847
                           BasicBlock *UnwindDest, ArrayRef<Value *> InvokeArgs,
848
                           std::optional<ArrayRef<Value *>> DeoptArgs,
849
                           ArrayRef<Value *> GCArgs, const Twine &Name = "");
850
 
851
  /// Create an invoke to the experimental.gc.statepoint intrinsic to
852
  /// start a new statepoint sequence.
853
  InvokeInst *CreateGCStatepointInvoke(
854
      uint64_t ID, uint32_t NumPatchBytes, FunctionCallee ActualInvokee,
855
      BasicBlock *NormalDest, BasicBlock *UnwindDest, uint32_t Flags,
856
      ArrayRef<Value *> InvokeArgs, std::optional<ArrayRef<Use>> TransitionArgs,
857
      std::optional<ArrayRef<Use>> DeoptArgs, ArrayRef<Value *> GCArgs,
858
      const Twine &Name = "");
859
 
860
  // Convenience function for the common case when CallArgs are filled in using
861
  // ArrayRef(CS.arg_begin(), CS.arg_end()); Use needs to be .get()'ed to
862
  // get the Value *.
863
  InvokeInst *
864
  CreateGCStatepointInvoke(uint64_t ID, uint32_t NumPatchBytes,
865
                           FunctionCallee ActualInvokee, BasicBlock *NormalDest,
866
                           BasicBlock *UnwindDest, ArrayRef<Use> InvokeArgs,
867
                           std::optional<ArrayRef<Value *>> DeoptArgs,
868
                           ArrayRef<Value *> GCArgs, const Twine &Name = "");
869
 
870
  /// Create a call to the experimental.gc.result intrinsic to extract
871
  /// the result from a call wrapped in a statepoint.
872
  CallInst *CreateGCResult(Instruction *Statepoint,
873
                           Type *ResultType,
874
                           const Twine &Name = "");
875
 
876
  /// Create a call to the experimental.gc.relocate intrinsics to
877
  /// project the relocated value of one pointer from the statepoint.
878
  CallInst *CreateGCRelocate(Instruction *Statepoint,
879
                             int BaseOffset,
880
                             int DerivedOffset,
881
                             Type *ResultType,
882
                             const Twine &Name = "");
883
 
884
  /// Create a call to the experimental.gc.pointer.base intrinsic to get the
885
  /// base pointer for the specified derived pointer.
886
  CallInst *CreateGCGetPointerBase(Value *DerivedPtr, const Twine &Name = "");
887
 
888
  /// Create a call to the experimental.gc.get.pointer.offset intrinsic to get
889
  /// the offset of the specified derived pointer from its base.
890
  CallInst *CreateGCGetPointerOffset(Value *DerivedPtr, const Twine &Name = "");
891
 
892
  /// Create a call to llvm.vscale, multiplied by \p Scaling. The type of VScale
893
  /// will be the same type as that of \p Scaling.
894
  Value *CreateVScale(Constant *Scaling, const Twine &Name = "");
895
 
896
  /// Creates a vector of type \p DstType with the linear sequence <0, 1, ...>
897
  Value *CreateStepVector(Type *DstType, const Twine &Name = "");
898
 
899
  /// Create a call to intrinsic \p ID with 1 operand which is mangled on its
900
  /// type.
901
  CallInst *CreateUnaryIntrinsic(Intrinsic::ID ID, Value *V,
902
                                 Instruction *FMFSource = nullptr,
903
                                 const Twine &Name = "");
904
 
905
  /// Create a call to intrinsic \p ID with 2 operands which is mangled on the
906
  /// first type.
907
  CallInst *CreateBinaryIntrinsic(Intrinsic::ID ID, Value *LHS, Value *RHS,
908
                                  Instruction *FMFSource = nullptr,
909
                                  const Twine &Name = "");
910
 
911
  /// Create a call to intrinsic \p ID with \p Args, mangled using \p Types. If
912
  /// \p FMFSource is provided, copy fast-math-flags from that instruction to
913
  /// the intrinsic.
914
  CallInst *CreateIntrinsic(Intrinsic::ID ID, ArrayRef<Type *> Types,
915
                            ArrayRef<Value *> Args,
916
                            Instruction *FMFSource = nullptr,
917
                            const Twine &Name = "");
918
 
919
  /// Create a call to intrinsic \p ID with \p RetTy and \p Args. If
920
  /// \p FMFSource is provided, copy fast-math-flags from that instruction to
921
  /// the intrinsic.
922
  CallInst *CreateIntrinsic(Type *RetTy, Intrinsic::ID ID,
923
                            ArrayRef<Value *> Args,
924
                            Instruction *FMFSource = nullptr,
925
                            const Twine &Name = "");
926
 
927
  /// Create call to the minnum intrinsic.
928
  CallInst *CreateMinNum(Value *LHS, Value *RHS, const Twine &Name = "") {
929
    return CreateBinaryIntrinsic(Intrinsic::minnum, LHS, RHS, nullptr, Name);
930
  }
931
 
932
  /// Create call to the maxnum intrinsic.
933
  CallInst *CreateMaxNum(Value *LHS, Value *RHS, const Twine &Name = "") {
934
    return CreateBinaryIntrinsic(Intrinsic::maxnum, LHS, RHS, nullptr, Name);
935
  }
936
 
937
  /// Create call to the minimum intrinsic.
938
  CallInst *CreateMinimum(Value *LHS, Value *RHS, const Twine &Name = "") {
939
    return CreateBinaryIntrinsic(Intrinsic::minimum, LHS, RHS, nullptr, Name);
940
  }
941
 
942
  /// Create call to the maximum intrinsic.
943
  CallInst *CreateMaximum(Value *LHS, Value *RHS, const Twine &Name = "") {
944
    return CreateBinaryIntrinsic(Intrinsic::maximum, LHS, RHS, nullptr, Name);
945
  }
946
 
947
  /// Create call to the copysign intrinsic.
948
  CallInst *CreateCopySign(Value *LHS, Value *RHS,
949
                           Instruction *FMFSource = nullptr,
950
                           const Twine &Name = "") {
951
    return CreateBinaryIntrinsic(Intrinsic::copysign, LHS, RHS, FMFSource,
952
                                 Name);
953
  }
954
 
955
  /// Create a call to the arithmetic_fence intrinsic.
956
  CallInst *CreateArithmeticFence(Value *Val, Type *DstType,
957
                                  const Twine &Name = "") {
958
    return CreateIntrinsic(Intrinsic::arithmetic_fence, DstType, Val, nullptr,
959
                           Name);
960
  }
961
 
962
  /// Create a call to the vector.extract intrinsic.
963
  CallInst *CreateExtractVector(Type *DstType, Value *SrcVec, Value *Idx,
964
                                const Twine &Name = "") {
965
    return CreateIntrinsic(Intrinsic::vector_extract,
966
                           {DstType, SrcVec->getType()}, {SrcVec, Idx}, nullptr,
967
                           Name);
968
  }
969
 
970
  /// Create a call to the vector.insert intrinsic.
971
  CallInst *CreateInsertVector(Type *DstType, Value *SrcVec, Value *SubVec,
972
                               Value *Idx, const Twine &Name = "") {
973
    return CreateIntrinsic(Intrinsic::vector_insert,
974
                           {DstType, SubVec->getType()}, {SrcVec, SubVec, Idx},
975
                           nullptr, Name);
976
  }
977
 
978
private:
979
  /// Create a call to a masked intrinsic with given Id.
980
  CallInst *CreateMaskedIntrinsic(Intrinsic::ID Id, ArrayRef<Value *> Ops,
981
                                  ArrayRef<Type *> OverloadedTypes,
982
                                  const Twine &Name = "");
983
 
984
  Value *getCastedInt8PtrValue(Value *Ptr);
985
 
986
  //===--------------------------------------------------------------------===//
987
  // Instruction creation methods: Terminators
988
  //===--------------------------------------------------------------------===//
989
 
990
private:
991
  /// Helper to add branch weight and unpredictable metadata onto an
992
  /// instruction.
993
  /// \returns The annotated instruction.
994
  template <typename InstTy>
995
  InstTy *addBranchMetadata(InstTy *I, MDNode *Weights, MDNode *Unpredictable) {
996
    if (Weights)
997
      I->setMetadata(LLVMContext::MD_prof, Weights);
998
    if (Unpredictable)
999
      I->setMetadata(LLVMContext::MD_unpredictable, Unpredictable);
1000
    return I;
1001
  }
1002
 
1003
public:
1004
  /// Create a 'ret void' instruction.
1005
  ReturnInst *CreateRetVoid() {
1006
    return Insert(ReturnInst::Create(Context));
1007
  }
1008
 
1009
  /// Create a 'ret <val>' instruction.
1010
  ReturnInst *CreateRet(Value *V) {
1011
    return Insert(ReturnInst::Create(Context, V));
1012
  }
1013
 
1014
  /// Create a sequence of N insertvalue instructions,
1015
  /// with one Value from the retVals array each, that build a aggregate
1016
  /// return value one value at a time, and a ret instruction to return
1017
  /// the resulting aggregate value.
1018
  ///
1019
  /// This is a convenience function for code that uses aggregate return values
1020
  /// as a vehicle for having multiple return values.
1021
  ReturnInst *CreateAggregateRet(Value *const *retVals, unsigned N) {
1022
    Value *V = PoisonValue::get(getCurrentFunctionReturnType());
1023
    for (unsigned i = 0; i != N; ++i)
1024
      V = CreateInsertValue(V, retVals[i], i, "mrv");
1025
    return Insert(ReturnInst::Create(Context, V));
1026
  }
1027
 
1028
  /// Create an unconditional 'br label X' instruction.
1029
  BranchInst *CreateBr(BasicBlock *Dest) {
1030
    return Insert(BranchInst::Create(Dest));
1031
  }
1032
 
1033
  /// Create a conditional 'br Cond, TrueDest, FalseDest'
1034
  /// instruction.
1035
  BranchInst *CreateCondBr(Value *Cond, BasicBlock *True, BasicBlock *False,
1036
                           MDNode *BranchWeights = nullptr,
1037
                           MDNode *Unpredictable = nullptr) {
1038
    return Insert(addBranchMetadata(BranchInst::Create(True, False, Cond),
1039
                                    BranchWeights, Unpredictable));
1040
  }
1041
 
1042
  /// Create a conditional 'br Cond, TrueDest, FalseDest'
1043
  /// instruction. Copy branch meta data if available.
1044
  BranchInst *CreateCondBr(Value *Cond, BasicBlock *True, BasicBlock *False,
1045
                           Instruction *MDSrc) {
1046
    BranchInst *Br = BranchInst::Create(True, False, Cond);
1047
    if (MDSrc) {
1048
      unsigned WL[4] = {LLVMContext::MD_prof, LLVMContext::MD_unpredictable,
1049
                        LLVMContext::MD_make_implicit, LLVMContext::MD_dbg};
1050
      Br->copyMetadata(*MDSrc, WL);
1051
    }
1052
    return Insert(Br);
1053
  }
1054
 
1055
  /// Create a switch instruction with the specified value, default dest,
1056
  /// and with a hint for the number of cases that will be added (for efficient
1057
  /// allocation).
1058
  SwitchInst *CreateSwitch(Value *V, BasicBlock *Dest, unsigned NumCases = 10,
1059
                           MDNode *BranchWeights = nullptr,
1060
                           MDNode *Unpredictable = nullptr) {
1061
    return Insert(addBranchMetadata(SwitchInst::Create(V, Dest, NumCases),
1062
                                    BranchWeights, Unpredictable));
1063
  }
1064
 
1065
  /// Create an indirect branch instruction with the specified address
1066
  /// operand, with an optional hint for the number of destinations that will be
1067
  /// added (for efficient allocation).
1068
  IndirectBrInst *CreateIndirectBr(Value *Addr, unsigned NumDests = 10) {
1069
    return Insert(IndirectBrInst::Create(Addr, NumDests));
1070
  }
1071
 
