Details | Last modification | View Log | RSS feed
| Rev | Author | Line No. | Line |
|---|---|---|---|
| 14 | pmbaty | 1 | //===-- llvm/Constants.h - Constant class subclass definitions --*- C++ -*-===// |
| 2 | // |
||
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
||
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
||
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
||
| 6 | // |
||
| 7 | //===----------------------------------------------------------------------===// |
||
| 8 | // |
||
| 9 | /// @file |
||
| 10 | /// This file contains the declarations for the subclasses of Constant, |
||
| 11 | /// which represent the different flavors of constant values that live in LLVM. |
||
| 12 | /// Note that Constants are immutable (once created they never change) and are |
||
| 13 | /// fully shared by structural equivalence. This means that two structurally |
||
| 14 | /// equivalent constants will always have the same address. Constants are |
||
| 15 | /// created on demand as needed and never deleted: thus clients don't have to |
||
| 16 | /// worry about the lifetime of the objects. |
||
| 17 | // |
||
| 18 | //===----------------------------------------------------------------------===// |
||
| 19 | |||
| 20 | #ifndef LLVM_IR_CONSTANTS_H |
||
| 21 | #define LLVM_IR_CONSTANTS_H |
||
| 22 | |||
| 23 | #include "llvm/ADT/APFloat.h" |
||
| 24 | #include "llvm/ADT/APInt.h" |
||
| 25 | #include "llvm/ADT/ArrayRef.h" |
||
| 26 | #include "llvm/ADT/STLExtras.h" |
||
| 27 | #include "llvm/ADT/StringRef.h" |
||
| 28 | #include "llvm/IR/Constant.h" |
||
| 29 | #include "llvm/IR/DerivedTypes.h" |
||
| 30 | #include "llvm/IR/OperandTraits.h" |
||
| 31 | #include "llvm/IR/User.h" |
||
| 32 | #include "llvm/IR/Value.h" |
||
| 33 | #include "llvm/Support/Casting.h" |
||
| 34 | #include "llvm/Support/Compiler.h" |
||
| 35 | #include "llvm/Support/ErrorHandling.h" |
||
| 36 | #include <cassert> |
||
| 37 | #include <cstddef> |
||
| 38 | #include <cstdint> |
||
| 39 | #include <optional> |
||
| 40 | |||
| 41 | namespace llvm { |
||
| 42 | |||
| 43 | template <class ConstantClass> struct ConstantAggrKeyType; |
||
| 44 | |||
| 45 | /// Base class for constants with no operands. |
||
| 46 | /// |
||
| 47 | /// These constants have no operands; they represent their data directly. |
||
| 48 | /// Since they can be in use by unrelated modules (and are never based on |
||
| 49 | /// GlobalValues), it never makes sense to RAUW them. |
||
| 50 | class ConstantData : public Constant { |
||
| 51 | friend class Constant; |
||
| 52 | |||
| 53 | Value *handleOperandChangeImpl(Value *From, Value *To) { |
||
| 54 | llvm_unreachable("Constant data does not have operands!"); |
||
| 55 | } |
||
| 56 | |||
| 57 | protected: |
||
| 58 | explicit ConstantData(Type *Ty, ValueTy VT) : Constant(Ty, VT, nullptr, 0) {} |
||
| 59 | |||
| 60 | void *operator new(size_t S) { return User::operator new(S, 0); } |
||
| 61 | |||
| 62 | public: |
||
| 63 | void operator delete(void *Ptr) { User::operator delete(Ptr); } |
||
| 64 | |||
| 65 | ConstantData(const ConstantData &) = delete; |
||
| 66 | |||
| 67 | /// Methods to support type inquiry through isa, cast, and dyn_cast. |
||
| 68 | static bool classof(const Value *V) { |
||
| 69 | return V->getValueID() >= ConstantDataFirstVal && |
||
| 70 | V->getValueID() <= ConstantDataLastVal; |
||
| 71 | } |
||
| 72 | }; |
||
| 73 | |||
| 74 | //===----------------------------------------------------------------------===// |
||
| 75 | /// This is the shared class of boolean and integer constants. This class |
||
| 76 | /// represents both boolean and integral constants. |
||
| 77 | /// Class for constant integers. |
||
| 78 | class ConstantInt final : public ConstantData { |
||
| 79 | friend class Constant; |
||
| 80 | |||
| 81 | APInt Val; |
||
| 82 | |||
| 83 | ConstantInt(IntegerType *Ty, const APInt &V); |
||
| 84 | |||
| 85 | void destroyConstantImpl(); |
||
| 86 | |||
| 87 | public: |
||
| 88 | ConstantInt(const ConstantInt &) = delete; |
||
| 89 | |||
| 90 | static ConstantInt *getTrue(LLVMContext &Context); |
||
| 91 | static ConstantInt *getFalse(LLVMContext &Context); |
||
| 92 | static ConstantInt *getBool(LLVMContext &Context, bool V); |
||
| 93 | static Constant *getTrue(Type *Ty); |
||
| 94 | static Constant *getFalse(Type *Ty); |
||
| 95 | static Constant *getBool(Type *Ty, bool V); |
||
| 96 | |||
| 97 | /// If Ty is a vector type, return a Constant with a splat of the given |
||
| 98 | /// value. Otherwise return a ConstantInt for the given value. |
||
| 99 | static Constant *get(Type *Ty, uint64_t V, bool IsSigned = false); |
||
| 100 | |||
| 101 | /// Return a ConstantInt with the specified integer value for the specified |
||
| 102 | /// type. If the type is wider than 64 bits, the value will be zero-extended |
||
| 103 | /// to fit the type, unless IsSigned is true, in which case the value will |
||
| 104 | /// be interpreted as a 64-bit signed integer and sign-extended to fit |
||
| 105 | /// the type. |
||
| 106 | /// Get a ConstantInt for a specific value. |
||
| 107 | static ConstantInt *get(IntegerType *Ty, uint64_t V, bool IsSigned = false); |
||
| 108 | |||
| 109 | /// Return a ConstantInt with the specified value for the specified type. The |
||
| 110 | /// value V will be canonicalized to a an unsigned APInt. Accessing it with |
||
| 111 | /// either getSExtValue() or getZExtValue() will yield a correctly sized and |
||
| 112 | /// signed value for the type Ty. |
||
| 113 | /// Get a ConstantInt for a specific signed value. |
||
| 114 | static ConstantInt *getSigned(IntegerType *Ty, int64_t V); |
||
| 115 | static Constant *getSigned(Type *Ty, int64_t V); |
||
| 116 | |||
| 117 | /// Return a ConstantInt with the specified value and an implied Type. The |
||
| 118 | /// type is the integer type that corresponds to the bit width of the value. |
||
| 119 | static ConstantInt *get(LLVMContext &Context, const APInt &V); |
||
| 120 | |||
| 121 | /// Return a ConstantInt constructed from the string strStart with the given |
||
| 122 | /// radix. |
||
| 123 | static ConstantInt *get(IntegerType *Ty, StringRef Str, uint8_t Radix); |
||
| 124 | |||
| 125 | /// If Ty is a vector type, return a Constant with a splat of the given |
||
| 126 | /// value. Otherwise return a ConstantInt for the given value. |
||
| 127 | static Constant *get(Type *Ty, const APInt &V); |
||
| 128 | |||
| 129 | /// Return the constant as an APInt value reference. This allows clients to |
||
| 130 | /// obtain a full-precision copy of the value. |
||
| 131 | /// Return the constant's value. |
||
| 132 | inline const APInt &getValue() const { return Val; } |
||
| 133 | |||
| 134 | /// getBitWidth - Return the bitwidth of this constant. |
||
| 135 | unsigned getBitWidth() const { return Val.getBitWidth(); } |
||
| 136 | |||
| 137 | /// Return the constant as a 64-bit unsigned integer value after it |
||
| 138 | /// has been zero extended as appropriate for the type of this constant. Note |
||
| 139 | /// that this method can assert if the value does not fit in 64 bits. |
||
| 140 | /// Return the zero extended value. |
||
| 141 | inline uint64_t getZExtValue() const { return Val.getZExtValue(); } |
||
| 142 | |||
| 143 | /// Return the constant as a 64-bit integer value after it has been sign |
||
| 144 | /// extended as appropriate for the type of this constant. Note that |
||
| 145 | /// this method can assert if the value does not fit in 64 bits. |
||
| 146 | /// Return the sign extended value. |
||
| 147 | inline int64_t getSExtValue() const { return Val.getSExtValue(); } |
||
| 148 | |||
| 149 | /// Return the constant as an llvm::MaybeAlign. |
||
| 150 | /// Note that this method can assert if the value does not fit in 64 bits or |
||
| 151 | /// is not a power of two. |
||
| 152 | inline MaybeAlign getMaybeAlignValue() const { |
||
| 153 | return MaybeAlign(getZExtValue()); |
||
| 154 | } |
||
| 155 | |||
| 156 | /// Return the constant as an llvm::Align, interpreting `0` as `Align(1)`. |
||
| 157 | /// Note that this method can assert if the value does not fit in 64 bits or |
||
| 158 | /// is not a power of two. |
||
| 159 | inline Align getAlignValue() const { |
||
| 160 | return getMaybeAlignValue().valueOrOne(); |
||
| 161 | } |
||
| 162 | |||
| 163 | /// A helper method that can be used to determine if the constant contained |
||
| 164 | /// within is equal to a constant. This only works for very small values, |
||
| 165 | /// because this is all that can be represented with all types. |
||
| 166 | /// Determine if this constant's value is same as an unsigned char. |
||
| 167 | bool equalsInt(uint64_t V) const { return Val == V; } |
||
| 168 | |||
| 169 | /// getType - Specialize the getType() method to always return an IntegerType, |
||
| 170 | /// which reduces the amount of casting needed in parts of the compiler. |
||
| 171 | /// |
||
| 172 | inline IntegerType *getType() const { |
||
| 173 | return cast<IntegerType>(Value::getType()); |
||
| 174 | } |
||
| 175 | |||
| 176 | /// This static method returns true if the type Ty is big enough to |
||
| 177 | /// represent the value V. This can be used to avoid having the get method |
||
