Subversion Repositories QNX 8.QNX8 LLVM/Clang compiler suite

Rev

Details | Last modification | View Log | RSS feed

Rev Author Line No. Line
14 pmbaty 1
//===- llvm/DataLayout.h - Data size & alignment info -----------*- C++ -*-===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
// This file defines layout properties related to datatype size/offset/alignment
10
// information.  It uses lazy annotations to cache information about how
11
// structure types are laid out and used.
12
//
13
// This structure should be created once, filled in if the defaults are not
14
// correct and then passed around by const&.  None of the members functions
15
// require modification to the object.
16
//
17
//===----------------------------------------------------------------------===//
18
 
19
#ifndef LLVM_IR_DATALAYOUT_H
20
#define LLVM_IR_DATALAYOUT_H
21
 
22
#include "llvm/ADT/APInt.h"
23
#include "llvm/ADT/ArrayRef.h"
24
#include "llvm/ADT/STLExtras.h"
25
#include "llvm/ADT/SmallVector.h"
26
#include "llvm/ADT/StringRef.h"
27
#include "llvm/IR/DerivedTypes.h"
28
#include "llvm/IR/Type.h"
29
#include "llvm/Support/Alignment.h"
30
#include "llvm/Support/Casting.h"
31
#include "llvm/Support/Compiler.h"
32
#include "llvm/Support/ErrorHandling.h"
33
#include "llvm/Support/MathExtras.h"
34
#include "llvm/Support/TrailingObjects.h"
35
#include "llvm/Support/TypeSize.h"
36
#include <cassert>
37
#include <cstdint>
38
#include <string>
39
 
40
// This needs to be outside of the namespace, to avoid conflict with llvm-c
41
// decl.
42
using LLVMTargetDataRef = struct LLVMOpaqueTargetData *;
43
 
44
namespace llvm {
45
 
46
class GlobalVariable;
47
class LLVMContext;
48
class Module;
49
class StructLayout;
50
class Triple;
51
class Value;
52
 
53
/// Enum used to categorize the alignment types stored by LayoutAlignElem
54
enum AlignTypeEnum {
55
  INVALID_ALIGN = 0,
56
  INTEGER_ALIGN = 'i',
57
  VECTOR_ALIGN = 'v',
58
  FLOAT_ALIGN = 'f',
59
  AGGREGATE_ALIGN = 'a'
60
};
61
 
62
// FIXME: Currently the DataLayout string carries a "preferred alignment"
63
// for types. As the DataLayout is module/global, this should likely be
64
// sunk down to an FTTI element that is queried rather than a global
65
// preference.
66
 
67
/// Layout alignment element.
68
///
69
/// Stores the alignment data associated with a given alignment type (integer,
70
/// vector, float) and type bit width.
71
///
72
/// \note The unusual order of elements in the structure attempts to reduce
73
/// padding and make the structure slightly more cache friendly.
74
struct LayoutAlignElem {
75
  /// Alignment type from \c AlignTypeEnum
76
  unsigned AlignType : 8;
77
  unsigned TypeBitWidth : 24;
78
  Align ABIAlign;
79
  Align PrefAlign;
80
 
81
  static LayoutAlignElem get(AlignTypeEnum align_type, Align abi_align,
82
                             Align pref_align, uint32_t bit_width);
83
 
84
  bool operator==(const LayoutAlignElem &rhs) const;
85
};
86
 
87
/// Layout pointer alignment element.
88
///
89
/// Stores the alignment data associated with a given pointer and address space.
90
///
91
/// \note The unusual order of elements in the structure attempts to reduce
92
/// padding and make the structure slightly more cache friendly.
93
struct PointerAlignElem {
94
  Align ABIAlign;
95
  Align PrefAlign;
96
  uint32_t TypeBitWidth;
97
  uint32_t AddressSpace;
98
  uint32_t IndexBitWidth;
99
 