1072
  /// Create an invoke instruction.
1073
  InvokeInst *CreateInvoke(FunctionType *Ty, Value *Callee,
1074
                           BasicBlock *NormalDest, BasicBlock *UnwindDest,
1075
                           ArrayRef<Value *> Args,
1076
                           ArrayRef<OperandBundleDef> OpBundles,
1077
                           const Twine &Name = "") {
1078
    InvokeInst *II =
1079
        InvokeInst::Create(Ty, Callee, NormalDest, UnwindDest, Args, OpBundles);
1080
    if (IsFPConstrained)
1081
      setConstrainedFPCallAttr(II);
1082
    return Insert(II, Name);
1083
  }
1084
  InvokeInst *CreateInvoke(FunctionType *Ty, Value *Callee,
1085
                           BasicBlock *NormalDest, BasicBlock *UnwindDest,
1086
                           ArrayRef<Value *> Args = std::nullopt,
1087
                           const Twine &Name = "") {
1088
    InvokeInst *II =
1089
        InvokeInst::Create(Ty, Callee, NormalDest, UnwindDest, Args);
1090
    if (IsFPConstrained)
1091
      setConstrainedFPCallAttr(II);
1092
    return Insert(II, Name);
1093
  }
1094
 
1095
  InvokeInst *CreateInvoke(FunctionCallee Callee, BasicBlock *NormalDest,
1096
                           BasicBlock *UnwindDest, ArrayRef<Value *> Args,
1097
                           ArrayRef<OperandBundleDef> OpBundles,
1098
                           const Twine &Name = "") {
1099
    return CreateInvoke(Callee.getFunctionType(), Callee.getCallee(),
1100
                        NormalDest, UnwindDest, Args, OpBundles, Name);
1101
  }
1102
 
1103
  InvokeInst *CreateInvoke(FunctionCallee Callee, BasicBlock *NormalDest,
1104
                           BasicBlock *UnwindDest,
1105
                           ArrayRef<Value *> Args = std::nullopt,
1106
                           const Twine &Name = "") {
1107
    return CreateInvoke(Callee.getFunctionType(), Callee.getCallee(),
1108
                        NormalDest, UnwindDest, Args, Name);
1109
  }
1110
 
1111
  /// \brief Create a callbr instruction.
1112
  CallBrInst *CreateCallBr(FunctionType *Ty, Value *Callee,
1113
                           BasicBlock *DefaultDest,
1114
                           ArrayRef<BasicBlock *> IndirectDests,
1115
                           ArrayRef<Value *> Args = std::nullopt,
1116
                           const Twine &Name = "") {
1117
    return Insert(CallBrInst::Create(Ty, Callee, DefaultDest, IndirectDests,
1118
                                     Args), Name);
1119
  }
1120
  CallBrInst *CreateCallBr(FunctionType *Ty, Value *Callee,
1121
                           BasicBlock *DefaultDest,
1122
                           ArrayRef<BasicBlock *> IndirectDests,
1123
                           ArrayRef<Value *> Args,
1124
                           ArrayRef<OperandBundleDef> OpBundles,
1125
                           const Twine &Name = "") {
1126
    return Insert(
1127
        CallBrInst::Create(Ty, Callee, DefaultDest, IndirectDests, Args,
1128
                           OpBundles), Name);
1129
  }
1130
 
1131
  CallBrInst *CreateCallBr(FunctionCallee Callee, BasicBlock *DefaultDest,
1132
                           ArrayRef<BasicBlock *> IndirectDests,
1133
                           ArrayRef<Value *> Args = std::nullopt,
1134
                           const Twine &Name = "") {
1135
    return CreateCallBr(Callee.getFunctionType(), Callee.getCallee(),
1136
                        DefaultDest, IndirectDests, Args, Name);
1137
  }
1138
  CallBrInst *CreateCallBr(FunctionCallee Callee, BasicBlock *DefaultDest,
1139
                           ArrayRef<BasicBlock *> IndirectDests,
1140
                           ArrayRef<Value *> Args,
1141
                           ArrayRef<OperandBundleDef> OpBundles,
1142
                           const Twine &Name = "") {
1143
    return CreateCallBr(Callee.getFunctionType(), Callee.getCallee(),
1144
                        DefaultDest, IndirectDests, Args, Name);
1145
  }
1146
 
1147
  ResumeInst *CreateResume(Value *Exn) {
1148
    return Insert(ResumeInst::Create(Exn));
1149
  }
1150
 
1151
  CleanupReturnInst *CreateCleanupRet(CleanupPadInst *CleanupPad,
1152
                                      BasicBlock *UnwindBB = nullptr) {
1153
    return Insert(CleanupReturnInst::Create(CleanupPad, UnwindBB));
1154
  }
1155
 
1156
  CatchSwitchInst *CreateCatchSwitch(Value *ParentPad, BasicBlock *UnwindBB,
1157
                                     unsigned NumHandlers,
1158
                                     const Twine &Name = "") {
1159
    return Insert(CatchSwitchInst::Create(ParentPad, UnwindBB, NumHandlers),
1160
                  Name);
1161
  }
1162
 
1163
  CatchPadInst *CreateCatchPad(Value *ParentPad, ArrayRef<Value *> Args,
1164
                               const Twine &Name = "") {
1165
    return Insert(CatchPadInst::Create(ParentPad, Args), Name);
1166
  }
1167
 
1168
  CleanupPadInst *CreateCleanupPad(Value *ParentPad,
1169
                                   ArrayRef<Value *> Args = std::nullopt,
1170
                                   const Twine &Name = "") {
1171
    return Insert(CleanupPadInst::Create(ParentPad, Args), Name);
1172
  }
1173
 
1174
  CatchReturnInst *CreateCatchRet(CatchPadInst *CatchPad, BasicBlock *BB) {
1175
    return Insert(CatchReturnInst::Create(CatchPad, BB));
1176
  }
1177
 
1178
  UnreachableInst *CreateUnreachable() {
1179
    return Insert(new UnreachableInst(Context));
1180
  }
1181
 
1182
  //===--------------------------------------------------------------------===//
1183
  // Instruction creation methods: Binary Operators
1184
  //===--------------------------------------------------------------------===//
1185
private:
1186
  BinaryOperator *CreateInsertNUWNSWBinOp(BinaryOperator::BinaryOps Opc,
1187
                                          Value *LHS, Value *RHS,
1188
                                          const Twine &Name,
1189
                                          bool HasNUW, bool HasNSW) {
1190
    BinaryOperator *BO = Insert(BinaryOperator::Create(Opc, LHS, RHS), Name);
1191
    if (HasNUW) BO->setHasNoUnsignedWrap();
1192
    if (HasNSW) BO->setHasNoSignedWrap();
1193
    return BO;
1194
  }
1195
 
1196
  Instruction *setFPAttrs(Instruction *I, MDNode *FPMD,
1197
                          FastMathFlags FMF) const {
1198
    if (!FPMD)
1199
      FPMD = DefaultFPMathTag;
1200
    if (FPMD)
1201
      I->setMetadata(LLVMContext::MD_fpmath, FPMD);
1202
    I->setFastMathFlags(FMF);
1203
    return I;
1204
  }
1205
 
1206
  Value *getConstrainedFPRounding(std::optional<RoundingMode> Rounding) {
1207
    RoundingMode UseRounding = DefaultConstrainedRounding;
1208
 
1209
    if (Rounding)
1210
      UseRounding = *Rounding;
1211
 
1212
    std::optional<StringRef> RoundingStr =
1213
        convertRoundingModeToStr(UseRounding);
1214
    assert(RoundingStr && "Garbage strict rounding mode!");
1215
    auto *RoundingMDS = MDString::get(Context, *RoundingStr);
1216
 
1217
    return MetadataAsValue::get(Context, RoundingMDS);
1218
  }
1219
 
1220
  Value *getConstrainedFPExcept(std::optional<fp::ExceptionBehavior> Except) {
1221
    std::optional<StringRef> ExceptStr = convertExceptionBehaviorToStr(
1222
        Except.value_or(DefaultConstrainedExcept));
1223
    assert(ExceptStr && "Garbage strict exception behavior!");
1224
    auto *ExceptMDS = MDString::get(Context, *ExceptStr);
1225
 
1226
    return MetadataAsValue::get(Context, ExceptMDS);
1227
  }
1228
 
1229
  Value *getConstrainedFPPredicate(CmpInst::Predicate Predicate) {
1230
    assert(CmpInst::isFPPredicate(Predicate) &&
1231
           Predicate != CmpInst::FCMP_FALSE &&
1232
           Predicate != CmpInst::FCMP_TRUE &&
1233
           "Invalid constrained FP comparison predicate!");
1234
 
1235
    StringRef PredicateStr = CmpInst::getPredicateName(Predicate);
1236
    auto *PredicateMDS = MDString::get(Context, PredicateStr);
1237
 
1238
    return MetadataAsValue::get(Context, PredicateMDS);
1239
  }
1240
 
1241
public:
1242
  Value *CreateAdd(Value *LHS, Value *RHS, const Twine &Name = "",
1243
                   bool HasNUW = false, bool HasNSW = false) {
1244
    if (Value *V =
1245
            Folder.FoldNoWrapBinOp(Instruction::Add, LHS, RHS, HasNUW, HasNSW))
1246
      return V;
1247
    return CreateInsertNUWNSWBinOp(Instruction::Add, LHS, RHS, Name, HasNUW,
1248
                                   HasNSW);
1249
  }
1250
 
1251
  Value *CreateNSWAdd(Value *LHS, Value *RHS, const Twine &Name = "") {
1252
    return CreateAdd(LHS, RHS, Name, false, true);
1253
  }
1254
 
1255
  Value *CreateNUWAdd(Value *LHS, Value *RHS, const Twine &Name = "") {
1256
    return CreateAdd(LHS, RHS, Name, true, false);
1257
  }
1258
 
1259
  Value *CreateSub(Value *LHS, Value *RHS, const Twine &Name = "",
1260
                   bool HasNUW = false, bool HasNSW = false) {
1261
    if (Value *V =
1262
            Folder.FoldNoWrapBinOp(Instruction::Sub, LHS, RHS, HasNUW, HasNSW))
1263
      return V;
1264
    return CreateInsertNUWNSWBinOp(Instruction::Sub, LHS, RHS, Name, HasNUW,
1265
                                   HasNSW);
1266
  }
1267
 
1268
  Value *CreateNSWSub(Value *LHS, Value *RHS, const Twine &Name = "") {
1269
    return CreateSub(LHS, RHS, Name, false, true);
1270
  }
1271
 
1272
  Value *CreateNUWSub(Value *LHS, Value *RHS, const Twine &Name = "") {
1273
    return CreateSub(LHS, RHS, Name, true, false);
1274
  }
1275
 
1276
  Value *CreateMul(Value *LHS, Value *RHS, const Twine &Name = "",
1277
                   bool HasNUW = false, bool HasNSW = false) {
1278
    if (Value *V =
1279
            Folder.FoldNoWrapBinOp(Instruction::Mul, LHS, RHS, HasNUW, HasNSW))
1280
      return V;
1281
    return CreateInsertNUWNSWBinOp(Instruction::Mul, LHS, RHS, Name, HasNUW,
1282
                                   HasNSW);
1283
  }
1284
 
1285
  Value *CreateNSWMul(Value *LHS, Value *RHS, const Twine &Name = "") {
1286
    return CreateMul(LHS, RHS, Name, false, true);
1287
  }
1288
 
1289
  Value *CreateNUWMul(Value *LHS, Value *RHS, const Twine &Name = "") {
1290
    return CreateMul(LHS, RHS, Name, true, false);
1291
  }
1292
 
1293
  Value *CreateUDiv(Value *LHS, Value *RHS, const Twine &Name = "",
1294
                    bool isExact = false) {
1295
    if (Value *V = Folder.FoldExactBinOp(Instruction::UDiv, LHS, RHS, isExact))
1296
      return V;
1297
    if (!isExact)
1298
      return Insert(BinaryOperator::CreateUDiv(LHS, RHS), Name);
1299
    return Insert(BinaryOperator::CreateExactUDiv(LHS, RHS), Name);
1300
  }
1301
 
1302
  Value *CreateExactUDiv(Value *LHS, Value *RHS, const Twine &Name = "") {
1303
    return CreateUDiv(LHS, RHS, Name, true);
1304
  }
1305
 