| 178 | /// assert when V is larger than Ty can represent. Note that there are two |
||
| 179 | /// versions of this method, one for unsigned and one for signed integers. |
||
| 180 | /// Although ConstantInt canonicalizes everything to an unsigned integer, |
||
| 181 | /// the signed version avoids callers having to convert a signed quantity |
||
| 182 | /// to the appropriate unsigned type before calling the method. |
||
| 183 | /// @returns true if V is a valid value for type Ty |
||
| 184 | /// Determine if the value is in range for the given type. |
||
| 185 | static bool isValueValidForType(Type *Ty, uint64_t V); |
||
| 186 | static bool isValueValidForType(Type *Ty, int64_t V); |
||
| 187 | |||
| 188 | bool isNegative() const { return Val.isNegative(); } |
||
| 189 | |||
| 190 | /// This is just a convenience method to make client code smaller for a |
||
| 191 | /// common code. It also correctly performs the comparison without the |
||
| 192 | /// potential for an assertion from getZExtValue(). |
||
| 193 | bool isZero() const { return Val.isZero(); } |
||
| 194 | |||
| 195 | /// This is just a convenience method to make client code smaller for a |
||
| 196 | /// common case. It also correctly performs the comparison without the |
||
| 197 | /// potential for an assertion from getZExtValue(). |
||
| 198 | /// Determine if the value is one. |
||
| 199 | bool isOne() const { return Val.isOne(); } |
||
| 200 | |||
| 201 | /// This function will return true iff every bit in this constant is set |
||
| 202 | /// to true. |
||
| 203 | /// @returns true iff this constant's bits are all set to true. |
||
| 204 | /// Determine if the value is all ones. |
||
| 205 | bool isMinusOne() const { return Val.isAllOnes(); } |
||
| 206 | |||
| 207 | /// This function will return true iff this constant represents the largest |
||
| 208 | /// value that may be represented by the constant's type. |
||
| 209 | /// @returns true iff this is the largest value that may be represented |
||
| 210 | /// by this type. |
||
| 211 | /// Determine if the value is maximal. |
||
| 212 | bool isMaxValue(bool IsSigned) const { |
||
| 213 | if (IsSigned) |
||
| 214 | return Val.isMaxSignedValue(); |
||
| 215 | else |
||
| 216 | return Val.isMaxValue(); |
||
| 217 | } |
||
| 218 | |||
| 219 | /// This function will return true iff this constant represents the smallest |
||
| 220 | /// value that may be represented by this constant's type. |
||
| 221 | /// @returns true if this is the smallest value that may be represented by |
||
| 222 | /// this type. |
||
| 223 | /// Determine if the value is minimal. |
||
| 224 | bool isMinValue(bool IsSigned) const { |
||
| 225 | if (IsSigned) |
||
| 226 | return Val.isMinSignedValue(); |
||
| 227 | else |
||
| 228 | return Val.isMinValue(); |
||
| 229 | } |
||
| 230 | |||
| 231 | /// This function will return true iff this constant represents a value with |
||
| 232 | /// active bits bigger than 64 bits or a value greater than the given uint64_t |
||
| 233 | /// value. |
||
| 234 | /// @returns true iff this constant is greater or equal to the given number. |
||
| 235 | /// Determine if the value is greater or equal to the given number. |
||
| 236 | bool uge(uint64_t Num) const { return Val.uge(Num); } |
||
| 237 | |||
| 238 | /// getLimitedValue - If the value is smaller than the specified limit, |
||
| 239 | /// return it, otherwise return the limit value. This causes the value |
||
| 240 | /// to saturate to the limit. |
||
| 241 | /// @returns the min of the value of the constant and the specified value |
||
| 242 | /// Get the constant's value with a saturation limit |
||
| 243 | uint64_t getLimitedValue(uint64_t Limit = ~0ULL) const { |
||
| 244 | return Val.getLimitedValue(Limit); |
||
| 245 | } |
||
| 246 | |||
| 247 | /// Methods to support type inquiry through isa, cast, and dyn_cast. |
||
| 248 | static bool classof(const Value *V) { |
||
| 249 | return V->getValueID() == ConstantIntVal; |
||
| 250 | } |
||
| 251 | }; |
||
| 252 | |||
| 253 | //===----------------------------------------------------------------------===// |
||
| 254 | /// ConstantFP - Floating Point Values [float, double] |
||
| 255 | /// |
||
| 256 | class ConstantFP final : public ConstantData { |
||
| 257 | friend class Constant; |
||
| 258 | |||
| 259 | APFloat Val; |
||
| 260 | |||
| 261 | ConstantFP(Type *Ty, const APFloat &V); |
||
| 262 | |||
| 263 | void destroyConstantImpl(); |
||
| 264 | |||
| 265 | public: |
||
| 266 | ConstantFP(const ConstantFP &) = delete; |
||
| 267 | |||
| 268 | /// Floating point negation must be implemented with f(x) = -0.0 - x. This |
||
| 269 | /// method returns the negative zero constant for floating point or vector |
||
| 270 | /// floating point types; for all other types, it returns the null value. |
||
| 271 | static Constant *getZeroValueForNegation(Type *Ty); |
||
| 272 | |||
| 273 | /// This returns a ConstantFP, or a vector containing a splat of a ConstantFP, |
||
| 274 | /// for the specified value in the specified type. This should only be used |
||
| 275 | /// for simple constant values like 2.0/1.0 etc, that are known-valid both as |
||
| 276 | /// host double and as the target format. |
||
| 277 | static Constant *get(Type *Ty, double V); |
||
| 278 | |||
| 279 | /// If Ty is a vector type, return a Constant with a splat of the given |
||
| 280 | /// value. Otherwise return a ConstantFP for the given value. |
||
| 281 | static Constant *get(Type *Ty, const APFloat &V); |
||
| 282 | |||
| 283 | static Constant *get(Type *Ty, StringRef Str); |
||
| 284 | static ConstantFP *get(LLVMContext &Context, const APFloat &V); |
||
| 285 | static Constant *getNaN(Type *Ty, bool Negative = false, |
||
| 286 | uint64_t Payload = 0); |
||
| 287 | static Constant *getQNaN(Type *Ty, bool Negative = false, |
||
| 288 | APInt *Payload = nullptr); |
||
| 289 | static Constant *getSNaN(Type *Ty, bool Negative = false, |
||
| 290 | APInt *Payload = nullptr); |
||
| 291 | static Constant *getZero(Type *Ty, bool Negative = false); |
||
| 292 | static Constant *getNegativeZero(Type *Ty) { return getZero(Ty, true); } |
||
| 293 | static Constant *getInfinity(Type *Ty, bool Negative = false); |
||
| 294 | |||
| 295 | /// Return true if Ty is big enough to represent V. |
||
| 296 | static bool isValueValidForType(Type *Ty, const APFloat &V); |
||
| 297 | inline const APFloat &getValueAPF() const { return Val; } |
||
| 298 | inline const APFloat &getValue() const { return Val; } |
||
| 299 | |||
| 300 | /// Return true if the value is positive or negative zero. |
||
| 301 | bool isZero() const { return Val.isZero(); } |
||
| 302 | |||
| 303 | /// Return true if the sign bit is set. |
||
| 304 | bool isNegative() const { return Val.isNegative(); } |
||
| 305 | |||
| 306 | /// Return true if the value is infinity |
||
| 307 | bool isInfinity() const { return Val.isInfinity(); } |
||
| 308 | |||
| 309 | /// Return true if the value is a NaN. |
||
| 310 | bool isNaN() const { return Val.isNaN(); } |
||
| 311 | |||
| 312 | /// We don't rely on operator== working on double values, as it returns true |
||
| 313 | /// for things that are clearly not equal, like -0.0 and 0.0. |
||
| 314 | /// As such, this method can be used to do an exact bit-for-bit comparison of |
||
| 315 | /// two floating point values. The version with a double operand is retained |
||
| 316 | /// because it's so convenient to write isExactlyValue(2.0), but please use |
||
| 317 | /// it only for simple constants. |
||
| 318 | bool isExactlyValue(const APFloat &V) const; |
||
| 319 | |||
| 320 | bool isExactlyValue(double V) const { |
||
| 321 | bool ignored; |
||
| 322 | APFloat FV(V); |
||
| 323 | FV.convert(Val.getSemantics(), APFloat::rmNearestTiesToEven, &ignored); |
||
| 324 | return isExactlyValue(FV); |
||
| 325 | } |
||
| 326 | |||
| 327 | /// Methods for support type inquiry through isa, cast, and dyn_cast: |
||
| 328 | static bool classof(const Value *V) { |
||
| 329 | return V->getValueID() == ConstantFPVal; |
||
| 330 | } |
||
| 331 | }; |
||
| 332 | |||
| 333 | //===----------------------------------------------------------------------===// |
||
| 334 | /// All zero aggregate value |
||
| 335 | /// |
||
| 336 | class ConstantAggregateZero final : public ConstantData { |
||
| 337 | friend class Constant; |
||
| 338 | |||
| 339 | explicit ConstantAggregateZero(Type *Ty) |
||
| 340 | : ConstantData(Ty, ConstantAggregateZeroVal) {} |
||
| 341 | |||
| 342 | void destroyConstantImpl(); |
||
| 343 | |||
| 344 | public: |
||
| 345 | ConstantAggregateZero(const ConstantAggregateZero &) = delete; |
||
| 346 | |||
| 347 | static ConstantAggregateZero *get(Type *Ty); |
||
| 348 | |||
| 349 | /// If this CAZ has array or vector type, return a zero with the right element |
||
| 350 | /// type. |
||
| 351 | Constant *getSequentialElement() const; |
||
| 352 | |||
| 353 | /// If this CAZ has struct type, return a zero with the right element type for |
||
| 354 | /// the specified element. |
||
| 355 | Constant *getStructElement(unsigned Elt) const; |
||
| 356 | |||
| 357 | /// Return a zero of the right value for the specified GEP index if we can, |
||
| 358 | /// otherwise return null (e.g. if C is a ConstantExpr). |
||