100
  /// Initializer
101
  static PointerAlignElem getInBits(uint32_t AddressSpace, Align ABIAlign,
102
                                    Align PrefAlign, uint32_t TypeBitWidth,
103
                                    uint32_t IndexBitWidth);
104
 
105
  bool operator==(const PointerAlignElem &rhs) const;
106
};
107
 
108
/// A parsed version of the target data layout string in and methods for
109
/// querying it.
110
///
111
/// The target data layout string is specified *by the target* - a frontend
112
/// generating LLVM IR is required to generate the right target data for the
113
/// target being codegen'd to.
114
class DataLayout {
115
public:
116
  enum class FunctionPtrAlignType {
117
    /// The function pointer alignment is independent of the function alignment.
118
    Independent,
119
    /// The function pointer alignment is a multiple of the function alignment.
120
    MultipleOfFunctionAlign,
121
  };
122
private:
123
  /// Defaults to false.
124
  bool BigEndian;
125
 
126
  unsigned AllocaAddrSpace;
127
  MaybeAlign StackNaturalAlign;
128
  unsigned ProgramAddrSpace;
129
  unsigned DefaultGlobalsAddrSpace;
130
 
131
  MaybeAlign FunctionPtrAlign;
132
  FunctionPtrAlignType TheFunctionPtrAlignType;
133
 
134
  enum ManglingModeT {
135
    MM_None,
136
    MM_ELF,
137
    MM_MachO,
138
    MM_WinCOFF,
139
    MM_WinCOFFX86,
140
    MM_GOFF,
141
    MM_Mips,
142
    MM_XCOFF
143
  };
144
  ManglingModeT ManglingMode;
145
 
146
  SmallVector<unsigned char, 8> LegalIntWidths;
147
 
148
  /// Primitive type alignment data. This is sorted by type and bit
149
  /// width during construction.
150
  using AlignmentsTy = SmallVector<LayoutAlignElem, 16>;
151
  AlignmentsTy Alignments;
152
 
153
  AlignmentsTy::const_iterator
154
  findAlignmentLowerBound(AlignTypeEnum AlignType, uint32_t BitWidth) const {
155
    return const_cast<DataLayout *>(this)->findAlignmentLowerBound(AlignType,
156
                                                                   BitWidth);
157
  }
158
 
159
  AlignmentsTy::iterator
160
  findAlignmentLowerBound(AlignTypeEnum AlignType, uint32_t BitWidth);
161
 
162
  /// The string representation used to create this DataLayout
163
  std::string StringRepresentation;
164
 
165
  using PointersTy = SmallVector<PointerAlignElem, 8>;
166
  PointersTy Pointers;
167
 
168
  const PointerAlignElem &getPointerAlignElem(uint32_t AddressSpace) const;
169
 
170
  // The StructType -> StructLayout map.
171
  mutable void *LayoutMap = nullptr;
172
 
173
  /// Pointers in these address spaces are non-integral, and don't have a
174
  /// well-defined bitwise representation.
175
  SmallVector<unsigned, 8> NonIntegralAddressSpaces;
176
 
177
  /// Attempts to set the alignment of the given type. Returns an error
178
  /// description on failure.
179
  Error setAlignment(AlignTypeEnum align_type, Align abi_align,
180
                     Align pref_align, uint32_t bit_width);
181
 
182
  /// Attempts to set the alignment of a pointer in the given address space.
183
  /// Returns an error description on failure.
184
  Error setPointerAlignmentInBits(uint32_t AddrSpace, Align ABIAlign,
185
                                  Align PrefAlign, uint32_t TypeBitWidth,
186
                                  uint32_t IndexBitWidth);
187
 
188
  /// Internal helper to get alignment for integer of given bitwidth.
189
  Align getIntegerAlignment(uint32_t BitWidth, bool abi_or_pref) const;
190
 
191
  /// Internal helper method that returns requested alignment for type.
192
  Align getAlignment(Type *Ty, bool abi_or_pref) const;
193
 
194
  /// Attempts to parse a target data specification string and reports an error
195
  /// if the string is malformed.
196
  Error parseSpecifier(StringRef Desc);
197
 