1306
  Value *CreateSDiv(Value *LHS, Value *RHS, const Twine &Name = "",
1307
                    bool isExact = false) {
1308
    if (Value *V = Folder.FoldExactBinOp(Instruction::SDiv, LHS, RHS, isExact))
1309
      return V;
1310
    if (!isExact)
1311
      return Insert(BinaryOperator::CreateSDiv(LHS, RHS), Name);
1312
    return Insert(BinaryOperator::CreateExactSDiv(LHS, RHS), Name);
1313
  }
1314
 
1315
  Value *CreateExactSDiv(Value *LHS, Value *RHS, const Twine &Name = "") {
1316
    return CreateSDiv(LHS, RHS, Name, true);
1317
  }
1318
 
1319
  Value *CreateURem(Value *LHS, Value *RHS, const Twine &Name = "") {
1320
    if (Value *V = Folder.FoldBinOp(Instruction::URem, LHS, RHS))
1321
      return V;
1322
    return Insert(BinaryOperator::CreateURem(LHS, RHS), Name);
1323
  }
1324
 
1325
  Value *CreateSRem(Value *LHS, Value *RHS, const Twine &Name = "") {
1326
    if (Value *V = Folder.FoldBinOp(Instruction::SRem, LHS, RHS))
1327
      return V;
1328
    return Insert(BinaryOperator::CreateSRem(LHS, RHS), Name);
1329
  }
1330
 
1331
  Value *CreateShl(Value *LHS, Value *RHS, const Twine &Name = "",
1332
                   bool HasNUW = false, bool HasNSW = false) {
1333
    if (Value *V =
1334
            Folder.FoldNoWrapBinOp(Instruction::Shl, LHS, RHS, HasNUW, HasNSW))
1335
      return V;
1336
    return CreateInsertNUWNSWBinOp(Instruction::Shl, LHS, RHS, Name,
1337
                                   HasNUW, HasNSW);
1338
  }
1339
 
1340
  Value *CreateShl(Value *LHS, const APInt &RHS, const Twine &Name = "",
1341
                   bool HasNUW = false, bool HasNSW = false) {
1342
    return CreateShl(LHS, ConstantInt::get(LHS->getType(), RHS), Name,
1343
                     HasNUW, HasNSW);
1344
  }
1345
 
1346
  Value *CreateShl(Value *LHS, uint64_t RHS, const Twine &Name = "",
1347
                   bool HasNUW = false, bool HasNSW = false) {
1348
    return CreateShl(LHS, ConstantInt::get(LHS->getType(), RHS), Name,
1349
                     HasNUW, HasNSW);
1350
  }
1351
 
1352
  Value *CreateLShr(Value *LHS, Value *RHS, const Twine &Name = "",
1353
                    bool isExact = false) {
1354
    if (Value *V = Folder.FoldExactBinOp(Instruction::LShr, LHS, RHS, isExact))
1355
      return V;
1356
    if (!isExact)
1357
      return Insert(BinaryOperator::CreateLShr(LHS, RHS), Name);
1358
    return Insert(BinaryOperator::CreateExactLShr(LHS, RHS), Name);
1359
  }
1360
 
1361
  Value *CreateLShr(Value *LHS, const APInt &RHS, const Twine &Name = "",
1362
                    bool isExact = false) {
1363
    return CreateLShr(LHS, ConstantInt::get(LHS->getType(), RHS), Name,isExact);
1364
  }
1365
 
1366
  Value *CreateLShr(Value *LHS, uint64_t RHS, const Twine &Name = "",
1367
                    bool isExact = false) {
1368
    return CreateLShr(LHS, ConstantInt::get(LHS->getType(), RHS), Name,isExact);
1369
  }
1370
 
1371
  Value *CreateAShr(Value *LHS, Value *RHS, const Twine &Name = "",
1372
                    bool isExact = false) {
1373
    if (Value *V = Folder.FoldExactBinOp(Instruction::AShr, LHS, RHS, isExact))
1374
      return V;
1375
    if (!isExact)
1376
      return Insert(BinaryOperator::CreateAShr(LHS, RHS), Name);
1377
    return Insert(BinaryOperator::CreateExactAShr(LHS, RHS), Name);
1378
  }
1379
 
1380
  Value *CreateAShr(Value *LHS, const APInt &RHS, const Twine &Name = "",
1381
                    bool isExact = false) {
1382
    return CreateAShr(LHS, ConstantInt::get(LHS->getType(), RHS), Name,isExact);
1383
  }
1384
 
1385
  Value *CreateAShr(Value *LHS, uint64_t RHS, const Twine &Name = "",
1386
                    bool isExact = false) {
1387
    return CreateAShr(LHS, ConstantInt::get(LHS->getType(), RHS), Name,isExact);
1388
  }
1389
 
1390
  Value *CreateAnd(Value *LHS, Value *RHS, const Twine &Name = "") {
1391
    if (auto *V = Folder.FoldBinOp(Instruction::And, LHS, RHS))
1392
      return V;
1393
    return Insert(BinaryOperator::CreateAnd(LHS, RHS), Name);
1394
  }
1395
 
1396
  Value *CreateAnd(Value *LHS, const APInt &RHS, const Twine &Name = "") {
1397
    return CreateAnd(LHS, ConstantInt::get(LHS->getType(), RHS), Name);
1398
  }
1399
 
1400
  Value *CreateAnd(Value *LHS, uint64_t RHS, const Twine &Name = "") {
1401
    return CreateAnd(LHS, ConstantInt::get(LHS->getType(), RHS), Name);
1402
  }
1403
 
1404
  Value *CreateAnd(ArrayRef<Value*> Ops) {
1405
    assert(!Ops.empty());
1406
    Value *Accum = Ops[0];
1407
    for (unsigned i = 1; i < Ops.size(); i++)
1408
      Accum = CreateAnd(Accum, Ops[i]);
1409
    return Accum;
1410
  }
1411
 
1412
  Value *CreateOr(Value *LHS, Value *RHS, const Twine &Name = "") {
1413
    if (auto *V = Folder.FoldBinOp(Instruction::Or, LHS, RHS))
1414
      return V;
1415
    return Insert(BinaryOperator::CreateOr(LHS, RHS), Name);
1416
  }
1417
 
1418
  Value *CreateOr(Value *LHS, const APInt &RHS, const Twine &Name = "") {
1419
    return CreateOr(LHS, ConstantInt::get(LHS->getType(), RHS), Name);
1420
  }
1421
 
1422
  Value *CreateOr(Value *LHS, uint64_t RHS, const Twine &Name = "") {
1423
    return CreateOr(LHS, ConstantInt::get(LHS->getType(), RHS), Name);
1424
  }
1425
 
1426
  Value *CreateOr(ArrayRef<Value*> Ops) {
1427
    assert(!Ops.empty());
1428
    Value *Accum = Ops[0];
1429
    for (unsigned i = 1; i < Ops.size(); i++)
1430
      Accum = CreateOr(Accum, Ops[i]);
1431
    return Accum;
1432
  }
1433
 
1434
  Value *CreateXor(Value *LHS, Value *RHS, const Twine &Name = "") {
1435
    if (Value *V = Folder.FoldBinOp(Instruction::Xor, LHS, RHS))
1436
      return V;
1437
    return Insert(BinaryOperator::CreateXor(LHS, RHS), Name);
1438
  }
1439
 
1440
  Value *CreateXor(Value *LHS, const APInt &RHS, const Twine &Name = "") {
1441
    return CreateXor(LHS, ConstantInt::get(LHS->getType(), RHS), Name);
1442
  }
1443
 
1444
  Value *CreateXor(Value *LHS, uint64_t RHS, const Twine &Name = "") {
1445
    return CreateXor(LHS, ConstantInt::get(LHS->getType(), RHS), Name);
1446
  }
1447
 
1448
  Value *CreateFAdd(Value *L, Value *R, const Twine &Name = "",
1449
                    MDNode *FPMD = nullptr) {
1450
    if (IsFPConstrained)
1451
      return CreateConstrainedFPBinOp(Intrinsic::experimental_constrained_fadd,
1452
                                      L, R, nullptr, Name, FPMD);
1453
 
1454
    if (Value *V = Folder.FoldBinOpFMF(Instruction::FAdd, L, R, FMF))
1455
      return V;
1456
    Instruction *I = setFPAttrs(BinaryOperator::CreateFAdd(L, R), FPMD, FMF);
1457
    return Insert(I, Name);
1458
  }
1459
 
1460
  /// Copy fast-math-flags from an instruction rather than using the builder's
1461
  /// default FMF.
1462
  Value *CreateFAddFMF(Value *L, Value *R, Instruction *FMFSource,
1463
                       const Twine &Name = "") {
1464
    if (IsFPConstrained)
1465
      return CreateConstrainedFPBinOp(Intrinsic::experimental_constrained_fadd,
1466
                                      L, R, FMFSource, Name);
1467
 
1468
    FastMathFlags FMF = FMFSource->getFastMathFlags();
1469
    if (Value *V = Folder.FoldBinOpFMF(Instruction::FAdd, L, R, FMF))
1470
      return V;
1471
    Instruction *I = setFPAttrs(BinaryOperator::CreateFAdd(L, R), nullptr, FMF);
1472
    return Insert(I, Name);
1473
  }
1474
 
1475
  Value *CreateFSub(Value *L, Value *R, const Twine &Name = "",
1476
                    MDNode *FPMD = nullptr) {
1477
    if (IsFPConstrained)
1478
      return CreateConstrainedFPBinOp(Intrinsic::experimental_constrained_fsub,
1479
                                      L, R, nullptr, Name, FPMD);
1480
 
1481
    if (Value *V = Folder.FoldBinOpFMF(Instruction::FSub, L, R, FMF))
1482
      return V;
1483
    Instruction *I = setFPAttrs(BinaryOperator::CreateFSub(L, R), FPMD, FMF);
1484
    return Insert(I, Name);
1485
  }
1486
 
1487
  /// Copy fast-math-flags from an instruction rather than using the builder's
1488
  /// default FMF.
1489
  Value *CreateFSubFMF(Value *L, Value *R, Instruction *FMFSource,
1490
                       const Twine &Name = "") {
1491
    if (IsFPConstrained)
1492
      return CreateConstrainedFPBinOp(Intrinsic::experimental_constrained_fsub,
1493
                                      L, R, FMFSource, Name);
1494
 
1495
    FastMathFlags FMF = FMFSource->getFastMathFlags();
1496
    if (Value *V = Folder.FoldBinOpFMF(Instruction::FSub, L, R, FMF))
1497
      return V;
1498
    Instruction *I = setFPAttrs(BinaryOperator::CreateFSub(L, R), nullptr, FMF);
1499
    return Insert(I, Name);
1500
  }
1501
 
1502
  Value *CreateFMul(Value *L, Value *R, const Twine &Name = "",
1503
                    MDNode *FPMD = nullptr) {
1504
    if (IsFPConstrained)
1505
      return CreateConstrainedFPBinOp(Intrinsic::experimental_constrained_fmul,
1506
                                      L, R, nullptr, Name, FPMD);
1507
 
1508
    if (Value *V = Folder.FoldBinOpFMF(Instruction::FMul, L, R, FMF))
1509
      return V;
1510
    Instruction *I = setFPAttrs(BinaryOperator::CreateFMul(L, R), FPMD, FMF);
1511
    return Insert(I, Name);
1512
  }
1513
 
1514
  /// Copy fast-math-flags from an instruction rather than using the builder's
1515
  /// default FMF.
1516
  Value *CreateFMulFMF(Value *L, Value *R, Instruction *FMFSource,
1517
                       const Twine &Name = "") {
1518
    if (IsFPConstrained)
1519
      return CreateConstrainedFPBinOp(Intrinsic::experimental_constrained_fmul,
1520
                                      L, R, FMFSource, Name);
1521
 
1522
    FastMathFlags FMF = FMFSource->getFastMathFlags();
1523
    if (Value *V = Folder.FoldBinOpFMF(Instruction::FMul, L, R, FMF))
1524
      return V;
1525
    Instruction *I = setFPAttrs(BinaryOperator::CreateFMul(L, R), nullptr, FMF);
1526
    return Insert(I, Name);
1527
  }
1528
 
