Details | Last modification | View Log | RSS feed
Rev | Author | Line No. | Line |
---|---|---|---|
14 | pmbaty | 1 | //===------------ JITLink.h - JIT linker functionality ----------*- C++ -*-===// |
2 | // |
||
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
||
4 | // See https://llvm.org/LICENSE.txt for license information. |
||
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
||
6 | // |
||
7 | //===----------------------------------------------------------------------===// |
||
8 | // |
||
9 | // Contains generic JIT-linker types. |
||
10 | // |
||
11 | //===----------------------------------------------------------------------===// |
||
12 | |||
13 | #ifndef LLVM_EXECUTIONENGINE_JITLINK_JITLINK_H |
||
14 | #define LLVM_EXECUTIONENGINE_JITLINK_JITLINK_H |
||
15 | |||
16 | #include "llvm/ADT/DenseMap.h" |
||
17 | #include "llvm/ADT/DenseSet.h" |
||
18 | #include "llvm/ADT/STLExtras.h" |
||
19 | #include "llvm/ADT/Triple.h" |
||
20 | #include "llvm/ExecutionEngine/JITLink/JITLinkMemoryManager.h" |
||
21 | #include "llvm/ExecutionEngine/JITSymbol.h" |
||
22 | #include "llvm/ExecutionEngine/Orc/Shared/MemoryFlags.h" |
||
23 | #include "llvm/Support/Allocator.h" |
||
24 | #include "llvm/Support/BinaryStreamReader.h" |
||
25 | #include "llvm/Support/BinaryStreamWriter.h" |
||
26 | #include "llvm/Support/Endian.h" |
||
27 | #include "llvm/Support/Error.h" |
||
28 | #include "llvm/Support/FormatVariadic.h" |
||
29 | #include "llvm/Support/MathExtras.h" |
||
30 | #include "llvm/Support/MemoryBuffer.h" |
||
31 | #include <optional> |
||
32 | |||
33 | #include <map> |
||
34 | #include <string> |
||
35 | #include <system_error> |
||
36 | |||
37 | namespace llvm { |
||
38 | namespace jitlink { |
||
39 | |||
40 | class LinkGraph; |
||
41 | class Symbol; |
||
42 | class Section; |
||
43 | |||
44 | /// Base class for errors originating in JIT linker, e.g. missing relocation |
||
45 | /// support. |
||
46 | class JITLinkError : public ErrorInfo<JITLinkError> { |
||
47 | public: |
||
48 | static char ID; |
||
49 | |||
50 | JITLinkError(Twine ErrMsg) : ErrMsg(ErrMsg.str()) {} |
||
51 | |||
52 | void log(raw_ostream &OS) const override; |
||
53 | const std::string &getErrorMessage() const { return ErrMsg; } |
||
54 | std::error_code convertToErrorCode() const override; |
||
55 | |||
56 | private: |
||
57 | std::string ErrMsg; |
||
58 | }; |
||
59 | |||
60 | /// Represents fixups and constraints in the LinkGraph. |
||
61 | class Edge { |
||
62 | public: |
||
63 | using Kind = uint8_t; |
||
64 | |||
65 | enum GenericEdgeKind : Kind { |
||
66 | Invalid, // Invalid edge value. |
||
67 | FirstKeepAlive, // Keeps target alive. Offset/addend zero. |
||
68 | KeepAlive = FirstKeepAlive, // Tag first edge kind that preserves liveness. |
||
69 | FirstRelocation // First architecture specific relocation. |
||
70 | }; |
||
71 | |||
72 | using OffsetT = uint32_t; |
||
73 | using AddendT = int64_t; |
||
74 | |||
75 | Edge(Kind K, OffsetT Offset, Symbol &Target, AddendT Addend) |
||
76 | : Target(&Target), Offset(Offset), Addend(Addend), K(K) {} |
||
77 | |||
78 | OffsetT getOffset() const { return Offset; } |
||
79 | void setOffset(OffsetT Offset) { this->Offset = Offset; } |
||
80 | Kind getKind() const { return K; } |
||
81 | void setKind(Kind K) { this->K = K; } |
||
82 | bool isRelocation() const { return K >= FirstRelocation; } |
||
83 | Kind getRelocation() const { |
||
84 | assert(isRelocation() && "Not a relocation edge"); |
||
85 | return K - FirstRelocation; |
||
86 | } |
||
87 | bool isKeepAlive() const { return K >= FirstKeepAlive; } |
||
88 | Symbol &getTarget() const { return *Target; } |
||
89 | void setTarget(Symbol &Target) { this->Target = &Target; } |