198
  // Free all internal data structures.
199
  void clear();
200
 
201
public:
202
  /// Constructs a DataLayout from a specification string. See reset().
203
  explicit DataLayout(StringRef LayoutDescription) {
204
    reset(LayoutDescription);
205
  }
206
 
207
  /// Initialize target data from properties stored in the module.
208
  explicit DataLayout(const Module *M);
209
 
210
  DataLayout(const DataLayout &DL) { *this = DL; }
211
 
212
  ~DataLayout(); // Not virtual, do not subclass this class
213
 
214
  DataLayout &operator=(const DataLayout &DL) {
215
    clear();
216
    StringRepresentation = DL.StringRepresentation;
217
    BigEndian = DL.isBigEndian();
218
    AllocaAddrSpace = DL.AllocaAddrSpace;
219
    StackNaturalAlign = DL.StackNaturalAlign;
220
    FunctionPtrAlign = DL.FunctionPtrAlign;
221
    TheFunctionPtrAlignType = DL.TheFunctionPtrAlignType;
222
    ProgramAddrSpace = DL.ProgramAddrSpace;
223
    DefaultGlobalsAddrSpace = DL.DefaultGlobalsAddrSpace;
224
    ManglingMode = DL.ManglingMode;
225
    LegalIntWidths = DL.LegalIntWidths;
226
    Alignments = DL.Alignments;
227
    Pointers = DL.Pointers;
228
    NonIntegralAddressSpaces = DL.NonIntegralAddressSpaces;
229
    return *this;
230
  }
231
 
232
  bool operator==(const DataLayout &Other) const;
233
  bool operator!=(const DataLayout &Other) const { return !(*this == Other); }
234
 
235
  void init(const Module *M);
236
 
237
  /// Parse a data layout string (with fallback to default values).
238
  void reset(StringRef LayoutDescription);
239
 
240
  /// Parse a data layout string and return the layout. Return an error
241
  /// description on failure.
242
  static Expected<DataLayout> parse(StringRef LayoutDescription);
243
 
244
  /// Layout endianness...
245
  bool isLittleEndian() const { return !BigEndian; }
246
  bool isBigEndian() const { return BigEndian; }
247
 
248
  /// Returns the string representation of the DataLayout.
249
  ///
250
  /// This representation is in the same format accepted by the string
251
  /// constructor above. This should not be used to compare two DataLayout as
252
  /// different string can represent the same layout.
253
  const std::string &getStringRepresentation() const {
254
    return StringRepresentation;
255
  }
256
 
257
  /// Test if the DataLayout was constructed from an empty string.
258
  bool isDefault() const { return StringRepresentation.empty(); }
259
 
260
  /// Returns true if the specified type is known to be a native integer
261
  /// type supported by the CPU.
262
  ///
263
  /// For example, i64 is not native on most 32-bit CPUs and i37 is not native
264
  /// on any known one. This returns false if the integer width is not legal.
265
  ///
266
  /// The width is specified in bits.
267
  bool isLegalInteger(uint64_t Width) const {
268
    return llvm::is_contained(LegalIntWidths, Width);
269
  }
270
 
271
  bool isIllegalInteger(uint64_t Width) const { return !isLegalInteger(Width); }
272
 
273
  /// Returns true if the given alignment exceeds the natural stack alignment.
274
  bool exceedsNaturalStackAlignment(Align Alignment) const {
275
    return StackNaturalAlign && (Alignment > *StackNaturalAlign);
276
  }
277
 
278
  Align getStackAlignment() const {
279
    assert(StackNaturalAlign && "StackNaturalAlign must be defined");
280
    return *StackNaturalAlign;
281
  }
282
 
283
  unsigned getAllocaAddrSpace() const { return AllocaAddrSpace; }
284
 
285
  /// Returns the alignment of function pointers, which may or may not be
286
  /// related to the alignment of functions.
287
  /// \see getFunctionPtrAlignType
288
  MaybeAlign getFunctionPtrAlign() const { return FunctionPtrAlign; }
289
 