| 359 | Constant *getElementValue(Constant *C) const; |
||
| 360 | |||
| 361 | /// Return a zero of the right value for the specified GEP index. |
||
| 362 | Constant *getElementValue(unsigned Idx) const; |
||
| 363 | |||
| 364 | /// Return the number of elements in the array, vector, or struct. |
||
| 365 | ElementCount getElementCount() const; |
||
| 366 | |||
| 367 | /// Methods for support type inquiry through isa, cast, and dyn_cast: |
||
| 368 | /// |
||
| 369 | static bool classof(const Value *V) { |
||
| 370 | return V->getValueID() == ConstantAggregateZeroVal; |
||
| 371 | } |
||
| 372 | }; |
||
| 373 | |||
| 374 | /// Base class for aggregate constants (with operands). |
||
| 375 | /// |
||
| 376 | /// These constants are aggregates of other constants, which are stored as |
||
| 377 | /// operands. |
||
| 378 | /// |
||
| 379 | /// Subclasses are \a ConstantStruct, \a ConstantArray, and \a |
||
| 380 | /// ConstantVector. |
||
| 381 | /// |
||
| 382 | /// \note Some subclasses of \a ConstantData are semantically aggregates -- |
||
| 383 | /// such as \a ConstantDataArray -- but are not subclasses of this because they |
||
| 384 | /// use operands. |
||
| 385 | class ConstantAggregate : public Constant { |
||
| 386 | protected: |
||
| 387 | ConstantAggregate(Type *T, ValueTy VT, ArrayRef<Constant *> V); |
||
| 388 | |||
| 389 | public: |
||
| 390 | /// Transparently provide more efficient getOperand methods. |
||
| 391 | DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Constant); |
||
| 392 | |||
| 393 | /// Methods for support type inquiry through isa, cast, and dyn_cast: |
||
| 394 | static bool classof(const Value *V) { |
||
| 395 | return V->getValueID() >= ConstantAggregateFirstVal && |
||
| 396 | V->getValueID() <= ConstantAggregateLastVal; |
||
| 397 | } |
||
| 398 | }; |
||
| 399 | |||
| 400 | template <> |
||
| 401 | struct OperandTraits<ConstantAggregate> |
||
| 402 | : public VariadicOperandTraits<ConstantAggregate> {}; |
||
| 403 | |||
| 404 | DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantAggregate, Constant) |
||
| 405 | |||
| 406 | //===----------------------------------------------------------------------===// |
||
| 407 | /// ConstantArray - Constant Array Declarations |
||
| 408 | /// |
||
| 409 | class ConstantArray final : public ConstantAggregate { |
||
| 410 | friend struct ConstantAggrKeyType<ConstantArray>; |
||
| 411 | friend class Constant; |
||
| 412 | |||
| 413 | ConstantArray(ArrayType *T, ArrayRef<Constant *> Val); |
||
| 414 | |||
| 415 | void destroyConstantImpl(); |
||
| 416 | Value *handleOperandChangeImpl(Value *From, Value *To); |
||
| 417 | |||
| 418 | public: |
||
| 419 | // ConstantArray accessors |
||
| 420 | static Constant *get(ArrayType *T, ArrayRef<Constant *> V); |
||
| 421 | |||
| 422 | private: |
||
| 423 | static Constant *getImpl(ArrayType *T, ArrayRef<Constant *> V); |
||
| 424 | |||
| 425 | public: |
||
| 426 | /// Specialize the getType() method to always return an ArrayType, |
||
| 427 | /// which reduces the amount of casting needed in parts of the compiler. |
||
| 428 | inline ArrayType *getType() const { |
||
| 429 | return cast<ArrayType>(Value::getType()); |
||
| 430 | } |
||
| 431 | |||
| 432 | /// Methods for support type inquiry through isa, cast, and dyn_cast: |
||
| 433 | static bool classof(const Value *V) { |
||
| 434 | return V->getValueID() == ConstantArrayVal; |
||
| 435 | } |
||
| 436 | }; |
||
| 437 | |||
| 438 | //===----------------------------------------------------------------------===// |
||
| 439 | // Constant Struct Declarations |
||
| 440 | // |
||
| 441 | class ConstantStruct final : public ConstantAggregate { |
||
| 442 | friend struct ConstantAggrKeyType<ConstantStruct>; |
||
| 443 | friend class Constant; |
||
| 444 | |||
| 445 | ConstantStruct(StructType *T, ArrayRef<Constant *> Val); |
||
| 446 | |||
| 447 | void destroyConstantImpl(); |
||
| 448 | Value *handleOperandChangeImpl(Value *From, Value *To); |
||
| 449 | |||
| 450 | public: |
||
| 451 | // ConstantStruct accessors |
||
| 452 | static Constant *get(StructType *T, ArrayRef<Constant *> V); |
||
| 453 | |||
| 454 | template <typename... Csts> |
||
| 455 | static std::enable_if_t<are_base_of<Constant, Csts...>::value, Constant *> |
||
| 456 | get(StructType *T, Csts *...Vs) { |
||
| 457 | return get(T, ArrayRef<Constant *>({Vs...})); |
||
| 458 | } |
||
| 459 | |||
| 460 | /// Return an anonymous struct that has the specified elements. |
||
| 461 | /// If the struct is possibly empty, then you must specify a context. |
||
| 462 | static Constant *getAnon(ArrayRef<Constant *> V, bool Packed = false) { |
||
| 463 | return get(getTypeForElements(V, Packed), V); |
||
| 464 | } |
||
| 465 | static Constant *getAnon(LLVMContext &Ctx, ArrayRef<Constant *> V, |
||
| 466 | bool Packed = false) { |
||
| 467 | return get(getTypeForElements(Ctx, V, Packed), V); |
||
| 468 | } |
||
| 469 | |||
| 470 | /// Return an anonymous struct type to use for a constant with the specified |
||
| 471 | /// set of elements. The list must not be empty. |
||
| 472 | static StructType *getTypeForElements(ArrayRef<Constant *> V, |
||
| 473 | bool Packed = false); |
||
| 474 | /// This version of the method allows an empty list. |
||
| 475 | static StructType *getTypeForElements(LLVMContext &Ctx, |
||
| 476 | ArrayRef<Constant *> V, |
||
| 477 | bool Packed = false); |
||
| 478 | |||
| 479 | /// Specialization - reduce amount of casting. |
||
| 480 | inline StructType *getType() const { |
||
| 481 | return cast<StructType>(Value::getType()); |
||
| 482 | } |
||
| 483 | |||
| 484 | /// Methods for support type inquiry through isa, cast, and dyn_cast: |
||
| 485 | static bool classof(const Value *V) { |
||
| 486 | return V->getValueID() == ConstantStructVal; |
||
| 487 | } |
||
| 488 | }; |
||
| 489 | |||
| 490 | //===----------------------------------------------------------------------===// |
||
| 491 | /// Constant Vector Declarations |
||
| 492 | /// |
||
| 493 | class ConstantVector final : public ConstantAggregate { |
||
| 494 | friend struct ConstantAggrKeyType<ConstantVector>; |
||
| 495 | friend class Constant; |
||
| 496 | |||
| 497 | ConstantVector(VectorType *T, ArrayRef<Constant *> Val); |
||
| 498 | |||
| 499 | void destroyConstantImpl(); |
||
| 500 | Value *handleOperandChangeImpl(Value *From, Value *To); |
||
| 501 | |||
| 502 | public: |
||
| 503 | // ConstantVector accessors |
||
| 504 | static Constant *get(ArrayRef<Constant *> V); |
||
| 505 | |||
| 506 | private: |
||
| 507 | static Constant *getImpl(ArrayRef<Constant *> V); |
||
| 508 | |||
| 509 | public: |
||
| 510 | /// Return a ConstantVector with the specified constant in each element. |
||
| 511 | /// Note that this might not return an instance of ConstantVector |
||
| 512 | static Constant *getSplat(ElementCount EC, Constant *Elt); |
||
| 513 | |||
| 514 | /// Specialize the getType() method to always return a FixedVectorType, |
||
| 515 | /// which reduces the amount of casting needed in parts of the compiler. |
||
| 516 | inline FixedVectorType *getType() const { |
||
| 517 | return cast<FixedVectorType>(Value::getType()); |
||
| 518 | } |
||
| 519 | |||
| 520 | /// If all elements of the vector constant have the same value, return that |
||
| 521 | /// value. Otherwise, return nullptr. Ignore undefined elements by setting |
||
| 522 | /// AllowUndefs to true. |
||
| 523 | Constant *getSplatValue(bool AllowUndefs = false) const; |
||
| 524 | |||
| 525 | /// Methods for support type inquiry through isa, cast, and dyn_cast: |
||
| 526 | static bool classof(const Value *V) { |
||
| 527 | return V->getValueID() == ConstantVectorVal; |
||
| 528 | } |
||
| 529 | }; |
||
| 530 | |||
| 531 | //===----------------------------------------------------------------------===// |
||
| 532 | /// A constant pointer value that points to null |
||
| 533 | /// |
||
| 534 | class ConstantPointerNull final : public ConstantData { |
||
| 535 | friend class Constant; |
||
| 536 | |||
| 537 | explicit ConstantPointerNull(PointerType *T) |
||
| 538 | : ConstantData(T, Value::ConstantPointerNullVal) {} |
||
| 539 | |||
| 540 | void destroyConstantImpl(); |
||
| 541 | |||
| 542 | public: |
||
| 543 | ConstantPointerNull(const ConstantPointerNull &) = delete; |
||
| 544 | |||
| 545 | /// Static factory methods - Return objects of the specified value |
||
| 546 | static ConstantPointerNull *get(PointerType *T); |
||
| 547 | |||
| 548 | /// Specialize the getType() method to always return an PointerType, |
||
| 549 | /// which reduces the amount of casting needed in parts of the compiler. |
||
| 550 | inline PointerType *getType() const { |
||
| 551 | return cast<PointerType>(Value::getType()); |
||
| 552 | } |
||
| 553 | |||
| 554 | /// Methods for support type inquiry through isa, cast, and dyn_cast: |
||
| 555 | static bool classof(const Value *V) { |
||
| 556 | return V->getValueID() == ConstantPointerNullVal; |
||
| 557 | } |
||
| 558 | }; |
||
| 559 | |||
| 560 | //===----------------------------------------------------------------------===// |
||
| 561 | /// ConstantDataSequential - A vector or array constant whose element type is a |
||
| 562 | /// simple 1/2/4/8-byte integer or half/bfloat/float/double, and whose elements |