1529
  Value *CreateFDiv(Value *L, Value *R, const Twine &Name = "",
1530
                    MDNode *FPMD = nullptr) {
1531
    if (IsFPConstrained)
1532
      return CreateConstrainedFPBinOp(Intrinsic::experimental_constrained_fdiv,
1533
                                      L, R, nullptr, Name, FPMD);
1534
 
1535
    if (Value *V = Folder.FoldBinOpFMF(Instruction::FDiv, L, R, FMF))
1536
      return V;
1537
    Instruction *I = setFPAttrs(BinaryOperator::CreateFDiv(L, R), FPMD, FMF);
1538
    return Insert(I, Name);
1539
  }
1540
 
1541
  /// Copy fast-math-flags from an instruction rather than using the builder's
1542
  /// default FMF.
1543
  Value *CreateFDivFMF(Value *L, Value *R, Instruction *FMFSource,
1544
                       const Twine &Name = "") {
1545
    if (IsFPConstrained)
1546
      return CreateConstrainedFPBinOp(Intrinsic::experimental_constrained_fdiv,
1547
                                      L, R, FMFSource, Name);
1548
 
1549
    FastMathFlags FMF = FMFSource->getFastMathFlags();
1550
    if (Value *V = Folder.FoldBinOpFMF(Instruction::FDiv, L, R, FMF))
1551
      return V;
1552
    Instruction *I = setFPAttrs(BinaryOperator::CreateFDiv(L, R), nullptr, FMF);
1553
    return Insert(I, Name);
1554
  }
1555
 
1556
  Value *CreateFRem(Value *L, Value *R, const Twine &Name = "",
1557
                    MDNode *FPMD = nullptr) {
1558
    if (IsFPConstrained)
1559
      return CreateConstrainedFPBinOp(Intrinsic::experimental_constrained_frem,
1560
                                      L, R, nullptr, Name, FPMD);
1561
 
1562
    if (Value *V = Folder.FoldBinOpFMF(Instruction::FRem, L, R, FMF)) return V;
1563
    Instruction *I = setFPAttrs(BinaryOperator::CreateFRem(L, R), FPMD, FMF);
1564
    return Insert(I, Name);
1565
  }
1566
 
1567
  /// Copy fast-math-flags from an instruction rather than using the builder's
1568
  /// default FMF.
1569
  Value *CreateFRemFMF(Value *L, Value *R, Instruction *FMFSource,
1570
                       const Twine &Name = "") {
1571
    if (IsFPConstrained)
1572
      return CreateConstrainedFPBinOp(Intrinsic::experimental_constrained_frem,
1573
                                      L, R, FMFSource, Name);
1574
 
1575
    FastMathFlags FMF = FMFSource->getFastMathFlags();
1576
    if (Value *V = Folder.FoldBinOpFMF(Instruction::FRem, L, R, FMF)) return V;
1577
    Instruction *I = setFPAttrs(BinaryOperator::CreateFRem(L, R), nullptr, FMF);
1578
    return Insert(I, Name);
1579
  }
1580
 
1581
  Value *CreateBinOp(Instruction::BinaryOps Opc,
1582
                     Value *LHS, Value *RHS, const Twine &Name = "",
1583
                     MDNode *FPMathTag = nullptr) {
1584
    if (Value *V = Folder.FoldBinOp(Opc, LHS, RHS)) return V;
1585
    Instruction *BinOp = BinaryOperator::Create(Opc, LHS, RHS);
1586
    if (isa<FPMathOperator>(BinOp))
1587
      setFPAttrs(BinOp, FPMathTag, FMF);
1588
    return Insert(BinOp, Name);
1589
  }
1590
 
1591
  Value *CreateLogicalAnd(Value *Cond1, Value *Cond2, const Twine &Name = "") {
1592
    assert(Cond2->getType()->isIntOrIntVectorTy(1));
1593
    return CreateSelect(Cond1, Cond2,
1594
                        ConstantInt::getNullValue(Cond2->getType()), Name);
1595
  }
1596
 
1597
  Value *CreateLogicalOr(Value *Cond1, Value *Cond2, const Twine &Name = "") {
1598
    assert(Cond2->getType()->isIntOrIntVectorTy(1));
1599
    return CreateSelect(Cond1, ConstantInt::getAllOnesValue(Cond2->getType()),
1600
                        Cond2, Name);
1601
  }
1602
 
1603
  Value *CreateLogicalOp(Instruction::BinaryOps Opc, Value *Cond1, Value *Cond2,
1604
                         const Twine &Name = "") {
1605
    switch (Opc) {
1606
    case Instruction::And:
1607
      return CreateLogicalAnd(Cond1, Cond2, Name);
1608
    case Instruction::Or:
1609
      return CreateLogicalOr(Cond1, Cond2, Name);
1610
    default:
1611
      break;
1612
    }
1613
    llvm_unreachable("Not a logical operation.");
1614
  }
1615
 
1616
  // NOTE: this is sequential, non-commutative, ordered reduction!
1617
  Value *CreateLogicalOr(ArrayRef<Value *> Ops) {
1618
    assert(!Ops.empty());
1619
    Value *Accum = Ops[0];
1620
    for (unsigned i = 1; i < Ops.size(); i++)
1621
      Accum = CreateLogicalOr(Accum, Ops[i]);
1622
    return Accum;
1623
  }
1624
 
1625
  CallInst *CreateConstrainedFPBinOp(
1626
      Intrinsic::ID ID, Value *L, Value *R, Instruction *FMFSource = nullptr,
1627
      const Twine &Name = "", MDNode *FPMathTag = nullptr,
1628
      std::optional<RoundingMode> Rounding = std::nullopt,
1629
      std::optional<fp::ExceptionBehavior> Except = std::nullopt);
1630
 
1631
  Value *CreateNeg(Value *V, const Twine &Name = "", bool HasNUW = false,
1632
                   bool HasNSW = false) {
1633
    return CreateSub(Constant::getNullValue(V->getType()), V, Name, HasNUW,
1634
                     HasNSW);
1635
  }
1636
 
1637
  Value *CreateNSWNeg(Value *V, const Twine &Name = "") {
1638
    return CreateNeg(V, Name, false, true);
1639
  }
1640
 
1641
  Value *CreateNUWNeg(Value *V, const Twine &Name = "") {
1642
    return CreateNeg(V, Name, true, false);
1643
  }
1644
 
1645
  Value *CreateFNeg(Value *V, const Twine &Name = "",
1646
                    MDNode *FPMathTag = nullptr) {
1647
    if (Value *Res = Folder.FoldUnOpFMF(Instruction::FNeg, V, FMF))
1648
      return Res;
1649
    return Insert(setFPAttrs(UnaryOperator::CreateFNeg(V), FPMathTag, FMF),
1650
                  Name);
1651
  }
1652
 
1653
  /// Copy fast-math-flags from an instruction rather than using the builder's
1654
  /// default FMF.
1655
  Value *CreateFNegFMF(Value *V, Instruction *FMFSource,
1656
                       const Twine &Name = "") {
1657
   FastMathFlags FMF = FMFSource->getFastMathFlags();
1658
    if (Value *Res = Folder.FoldUnOpFMF(Instruction::FNeg, V, FMF))
1659
      return Res;
1660
   return Insert(setFPAttrs(UnaryOperator::CreateFNeg(V), nullptr, FMF),
1661
                 Name);
1662
  }
1663
 
1664
  Value *CreateNot(Value *V, const Twine &Name = "") {
1665
    return CreateXor(V, Constant::getAllOnesValue(V->getType()), Name);
1666
  }
1667
 
1668
  Value *CreateUnOp(Instruction::UnaryOps Opc,
1669
                    Value *V, const Twine &Name = "",
1670
                    MDNode *FPMathTag = nullptr) {
1671
    if (Value *Res = Folder.FoldUnOpFMF(Opc, V, FMF))
1672
      return Res;
1673
    Instruction *UnOp = UnaryOperator::Create(Opc, V);
1674
    if (isa<FPMathOperator>(UnOp))
1675
      setFPAttrs(UnOp, FPMathTag, FMF);
1676
    return Insert(UnOp, Name);
1677
  }
1678
 
1679
  /// Create either a UnaryOperator or BinaryOperator depending on \p Opc.
1680
  /// Correct number of operands must be passed accordingly.
1681
  Value *CreateNAryOp(unsigned Opc, ArrayRef<Value *> Ops,
1682
                      const Twine &Name = "", MDNode *FPMathTag = nullptr);
1683
 
1684
  //===--------------------------------------------------------------------===//
1685
  // Instruction creation methods: Memory Instructions
1686
  //===--------------------------------------------------------------------===//
1687
 
1688
  AllocaInst *CreateAlloca(Type *Ty, unsigned AddrSpace,
1689
                           Value *ArraySize = nullptr, const Twine &Name = "") {
1690
    const DataLayout &DL = BB->getModule()->getDataLayout();
1691
    Align AllocaAlign = DL.getPrefTypeAlign(Ty);
1692
    return Insert(new AllocaInst(Ty, AddrSpace, ArraySize, AllocaAlign), Name);
1693
  }
1694
 
1695
  AllocaInst *CreateAlloca(Type *Ty, Value *ArraySize = nullptr,
1696
                           const Twine &Name = "") {
1697
    const DataLayout &DL = BB->getModule()->getDataLayout();
1698
    Align AllocaAlign = DL.getPrefTypeAlign(Ty);
1699
    unsigned AddrSpace = DL.getAllocaAddrSpace();
1700
    return Insert(new AllocaInst(Ty, AddrSpace, ArraySize, AllocaAlign), Name);
1701
  }
1702
 
1703
  /// Provided to resolve 'CreateLoad(Ty, Ptr, "...")' correctly, instead of
1704
  /// converting the string to 'bool' for the isVolatile parameter.
1705
  LoadInst *CreateLoad(Type *Ty, Value *Ptr, const char *Name) {
1706
    return CreateAlignedLoad(Ty, Ptr, MaybeAlign(), Name);
1707
  }
1708
 
1709
  LoadInst *CreateLoad(Type *Ty, Value *Ptr, const Twine &Name = "") {
1710
    return CreateAlignedLoad(Ty, Ptr, MaybeAlign(), Name);
1711
  }
1712
 
1713
  LoadInst *CreateLoad(Type *Ty, Value *Ptr, bool isVolatile,
1714
                       const Twine &Name = "") {
1715
    return CreateAlignedLoad(Ty, Ptr, MaybeAlign(), isVolatile, Name);
1716
  }
1717
 
1718
  StoreInst *CreateStore(Value *Val, Value *Ptr, bool isVolatile = false) {
1719
    return CreateAlignedStore(Val, Ptr, MaybeAlign(), isVolatile);
1720
  }
1721
 
1722
  LoadInst *CreateAlignedLoad(Type *Ty, Value *Ptr, MaybeAlign Align,
1723
                              const char *Name) {
1724
    return CreateAlignedLoad(Ty, Ptr, Align, /*isVolatile*/false, Name);
1725
  }
1726
 
1727
  LoadInst *CreateAlignedLoad(Type *Ty, Value *Ptr, MaybeAlign Align,
1728
                              const Twine &Name = "") {
1729
    return CreateAlignedLoad(Ty, Ptr, Align, /*isVolatile*/false, Name);
1730
  }
1731
 
1732
  LoadInst *CreateAlignedLoad(Type *Ty, Value *Ptr, MaybeAlign Align,
1733
                              bool isVolatile, const Twine &Name = "") {
1734
    if (!Align) {
1735
      const DataLayout &DL = BB->getModule()->getDataLayout();
1736
      Align = DL.getABITypeAlign(Ty);
1737
    }
1738
    return Insert(new LoadInst(Ty, Ptr, Twine(), isVolatile, *Align), Name);
1739
  }
1740
 