290
  /// Return the type of function pointer alignment.
291
  /// \see getFunctionPtrAlign
292
  FunctionPtrAlignType getFunctionPtrAlignType() const {
293
    return TheFunctionPtrAlignType;
294
  }
295
 
296
  unsigned getProgramAddressSpace() const { return ProgramAddrSpace; }
297
  unsigned getDefaultGlobalsAddressSpace() const {
298
    return DefaultGlobalsAddrSpace;
299
  }
300
 
301
  bool hasMicrosoftFastStdCallMangling() const {
302
    return ManglingMode == MM_WinCOFFX86;
303
  }
304
 
305
  /// Returns true if symbols with leading question marks should not receive IR
306
  /// mangling. True for Windows mangling modes.
307
  bool doNotMangleLeadingQuestionMark() const {
308
    return ManglingMode == MM_WinCOFF || ManglingMode == MM_WinCOFFX86;
309
  }
310
 
311
  bool hasLinkerPrivateGlobalPrefix() const { return ManglingMode == MM_MachO; }
312
 
313
  StringRef getLinkerPrivateGlobalPrefix() const {
314
    if (ManglingMode == MM_MachO)
315
      return "l";
316
    return "";
317
  }
318
 
319
  char getGlobalPrefix() const {
320
    switch (ManglingMode) {
321
    case MM_None:
322
    case MM_ELF:
323
    case MM_GOFF:
324
    case MM_Mips:
325
    case MM_WinCOFF:
326
    case MM_XCOFF:
327
      return '\0';
328
    case MM_MachO:
329
    case MM_WinCOFFX86:
330
      return '_';
331
    }
332
    llvm_unreachable("invalid mangling mode");
333
  }
334
 
335
  StringRef getPrivateGlobalPrefix() const {
336
    switch (ManglingMode) {
337
    case MM_None:
338
      return "";
339
    case MM_ELF:
340
    case MM_WinCOFF:
341
      return ".L";
342
    case MM_GOFF:
343
      return "@";
344
    case MM_Mips:
345
      return "$";
346
    case MM_MachO:
347
    case MM_WinCOFFX86:
348
      return "L";
349
    case MM_XCOFF:
350
      return "L..";
351
    }
352
    llvm_unreachable("invalid mangling mode");
353
  }
354
 
355
  static const char *getManglingComponent(const Triple &T);
356
 
357
  /// Returns true if the specified type fits in a native integer type
358
  /// supported by the CPU.
359
  ///
360
  /// For example, if the CPU only supports i32 as a native integer type, then
361
  /// i27 fits in a legal integer type but i45 does not.
362
  bool fitsInLegalInteger(unsigned Width) const {
363
    for (unsigned LegalIntWidth : LegalIntWidths)
364
      if (Width <= LegalIntWidth)
365
        return true;
366
    return false;
367
  }
368
 
369
  /// Layout pointer alignment
370
  Align getPointerABIAlignment(unsigned AS) const;
371
 
372
  /// Return target's alignment for stack-based pointers
373
  /// FIXME: The defaults need to be removed once all of
374
  /// the backends/clients are updated.
375
  Align getPointerPrefAlignment(unsigned AS = 0) const;
376
 
377
  /// Layout pointer size in bytes, rounded up to a whole
378
  /// number of bytes.
379
  /// FIXME: The defaults need to be removed once all of
380
  /// the backends/clients are updated.
381
  unsigned getPointerSize(unsigned AS = 0) const;
382
 
383
  /// Returns the maximum index size over all address spaces.
384
  unsigned getMaxIndexSize() const;
385
 
386
  // Index size in bytes used for address calculation,
387
  /// rounded up to a whole number of bytes.
388
  unsigned getIndexSize(unsigned AS) const;
389
 
390
  /// Return the address spaces containing non-integral pointers.  Pointers in
391
  /// this address space don't have a well-defined bitwise representation.
392
  ArrayRef<unsigned> getNonIntegralAddressSpaces() const {
393
    return NonIntegralAddressSpaces;
394
  }
395
 