||
| 563 | /// are just simple data values (i.e. ConstantInt/ConstantFP). This Constant |
||
| 564 | /// node has no operands because it stores all of the elements of the constant |
||
| 565 | /// as densely packed data, instead of as Value*'s. |
||
| 566 | /// |
||
| 567 | /// This is the common base class of ConstantDataArray and ConstantDataVector. |
||
| 568 | /// |
||
| 569 | class ConstantDataSequential : public ConstantData { |
||
| 570 | friend class LLVMContextImpl; |
||
| 571 | friend class Constant; |
||
| 572 | |||
| 573 | /// A pointer to the bytes underlying this constant (which is owned by the |
||
| 574 | /// uniquing StringMap). |
||
| 575 | const char *DataElements; |
||
| 576 | |||
| 577 | /// This forms a link list of ConstantDataSequential nodes that have |
||
| 578 | /// the same value but different type. For example, 0,0,0,1 could be a 4 |
||
| 579 | /// element array of i8, or a 1-element array of i32. They'll both end up in |
||
| 580 | /// the same StringMap bucket, linked up. |
||
| 581 | std::unique_ptr<ConstantDataSequential> Next; |
||
| 582 | |||
| 583 | void destroyConstantImpl(); |
||
| 584 | |||
| 585 | protected: |
||
| 586 | explicit ConstantDataSequential(Type *ty, ValueTy VT, const char *Data) |
||
| 587 | : ConstantData(ty, VT), DataElements(Data) {} |
||
| 588 | |||
| 589 | static Constant *getImpl(StringRef Bytes, Type *Ty); |
||
| 590 | |||
| 591 | public: |
||
| 592 | ConstantDataSequential(const ConstantDataSequential &) = delete; |
||
| 593 | |||
| 594 | /// Return true if a ConstantDataSequential can be formed with a vector or |
||
| 595 | /// array of the specified element type. |
||
| 596 | /// ConstantDataArray only works with normal float and int types that are |
||
| 597 | /// stored densely in memory, not with things like i42 or x86_f80. |
||
| 598 | static bool isElementTypeCompatible(Type *Ty); |
||
| 599 | |||
| 600 | /// If this is a sequential container of integers (of any size), return the |
||
| 601 | /// specified element in the low bits of a uint64_t. |
||
| 602 | uint64_t getElementAsInteger(unsigned i) const; |
||
| 603 | |||
| 604 | /// If this is a sequential container of integers (of any size), return the |
||
| 605 | /// specified element as an APInt. |
||
| 606 | APInt getElementAsAPInt(unsigned i) const; |
||
| 607 | |||
| 608 | /// If this is a sequential container of floating point type, return the |
||
| 609 | /// specified element as an APFloat. |
||
| 610 | APFloat getElementAsAPFloat(unsigned i) const; |
||
| 611 | |||
| 612 | /// If this is an sequential container of floats, return the specified element |
||
| 613 | /// as a float. |
||
| 614 | float getElementAsFloat(unsigned i) const; |
||
| 615 | |||
| 616 | /// If this is an sequential container of doubles, return the specified |
||
| 617 | /// element as a double. |
||
| 618 | double getElementAsDouble(unsigned i) const; |
||
| 619 | |||
| 620 | /// Return a Constant for a specified index's element. |
||
| 621 | /// Note that this has to compute a new constant to return, so it isn't as |
||
| 622 | /// efficient as getElementAsInteger/Float/Double. |
||
| 623 | Constant *getElementAsConstant(unsigned i) const; |
||
| 624 | |||
| 625 | /// Return the element type of the array/vector. |
||
| 626 | Type *getElementType() const; |
||
| 627 | |||
| 628 | /// Return the number of elements in the array or vector. |
||
| 629 | unsigned getNumElements() const; |
||
| 630 | |||
| 631 | /// Return the size (in bytes) of each element in the array/vector. |
||
| 632 | /// The size of the elements is known to be a multiple of one byte. |
||
| 633 | uint64_t getElementByteSize() const; |
||
| 634 | |||
| 635 | /// This method returns true if this is an array of \p CharSize integers. |
||
| 636 | bool isString(unsigned CharSize = 8) const; |
||
| 637 | |||
| 638 | /// This method returns true if the array "isString", ends with a null byte, |
||
| 639 | /// and does not contains any other null bytes. |
||
| 640 | bool isCString() const; |
||
| 641 | |||
| 642 | /// If this array is isString(), then this method returns the array as a |
||
| 643 | /// StringRef. Otherwise, it asserts out. |
||
| 644 | StringRef getAsString() const { |
||
| 645 | assert(isString() && "Not a string"); |
||
| 646 | return getRawDataValues(); |
||
| 647 | } |
||
| 648 | |||
| 649 | /// If this array is isCString(), then this method returns the array (without |
||
| 650 | /// the trailing null byte) as a StringRef. Otherwise, it asserts out. |
||
| 651 | StringRef getAsCString() const { |
||
| 652 | assert(isCString() && "Isn't a C string"); |
||
| 653 | StringRef Str = getAsString(); |
||
| 654 | return Str.substr(0, Str.size() - 1); |
||
| 655 | } |
||
| 656 | |||
| 657 | /// Return the raw, underlying, bytes of this data. Note that this is an |
||
| 658 | /// extremely tricky thing to work with, as it exposes the host endianness of |
||
| 659 | /// the data elements. |
||
| 660 | StringRef getRawDataValues() const; |
||
| 661 | |||
| 662 | /// Methods for support type inquiry through isa, cast, and dyn_cast: |
||
| 663 | static bool classof(const Value *V) { |
||
| 664 | return V->getValueID() == ConstantDataArrayVal || |
||
| 665 | V->getValueID() == ConstantDataVectorVal; |
||
| 666 | } |
||
| 667 | |||
| 668 | private: |
||
| 669 | const char *getElementPointer(unsigned Elt) const; |
||
| 670 | }; |
||
| 671 | |||
| 672 | //===----------------------------------------------------------------------===// |
||
| 673 | /// An array constant whose element type is a simple 1/2/4/8-byte integer or |
||
| 674 | /// float/double, and whose elements are just simple data values |
||
| 675 | /// (i.e. ConstantInt/ConstantFP). This Constant node has no operands because it |
||
| 676 | /// stores all of the elements of the constant as densely packed data, instead |
||
| 677 | /// of as Value*'s. |
||
| 678 | class ConstantDataArray final : public ConstantDataSequential { |
||
| 679 | friend class ConstantDataSequential; |
||
| 680 | |||
| 681 | explicit ConstantDataArray(Type *ty, const char *Data) |
||
| 682 | : ConstantDataSequential(ty, ConstantDataArrayVal, Data) {} |
||
| 683 | |||
| 684 | public: |
||
| 685 | ConstantDataArray(const ConstantDataArray &) = delete; |
||
| 686 | |||
| 687 | /// get() constructor - Return a constant with array type with an element |
||
| 688 | /// count and element type matching the ArrayRef passed in. Note that this |
||
| 689 | /// can return a ConstantAggregateZero object. |
||
| 690 | template <typename ElementTy> |
||
| 691 | static Constant *get(LLVMContext &Context, ArrayRef<ElementTy> Elts) { |
||
| 692 | const char *Data = reinterpret_cast<const char *>(Elts.data()); |
||
| 693 | return getRaw(StringRef(Data, Elts.size() * sizeof(ElementTy)), Elts.size(), |
||
| 694 | Type::getScalarTy<ElementTy>(Context)); |
||
| 695 | } |
||
| 696 | |||
| 697 | /// get() constructor - ArrayTy needs to be compatible with |
||
| 698 | /// ArrayRef<ElementTy>. Calls get(LLVMContext, ArrayRef<ElementTy>). |
||
| 699 | template <typename ArrayTy> |
||
| 700 | static Constant *get(LLVMContext &Context, ArrayTy &Elts) { |
||
| 701 | return ConstantDataArray::get(Context, ArrayRef(Elts)); |
||
| 702 | } |
||
| 703 | |||
| 704 | /// getRaw() constructor - Return a constant with array type with an element |
||
| 705 | /// count and element type matching the NumElements and ElementTy parameters |
||
| 706 | /// passed in. Note that this can return a ConstantAggregateZero object. |
||
| 707 | /// ElementTy must be one of i8/i16/i32/i64/half/bfloat/float/double. Data is |
||
| 708 | /// the buffer containing the elements. Be careful to make sure Data uses the |
||
| 709 | /// right endianness, the buffer will be used as-is. |
||
| 710 | static Constant *getRaw(StringRef Data, uint64_t NumElements, |
||
| 711 | Type *ElementTy) { |
||
| 712 | Type *Ty = ArrayType::get(ElementTy, NumElements); |
||
| 713 | return getImpl(Data, Ty); |
||
| 714 | } |
||
| 715 | |||
| 716 | /// getFP() constructors - Return a constant of array type with a float |
||
| 717 | /// element type taken from argument `ElementType', and count taken from |
||
| 718 | /// argument `Elts'. The amount of bits of the contained type must match the |
||
| 719 | /// number of bits of the type contained in the passed in ArrayRef. |
||
| 720 | /// (i.e. half or bfloat for 16bits, float for 32bits, double for 64bits) Note |
||
| 721 | /// that this can return a ConstantAggregateZero object. |
||
| 722 | static Constant *getFP(Type *ElementType, ArrayRef<uint16_t> Elts); |
||
| 723 | static Constant *getFP(Type *ElementType, ArrayRef<uint32_t> Elts); |
||
| 724 | static Constant *getFP(Type *ElementType, ArrayRef<uint64_t> Elts); |
||
| 725 | |||
| 726 | /// This method constructs a CDS and initializes it with a text string. |
||
| 727 | /// The default behavior (AddNull==true) causes a null terminator to |
||
| 728 | /// be placed at the end of the array (increasing the length of the string by |
||
| 729 | /// one more than the StringRef would normally indicate. Pass AddNull=false |
||
| 730 | /// to disable this behavior. |
||
| 731 | static Constant *getString(LLVMContext &Context, StringRef Initializer, |
||