1741
  StoreInst *CreateAlignedStore(Value *Val, Value *Ptr, MaybeAlign Align,
1742
                                bool isVolatile = false) {
1743
    if (!Align) {
1744
      const DataLayout &DL = BB->getModule()->getDataLayout();
1745
      Align = DL.getABITypeAlign(Val->getType());
1746
    }
1747
    return Insert(new StoreInst(Val, Ptr, isVolatile, *Align));
1748
  }
1749
  FenceInst *CreateFence(AtomicOrdering Ordering,
1750
                         SyncScope::ID SSID = SyncScope::System,
1751
                         const Twine &Name = "") {
1752
    return Insert(new FenceInst(Context, Ordering, SSID), Name);
1753
  }
1754
 
1755
  AtomicCmpXchgInst *
1756
  CreateAtomicCmpXchg(Value *Ptr, Value *Cmp, Value *New, MaybeAlign Align,
1757
                      AtomicOrdering SuccessOrdering,
1758
                      AtomicOrdering FailureOrdering,
1759
                      SyncScope::ID SSID = SyncScope::System) {
1760
    if (!Align) {
1761
      const DataLayout &DL = BB->getModule()->getDataLayout();
1762
      Align = llvm::Align(DL.getTypeStoreSize(New->getType()));
1763
    }
1764
 
1765
    return Insert(new AtomicCmpXchgInst(Ptr, Cmp, New, *Align, SuccessOrdering,
1766
                                        FailureOrdering, SSID));
1767
  }
1768
 
1769
  AtomicRMWInst *CreateAtomicRMW(AtomicRMWInst::BinOp Op, Value *Ptr,
1770
                                 Value *Val, MaybeAlign Align,
1771
                                 AtomicOrdering Ordering,
1772
                                 SyncScope::ID SSID = SyncScope::System) {
1773
    if (!Align) {
1774
      const DataLayout &DL = BB->getModule()->getDataLayout();
1775
      Align = llvm::Align(DL.getTypeStoreSize(Val->getType()));
1776
    }
1777
 
1778
    return Insert(new AtomicRMWInst(Op, Ptr, Val, *Align, Ordering, SSID));
1779
  }
1780
 
1781
  Value *CreateGEP(Type *Ty, Value *Ptr, ArrayRef<Value *> IdxList,
1782
                   const Twine &Name = "", bool IsInBounds = false) {
1783
    if (auto *V = Folder.FoldGEP(Ty, Ptr, IdxList, IsInBounds))
1784
      return V;
1785
    return Insert(IsInBounds
1786
                      ? GetElementPtrInst::CreateInBounds(Ty, Ptr, IdxList)
1787
                      : GetElementPtrInst::Create(Ty, Ptr, IdxList),
1788
                  Name);
1789
  }
1790
 
1791
  Value *CreateInBoundsGEP(Type *Ty, Value *Ptr, ArrayRef<Value *> IdxList,
1792
                           const Twine &Name = "") {
1793
    return CreateGEP(Ty, Ptr, IdxList, Name, /* IsInBounds */ true);
1794
  }
1795
 
1796
  Value *CreateConstGEP1_32(Type *Ty, Value *Ptr, unsigned Idx0,
1797
                            const Twine &Name = "") {
1798
    Value *Idx = ConstantInt::get(Type::getInt32Ty(Context), Idx0);
1799
 
1800
    if (auto *V = Folder.FoldGEP(Ty, Ptr, Idx, /*IsInBounds=*/false))
1801
      return V;
1802
 
1803
    return Insert(GetElementPtrInst::Create(Ty, Ptr, Idx), Name);
1804
  }
1805
 
1806
  Value *CreateConstInBoundsGEP1_32(Type *Ty, Value *Ptr, unsigned Idx0,
1807
                                    const Twine &Name = "") {
1808
    Value *Idx = ConstantInt::get(Type::getInt32Ty(Context), Idx0);
1809
 
1810
    if (auto *V = Folder.FoldGEP(Ty, Ptr, Idx, /*IsInBounds=*/true))
1811
      return V;
1812
 
1813
    return Insert(GetElementPtrInst::CreateInBounds(Ty, Ptr, Idx), Name);
1814
  }
1815
 
1816
  Value *CreateConstGEP2_32(Type *Ty, Value *Ptr, unsigned Idx0, unsigned Idx1,
1817
                            const Twine &Name = "") {
1818
    Value *Idxs[] = {
1819
      ConstantInt::get(Type::getInt32Ty(Context), Idx0),
1820
      ConstantInt::get(Type::getInt32Ty(Context), Idx1)
1821
    };
1822
 
1823
    if (auto *V = Folder.FoldGEP(Ty, Ptr, Idxs, /*IsInBounds=*/false))
1824
      return V;
1825
 
1826
    return Insert(GetElementPtrInst::Create(Ty, Ptr, Idxs), Name);
1827
  }
1828
 
1829
  Value *CreateConstInBoundsGEP2_32(Type *Ty, Value *Ptr, unsigned Idx0,
1830
                                    unsigned Idx1, const Twine &Name = "") {
1831
    Value *Idxs[] = {
1832
      ConstantInt::get(Type::getInt32Ty(Context), Idx0),
1833
      ConstantInt::get(Type::getInt32Ty(Context), Idx1)
1834
    };
1835
 
1836
    if (auto *V = Folder.FoldGEP(Ty, Ptr, Idxs, /*IsInBounds=*/true))
1837
      return V;
1838
 
1839
    return Insert(GetElementPtrInst::CreateInBounds(Ty, Ptr, Idxs), Name);
1840
  }
1841
 
1842
  Value *CreateConstGEP1_64(Type *Ty, Value *Ptr, uint64_t Idx0,
1843
                            const Twine &Name = "") {
1844
    Value *Idx = ConstantInt::get(Type::getInt64Ty(Context), Idx0);
1845
 
1846
    if (auto *V = Folder.FoldGEP(Ty, Ptr, Idx, /*IsInBounds=*/false))
1847
      return V;
1848
 
1849
    return Insert(GetElementPtrInst::Create(Ty, Ptr, Idx), Name);
1850
  }
1851
 
1852
  Value *CreateConstInBoundsGEP1_64(Type *Ty, Value *Ptr, uint64_t Idx0,
1853
                                    const Twine &Name = "") {
1854
    Value *Idx = ConstantInt::get(Type::getInt64Ty(Context), Idx0);
1855
 
1856
    if (auto *V = Folder.FoldGEP(Ty, Ptr, Idx, /*IsInBounds=*/true))
1857
      return V;
1858
 
1859
    return Insert(GetElementPtrInst::CreateInBounds(Ty, Ptr, Idx), Name);
1860
  }
1861
 
1862
  Value *CreateConstGEP2_64(Type *Ty, Value *Ptr, uint64_t Idx0, uint64_t Idx1,
1863
                            const Twine &Name = "") {
1864
    Value *Idxs[] = {
1865
      ConstantInt::get(Type::getInt64Ty(Context), Idx0),
1866
      ConstantInt::get(Type::getInt64Ty(Context), Idx1)
1867
    };
1868
 
1869
    if (auto *V = Folder.FoldGEP(Ty, Ptr, Idxs, /*IsInBounds=*/false))
1870
      return V;
1871
 
1872
    return Insert(GetElementPtrInst::Create(Ty, Ptr, Idxs), Name);
1873
  }
1874
 
1875
  Value *CreateConstInBoundsGEP2_64(Type *Ty, Value *Ptr, uint64_t Idx0,
1876
                                    uint64_t Idx1, const Twine &Name = "") {
1877
    Value *Idxs[] = {
1878
      ConstantInt::get(Type::getInt64Ty(Context), Idx0),
1879
      ConstantInt::get(Type::getInt64Ty(Context), Idx1)
1880
    };
1881
 
1882
    if (auto *V = Folder.FoldGEP(Ty, Ptr, Idxs, /*IsInBounds=*/true))
1883
      return V;
1884
 
1885
    return Insert(GetElementPtrInst::CreateInBounds(Ty, Ptr, Idxs), Name);
1886
  }
1887
 
1888
  Value *CreateStructGEP(Type *Ty, Value *Ptr, unsigned Idx,
1889
                         const Twine &Name = "") {
1890
    return CreateConstInBoundsGEP2_32(Ty, Ptr, 0, Idx, Name);
1891
  }
1892
 
1893
  /// Same as CreateGlobalString, but return a pointer with "i8*" type
1894
  /// instead of a pointer to array of i8.
1895
  ///
1896
  /// If no module is given via \p M, it is take from the insertion point basic
1897
  /// block.
1898
  Constant *CreateGlobalStringPtr(StringRef Str, const Twine &Name = "",
1899
                                  unsigned AddressSpace = 0,
1900
                                  Module *M = nullptr) {
1901
    GlobalVariable *GV = CreateGlobalString(Str, Name, AddressSpace, M);
1902
    Constant *Zero = ConstantInt::get(Type::getInt32Ty(Context), 0);
1903
    Constant *Indices[] = {Zero, Zero};
1904
    return ConstantExpr::getInBoundsGetElementPtr(GV->getValueType(), GV,
1905
                                                  Indices);
1906
  }
1907
 
1908
  //===--------------------------------------------------------------------===//
1909
  // Instruction creation methods: Cast/Conversion Operators
1910
  //===--------------------------------------------------------------------===//
1911
 
1912
  Value *CreateTrunc(Value *V, Type *DestTy, const Twine &Name = "") {
1913
    return CreateCast(Instruction::Trunc, V, DestTy, Name);
1914
  }
1915
 
1916
  Value *CreateZExt(Value *V, Type *DestTy, const Twine &Name = "") {
1917
    return CreateCast(Instruction::ZExt, V, DestTy, Name);
1918
  }
1919
 
1920
  Value *CreateSExt(Value *V, Type *DestTy, const Twine &Name = "") {
1921
    return CreateCast(Instruction::SExt, V, DestTy, Name);
1922
  }
1923
 
1924
  /// Create a ZExt or Trunc from the integer value V to DestTy. Return
1925
  /// the value untouched if the type of V is already DestTy.
1926
  Value *CreateZExtOrTrunc(Value *V, Type *DestTy,
1927
                           const Twine &Name = "") {
1928
    assert(V->getType()->isIntOrIntVectorTy() &&
1929
           DestTy->isIntOrIntVectorTy() &&
1930
           "Can only zero extend/truncate integers!");
1931
    Type *VTy = V->getType();
1932
    if (VTy->getScalarSizeInBits() < DestTy->getScalarSizeInBits())
1933
      return CreateZExt(V, DestTy, Name);
1934
    if (VTy->getScalarSizeInBits() > DestTy->getScalarSizeInBits())
1935
      return CreateTrunc(V, DestTy, Name);
1936
    return V;
1937
  }
1938
 
1939
  /// Create a SExt or Trunc from the integer value V to DestTy. Return
1940
  /// the value untouched if the type of V is already DestTy.
1941
  Value *CreateSExtOrTrunc(Value *V, Type *DestTy,
1942
                           const Twine &Name = "") {
1943
    assert(V->getType()->isIntOrIntVectorTy() &&
1944
           DestTy->isIntOrIntVectorTy() &&
1945
           "Can only sign extend/truncate integers!");
1946
    Type *VTy = V->getType();
1947
    if (VTy->getScalarSizeInBits() < DestTy->getScalarSizeInBits())
1948
      return CreateSExt(V, DestTy, Name);
1949
    if (VTy->getScalarSizeInBits() > DestTy->getScalarSizeInBits())
1950
      return CreateTrunc(V, DestTy, Name);
1951
    return V;
1952
  }
1953
 
1954
  Value *CreateFPToUI(Value *V, Type *DestTy, const Twine &Name = "") {
1955
    if (IsFPConstrained)
1956
      return CreateConstrainedFPCast(Intrinsic::experimental_constrained_fptoui,
1957
                                     V, DestTy, nullptr, Name);
1958
    return CreateCast(Instruction::FPToUI, V, DestTy, Name);
1959
  }
1960
 
1961
  Value *CreateFPToSI(Value *V, Type *DestTy, const Twine &Name = "") {
1962
    if (IsFPConstrained)
1963
      return CreateConstrainedFPCast(Intrinsic::experimental_constrained_fptosi,
1964
                                     V, DestTy, nullptr, Name);
1965
    return CreateCast(Instruction::FPToSI, V, DestTy, Name);
1966
  }
1967
 