396
  bool isNonIntegralAddressSpace(unsigned AddrSpace) const {
397
    ArrayRef<unsigned> NonIntegralSpaces = getNonIntegralAddressSpaces();
398
    return is_contained(NonIntegralSpaces, AddrSpace);
399
  }
400
 
401
  bool isNonIntegralPointerType(PointerType *PT) const {
402
    return isNonIntegralAddressSpace(PT->getAddressSpace());
403
  }
404
 
405
  bool isNonIntegralPointerType(Type *Ty) const {
406
    auto *PTy = dyn_cast<PointerType>(Ty);
407
    return PTy && isNonIntegralPointerType(PTy);
408
  }
409
 
410
  /// Layout pointer size, in bits
411
  /// FIXME: The defaults need to be removed once all of
412
  /// the backends/clients are updated.
413
  unsigned getPointerSizeInBits(unsigned AS = 0) const {
414
    return getPointerAlignElem(AS).TypeBitWidth;
415
  }
416
 
417
  /// Returns the maximum index size over all address spaces.
418
  unsigned getMaxIndexSizeInBits() const {
419
    return getMaxIndexSize() * 8;
420
  }
421
 
422
  /// Size in bits of index used for address calculation in getelementptr.
423
  unsigned getIndexSizeInBits(unsigned AS) const {
424
    return getPointerAlignElem(AS).IndexBitWidth;
425
  }
426
 
427
  /// Layout pointer size, in bits, based on the type.  If this function is
428
  /// called with a pointer type, then the type size of the pointer is returned.
429
  /// If this function is called with a vector of pointers, then the type size
430
  /// of the pointer is returned.  This should only be called with a pointer or
431
  /// vector of pointers.
432
  unsigned getPointerTypeSizeInBits(Type *) const;
433
 
434
  /// Layout size of the index used in GEP calculation.
435
  /// The function should be called with pointer or vector of pointers type.
436
  unsigned getIndexTypeSizeInBits(Type *Ty) const;
437
 
438
  unsigned getPointerTypeSize(Type *Ty) const {
439
    return getPointerTypeSizeInBits(Ty) / 8;
440
  }
441
 
442
  /// Size examples:
443
  ///
444
  /// Type        SizeInBits  StoreSizeInBits  AllocSizeInBits[*]
445
  /// ----        ----------  ---------------  ---------------
446
  ///  i1            1           8                8
447
  ///  i8            8           8                8
448
  ///  i19          19          24               32
449
  ///  i32          32          32               32
450
  ///  i100        100         104              128
451
  ///  i128        128         128              128
452
  ///  Float        32          32               32
453
  ///  Double       64          64               64
454
  ///  X86_FP80     80          80               96
455
  ///
456
  /// [*] The alloc size depends on the alignment, and thus on the target.
457
  ///     These values are for x86-32 linux.
458
 
459
  /// Returns the number of bits necessary to hold the specified type.
460
  ///
461
  /// If Ty is a scalable vector type, the scalable property will be set and
462
  /// the runtime size will be a positive integer multiple of the base size.
463
  ///
464
  /// For example, returns 36 for i36 and 80 for x86_fp80. The type passed must
465
  /// have a size (Type::isSized() must return true).
466
  TypeSize getTypeSizeInBits(Type *Ty) const;
467
 
468
  /// Returns the maximum number of bytes that may be overwritten by
469
  /// storing the specified type.
470
  ///
471
  /// If Ty is a scalable vector type, the scalable property will be set and
472
  /// the runtime size will be a positive integer multiple of the base size.
473
  ///
474
  /// For example, returns 5 for i36 and 10 for x86_fp80.
475
  TypeSize getTypeStoreSize(Type *Ty) const {
476
    TypeSize BaseSize = getTypeSizeInBits(Ty);
477
    return {divideCeil(BaseSize.getKnownMinValue(), 8), BaseSize.isScalable()};
478
  }
479
 