||
90 | AddendT getAddend() const { return Addend; } |
||
91 | void setAddend(AddendT Addend) { this->Addend = Addend; } |
||
92 | |||
93 | private: |
||
94 | Symbol *Target = nullptr; |
||
95 | OffsetT Offset = 0; |
||
96 | AddendT Addend = 0; |
||
97 | Kind K = 0; |
||
98 | }; |
||
99 | |||
100 | /// Returns the string name of the given generic edge kind, or "unknown" |
||
101 | /// otherwise. Useful for debugging. |
||
102 | const char *getGenericEdgeKindName(Edge::Kind K); |
||
103 | |||
104 | /// Base class for Addressable entities (externals, absolutes, blocks). |
||
105 | class Addressable { |
||
106 | friend class LinkGraph; |
||
107 | |||
108 | protected: |
||
109 | Addressable(orc::ExecutorAddr Address, bool IsDefined) |
||
110 | : Address(Address), IsDefined(IsDefined), IsAbsolute(false) {} |
||
111 | |||
112 | Addressable(orc::ExecutorAddr Address) |
||
113 | : Address(Address), IsDefined(false), IsAbsolute(true) { |
||
114 | assert(!(IsDefined && IsAbsolute) && |
||
115 | "Block cannot be both defined and absolute"); |
||
116 | } |
||
117 | |||
118 | public: |
||
119 | Addressable(const Addressable &) = delete; |
||
120 | Addressable &operator=(const Addressable &) = default; |
||
121 | Addressable(Addressable &&) = delete; |
||
122 | Addressable &operator=(Addressable &&) = default; |
||
123 | |||
124 | orc::ExecutorAddr getAddress() const { return Address; } |
||
125 | void setAddress(orc::ExecutorAddr Address) { this->Address = Address; } |
||
126 | |||
127 | /// Returns true if this is a defined addressable, in which case you |
||
128 | /// can downcast this to a Block. |
||
129 | bool isDefined() const { return static_cast<bool>(IsDefined); } |
||
130 | bool isAbsolute() const { return static_cast<bool>(IsAbsolute); } |
||
131 | |||
132 | private: |
||
133 | void setAbsolute(bool IsAbsolute) { |
||
134 | assert(!IsDefined && "Cannot change the Absolute flag on a defined block"); |
||
135 | this->IsAbsolute = IsAbsolute; |
||
136 | } |
||
137 | |||
138 | orc::ExecutorAddr Address; |
||
139 | uint64_t IsDefined : 1; |
||
140 | uint64_t IsAbsolute : 1; |
||
141 | |||
142 | protected: |
||
143 | // bitfields for Block, allocated here to improve packing. |
||
144 | uint64_t ContentMutable : 1; |
||
145 | uint64_t P2Align : 5; |
||
146 | uint64_t AlignmentOffset : 56; |
||
147 | }; |
||
148 | |||
149 | using SectionOrdinal = unsigned; |
||
150 | |||
151 | /// An Addressable with content and edges. |
||
152 | class Block : public Addressable { |
||
153 | friend class LinkGraph; |
||
154 | |||
155 | private: |
||
156 | /// Create a zero-fill defined addressable. |
||
157 | Block(Section &Parent, orc::ExecutorAddrDiff Size, orc::ExecutorAddr Address, |
||
158 | uint64_t Alignment, uint64_t AlignmentOffset) |
||
159 | : Addressable(Address, true), Parent(&Parent), Size(Size) { |
||
160 | assert(isPowerOf2_64(Alignment) && "Alignment must be power of 2"); |
||
161 | assert(AlignmentOffset < Alignment && |
||
162 | "Alignment offset cannot exceed alignment"); |
||
163 | assert(AlignmentOffset <= MaxAlignmentOffset && |
||
164 | "Alignment offset exceeds maximum"); |
||
165 | ContentMutable = false; |
||
166 | P2Align = Alignment ? countTrailingZeros(Alignment) : 0; |
||
167 | this->AlignmentOffset = AlignmentOffset; |
||
168 | } |
||
169 | |||
170 | /// Create a defined addressable for the given content. |
||
171 | /// The Content is assumed to be non-writable, and will be copied when |
||
172 | /// mutations are required. |
||
173 | Block(Section &Parent, ArrayRef<char> Content, orc::ExecutorAddr Address, |
||
174 | uint64_t Alignment, uint64_t AlignmentOffset) |
||