| 732 | bool AddNull = true); |
||
| 733 | |||
| 734 | /// Specialize the getType() method to always return an ArrayType, |
||
| 735 | /// which reduces the amount of casting needed in parts of the compiler. |
||
| 736 | inline ArrayType *getType() const { |
||
| 737 | return cast<ArrayType>(Value::getType()); |
||
| 738 | } |
||
| 739 | |||
| 740 | /// Methods for support type inquiry through isa, cast, and dyn_cast: |
||
| 741 | static bool classof(const Value *V) { |
||
| 742 | return V->getValueID() == ConstantDataArrayVal; |
||
| 743 | } |
||
| 744 | }; |
||
| 745 | |||
| 746 | //===----------------------------------------------------------------------===// |
||
| 747 | /// A vector constant whose element type is a simple 1/2/4/8-byte integer or |
||
| 748 | /// float/double, and whose elements are just simple data values |
||
| 749 | /// (i.e. ConstantInt/ConstantFP). This Constant node has no operands because it |
||
| 750 | /// stores all of the elements of the constant as densely packed data, instead |
||
| 751 | /// of as Value*'s. |
||
| 752 | class ConstantDataVector final : public ConstantDataSequential { |
||
| 753 | friend class ConstantDataSequential; |
||
| 754 | |||
| 755 | explicit ConstantDataVector(Type *ty, const char *Data) |
||
| 756 | : ConstantDataSequential(ty, ConstantDataVectorVal, Data), |
||
| 757 | IsSplatSet(false) {} |
||
| 758 | // Cache whether or not the constant is a splat. |
||
| 759 | mutable bool IsSplatSet : 1; |
||
| 760 | mutable bool IsSplat : 1; |
||
| 761 | bool isSplatData() const; |
||
| 762 | |||
| 763 | public: |
||
| 764 | ConstantDataVector(const ConstantDataVector &) = delete; |
||
| 765 | |||
| 766 | /// get() constructors - Return a constant with vector type with an element |
||
| 767 | /// count and element type matching the ArrayRef passed in. Note that this |
||
| 768 | /// can return a ConstantAggregateZero object. |
||
| 769 | static Constant *get(LLVMContext &Context, ArrayRef<uint8_t> Elts); |
||
| 770 | static Constant *get(LLVMContext &Context, ArrayRef<uint16_t> Elts); |
||
| 771 | static Constant *get(LLVMContext &Context, ArrayRef<uint32_t> Elts); |
||
| 772 | static Constant *get(LLVMContext &Context, ArrayRef<uint64_t> Elts); |
||
| 773 | static Constant *get(LLVMContext &Context, ArrayRef<float> Elts); |
||
| 774 | static Constant *get(LLVMContext &Context, ArrayRef<double> Elts); |
||
| 775 | |||
| 776 | /// getRaw() constructor - Return a constant with vector type with an element |
||
| 777 | /// count and element type matching the NumElements and ElementTy parameters |
||
| 778 | /// passed in. Note that this can return a ConstantAggregateZero object. |
||
| 779 | /// ElementTy must be one of i8/i16/i32/i64/half/bfloat/float/double. Data is |
||
| 780 | /// the buffer containing the elements. Be careful to make sure Data uses the |
||
| 781 | /// right endianness, the buffer will be used as-is. |
||
| 782 | static Constant *getRaw(StringRef Data, uint64_t NumElements, |
||
| 783 | Type *ElementTy) { |
||
| 784 | Type *Ty = VectorType::get(ElementTy, ElementCount::getFixed(NumElements)); |
||
| 785 | return getImpl(Data, Ty); |
||
| 786 | } |
||
| 787 | |||
| 788 | /// getFP() constructors - Return a constant of vector type with a float |
||
| 789 | /// element type taken from argument `ElementType', and count taken from |
||
| 790 | /// argument `Elts'. The amount of bits of the contained type must match the |
||
| 791 | /// number of bits of the type contained in the passed in ArrayRef. |
||
| 792 | /// (i.e. half or bfloat for 16bits, float for 32bits, double for 64bits) Note |
||
| 793 | /// that this can return a ConstantAggregateZero object. |
||
| 794 | static Constant *getFP(Type *ElementType, ArrayRef<uint16_t> Elts); |
||
| 795 | static Constant *getFP(Type *ElementType, ArrayRef<uint32_t> Elts); |
||
| 796 | static Constant *getFP(Type *ElementType, ArrayRef<uint64_t> Elts); |
||
| 797 | |||
| 798 | /// Return a ConstantVector with the specified constant in each element. |
||
| 799 | /// The specified constant has to be a of a compatible type (i8/i16/ |
||
| 800 | /// i32/i64/half/bfloat/float/double) and must be a ConstantFP or ConstantInt. |
||
| 801 | static Constant *getSplat(unsigned NumElts, Constant *Elt); |
||
| 802 | |||
| 803 | /// Returns true if this is a splat constant, meaning that all elements have |
||
| 804 | /// the same value. |
||
| 805 | bool isSplat() const; |
||
| 806 | |||
| 807 | /// If this is a splat constant, meaning that all of the elements have the |
||
| 808 | /// same value, return that value. Otherwise return NULL. |
||
| 809 | Constant *getSplatValue() const; |
||
| 810 | |||
| 811 | /// Specialize the getType() method to always return a FixedVectorType, |
||
| 812 | /// which reduces the amount of casting needed in parts of the compiler. |
||
| 813 | inline FixedVectorType *getType() const { |
||
| 814 | return cast<FixedVectorType>(Value::getType()); |
||
| 815 | } |
||
| 816 | |||
| 817 | /// Methods for support type inquiry through isa, cast, and dyn_cast: |
||
| 818 | static bool classof(const Value *V) { |
||
| 819 | return V->getValueID() == ConstantDataVectorVal; |
||
| 820 | } |
||
| 821 | }; |
||
| 822 | |||
| 823 | //===----------------------------------------------------------------------===// |
||
| 824 | /// A constant token which is empty |
||
| 825 | /// |
||
| 826 | class ConstantTokenNone final : public ConstantData { |
||
| 827 | friend class Constant; |
||
| 828 | |||
| 829 | explicit ConstantTokenNone(LLVMContext &Context) |
||
| 830 | : ConstantData(Type::getTokenTy(Context), ConstantTokenNoneVal) {} |
||
| 831 | |||
| 832 | void destroyConstantImpl(); |
||
| 833 | |||
| 834 | public: |
||
| 835 | ConstantTokenNone(const ConstantTokenNone &) = delete; |
||
| 836 | |||
| 837 | /// Return the ConstantTokenNone. |
||
| 838 | static ConstantTokenNone *get(LLVMContext &Context); |
||
| 839 | |||
| 840 | /// Methods to support type inquiry through isa, cast, and dyn_cast. |
||
| 841 | static bool classof(const Value *V) { |
||
| 842 | return V->getValueID() == ConstantTokenNoneVal; |
||
| 843 | } |
||
| 844 | }; |
||
| 845 | |||
| 846 | /// A constant target extension type default initializer |
||
| 847 | class ConstantTargetNone final : public ConstantData { |
||
| 848 | friend class Constant; |
||
| 849 | |||
| 850 | explicit ConstantTargetNone(TargetExtType *T) |
||
| 851 | : ConstantData(T, Value::ConstantTargetNoneVal) {} |
||
| 852 | |||
| 853 | void destroyConstantImpl(); |
||
| 854 | |||
| 855 | public: |
||
| 856 | ConstantTargetNone(const ConstantTargetNone &) = delete; |
||
| 857 | |||
| 858 | /// Static factory methods - Return objects of the specified value. |
||
| 859 | static ConstantTargetNone *get(TargetExtType *T); |
||
| 860 | |||
| 861 | /// Specialize the getType() method to always return an TargetExtType, |
||
| 862 | /// which reduces the amount of casting needed in parts of the compiler. |
||
| 863 | inline TargetExtType *getType() const { |
||
| 864 | return cast<TargetExtType>(Value::getType()); |
||
| 865 | } |
||
| 866 | |||
| 867 | /// Methods for support type inquiry through isa, cast, and dyn_cast. |
||
| 868 | static bool classof(const Value *V) { |
||
| 869 | return V->getValueID() == ConstantTargetNoneVal; |
||
| 870 | } |
||
| 871 | }; |
||
| 872 | |||
| 873 | /// The address of a basic block. |
||
| 874 | /// |
||
| 875 | class BlockAddress final : public Constant { |
||
| 876 | friend class Constant; |
||
| 877 | |||
| 878 | BlockAddress(Function *F, BasicBlock *BB); |
||
| 879 | |||
| 880 | void *operator new(size_t S) { return User::operator new(S, 2); } |
||
| 881 | |||
| 882 | void destroyConstantImpl(); |
||
| 883 | Value *handleOperandChangeImpl(Value *From, Value *To); |
||
| 884 | |||
| 885 | public: |
||
| 886 | void operator delete(void *Ptr) { User::operator delete(Ptr); } |
||
| 887 | |||
| 888 | /// Return a BlockAddress for the specified function and basic block. |
||
| 889 | static BlockAddress *get(Function *F, BasicBlock *BB); |
||
| 890 | |||
| 891 | /// Return a BlockAddress for the specified basic block. The basic |
||
| 892 | /// block must be embedded into a function. |
||
| 893 | static BlockAddress *get(BasicBlock *BB); |
||
| 894 | |||
| 895 | /// Lookup an existing \c BlockAddress constant for the given BasicBlock. |
||
| 896 | /// |
||
| 897 | /// \returns 0 if \c !BB->hasAddressTaken(), otherwise the \c BlockAddress. |
||
| 898 | static BlockAddress *lookup(const BasicBlock *BB); |
||
| 899 | |||
| 900 | /// Transparently provide more efficient getOperand methods. |
||
| 901 | DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); |
||
| 902 | |||
| 903 | Function *getFunction() const { return (Function *)Op<0>().get(); } |
||
| 904 | BasicBlock *getBasicBlock() const { return (BasicBlock *)Op<1>().get(); } |
||
| 905 | |||
| 906 | /// Methods for support type inquiry through isa, cast, and dyn_cast: |
||
| 907 | static bool classof(const Value *V) { |
||
| 908 | return V->getValueID() == BlockAddressVal; |
||
| 909 | } |
||
| 910 | }; |
||
| 911 | |||
| 912 | template <> |
||
| 913 | struct OperandTraits<BlockAddress> |
||
| 914 | : public FixedNumOperandTraits<BlockAddress, 2> {}; |
||