480
  /// Returns the maximum number of bits that may be overwritten by
481
  /// storing the specified type; always a multiple of 8.
482
  ///
483
  /// If Ty is a scalable vector type, the scalable property will be set and
484
  /// the runtime size will be a positive integer multiple of the base size.
485
  ///
486
  /// For example, returns 40 for i36 and 80 for x86_fp80.
487
  TypeSize getTypeStoreSizeInBits(Type *Ty) const {
488
    return 8 * getTypeStoreSize(Ty);
489
  }
490
 
491
  /// Returns true if no extra padding bits are needed when storing the
492
  /// specified type.
493
  ///
494
  /// For example, returns false for i19 that has a 24-bit store size.
495
  bool typeSizeEqualsStoreSize(Type *Ty) const {
496
    return getTypeSizeInBits(Ty) == getTypeStoreSizeInBits(Ty);
497
  }
498
 
499
  /// Returns the offset in bytes between successive objects of the
500
  /// specified type, including alignment padding.
501
  ///
502
  /// If Ty is a scalable vector type, the scalable property will be set and
503
  /// the runtime size will be a positive integer multiple of the base size.
504
  ///
505
  /// This is the amount that alloca reserves for this type. For example,
506
  /// returns 12 or 16 for x86_fp80, depending on alignment.
507
  TypeSize getTypeAllocSize(Type *Ty) const {
508
    // Round up to the next alignment boundary.
509
    return alignTo(getTypeStoreSize(Ty), getABITypeAlign(Ty).value());
510
  }
511
 
512
  /// Returns the offset in bits between successive objects of the
513
  /// specified type, including alignment padding; always a multiple of 8.
514
  ///
515
  /// If Ty is a scalable vector type, the scalable property will be set and
516
  /// the runtime size will be a positive integer multiple of the base size.
517
  ///
518
  /// This is the amount that alloca reserves for this type. For example,
519
  /// returns 96 or 128 for x86_fp80, depending on alignment.
520
  TypeSize getTypeAllocSizeInBits(Type *Ty) const {
521
    return 8 * getTypeAllocSize(Ty);
522
  }
523
 
524
  /// Returns the minimum ABI-required alignment for the specified type.
525
  /// FIXME: Deprecate this function once migration to Align is over.
526
  LLVM_DEPRECATED("use getABITypeAlign instead", "getABITypeAlign")
527
  uint64_t getABITypeAlignment(Type *Ty) const;
528
 
529
  /// Returns the minimum ABI-required alignment for the specified type.
530
  Align getABITypeAlign(Type *Ty) const;
531
 
532
  /// Helper function to return `Alignment` if it's set or the result of
533
  /// `getABITypeAlignment(Ty)`, in any case the result is a valid alignment.
534
  inline Align getValueOrABITypeAlignment(MaybeAlign Alignment,
535
                                          Type *Ty) const {
536
    return Alignment ? *Alignment : getABITypeAlign(Ty);
537
  }
538
 
539
  /// Returns the minimum ABI-required alignment for an integer type of
540
  /// the specified bitwidth.
541
  Align getABIIntegerTypeAlignment(unsigned BitWidth) const {
542
    return getIntegerAlignment(BitWidth, /* abi_or_pref */ true);
543
  }
544
 
545
  /// Returns the preferred stack/global alignment for the specified
546
  /// type.
547
  ///
548
  /// This is always at least as good as the ABI alignment.
549
  /// FIXME: Deprecate this function once migration to Align is over.
550
  LLVM_DEPRECATED("use getPrefTypeAlign instead", "getPrefTypeAlign")
551
  uint64_t getPrefTypeAlignment(Type *Ty) const;
552
 
553
  /// Returns the preferred stack/global alignment for the specified
554
  /// type.
555
  ///
556
  /// This is always at least as good as the ABI alignment.
557
  Align getPrefTypeAlign(Type *Ty) const;
558
 