175 | : Addressable(Address, true), Parent(&Parent), Data(Content.data()), |
||
176 | Size(Content.size()) { |
||
177 | assert(isPowerOf2_64(Alignment) && "Alignment must be power of 2"); |
||
178 | assert(AlignmentOffset < Alignment && |
||
179 | "Alignment offset cannot exceed alignment"); |
||
180 | assert(AlignmentOffset <= MaxAlignmentOffset && |
||
181 | "Alignment offset exceeds maximum"); |
||
182 | ContentMutable = false; |
||
183 | P2Align = Alignment ? countTrailingZeros(Alignment) : 0; |
||
184 | this->AlignmentOffset = AlignmentOffset; |
||
185 | } |
||
186 | |||
187 | /// Create a defined addressable for the given content. |
||
188 | /// The content is assumed to be writable, and the caller is responsible |
||
189 | /// for ensuring that it lives for the duration of the Block's lifetime. |
||
190 | /// The standard way to achieve this is to allocate it on the Graph's |
||
191 | /// allocator. |
||
192 | Block(Section &Parent, MutableArrayRef<char> Content, |
||
193 | orc::ExecutorAddr Address, uint64_t Alignment, uint64_t AlignmentOffset) |
||
194 | : Addressable(Address, true), Parent(&Parent), Data(Content.data()), |
||
195 | Size(Content.size()) { |
||
196 | assert(isPowerOf2_64(Alignment) && "Alignment must be power of 2"); |
||
197 | assert(AlignmentOffset < Alignment && |
||
198 | "Alignment offset cannot exceed alignment"); |
||
199 | assert(AlignmentOffset <= MaxAlignmentOffset && |
||
200 | "Alignment offset exceeds maximum"); |
||
201 | ContentMutable = true; |
||
202 | P2Align = Alignment ? countTrailingZeros(Alignment) : 0; |
||
203 | this->AlignmentOffset = AlignmentOffset; |
||
204 | } |
||
205 | |||
206 | public: |
||
207 | using EdgeVector = std::vector<Edge>; |
||
208 | using edge_iterator = EdgeVector::iterator; |
||
209 | using const_edge_iterator = EdgeVector::const_iterator; |
||
210 | |||
211 | Block(const Block &) = delete; |
||
212 | Block &operator=(const Block &) = delete; |
||
213 | Block(Block &&) = delete; |
||
214 | Block &operator=(Block &&) = delete; |
||
215 | |||
216 | /// Return the parent section for this block. |
||
217 | Section &getSection() const { return *Parent; } |
||
218 | |||
219 | /// Returns true if this is a zero-fill block. |
||
220 | /// |
||
221 | /// If true, getSize is callable but getContent is not (the content is |
||
222 | /// defined to be a sequence of zero bytes of length Size). |
||
223 | bool isZeroFill() const { return !Data; } |
||
224 | |||
225 | /// Returns the size of this defined addressable. |
||
226 | size_t getSize() const { return Size; } |
||
227 | |||
228 | /// Returns the address range of this defined addressable. |
||
229 | orc::ExecutorAddrRange getRange() const { |
||
230 | return orc::ExecutorAddrRange(getAddress(), getSize()); |
||
231 | } |
||
232 | |||
233 | /// Get the content for this block. Block must not be a zero-fill block. |
||
234 | ArrayRef<char> getContent() const { |
||
235 | assert(Data && "Block does not contain content"); |
||
236 | return ArrayRef<char>(Data, Size); |
||
237 | } |
||
238 | |||
239 | /// Set the content for this block. |
||
240 | /// Caller is responsible for ensuring the underlying bytes are not |
||
241 | /// deallocated while pointed to by this block. |
||
242 | void setContent(ArrayRef<char> Content) { |
||
243 | assert(Content.data() && "Setting null content"); |
||
244 | Data = Content.data(); |
||
245 | Size = Content.size(); |
||
246 | ContentMutable = false; |
||
247 | } |
||
248 | |||
249 | /// Get mutable content for this block. |
||
250 | /// |
||
251 | /// If this Block's content is not already mutable this will trigger a copy |
||
252 | /// of the existing immutable content to a new, mutable buffer allocated using |