1968
  Value *CreateUIToFP(Value *V, Type *DestTy, const Twine &Name = ""){
1969
    if (IsFPConstrained)
1970
      return CreateConstrainedFPCast(Intrinsic::experimental_constrained_uitofp,
1971
                                     V, DestTy, nullptr, Name);
1972
    return CreateCast(Instruction::UIToFP, V, DestTy, Name);
1973
  }
1974
 
1975
  Value *CreateSIToFP(Value *V, Type *DestTy, const Twine &Name = ""){
1976
    if (IsFPConstrained)
1977
      return CreateConstrainedFPCast(Intrinsic::experimental_constrained_sitofp,
1978
                                     V, DestTy, nullptr, Name);
1979
    return CreateCast(Instruction::SIToFP, V, DestTy, Name);
1980
  }
1981
 
1982
  Value *CreateFPTrunc(Value *V, Type *DestTy,
1983
                       const Twine &Name = "") {
1984
    if (IsFPConstrained)
1985
      return CreateConstrainedFPCast(
1986
          Intrinsic::experimental_constrained_fptrunc, V, DestTy, nullptr,
1987
          Name);
1988
    return CreateCast(Instruction::FPTrunc, V, DestTy, Name);
1989
  }
1990
 
1991
  Value *CreateFPExt(Value *V, Type *DestTy, const Twine &Name = "") {
1992
    if (IsFPConstrained)
1993
      return CreateConstrainedFPCast(Intrinsic::experimental_constrained_fpext,
1994
                                     V, DestTy, nullptr, Name);
1995
    return CreateCast(Instruction::FPExt, V, DestTy, Name);
1996
  }
1997
 
1998
  Value *CreatePtrToInt(Value *V, Type *DestTy,
1999
                        const Twine &Name = "") {
2000
    return CreateCast(Instruction::PtrToInt, V, DestTy, Name);
2001
  }
2002
 
2003
  Value *CreateIntToPtr(Value *V, Type *DestTy,
2004
                        const Twine &Name = "") {
2005
    return CreateCast(Instruction::IntToPtr, V, DestTy, Name);
2006
  }
2007
 
2008
  Value *CreateBitCast(Value *V, Type *DestTy,
2009
                       const Twine &Name = "") {
2010
    return CreateCast(Instruction::BitCast, V, DestTy, Name);
2011
  }
2012
 
2013
  Value *CreateAddrSpaceCast(Value *V, Type *DestTy,
2014
                             const Twine &Name = "") {
2015
    return CreateCast(Instruction::AddrSpaceCast, V, DestTy, Name);
2016
  }
2017
 
2018
  Value *CreateZExtOrBitCast(Value *V, Type *DestTy,
2019
                             const Twine &Name = "") {
2020
    if (V->getType() == DestTy)
2021
      return V;
2022
    if (auto *VC = dyn_cast<Constant>(V))
2023
      return Insert(Folder.CreateZExtOrBitCast(VC, DestTy), Name);
2024
    return Insert(CastInst::CreateZExtOrBitCast(V, DestTy), Name);
2025
  }
2026
 
2027
  Value *CreateSExtOrBitCast(Value *V, Type *DestTy,
2028
                             const Twine &Name = "") {
2029
    if (V->getType() == DestTy)
2030
      return V;
2031
    if (auto *VC = dyn_cast<Constant>(V))
2032
      return Insert(Folder.CreateSExtOrBitCast(VC, DestTy), Name);
2033
    return Insert(CastInst::CreateSExtOrBitCast(V, DestTy), Name);
2034
  }
2035
 
2036
  Value *CreateTruncOrBitCast(Value *V, Type *DestTy,
2037
                              const Twine &Name = "") {
2038
    if (V->getType() == DestTy)
2039
      return V;
2040
    if (auto *VC = dyn_cast<Constant>(V))
2041
      return Insert(Folder.CreateTruncOrBitCast(VC, DestTy), Name);
2042
    return Insert(CastInst::CreateTruncOrBitCast(V, DestTy), Name);
2043
  }
2044
 
2045
  Value *CreateCast(Instruction::CastOps Op, Value *V, Type *DestTy,
2046
                    const Twine &Name = "") {
2047
    if (V->getType() == DestTy)
2048
      return V;
2049
    if (auto *VC = dyn_cast<Constant>(V))
2050
      return Insert(Folder.CreateCast(Op, VC, DestTy), Name);
2051
    return Insert(CastInst::Create(Op, V, DestTy), Name);
2052
  }
2053
 
2054
  Value *CreatePointerCast(Value *V, Type *DestTy,
2055
                           const Twine &Name = "") {
2056
    if (V->getType() == DestTy)
2057
      return V;
2058
    if (auto *VC = dyn_cast<Constant>(V))
2059
      return Insert(Folder.CreatePointerCast(VC, DestTy), Name);
2060
    return Insert(CastInst::CreatePointerCast(V, DestTy), Name);
2061
  }
2062
 
2063
  Value *CreatePointerBitCastOrAddrSpaceCast(Value *V, Type *DestTy,
2064
                                             const Twine &Name = "") {
2065
    if (V->getType() == DestTy)
2066
      return V;
2067
 
2068
    if (auto *VC = dyn_cast<Constant>(V)) {
2069
      return Insert(Folder.CreatePointerBitCastOrAddrSpaceCast(VC, DestTy),
2070
                    Name);
2071
    }
2072
 
2073
    return Insert(CastInst::CreatePointerBitCastOrAddrSpaceCast(V, DestTy),
2074
                  Name);
2075
  }
2076
 
2077
  Value *CreateIntCast(Value *V, Type *DestTy, bool isSigned,
2078
                       const Twine &Name = "") {
2079
    if (V->getType() == DestTy)
2080
      return V;
2081
    if (auto *VC = dyn_cast<Constant>(V))
2082
      return Insert(Folder.CreateIntCast(VC, DestTy, isSigned), Name);
2083
    return Insert(CastInst::CreateIntegerCast(V, DestTy, isSigned), Name);
2084
  }
2085
 
2086
  Value *CreateBitOrPointerCast(Value *V, Type *DestTy,
2087
                                const Twine &Name = "") {
2088
    if (V->getType() == DestTy)
2089
      return V;
2090
    if (V->getType()->isPtrOrPtrVectorTy() && DestTy->isIntOrIntVectorTy())
2091
      return CreatePtrToInt(V, DestTy, Name);
2092
    if (V->getType()->isIntOrIntVectorTy() && DestTy->isPtrOrPtrVectorTy())
2093
      return CreateIntToPtr(V, DestTy, Name);
2094
 
2095
    return CreateBitCast(V, DestTy, Name);
2096
  }
2097
 
2098
  Value *CreateFPCast(Value *V, Type *DestTy, const Twine &Name = "") {
2099
    if (V->getType() == DestTy)
2100
      return V;
2101
    if (auto *VC = dyn_cast<Constant>(V))
2102
      return Insert(Folder.CreateFPCast(VC, DestTy), Name);
2103
    return Insert(CastInst::CreateFPCast(V, DestTy), Name);
2104
  }
2105
 
2106
  CallInst *CreateConstrainedFPCast(
2107
      Intrinsic::ID ID, Value *V, Type *DestTy,
2108
      Instruction *FMFSource = nullptr, const Twine &Name = "",
2109
      MDNode *FPMathTag = nullptr,
2110
      std::optional<RoundingMode> Rounding = std::nullopt,
2111
      std::optional<fp::ExceptionBehavior> Except = std::nullopt);
2112
 
2113
  // Provided to resolve 'CreateIntCast(Ptr, Ptr, "...")', giving a
2114
  // compile time error, instead of converting the string to bool for the
2115
  // isSigned parameter.
2116
  Value *CreateIntCast(Value *, Type *, const char *) = delete;
2117
 
2118
  //===--------------------------------------------------------------------===//
2119
  // Instruction creation methods: Compare Instructions
2120
  //===--------------------------------------------------------------------===//
2121
 
2122
  Value *CreateICmpEQ(Value *LHS, Value *RHS, const Twine &Name = "") {
2123
    return CreateICmp(ICmpInst::ICMP_EQ, LHS, RHS, Name);
2124
  }
2125
 
2126
  Value *CreateICmpNE(Value *LHS, Value *RHS, const Twine &Name = "") {
2127
    return CreateICmp(ICmpInst::ICMP_NE, LHS, RHS, Name);
2128
  }
2129
 
2130
  Value *CreateICmpUGT(Value *LHS, Value *RHS, const Twine &Name = "") {
2131
    return CreateICmp(ICmpInst::ICMP_UGT, LHS, RHS, Name);
2132
  }
2133
 
2134
  Value *CreateICmpUGE(Value *LHS, Value *RHS, const Twine &Name = "") {
2135
    return CreateICmp(ICmpInst::ICMP_UGE, LHS, RHS, Name);
2136
  }
2137
 
2138
  Value *CreateICmpULT(Value *LHS, Value *RHS, const Twine &Name = "") {
2139
    return CreateICmp(ICmpInst::ICMP_ULT, LHS, RHS, Name);
2140
  }
2141
 
2142
  Value *CreateICmpULE(Value *LHS, Value *RHS, const Twine &Name = "") {
2143
    return CreateICmp(ICmpInst::ICMP_ULE, LHS, RHS, Name);
2144
  }
2145
 
2146
  Value *CreateICmpSGT(Value *LHS, Value *RHS, const Twine &Name = "") {
2147
    return CreateICmp(ICmpInst::ICMP_SGT, LHS, RHS, Name);
2148
  }
2149
 
2150
  Value *CreateICmpSGE(Value *LHS, Value *RHS, const Twine &Name = "") {
2151
    return CreateICmp(ICmpInst::ICMP_SGE, LHS, RHS, Name);
2152
  }
2153
 
2154
  Value *CreateICmpSLT(Value *LHS, Value *RHS, const Twine &Name = "") {
2155
    return CreateICmp(ICmpInst::ICMP_SLT, LHS, RHS, Name);
2156
  }
2157
 
2158
  Value *CreateICmpSLE(Value *LHS, Value *RHS, const Twine &Name = "") {
2159
    return CreateICmp(ICmpInst::ICMP_SLE, LHS, RHS, Name);
2160
  }
2161
 
2162
  Value *CreateFCmpOEQ(Value *LHS, Value *RHS, const Twine &Name = "",
2163
                       MDNode *FPMathTag = nullptr) {
2164
    return CreateFCmp(FCmpInst::FCMP_OEQ, LHS, RHS, Name, FPMathTag);
2165
  }
2166
 
2167
  Value *CreateFCmpOGT(Value *LHS, Value *RHS, const Twine &Name = "",
2168
                       MDNode *FPMathTag = nullptr) {
2169
    return CreateFCmp(FCmpInst::FCMP_OGT, LHS, RHS, Name, FPMathTag);
2170
  }
2171
 
2172
  Value *CreateFCmpOGE(Value *LHS, Value *RHS, const Twine &Name = "",
2173
                       MDNode *FPMathTag = nullptr) {
2174
    return CreateFCmp(FCmpInst::FCMP_OGE, LHS, RHS, Name, FPMathTag);
2175
  }
2176
 
2177
  Value *CreateFCmpOLT(Value *LHS, Value *RHS, const Twine &Name = "",
2178
                       MDNode *FPMathTag = nullptr) {
2179
    return CreateFCmp(FCmpInst::FCMP_OLT, LHS, RHS, Name, FPMathTag);
2180
  }
2181
 
2182
  Value *CreateFCmpOLE(Value *LHS, Value *RHS, const Twine &Name = "",
2183
                       MDNode *FPMathTag = nullptr) {
2184
    return CreateFCmp(FCmpInst::FCMP_OLE, LHS, RHS, Name, FPMathTag);
2185
  }
2186
 
2187
  Value *CreateFCmpONE(Value *LHS, Value *RHS, const Twine &Name = "",
2188
                       MDNode *FPMathTag = nullptr) {
2189
    return CreateFCmp(FCmpInst::FCMP_ONE, LHS, RHS, Name, FPMathTag);
2190
  }
2191
 
2192
  Value *CreateFCmpORD(Value *LHS, Value *RHS, const Twine &Name = "",
2193
                       MDNode *FPMathTag = nullptr) {
2194
    return CreateFCmp(FCmpInst::FCMP_ORD, LHS, RHS, Name, FPMathTag);
2195
  }
2196
 