559
  /// Returns an integer type with size at least as big as that of a
560
  /// pointer in the given address space.
561
  IntegerType *getIntPtrType(LLVMContext &C, unsigned AddressSpace = 0) const;
562
 
563
  /// Returns an integer (vector of integer) type with size at least as
564
  /// big as that of a pointer of the given pointer (vector of pointer) type.
565
  Type *getIntPtrType(Type *) const;
566
 
567
  /// Returns the smallest integer type with size at least as big as
568
  /// Width bits.
569
  Type *getSmallestLegalIntType(LLVMContext &C, unsigned Width = 0) const;
570
 
571
  /// Returns the largest legal integer type, or null if none are set.
572
  Type *getLargestLegalIntType(LLVMContext &C) const {
573
    unsigned LargestSize = getLargestLegalIntTypeSizeInBits();
574
    return (LargestSize == 0) ? nullptr : Type::getIntNTy(C, LargestSize);
575
  }
576
 
577
  /// Returns the size of largest legal integer type size, or 0 if none
578
  /// are set.
579
  unsigned getLargestLegalIntTypeSizeInBits() const;
580
 
581
  /// Returns the type of a GEP index.
582
  /// If it was not specified explicitly, it will be the integer type of the
583
  /// pointer width - IntPtrType.
584
  Type *getIndexType(Type *PtrTy) const;
585
 
586
  /// Returns the offset from the beginning of the type for the specified
587
  /// indices.
588
  ///
589
  /// Note that this takes the element type, not the pointer type.
590
  /// This is used to implement getelementptr.
591
  int64_t getIndexedOffsetInType(Type *ElemTy, ArrayRef<Value *> Indices) const;
592
 
593
  /// Get GEP indices to access Offset inside ElemTy. ElemTy is updated to be
594
  /// the result element type and Offset to be the residual offset.
595
  SmallVector<APInt> getGEPIndicesForOffset(Type *&ElemTy, APInt &Offset) const;
596
 
597
  /// Get single GEP index to access Offset inside ElemTy. Returns std::nullopt
598
  /// if index cannot be computed, e.g. because the type is not an aggregate.
599
  /// ElemTy is updated to be the result element type and Offset to be the
600
  /// residual offset.
601
  std::optional<APInt> getGEPIndexForOffset(Type *&ElemTy, APInt &Offset) const;
602
 
603
  /// Returns a StructLayout object, indicating the alignment of the
604
  /// struct, its size, and the offsets of its fields.
605
  ///
606
  /// Note that this information is lazily cached.
607
  const StructLayout *getStructLayout(StructType *Ty) const;
608
 
609
  /// Returns the preferred alignment of the specified global.
610
  ///
611
  /// This includes an explicitly requested alignment (if the global has one).
612
  Align getPreferredAlign(const GlobalVariable *GV) const;
613
};
614
 
615
inline DataLayout *unwrap(LLVMTargetDataRef P) {
616
  return reinterpret_cast<DataLayout *>(P);
617
}
618
 
619
inline LLVMTargetDataRef wrap(const DataLayout *P) {
620
  return reinterpret_cast<LLVMTargetDataRef>(const_cast<DataLayout *>(P));
621
}
622
 
623
/// Used to lazily calculate structure layout information for a target machine,
624
/// based on the DataLayout structure.
625
class StructLayout final : public TrailingObjects<StructLayout, uint64_t> {
626
  uint64_t StructSize;
627
  Align StructAlignment;
628
  unsigned IsPadded : 1;
629
  unsigned NumElements : 31;
630
 
631
public:
632
  uint64_t getSizeInBytes() const { return StructSize; }
633
 
634
  uint64_t getSizeInBits() const { return 8 * StructSize; }
635
 
636
  Align getAlignment() const { return StructAlignment; }
637
 
638
  /// Returns whether the struct has padding or not between its fields.
639
  /// NB: Padding in nested element is not taken into account.
640
  bool hasPadding() const { return IsPadded; }
641
 
642
  /// Given a valid byte offset into the structure, returns the structure
643
  /// index that contains it.
644
  unsigned getElementContainingOffset(uint64_t Offset) const;
645
 