| 915 | |||
| 916 | DEFINE_TRANSPARENT_OPERAND_ACCESSORS(BlockAddress, Value) |
||
| 917 | |||
| 918 | /// Wrapper for a function that represents a value that |
||
| 919 | /// functionally represents the original function. This can be a function, |
||
| 920 | /// global alias to a function, or an ifunc. |
||
| 921 | class DSOLocalEquivalent final : public Constant { |
||
| 922 | friend class Constant; |
||
| 923 | |||
| 924 | DSOLocalEquivalent(GlobalValue *GV); |
||
| 925 | |||
| 926 | void *operator new(size_t S) { return User::operator new(S, 1); } |
||
| 927 | |||
| 928 | void destroyConstantImpl(); |
||
| 929 | Value *handleOperandChangeImpl(Value *From, Value *To); |
||
| 930 | |||
| 931 | public: |
||
| 932 | void operator delete(void *Ptr) { User::operator delete(Ptr); } |
||
| 933 | |||
| 934 | /// Return a DSOLocalEquivalent for the specified global value. |
||
| 935 | static DSOLocalEquivalent *get(GlobalValue *GV); |
||
| 936 | |||
| 937 | /// Transparently provide more efficient getOperand methods. |
||
| 938 | DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); |
||
| 939 | |||
| 940 | GlobalValue *getGlobalValue() const { |
||
| 941 | return cast<GlobalValue>(Op<0>().get()); |
||
| 942 | } |
||
| 943 | |||
| 944 | /// Methods for support type inquiry through isa, cast, and dyn_cast: |
||
| 945 | static bool classof(const Value *V) { |
||
| 946 | return V->getValueID() == DSOLocalEquivalentVal; |
||
| 947 | } |
||
| 948 | }; |
||
| 949 | |||
| 950 | template <> |
||
| 951 | struct OperandTraits<DSOLocalEquivalent> |
||
| 952 | : public FixedNumOperandTraits<DSOLocalEquivalent, 1> {}; |
||
| 953 | |||
| 954 | DEFINE_TRANSPARENT_OPERAND_ACCESSORS(DSOLocalEquivalent, Value) |
||
| 955 | |||
| 956 | /// Wrapper for a value that won't be replaced with a CFI jump table |
||
| 957 | /// pointer in LowerTypeTestsModule. |
||
| 958 | class NoCFIValue final : public Constant { |
||
| 959 | friend class Constant; |
||
| 960 | |||
| 961 | NoCFIValue(GlobalValue *GV); |
||
| 962 | |||
| 963 | void *operator new(size_t S) { return User::operator new(S, 1); } |
||
| 964 | |||
| 965 | void destroyConstantImpl(); |
||
| 966 | Value *handleOperandChangeImpl(Value *From, Value *To); |
||
| 967 | |||
| 968 | public: |
||
| 969 | /// Return a NoCFIValue for the specified function. |
||
| 970 | static NoCFIValue *get(GlobalValue *GV); |
||
| 971 | |||
| 972 | /// Transparently provide more efficient getOperand methods. |
||
| 973 | DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); |
||
| 974 | |||
| 975 | GlobalValue *getGlobalValue() const { |
||
| 976 | return cast<GlobalValue>(Op<0>().get()); |
||
| 977 | } |
||
| 978 | |||
| 979 | /// Methods for support type inquiry through isa, cast, and dyn_cast: |
||
| 980 | static bool classof(const Value *V) { |
||
| 981 | return V->getValueID() == NoCFIValueVal; |
||
| 982 | } |
||
| 983 | }; |
||
| 984 | |||
| 985 | template <> |
||
| 986 | struct OperandTraits<NoCFIValue> : public FixedNumOperandTraits<NoCFIValue, 1> { |
||
| 987 | }; |
||
| 988 | |||
| 989 | DEFINE_TRANSPARENT_OPERAND_ACCESSORS(NoCFIValue, Value) |
||
| 990 | |||
| 991 | //===----------------------------------------------------------------------===// |
||
| 992 | /// A constant value that is initialized with an expression using |
||
| 993 | /// other constant values. |
||
| 994 | /// |
||
| 995 | /// This class uses the standard Instruction opcodes to define the various |
||
| 996 | /// constant expressions. The Opcode field for the ConstantExpr class is |
||
| 997 | /// maintained in the Value::SubclassData field. |
||
| 998 | class ConstantExpr : public Constant { |
||
| 999 | friend struct ConstantExprKeyType; |
||
| 1000 | friend class Constant; |
||
| 1001 | |||
| 1002 | void destroyConstantImpl(); |
||
| 1003 | Value *handleOperandChangeImpl(Value *From, Value *To); |
||
| 1004 | |||
| 1005 | protected: |
||
| 1006 | ConstantExpr(Type *ty, unsigned Opcode, Use *Ops, unsigned NumOps) |
||
| 1007 | : Constant(ty, ConstantExprVal, Ops, NumOps) { |
||
| 1008 | // Operation type (an Instruction opcode) is stored as the SubclassData. |
||
| 1009 | setValueSubclassData(Opcode); |
||
| 1010 | } |
||
| 1011 | |||
| 1012 | ~ConstantExpr() = default; |
||
| 1013 | |||
| 1014 | public: |
||
| 1015 | // Static methods to construct a ConstantExpr of different kinds. Note that |
||
| 1016 | // these methods may return a object that is not an instance of the |
||
| 1017 | // ConstantExpr class, because they will attempt to fold the constant |
||
| 1018 | // expression into something simpler if possible. |
||
| 1019 | |||
| 1020 | /// getAlignOf constant expr - computes the alignment of a type in a target |
||
| 1021 | /// independent way (Note: the return type is an i64). |
||
| 1022 | static Constant *getAlignOf(Type *Ty); |
||
| 1023 | |||
| 1024 | /// getSizeOf constant expr - computes the (alloc) size of a type (in |
||
| 1025 | /// address-units, not bits) in a target independent way (Note: the return |
||
| 1026 | /// type is an i64). |
||
| 1027 | /// |
||
| 1028 | static Constant *getSizeOf(Type *Ty); |
||
| 1029 | |||
| 1030 | /// getOffsetOf constant expr - computes the offset of a struct field in a |
||
| 1031 | /// target independent way (Note: the return type is an i64). |
||
| 1032 | /// |
||
| 1033 | static Constant *getOffsetOf(StructType *STy, unsigned FieldNo); |
||
| 1034 | |||
| 1035 | /// getOffsetOf constant expr - This is a generalized form of getOffsetOf, |
||
| 1036 | /// which supports any aggregate type, and any Constant index. |
||
| 1037 | /// |
||
| 1038 | static Constant *getOffsetOf(Type *Ty, Constant *FieldNo); |
||
| 1039 | |||
| 1040 | static Constant *getNeg(Constant *C, bool HasNUW = false, |
||
| 1041 | bool HasNSW = false); |
||
| 1042 | static Constant *getNot(Constant *C); |
||
| 1043 | static Constant *getAdd(Constant *C1, Constant *C2, bool HasNUW = false, |
||
| 1044 | bool HasNSW = false); |
||
| 1045 | static Constant *getSub(Constant *C1, Constant *C2, bool HasNUW = false, |
||
| 1046 | bool HasNSW = false); |
||
| 1047 | static Constant *getMul(Constant *C1, Constant *C2, bool HasNUW = false, |
||
| 1048 | bool HasNSW = false); |
||
| 1049 | static Constant *getAnd(Constant *C1, Constant *C2); |
||
| 1050 | static Constant *getOr(Constant *C1, Constant *C2); |
||
| 1051 | static Constant *getXor(Constant *C1, Constant *C2); |
||
| 1052 | static Constant *getUMin(Constant *C1, Constant *C2); |
||
| 1053 | static Constant *getShl(Constant *C1, Constant *C2, bool HasNUW = false, |
||
| 1054 | bool HasNSW = false); |
||
| 1055 | static Constant *getLShr(Constant *C1, Constant *C2, bool isExact = false); |
||
| 1056 | static Constant *getAShr(Constant *C1, Constant *C2, bool isExact = false); |
||
| 1057 | static Constant *getTrunc(Constant *C, Type *Ty, bool OnlyIfReduced = false); |
||
| 1058 | static Constant *getSExt(Constant *C, Type *Ty, bool OnlyIfReduced = false); |
||
| 1059 | static Constant *getZExt(Constant *C, Type *Ty, bool OnlyIfReduced = false); |
||
| 1060 | static Constant *getFPTrunc(Constant *C, Type *Ty, |
||
| 1061 | bool OnlyIfReduced = false); |
||
| 1062 | static Constant *getFPExtend(Constant *C, Type *Ty, |
||
| 1063 | bool OnlyIfReduced = false); |
||
| 1064 | static Constant *getUIToFP(Constant *C, Type *Ty, bool OnlyIfReduced = false); |
||
| 1065 | static Constant *getSIToFP(Constant *C, Type *Ty, bool OnlyIfReduced = false); |
||
| 1066 | static Constant *getFPToUI(Constant *C, Type *Ty, bool OnlyIfReduced = false); |
||
| 1067 | static Constant *getFPToSI(Constant *C, Type *Ty, bool OnlyIfReduced = false); |
||
| 1068 | static Constant *getPtrToInt(Constant *C, Type *Ty, |
||
| 1069 | bool OnlyIfReduced = false); |
||
| 1070 | static Constant *getIntToPtr(Constant *C, Type *Ty, |
||
| 1071 | bool OnlyIfReduced = false); |
||
| 1072 | static Constant *getBitCast(Constant *C, Type *Ty, |
||
| 1073 | bool OnlyIfReduced = false); |
||
| 1074 | static Constant *getAddrSpaceCast(Constant *C, Type *Ty, |
||
| 1075 | bool OnlyIfReduced = false); |
||
| 1076 | |||
| 1077 | static Constant *getNSWNeg(Constant *C) { return getNeg(C, false, true); } |
||
| 1078 | static Constant *getNUWNeg(Constant *C) { return getNeg(C, true, false); } |
||
| 1079 | |||
| 1080 | static Constant *getNSWAdd(Constant *C1, Constant *C2) { |
||
| 1081 | return getAdd(C1, C2, false, true); |
||
| 1082 | } |
||
| 1083 | |||
| 1084 | static Constant *getNUWAdd(Constant *C1, Constant *C2) { |
||
| 1085 | return getAdd(C1, C2, true, false); |
||
| 1086 | } |
||
| 1087 | |||
| 1088 | static Constant *getNSWSub(Constant *C1, Constant *C2) { |
||
| 1089 | return getSub(C1, C2, false, true); |
||
| 1090 | } |
||
| 1091 | |||
| 1092 | static Constant *getNUWSub(Constant *C1, Constant *C2) { |
||
| 1093 | return getSub(C1, C2, true, false); |
||
| 1094 | } |
||
| 1095 | |||
| 1096 | static Constant *getNSWMul(Constant *C1, Constant *C2) { |
||
| 1097 | return getMul(C1, C2, false, true); |
||
| 1098 | } |
||
| 1099 | |||
| 1100 | static Constant *getNUWMul(Constant *C1, Constant *C2) { |
||
| 1101 | return getMul(C1, C2, true, false); |
||
| 1102 | } |
||
| 1103 | |||
| 1104 | static Constant *getNSWShl(Constant *C1, Constant *C2) { |
||