2197
  Value *CreateFCmpUNO(Value *LHS, Value *RHS, const Twine &Name = "",
2198
                       MDNode *FPMathTag = nullptr) {
2199
    return CreateFCmp(FCmpInst::FCMP_UNO, LHS, RHS, Name, FPMathTag);
2200
  }
2201
 
2202
  Value *CreateFCmpUEQ(Value *LHS, Value *RHS, const Twine &Name = "",
2203
                       MDNode *FPMathTag = nullptr) {
2204
    return CreateFCmp(FCmpInst::FCMP_UEQ, LHS, RHS, Name, FPMathTag);
2205
  }
2206
 
2207
  Value *CreateFCmpUGT(Value *LHS, Value *RHS, const Twine &Name = "",
2208
                       MDNode *FPMathTag = nullptr) {
2209
    return CreateFCmp(FCmpInst::FCMP_UGT, LHS, RHS, Name, FPMathTag);
2210
  }
2211
 
2212
  Value *CreateFCmpUGE(Value *LHS, Value *RHS, const Twine &Name = "",
2213
                       MDNode *FPMathTag = nullptr) {
2214
    return CreateFCmp(FCmpInst::FCMP_UGE, LHS, RHS, Name, FPMathTag);
2215
  }
2216
 
2217
  Value *CreateFCmpULT(Value *LHS, Value *RHS, const Twine &Name = "",
2218
                       MDNode *FPMathTag = nullptr) {
2219
    return CreateFCmp(FCmpInst::FCMP_ULT, LHS, RHS, Name, FPMathTag);
2220
  }
2221
 
2222
  Value *CreateFCmpULE(Value *LHS, Value *RHS, const Twine &Name = "",
2223
                       MDNode *FPMathTag = nullptr) {
2224
    return CreateFCmp(FCmpInst::FCMP_ULE, LHS, RHS, Name, FPMathTag);
2225
  }
2226
 
2227
  Value *CreateFCmpUNE(Value *LHS, Value *RHS, const Twine &Name = "",
2228
                       MDNode *FPMathTag = nullptr) {
2229
    return CreateFCmp(FCmpInst::FCMP_UNE, LHS, RHS, Name, FPMathTag);
2230
  }
2231
 
2232
  Value *CreateICmp(CmpInst::Predicate P, Value *LHS, Value *RHS,
2233
                    const Twine &Name = "") {
2234
    if (auto *V = Folder.FoldICmp(P, LHS, RHS))
2235
      return V;
2236
    return Insert(new ICmpInst(P, LHS, RHS), Name);
2237
  }
2238
 
2239
  // Create a quiet floating-point comparison (i.e. one that raises an FP
2240
  // exception only in the case where an input is a signaling NaN).
2241
  // Note that this differs from CreateFCmpS only if IsFPConstrained is true.
2242
  Value *CreateFCmp(CmpInst::Predicate P, Value *LHS, Value *RHS,
2243
                    const Twine &Name = "", MDNode *FPMathTag = nullptr) {
2244
    return CreateFCmpHelper(P, LHS, RHS, Name, FPMathTag, false);
2245
  }
2246
 
2247
  Value *CreateCmp(CmpInst::Predicate Pred, Value *LHS, Value *RHS,
2248
                   const Twine &Name = "", MDNode *FPMathTag = nullptr) {
2249
    return CmpInst::isFPPredicate(Pred)
2250
               ? CreateFCmp(Pred, LHS, RHS, Name, FPMathTag)
2251
               : CreateICmp(Pred, LHS, RHS, Name);
2252
  }
2253
 
2254
  // Create a signaling floating-point comparison (i.e. one that raises an FP
2255
  // exception whenever an input is any NaN, signaling or quiet).
2256
  // Note that this differs from CreateFCmp only if IsFPConstrained is true.
2257
  Value *CreateFCmpS(CmpInst::Predicate P, Value *LHS, Value *RHS,
2258
                     const Twine &Name = "", MDNode *FPMathTag = nullptr) {
2259
    return CreateFCmpHelper(P, LHS, RHS, Name, FPMathTag, true);
2260
  }
2261
 
2262
private:
2263
  // Helper routine to create either a signaling or a quiet FP comparison.
2264
  Value *CreateFCmpHelper(CmpInst::Predicate P, Value *LHS, Value *RHS,
2265
                          const Twine &Name, MDNode *FPMathTag,
2266
                          bool IsSignaling);
2267
 
2268
public:
2269
  CallInst *CreateConstrainedFPCmp(
2270
      Intrinsic::ID ID, CmpInst::Predicate P, Value *L, Value *R,
2271
      const Twine &Name = "",
2272
      std::optional<fp::ExceptionBehavior> Except = std::nullopt);
2273
 
2274
  //===--------------------------------------------------------------------===//
2275
  // Instruction creation methods: Other Instructions
2276
  //===--------------------------------------------------------------------===//
2277
 
2278
  PHINode *CreatePHI(Type *Ty, unsigned NumReservedValues,
2279
                     const Twine &Name = "") {
2280
    PHINode *Phi = PHINode::Create(Ty, NumReservedValues);
2281
    if (isa<FPMathOperator>(Phi))
2282
      setFPAttrs(Phi, nullptr /* MDNode* */, FMF);
2283
    return Insert(Phi, Name);
2284
  }
2285
 
2286
private:
2287
  CallInst *createCallHelper(Function *Callee, ArrayRef<Value *> Ops,
2288
                             const Twine &Name = "",
2289
                             Instruction *FMFSource = nullptr,
2290
                             ArrayRef<OperandBundleDef> OpBundles = {});
2291
 
2292
public:
2293
  CallInst *CreateCall(FunctionType *FTy, Value *Callee,
2294
                       ArrayRef<Value *> Args = std::nullopt,
2295
                       const Twine &Name = "", MDNode *FPMathTag = nullptr) {
2296
    CallInst *CI = CallInst::Create(FTy, Callee, Args, DefaultOperandBundles);
2297
    if (IsFPConstrained)
2298
      setConstrainedFPCallAttr(CI);
2299
    if (isa<FPMathOperator>(CI))
2300
      setFPAttrs(CI, FPMathTag, FMF);
2301
    return Insert(CI, Name);
2302
  }
2303
 
2304
  CallInst *CreateCall(FunctionType *FTy, Value *Callee, ArrayRef<Value *> Args,
2305
                       ArrayRef<OperandBundleDef> OpBundles,
2306
                       const Twine &Name = "", MDNode *FPMathTag = nullptr) {
2307
    CallInst *CI = CallInst::Create(FTy, Callee, Args, OpBundles);
2308
    if (IsFPConstrained)
2309
      setConstrainedFPCallAttr(CI);
2310
    if (isa<FPMathOperator>(CI))
2311
      setFPAttrs(CI, FPMathTag, FMF);
2312
    return Insert(CI, Name);
2313
  }
2314
 
2315
  CallInst *CreateCall(FunctionCallee Callee,
2316
                       ArrayRef<Value *> Args = std::nullopt,
2317
                       const Twine &Name = "", MDNode *FPMathTag = nullptr) {
2318
    return CreateCall(Callee.getFunctionType(), Callee.getCallee(), Args, Name,
2319
                      FPMathTag);
2320
  }
2321
 
2322
  CallInst *CreateCall(FunctionCallee Callee, ArrayRef<Value *> Args,
2323
                       ArrayRef<OperandBundleDef> OpBundles,
2324
                       const Twine &Name = "", MDNode *FPMathTag = nullptr) {
2325
    return CreateCall(Callee.getFunctionType(), Callee.getCallee(), Args,
2326
                      OpBundles, Name, FPMathTag);
2327
  }
2328
 
2329
  CallInst *CreateConstrainedFPCall(
2330
      Function *Callee, ArrayRef<Value *> Args, const Twine &Name = "",
2331
      std::optional<RoundingMode> Rounding = std::nullopt,
2332
      std::optional<fp::ExceptionBehavior> Except = std::nullopt);
2333
 
2334
  Value *CreateSelect(Value *C, Value *True, Value *False,
2335
                      const Twine &Name = "", Instruction *MDFrom = nullptr);
2336
 
2337
  VAArgInst *CreateVAArg(Value *List, Type *Ty, const Twine &Name = "") {
2338
    return Insert(new VAArgInst(List, Ty), Name);
2339
  }
2340
 
2341
  Value *CreateExtractElement(Value *Vec, Value *Idx,
2342
                              const Twine &Name = "") {
2343
    if (Value *V = Folder.FoldExtractElement(Vec, Idx))
2344
      return V;
2345
    return Insert(ExtractElementInst::Create(Vec, Idx), Name);
2346
  }
2347
 
2348
  Value *CreateExtractElement(Value *Vec, uint64_t Idx,
2349
                              const Twine &Name = "") {
2350
    return CreateExtractElement(Vec, getInt64(Idx), Name);
2351
  }
2352
 
2353
  Value *CreateInsertElement(Type *VecTy, Value *NewElt, Value *Idx,
2354
                             const Twine &Name = "") {
2355
    return CreateInsertElement(PoisonValue::get(VecTy), NewElt, Idx, Name);
2356
  }
2357
 
2358
  Value *CreateInsertElement(Type *VecTy, Value *NewElt, uint64_t Idx,
2359
                             const Twine &Name = "") {
2360
    return CreateInsertElement(PoisonValue::get(VecTy), NewElt, Idx, Name);
2361
  }
2362
 
2363
  Value *CreateInsertElement(Value *Vec, Value *NewElt, Value *Idx,
2364
                             const Twine &Name = "") {
2365
    if (Value *V = Folder.FoldInsertElement(Vec, NewElt, Idx))
2366
      return V;
2367
    return Insert(InsertElementInst::Create(Vec, NewElt, Idx), Name);
2368
  }
2369
 
2370
  Value *CreateInsertElement(Value *Vec, Value *NewElt, uint64_t Idx,
2371
                             const Twine &Name = "") {
2372
    return CreateInsertElement(Vec, NewElt, getInt64(Idx), Name);
2373
  }
2374
 
2375
  Value *CreateShuffleVector(Value *V1, Value *V2, Value *Mask,
2376
                             const Twine &Name = "") {
2377
    SmallVector<int, 16> IntMask;
2378
    ShuffleVectorInst::getShuffleMask(cast<Constant>(Mask), IntMask);
2379
    return CreateShuffleVector(V1, V2, IntMask, Name);
2380
  }
2381
 
2382
  /// See class ShuffleVectorInst for a description of the mask representation.
2383
  Value *CreateShuffleVector(Value *V1, Value *V2, ArrayRef<int> Mask,
2384
                             const Twine &Name = "") {
2385
    if (Value *V = Folder.FoldShuffleVector(V1, V2, Mask))
2386
      return V;
2387
    return Insert(new ShuffleVectorInst(V1, V2, Mask), Name);
2388
  }
2389
 
2390
  /// Create a unary shuffle. The second vector operand of the IR instruction
2391
  /// is poison.
2392
  Value *CreateShuffleVector(Value *V, ArrayRef<int> Mask,
2393
                             const Twine &Name = "") {
2394
    return CreateShuffleVector(V, PoisonValue::get(V->getType()), Mask, Name);
2395
  }
2396
 
2397
  Value *CreateExtractValue(Value *Agg, ArrayRef<unsigned> Idxs,
2398
                            const Twine &Name = "") {
2399
    if (auto *V = Folder.FoldExtractValue(Agg, Idxs))
2400
      return V;
2401
    return Insert(ExtractValueInst::Create(Agg, Idxs), Name);
2402
  }
2403
 
2404
  Value *CreateInsertValue(Value *Agg, Value *Val, ArrayRef<unsigned> Idxs,
2405
                           const Twine &Name = "") {
2406
    if (auto *V = Folder.FoldInsertValue(Agg, Val, Idxs))
2407
      return V;
2408
    return Insert(InsertValueInst::Create(Agg, Val, Idxs), Name);
2409
  }
2410
 
2411
  LandingPadInst *CreateLandingPad(Type *Ty, unsigned NumClauses,
2412
                                   const Twine &Name = "") {
2413
    return Insert(LandingPadInst::Create(Ty, NumClauses), Name);
2414
  }
2415
 