646
  MutableArrayRef<uint64_t> getMemberOffsets() {
647
    return llvm::MutableArrayRef(getTrailingObjects<uint64_t>(),
648
                                     NumElements);
649
  }
650
 
651
  ArrayRef<uint64_t> getMemberOffsets() const {
652
    return llvm::ArrayRef(getTrailingObjects<uint64_t>(), NumElements);
653
  }
654
 
655
  uint64_t getElementOffset(unsigned Idx) const {
656
    assert(Idx < NumElements && "Invalid element idx!");
657
    return getMemberOffsets()[Idx];
658
  }
659
 
660
  uint64_t getElementOffsetInBits(unsigned Idx) const {
661
    return getElementOffset(Idx) * 8;
662
  }
663
 
664
private:
665
  friend class DataLayout; // Only DataLayout can create this class
666
 
667
  StructLayout(StructType *ST, const DataLayout &DL);
668
 
669
  size_t numTrailingObjects(OverloadToken<uint64_t>) const {
670
    return NumElements;
671
  }
672
};
673
 
674
// The implementation of this method is provided inline as it is particularly
675
// well suited to constant folding when called on a specific Type subclass.
676
inline TypeSize DataLayout::getTypeSizeInBits(Type *Ty) const {
677
  assert(Ty->isSized() && "Cannot getTypeInfo() on a type that is unsized!");
678
  switch (Ty->getTypeID()) {
679
  case Type::LabelTyID:
680
    return TypeSize::Fixed(getPointerSizeInBits(0));
681
  case Type::PointerTyID:
682
    return TypeSize::Fixed(getPointerSizeInBits(Ty->getPointerAddressSpace()));
683
  case Type::ArrayTyID: {
684
    ArrayType *ATy = cast<ArrayType>(Ty);
685
    return ATy->getNumElements() *
686
           getTypeAllocSizeInBits(ATy->getElementType());
687
  }
688
  case Type::StructTyID:
689
    // Get the layout annotation... which is lazily created on demand.
690
    return TypeSize::Fixed(
691
                        getStructLayout(cast<StructType>(Ty))->getSizeInBits());
692
  case Type::IntegerTyID:
693
    return TypeSize::Fixed(Ty->getIntegerBitWidth());
694
  case Type::HalfTyID:
695
  case Type::BFloatTyID:
696
    return TypeSize::Fixed(16);
697
  case Type::FloatTyID:
698
    return TypeSize::Fixed(32);
699
  case Type::DoubleTyID:
700
  case Type::X86_MMXTyID:
701
    return TypeSize::Fixed(64);
702
  case Type::PPC_FP128TyID:
703
  case Type::FP128TyID:
704
    return TypeSize::Fixed(128);
705
  case Type::X86_AMXTyID:
706
    return TypeSize::Fixed(8192);
707
  // In memory objects this is always aligned to a higher boundary, but
708
  // only 80 bits contain information.
709
  case Type::X86_FP80TyID:
710
    return TypeSize::Fixed(80);
711
  case Type::FixedVectorTyID:
712
  case Type::ScalableVectorTyID: {
713
    VectorType *VTy = cast<VectorType>(Ty);
714
    auto EltCnt = VTy->getElementCount();
715
    uint64_t MinBits = EltCnt.getKnownMinValue() *
716
                       getTypeSizeInBits(VTy->getElementType()).getFixedValue();
717
    return TypeSize(MinBits, EltCnt.isScalable());
718
  }
719
  case Type::TargetExtTyID: {
720
    Type *LayoutTy = cast<TargetExtType>(Ty)->getLayoutType();
721
    return getTypeSizeInBits(LayoutTy);
722
  }
723
  default:
724
    llvm_unreachable("DataLayout::getTypeSizeInBits(): Unsupported type");
725
  }
726
}
727
 
728
} // end namespace llvm
729
 
730
#endif // LLVM_IR_DATALAYOUT_H