| 1105 | return getShl(C1, C2, false, true); |
||
| 1106 | } |
||
| 1107 | |||
| 1108 | static Constant *getNUWShl(Constant *C1, Constant *C2) { |
||
| 1109 | return getShl(C1, C2, true, false); |
||
| 1110 | } |
||
| 1111 | |||
| 1112 | static Constant *getExactAShr(Constant *C1, Constant *C2) { |
||
| 1113 | return getAShr(C1, C2, true); |
||
| 1114 | } |
||
| 1115 | |||
| 1116 | static Constant *getExactLShr(Constant *C1, Constant *C2) { |
||
| 1117 | return getLShr(C1, C2, true); |
||
| 1118 | } |
||
| 1119 | |||
| 1120 | /// If C is a scalar/fixed width vector of known powers of 2, then this |
||
| 1121 | /// function returns a new scalar/fixed width vector obtained from logBase2 |
||
| 1122 | /// of C. Undef vector elements are set to zero. |
||
| 1123 | /// Return a null pointer otherwise. |
||
| 1124 | static Constant *getExactLogBase2(Constant *C); |
||
| 1125 | |||
| 1126 | /// Return the identity constant for a binary opcode. |
||
| 1127 | /// The identity constant C is defined as X op C = X and C op X = X for every |
||
| 1128 | /// X when the binary operation is commutative. If the binop is not |
||
| 1129 | /// commutative, callers can acquire the operand 1 identity constant by |
||
| 1130 | /// setting AllowRHSConstant to true. For example, any shift has a zero |
||
| 1131 | /// identity constant for operand 1: X shift 0 = X. |
||
| 1132 | /// If this is a fadd/fsub operation and we don't care about signed zeros, |
||
| 1133 | /// then setting NSZ to true returns the identity +0.0 instead of -0.0. |
||
| 1134 | /// Return nullptr if the operator does not have an identity constant. |
||
| 1135 | static Constant *getBinOpIdentity(unsigned Opcode, Type *Ty, |
||
| 1136 | bool AllowRHSConstant = false, |
||
| 1137 | bool NSZ = false); |
||
| 1138 | |||
| 1139 | /// Return the absorbing element for the given binary |
||
| 1140 | /// operation, i.e. a constant C such that X op C = C and C op X = C for |
||
| 1141 | /// every X. For example, this returns zero for integer multiplication. |
||
| 1142 | /// It returns null if the operator doesn't have an absorbing element. |
||
| 1143 | static Constant *getBinOpAbsorber(unsigned Opcode, Type *Ty); |
||
| 1144 | |||
| 1145 | /// Transparently provide more efficient getOperand methods. |
||
| 1146 | DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Constant); |
||
| 1147 | |||
| 1148 | /// Convenience function for getting a Cast operation. |
||
| 1149 | /// |
||
| 1150 | /// \param ops The opcode for the conversion |
||
| 1151 | /// \param C The constant to be converted |
||
| 1152 | /// \param Ty The type to which the constant is converted |
||
| 1153 | /// \param OnlyIfReduced see \a getWithOperands() docs. |
||
| 1154 | static Constant *getCast(unsigned ops, Constant *C, Type *Ty, |
||
| 1155 | bool OnlyIfReduced = false); |
||
| 1156 | |||
| 1157 | // Create a ZExt or BitCast cast constant expression |
||
| 1158 | static Constant * |
||
| 1159 | getZExtOrBitCast(Constant *C, ///< The constant to zext or bitcast |
||
| 1160 | Type *Ty ///< The type to zext or bitcast C to |
||
| 1161 | ); |
||
| 1162 | |||
| 1163 | // Create a SExt or BitCast cast constant expression |
||
| 1164 | static Constant * |
||
| 1165 | getSExtOrBitCast(Constant *C, ///< The constant to sext or bitcast |
||
| 1166 | Type *Ty ///< The type to sext or bitcast C to |
||
| 1167 | ); |
||
| 1168 | |||
| 1169 | // Create a Trunc or BitCast cast constant expression |
||
| 1170 | static Constant * |
||
| 1171 | getTruncOrBitCast(Constant *C, ///< The constant to trunc or bitcast |
||
| 1172 | Type *Ty ///< The type to trunc or bitcast C to |
||
| 1173 | ); |
||
| 1174 | |||
| 1175 | /// Create either an sext, trunc or nothing, depending on whether Ty is |
||
| 1176 | /// wider, narrower or the same as C->getType(). This only works with |
||
| 1177 | /// integer or vector of integer types. |
||
| 1178 | static Constant *getSExtOrTrunc(Constant *C, Type *Ty); |
||
| 1179 | |||
| 1180 | /// Create a BitCast, AddrSpaceCast, or a PtrToInt cast constant |
||
| 1181 | /// expression. |
||
| 1182 | static Constant * |
||
| 1183 | getPointerCast(Constant *C, ///< The pointer value to be casted (operand 0) |
||
| 1184 | Type *Ty ///< The type to which cast should be made |
||
| 1185 | ); |
||
| 1186 | |||
| 1187 | /// Create a BitCast or AddrSpaceCast for a pointer type depending on |
||
| 1188 | /// the address space. |
||
| 1189 | static Constant *getPointerBitCastOrAddrSpaceCast( |
||
| 1190 | Constant *C, ///< The constant to addrspacecast or bitcast |
||
| 1191 | Type *Ty ///< The type to bitcast or addrspacecast C to |
||
| 1192 | ); |
||
| 1193 | |||
| 1194 | /// Create a ZExt, Bitcast or Trunc for integer -> integer casts |
||
| 1195 | static Constant * |
||
| 1196 | getIntegerCast(Constant *C, ///< The integer constant to be casted |
||
| 1197 | Type *Ty, ///< The integer type to cast to |
||
| 1198 | bool IsSigned ///< Whether C should be treated as signed or not |
||
| 1199 | ); |
||
| 1200 | |||
| 1201 | /// Create a FPExt, Bitcast or FPTrunc for fp -> fp casts |
||
| 1202 | static Constant *getFPCast(Constant *C, ///< The integer constant to be casted |
||
| 1203 | Type *Ty ///< The integer type to cast to |
||
| 1204 | ); |
||
| 1205 | |||
| 1206 | /// Return true if this is a convert constant expression |
||
| 1207 | bool isCast() const; |
||
| 1208 | |||
| 1209 | /// Return true if this is a compare constant expression |
||
| 1210 | bool isCompare() const; |
||
| 1211 | |||
| 1212 | /// Select constant expr |
||
| 1213 | /// |
||
| 1214 | /// \param OnlyIfReducedTy see \a getWithOperands() docs. |
||
| 1215 | static Constant *getSelect(Constant *C, Constant *V1, Constant *V2, |
||
| 1216 | Type *OnlyIfReducedTy = nullptr); |
||
| 1217 | |||
| 1218 | /// get - Return a binary or shift operator constant expression, |
||
| 1219 | /// folding if possible. |
||
| 1220 | /// |
||
| 1221 | /// \param OnlyIfReducedTy see \a getWithOperands() docs. |
||
| 1222 | static Constant *get(unsigned Opcode, Constant *C1, Constant *C2, |
||
| 1223 | unsigned Flags = 0, Type *OnlyIfReducedTy = nullptr); |
||
| 1224 | |||
| 1225 | /// Return an ICmp or FCmp comparison operator constant expression. |
||
| 1226 | /// |
||
| 1227 | /// \param OnlyIfReduced see \a getWithOperands() docs. |
||
| 1228 | static Constant *getCompare(unsigned short pred, Constant *C1, Constant *C2, |
||
| 1229 | bool OnlyIfReduced = false); |
||
| 1230 | |||
| 1231 | /// get* - Return some common constants without having to |
||
| 1232 | /// specify the full Instruction::OPCODE identifier. |
||
| 1233 | /// |
||
| 1234 | static Constant *getICmp(unsigned short pred, Constant *LHS, Constant *RHS, |
||
| 1235 | bool OnlyIfReduced = false); |
||
| 1236 | static Constant *getFCmp(unsigned short pred, Constant *LHS, Constant *RHS, |
||
| 1237 | bool OnlyIfReduced = false); |
||
| 1238 | |||
| 1239 | /// Getelementptr form. Value* is only accepted for convenience; |
||
| 1240 | /// all elements must be Constants. |
||
| 1241 | /// |
||
| 1242 | /// \param InRangeIndex the inrange index if present or std::nullopt. |
||
| 1243 | /// \param OnlyIfReducedTy see \a getWithOperands() docs. |
||
| 1244 | static Constant * |
||
| 1245 | getGetElementPtr(Type *Ty, Constant *C, ArrayRef<Constant *> IdxList, |
||
| 1246 | bool InBounds = false, |
||
| 1247 | std::optional<unsigned> InRangeIndex = std::nullopt, |
||
| 1248 | Type *OnlyIfReducedTy = nullptr) { |
||
| 1249 | return getGetElementPtr( |
||
| 1250 | Ty, C, ArrayRef((Value *const *)IdxList.data(), IdxList.size()), |
||
| 1251 | InBounds, InRangeIndex, OnlyIfReducedTy); |
||
| 1252 | } |
||
| 1253 | static Constant * |
||
| 1254 | getGetElementPtr(Type *Ty, Constant *C, Constant *Idx, bool InBounds = false, |
||
| 1255 | std::optional<unsigned> InRangeIndex = std::nullopt, |
||
| 1256 | Type *OnlyIfReducedTy = nullptr) { |
||
| 1257 | // This form of the function only exists to avoid ambiguous overload |
||
| 1258 | // warnings about whether to convert Idx to ArrayRef<Constant *> or |
||
| 1259 | // ArrayRef<Value *>. |
||
| 1260 | return getGetElementPtr(Ty, C, cast<Value>(Idx), InBounds, InRangeIndex, |
||
| 1261 | OnlyIfReducedTy); |
||
| 1262 | } |
||
| 1263 | static Constant * |
||
| 1264 | getGetElementPtr(Type *Ty, Constant *C, ArrayRef<Value *> IdxList, |
||
| 1265 | bool InBounds = false, |
||
| 1266 | std::optional<unsigned> InRangeIndex = std::nullopt, |
||
| 1267 | Type *OnlyIfReducedTy = nullptr); |
||
| 1268 | |||
| 1269 | /// Create an "inbounds" getelementptr. See the documentation for the |
||
| 1270 | /// "inbounds" flag in LangRef.html for details. |
||
| 1271 | static Constant *getInBoundsGetElementPtr(Type *Ty, Constant *C, |
||
| 1272 | ArrayRef<Constant *> IdxList) { |
||
| 1273 | return getGetElementPtr(Ty, C, IdxList, true); |
||
| 1274 | } |
||
| 1275 | static Constant *getInBoundsGetElementPtr(Type *Ty, Constant *C, |
||
| 1276 | Constant *Idx) { |
||
| 1277 | // This form of the function only exists to avoid ambiguous overload |
||
| 1278 | // warnings about whether to convert Idx to ArrayRef<Constant *> or |
||
| 1279 | // ArrayRef<Value *>. |
||
| 1280 | return getGetElementPtr(Ty, C, Idx, true); |
||
| 1281 | } |
||