2416
  Value *CreateFreeze(Value *V, const Twine &Name = "") {
2417
    return Insert(new FreezeInst(V), Name);
2418
  }
2419
 
2420
  //===--------------------------------------------------------------------===//
2421
  // Utility creation methods
2422
  //===--------------------------------------------------------------------===//
2423
 
2424
  /// Return a boolean value testing if \p Arg == 0.
2425
  Value *CreateIsNull(Value *Arg, const Twine &Name = "") {
2426
    return CreateICmpEQ(Arg, ConstantInt::getNullValue(Arg->getType()), Name);
2427
  }
2428
 
2429
  /// Return a boolean value testing if \p Arg != 0.
2430
  Value *CreateIsNotNull(Value *Arg, const Twine &Name = "") {
2431
    return CreateICmpNE(Arg, ConstantInt::getNullValue(Arg->getType()), Name);
2432
  }
2433
 
2434
  /// Return a boolean value testing if \p Arg < 0.
2435
  Value *CreateIsNeg(Value *Arg, const Twine &Name = "") {
2436
    return CreateICmpSLT(Arg, ConstantInt::getNullValue(Arg->getType()), Name);
2437
  }
2438
 
2439
  /// Return a boolean value testing if \p Arg > -1.
2440
  Value *CreateIsNotNeg(Value *Arg, const Twine &Name = "") {
2441
    return CreateICmpSGT(Arg, ConstantInt::getAllOnesValue(Arg->getType()),
2442
                         Name);
2443
  }
2444
 
2445
  /// Return the i64 difference between two pointer values, dividing out
2446
  /// the size of the pointed-to objects.
2447
  ///
2448
  /// This is intended to implement C-style pointer subtraction. As such, the
2449
  /// pointers must be appropriately aligned for their element types and
2450
  /// pointing into the same object.
2451
  Value *CreatePtrDiff(Type *ElemTy, Value *LHS, Value *RHS,
2452
                       const Twine &Name = "");
2453
 
2454
  /// Create a launder.invariant.group intrinsic call. If Ptr type is
2455
  /// different from pointer to i8, it's casted to pointer to i8 in the same
2456
  /// address space before call and casted back to Ptr type after call.
2457
  Value *CreateLaunderInvariantGroup(Value *Ptr);
2458
 
2459
  /// \brief Create a strip.invariant.group intrinsic call. If Ptr type is
2460
  /// different from pointer to i8, it's casted to pointer to i8 in the same
2461
  /// address space before call and casted back to Ptr type after call.
2462
  Value *CreateStripInvariantGroup(Value *Ptr);
2463
 
2464
  /// Return a vector value that contains the vector V reversed
2465
  Value *CreateVectorReverse(Value *V, const Twine &Name = "");
2466
 
2467
  /// Return a vector splice intrinsic if using scalable vectors, otherwise
2468
  /// return a shufflevector. If the immediate is positive, a vector is
2469
  /// extracted from concat(V1, V2), starting at Imm. If the immediate
2470
  /// is negative, we extract -Imm elements from V1 and the remaining
2471
  /// elements from V2. Imm is a signed integer in the range
2472
  /// -VL <= Imm < VL (where VL is the runtime vector length of the
2473
  /// source/result vector)
2474
  Value *CreateVectorSplice(Value *V1, Value *V2, int64_t Imm,
2475
                            const Twine &Name = "");
2476
 
2477
  /// Return a vector value that contains \arg V broadcasted to \p
2478
  /// NumElts elements.
2479
  Value *CreateVectorSplat(unsigned NumElts, Value *V, const Twine &Name = "");
2480
 
2481
  /// Return a vector value that contains \arg V broadcasted to \p
2482
  /// EC elements.
2483
  Value *CreateVectorSplat(ElementCount EC, Value *V, const Twine &Name = "");
2484
 
2485
  /// Return a value that has been extracted from a larger integer type.
2486
  Value *CreateExtractInteger(const DataLayout &DL, Value *From,
2487
                              IntegerType *ExtractedTy, uint64_t Offset,
2488
                              const Twine &Name);
2489
 
2490
  Value *CreatePreserveArrayAccessIndex(Type *ElTy, Value *Base,
2491
                                        unsigned Dimension, unsigned LastIndex,
2492
                                        MDNode *DbgInfo);
2493
 
2494
  Value *CreatePreserveUnionAccessIndex(Value *Base, unsigned FieldIndex,
2495
                                        MDNode *DbgInfo);
2496
 
2497
  Value *CreatePreserveStructAccessIndex(Type *ElTy, Value *Base,
2498
                                         unsigned Index, unsigned FieldIndex,
2499
                                         MDNode *DbgInfo);
2500
 
2501
private:
2502
  /// Helper function that creates an assume intrinsic call that
2503
  /// represents an alignment assumption on the provided pointer \p PtrValue
2504
  /// with offset \p OffsetValue and alignment value \p AlignValue.
2505
  CallInst *CreateAlignmentAssumptionHelper(const DataLayout &DL,
2506
                                            Value *PtrValue, Value *AlignValue,
2507
                                            Value *OffsetValue);
2508
 
2509
public:
2510
  /// Create an assume intrinsic call that represents an alignment
2511
  /// assumption on the provided pointer.
2512
  ///
2513
  /// An optional offset can be provided, and if it is provided, the offset
2514
  /// must be subtracted from the provided pointer to get the pointer with the
2515
  /// specified alignment.
2516
  CallInst *CreateAlignmentAssumption(const DataLayout &DL, Value *PtrValue,
2517
                                      unsigned Alignment,
2518
                                      Value *OffsetValue = nullptr);
2519
 
2520
  /// Create an assume intrinsic call that represents an alignment
2521
  /// assumption on the provided pointer.
2522
  ///
2523
  /// An optional offset can be provided, and if it is provided, the offset
2524
  /// must be subtracted from the provided pointer to get the pointer with the
2525
  /// specified alignment.
2526
  ///
2527
  /// This overload handles the condition where the Alignment is dependent
2528
  /// on an existing value rather than a static value.
2529
  CallInst *CreateAlignmentAssumption(const DataLayout &DL, Value *PtrValue,
2530
                                      Value *Alignment,
2531
                                      Value *OffsetValue = nullptr);
2532
};
2533
 
2534
/// This provides a uniform API for creating instructions and inserting
2535
/// them into a basic block: either at the end of a BasicBlock, or at a specific
2536
/// iterator location in a block.
2537
///
2538
/// Note that the builder does not expose the full generality of LLVM
2539
/// instructions.  For access to extra instruction properties, use the mutators
2540
/// (e.g. setVolatile) on the instructions after they have been
2541
/// created. Convenience state exists to specify fast-math flags and fp-math
2542
/// tags.
2543
///
2544
/// The first template argument specifies a class to use for creating constants.
2545
/// This defaults to creating minimally folded constants.  The second template
2546
/// argument allows clients to specify custom insertion hooks that are called on
2547
/// every newly created insertion.
2548
template <typename FolderTy = ConstantFolder,
2549
          typename InserterTy = IRBuilderDefaultInserter>
2550
class IRBuilder : public IRBuilderBase {
2551
private:
2552
  FolderTy Folder;
2553
  InserterTy Inserter;
2554
 
2555
public:
2556
  IRBuilder(LLVMContext &C, FolderTy Folder, InserterTy Inserter = InserterTy(),
2557
            MDNode *FPMathTag = nullptr,
2558
            ArrayRef<OperandBundleDef> OpBundles = std::nullopt)
2559
      : IRBuilderBase(C, this->Folder, this->Inserter, FPMathTag, OpBundles),
2560
        Folder(Folder), Inserter(Inserter) {}
2561
 
2562
  explicit IRBuilder(LLVMContext &C, MDNode *FPMathTag = nullptr,
2563
                     ArrayRef<OperandBundleDef> OpBundles = std::nullopt)
2564
      : IRBuilderBase(C, this->Folder, this->Inserter, FPMathTag, OpBundles) {}
2565
 
2566
  explicit IRBuilder(BasicBlock *TheBB, FolderTy Folder,
2567
                     MDNode *FPMathTag = nullptr,
2568
                     ArrayRef<OperandBundleDef> OpBundles = std::nullopt)
2569
      : IRBuilderBase(TheBB->getContext(), this->Folder, this->Inserter,
2570
                      FPMathTag, OpBundles),
2571
        Folder(Folder) {
2572
    SetInsertPoint(TheBB);
2573
  }
2574
 
2575
  explicit IRBuilder(BasicBlock *TheBB, MDNode *FPMathTag = nullptr,
2576
                     ArrayRef<OperandBundleDef> OpBundles = std::nullopt)
2577
      : IRBuilderBase(TheBB->getContext(), this->Folder, this->Inserter,
2578
                      FPMathTag, OpBundles) {
2579
    SetInsertPoint(TheBB);
2580
  }
2581
 
2582
  explicit IRBuilder(Instruction *IP, MDNode *FPMathTag = nullptr,
2583
                     ArrayRef<OperandBundleDef> OpBundles = std::nullopt)
2584
      : IRBuilderBase(IP->getContext(), this->Folder, this->Inserter, FPMathTag,
2585
                      OpBundles) {
2586
    SetInsertPoint(IP);
2587
  }
2588
 
2589
  IRBuilder(BasicBlock *TheBB, BasicBlock::iterator IP, FolderTy Folder,
2590
            MDNode *FPMathTag = nullptr,
2591
            ArrayRef<OperandBundleDef> OpBundles = std::nullopt)
2592
      : IRBuilderBase(TheBB->getContext(), this->Folder, this->Inserter,
2593
                      FPMathTag, OpBundles),
2594
        Folder(Folder) {
2595
    SetInsertPoint(TheBB, IP);
2596
  }
2597
 
2598
  IRBuilder(BasicBlock *TheBB, BasicBlock::iterator IP,
2599
            MDNode *FPMathTag = nullptr,
2600
            ArrayRef<OperandBundleDef> OpBundles = std::nullopt)
2601
      : IRBuilderBase(TheBB->getContext(), this->Folder, this->Inserter,
2602
                      FPMathTag, OpBundles) {
2603
    SetInsertPoint(TheBB, IP);
2604
  }
2605
 
2606
  /// Avoid copying the full IRBuilder. Prefer using InsertPointGuard
2607
  /// or FastMathFlagGuard instead.
2608
  IRBuilder(const IRBuilder &) = delete;
2609
 
2610
  InserterTy &getInserter() { return Inserter; }
2611
};
2612
 
2613
template <typename FolderTy, typename InserterTy>
2614
IRBuilder(LLVMContext &, FolderTy, InserterTy, MDNode *,
2615
          ArrayRef<OperandBundleDef>) -> IRBuilder<FolderTy, InserterTy>;
2616
IRBuilder(LLVMContext &, MDNode *, ArrayRef<OperandBundleDef>) -> IRBuilder<>;
2617
template <typename FolderTy>
2618
IRBuilder(BasicBlock *, FolderTy, MDNode *, ArrayRef<OperandBundleDef>)
2619
    -> IRBuilder<FolderTy>;
2620
IRBuilder(BasicBlock *, MDNode *, ArrayRef<OperandBundleDef>) -> IRBuilder<>;
2621
IRBuilder(Instruction *, MDNode *, ArrayRef<OperandBundleDef>) -> IRBuilder<>;
2622
template <typename FolderTy>
2623
IRBuilder(BasicBlock *, BasicBlock::iterator, FolderTy, MDNode *,
2624
          ArrayRef<OperandBundleDef>) -> IRBuilder<FolderTy>;
2625
IRBuilder(BasicBlock *, BasicBlock::iterator, MDNode *,
2626
          ArrayRef<OperandBundleDef>) -> IRBuilder<>;
2627
 
2628
 
2629
// Create wrappers for C Binding types (see CBindingWrapping.h).
2630
DEFINE_SIMPLE_CONVERSION_FUNCTIONS(IRBuilder<>, LLVMBuilderRef)
2631
 
2632
} // end namespace llvm
2633
 
2634
#endif // LLVM_IR_IRBUILDER_H