| 1282 | static Constant *getInBoundsGetElementPtr(Type *Ty, Constant *C, |
||
| 1283 | ArrayRef<Value *> IdxList) { |
||
| 1284 | return getGetElementPtr(Ty, C, IdxList, true); |
||
| 1285 | } |
||
| 1286 | |||
| 1287 | static Constant *getExtractElement(Constant *Vec, Constant *Idx, |
||
| 1288 | Type *OnlyIfReducedTy = nullptr); |
||
| 1289 | static Constant *getInsertElement(Constant *Vec, Constant *Elt, Constant *Idx, |
||
| 1290 | Type *OnlyIfReducedTy = nullptr); |
||
| 1291 | static Constant *getShuffleVector(Constant *V1, Constant *V2, |
||
| 1292 | ArrayRef<int> Mask, |
||
| 1293 | Type *OnlyIfReducedTy = nullptr); |
||
| 1294 | |||
| 1295 | /// Return the opcode at the root of this constant expression |
||
| 1296 | unsigned getOpcode() const { return getSubclassDataFromValue(); } |
||
| 1297 | |||
| 1298 | /// Return the ICMP or FCMP predicate value. Assert if this is not an ICMP or |
||
| 1299 | /// FCMP constant expression. |
||
| 1300 | unsigned getPredicate() const; |
||
| 1301 | |||
| 1302 | /// Assert that this is a shufflevector and return the mask. See class |
||
| 1303 | /// ShuffleVectorInst for a description of the mask representation. |
||
| 1304 | ArrayRef<int> getShuffleMask() const; |
||
| 1305 | |||
| 1306 | /// Assert that this is a shufflevector and return the mask. |
||
| 1307 | /// |
||
| 1308 | /// TODO: This is a temporary hack until we update the bitcode format for |
||
| 1309 | /// shufflevector. |
||
| 1310 | Constant *getShuffleMaskForBitcode() const; |
||
| 1311 | |||
| 1312 | /// Return a string representation for an opcode. |
||
| 1313 | const char *getOpcodeName() const; |
||
| 1314 | |||
| 1315 | /// This returns the current constant expression with the operands replaced |
||
| 1316 | /// with the specified values. The specified array must have the same number |
||
| 1317 | /// of operands as our current one. |
||
| 1318 | Constant *getWithOperands(ArrayRef<Constant *> Ops) const { |
||
| 1319 | return getWithOperands(Ops, getType()); |
||
| 1320 | } |
||
| 1321 | |||
| 1322 | /// Get the current expression with the operands replaced. |
||
| 1323 | /// |
||
| 1324 | /// Return the current constant expression with the operands replaced with \c |
||
| 1325 | /// Ops and the type with \c Ty. The new operands must have the same number |
||
| 1326 | /// as the current ones. |
||
| 1327 | /// |
||
| 1328 | /// If \c OnlyIfReduced is \c true, nullptr will be returned unless something |
||
| 1329 | /// gets constant-folded, the type changes, or the expression is otherwise |
||
| 1330 | /// canonicalized. This parameter should almost always be \c false. |
||
| 1331 | Constant *getWithOperands(ArrayRef<Constant *> Ops, Type *Ty, |
||
| 1332 | bool OnlyIfReduced = false, |
||
| 1333 | Type *SrcTy = nullptr) const; |
||
| 1334 | |||
| 1335 | /// Returns an Instruction which implements the same operation as this |
||
| 1336 | /// ConstantExpr. If \p InsertBefore is not null, the new instruction is |
||
| 1337 | /// inserted before it, otherwise it is not inserted into any basic block. |
||
| 1338 | /// |
||
| 1339 | /// A better approach to this could be to have a constructor for Instruction |
||
| 1340 | /// which would take a ConstantExpr parameter, but that would have spread |
||
| 1341 | /// implementation details of ConstantExpr outside of Constants.cpp, which |
||
| 1342 | /// would make it harder to remove ConstantExprs altogether. |
||
| 1343 | Instruction *getAsInstruction(Instruction *InsertBefore = nullptr) const; |
||
| 1344 | |||
| 1345 | /// Whether creating a constant expression for this binary operator is |
||
| 1346 | /// desirable. |
||
| 1347 | static bool isDesirableBinOp(unsigned Opcode); |
||
| 1348 | |||
| 1349 | /// Whether creating a constant expression for this binary operator is |
||
| 1350 | /// supported. |
||
| 1351 | static bool isSupportedBinOp(unsigned Opcode); |
||
| 1352 | |||
| 1353 | /// Methods for support type inquiry through isa, cast, and dyn_cast: |
||
| 1354 | static bool classof(const Value *V) { |
||
| 1355 | return V->getValueID() == ConstantExprVal; |
||
| 1356 | } |
||
| 1357 | |||
| 1358 | private: |
||
| 1359 | // Shadow Value::setValueSubclassData with a private forwarding method so that |
||
| 1360 | // subclasses cannot accidentally use it. |
||
| 1361 | void setValueSubclassData(unsigned short D) { |
||
| 1362 | Value::setValueSubclassData(D); |
||
| 1363 | } |
||
| 1364 | }; |
||
| 1365 | |||
| 1366 | template <> |
||
| 1367 | struct OperandTraits<ConstantExpr> |
||
| 1368 | : public VariadicOperandTraits<ConstantExpr, 1> {}; |
||
| 1369 | |||
| 1370 | DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantExpr, Constant) |
||
| 1371 | |||
| 1372 | //===----------------------------------------------------------------------===// |
||
| 1373 | /// 'undef' values are things that do not have specified contents. |
||
| 1374 | /// These are used for a variety of purposes, including global variable |
||
| 1375 | /// initializers and operands to instructions. 'undef' values can occur with |
||
| 1376 | /// any first-class type. |
||
| 1377 | /// |
||
| 1378 | /// Undef values aren't exactly constants; if they have multiple uses, they |
||
| 1379 | /// can appear to have different bit patterns at each use. See |
||
| 1380 | /// LangRef.html#undefvalues for details. |
||
| 1381 | /// |
||
| 1382 | class UndefValue : public ConstantData { |
||
| 1383 | friend class Constant; |
||
| 1384 | |||
| 1385 | explicit UndefValue(Type *T) : ConstantData(T, UndefValueVal) {} |
||
| 1386 | |||
| 1387 | void destroyConstantImpl(); |
||
| 1388 | |||
| 1389 | protected: |
||
| 1390 | explicit UndefValue(Type *T, ValueTy vty) : ConstantData(T, vty) {} |
||
| 1391 | |||
| 1392 | public: |
||
| 1393 | UndefValue(const UndefValue &) = delete; |
||
| 1394 | |||
| 1395 | /// Static factory methods - Return an 'undef' object of the specified type. |
||
| 1396 | static UndefValue *get(Type *T); |
||
| 1397 | |||
| 1398 | /// If this Undef has array or vector type, return a undef with the right |
||
| 1399 | /// element type. |
||
| 1400 | UndefValue *getSequentialElement() const; |
||
| 1401 | |||
| 1402 | /// If this undef has struct type, return a undef with the right element type |
||
| 1403 | /// for the specified element. |
||
| 1404 | UndefValue *getStructElement(unsigned Elt) const; |
||
| 1405 | |||
| 1406 | /// Return an undef of the right value for the specified GEP index if we can, |
||
| 1407 | /// otherwise return null (e.g. if C is a ConstantExpr). |
||
| 1408 | UndefValue *getElementValue(Constant *C) const; |
||
| 1409 | |||
| 1410 | /// Return an undef of the right value for the specified GEP index. |
||
| 1411 | UndefValue *getElementValue(unsigned Idx) const; |
||
| 1412 | |||
| 1413 | /// Return the number of elements in the array, vector, or struct. |
||
| 1414 | unsigned getNumElements() const; |
||
| 1415 | |||
| 1416 | /// Methods for support type inquiry through isa, cast, and dyn_cast: |
||
| 1417 | static bool classof(const Value *V) { |
||
| 1418 | return V->getValueID() == UndefValueVal || |
||
| 1419 | V->getValueID() == PoisonValueVal; |
||
| 1420 | } |
||
| 1421 | }; |
||
| 1422 | |||
| 1423 | //===----------------------------------------------------------------------===// |
||
| 1424 | /// In order to facilitate speculative execution, many instructions do not |
||
| 1425 | /// invoke immediate undefined behavior when provided with illegal operands, |
||
| 1426 | /// and return a poison value instead. |
||
| 1427 | /// |
||
| 1428 | /// see LangRef.html#poisonvalues for details. |
||
| 1429 | /// |
||
| 1430 | class PoisonValue final : public UndefValue { |
||
| 1431 | friend class Constant; |
||
| 1432 | |||
| 1433 | explicit PoisonValue(Type *T) : UndefValue(T, PoisonValueVal) {} |
||
| 1434 | |||
| 1435 | void destroyConstantImpl(); |
||
| 1436 | |||
| 1437 | public: |
||
| 1438 | PoisonValue(const PoisonValue &) = delete; |
||
| 1439 | |||
| 1440 | /// Static factory methods - Return an 'poison' object of the specified type. |
||
| 1441 | static PoisonValue *get(Type *T); |
||
| 1442 | |||
| 1443 | /// If this poison has array or vector type, return a poison with the right |
||
| 1444 | /// element type. |
||
| 1445 | PoisonValue *getSequentialElement() const; |
||
| 1446 | |||
| 1447 | /// If this poison has struct type, return a poison with the right element |
||
| 1448 | /// type for the specified element. |
||
| 1449 | PoisonValue *getStructElement(unsigned Elt) const; |
||
| 1450 | |||
| 1451 | /// Return an poison of the right value for the specified GEP index if we can, |
||
| 1452 | /// otherwise return null (e.g. if C is a ConstantExpr). |
||
| 1453 | PoisonValue *getElementValue(Constant *C) const; |
||
| 1454 | |||
| 1455 | /// Return an poison of the right value for the specified GEP index. |
||
| 1456 | PoisonValue *getElementValue(unsigned Idx) const; |
||
| 1457 | |||
| 1458 | /// Methods for support type inquiry through isa, cast, and dyn_cast: |
||
| 1459 | static bool classof(const Value *V) { |
||
| 1460 | return V->getValueID() == PoisonValueVal; |
||
| 1461 | } |
||
| 1462 | }; |
||
| 1463 | |||
| 1464 | } // end namespace llvm |
||
| 1465 | |||
| 1466 | #endif // LLVM_IR_CONSTANTS_H |