||
253 | /// LinkGraph::allocateContent. |
||
254 | MutableArrayRef<char> getMutableContent(LinkGraph &G); |
||
255 | |||
256 | /// Get mutable content for this block. |
||
257 | /// |
||
258 | /// This block's content must already be mutable. It is a programmatic error |
||
259 | /// to call this on a block with immutable content -- consider using |
||
260 | /// getMutableContent instead. |
||
261 | MutableArrayRef<char> getAlreadyMutableContent() { |
||
262 | assert(Data && "Block does not contain content"); |
||
263 | assert(ContentMutable && "Content is not mutable"); |
||
264 | return MutableArrayRef<char>(const_cast<char *>(Data), Size); |
||
265 | } |
||
266 | |||
267 | /// Set mutable content for this block. |
||
268 | /// |
||
269 | /// The caller is responsible for ensuring that the memory pointed to by |
||
270 | /// MutableContent is not deallocated while pointed to by this block. |
||
271 | void setMutableContent(MutableArrayRef<char> MutableContent) { |
||
272 | assert(MutableContent.data() && "Setting null content"); |
||
273 | Data = MutableContent.data(); |
||
274 | Size = MutableContent.size(); |
||
275 | ContentMutable = true; |
||
276 | } |
||
277 | |||
278 | /// Returns true if this block's content is mutable. |
||
279 | /// |
||
280 | /// This is primarily useful for asserting that a block is already in a |
||
281 | /// mutable state prior to modifying the content. E.g. when applying |
||
282 | /// fixups we expect the block to already be mutable as it should have been |
||
283 | /// copied to working memory. |
||
284 | bool isContentMutable() const { return ContentMutable; } |
||
285 | |||
286 | /// Get the alignment for this content. |
||
287 | uint64_t getAlignment() const { return 1ull << P2Align; } |
||
288 | |||
289 | /// Set the alignment for this content. |
||
290 | void setAlignment(uint64_t Alignment) { |
||
291 | assert(isPowerOf2_64(Alignment) && "Alignment must be a power of two"); |
||
292 | P2Align = Alignment ? countTrailingZeros(Alignment) : 0; |
||
293 | } |
||
294 | |||
295 | /// Get the alignment offset for this content. |
||
296 | uint64_t getAlignmentOffset() const { return AlignmentOffset; } |
||
297 | |||
298 | /// Set the alignment offset for this content. |
||
299 | void setAlignmentOffset(uint64_t AlignmentOffset) { |
||
300 | assert(AlignmentOffset < (1ull << P2Align) && |
||
301 | "Alignment offset can't exceed alignment"); |
||
302 | this->AlignmentOffset = AlignmentOffset; |
||
303 | } |
||
304 | |||
305 | /// Add an edge to this block. |
||
306 | void addEdge(Edge::Kind K, Edge::OffsetT Offset, Symbol &Target, |
||
307 | Edge::AddendT Addend) { |
||
308 | assert((K == Edge::KeepAlive || !isZeroFill()) && |
||
309 | "Adding edge to zero-fill block?"); |
||
310 | Edges.push_back(Edge(K, Offset, Target, Addend)); |
||
311 | } |
||
312 | |||
313 | /// Add an edge by copying an existing one. This is typically used when |
||
314 | /// moving edges between blocks. |
||
315 | void addEdge(const Edge &E) { Edges.push_back(E); } |
||
316 | |||
317 | /// Return the list of edges attached to this content. |
||
318 | iterator_range<edge_iterator> edges() { |
||
319 | return make_range(Edges.begin(), Edges.end()); |
||
320 | } |
||
321 | |||
322 | /// Returns the list of edges attached to this content. |
||
323 | iterator_range<const_edge_iterator> edges() const { |
||
324 | return make_range(Edges.begin(), Edges.end()); |
||
325 | } |
||
326 | |||
327 | /// Return the size of the edges list. |
||
328 | size_t edges_size() const { return Edges.size(); } |
||
329 | |||
330 | /// Returns true if the list of edges is empty. |
||
331 | bool edges_empty() const { return Edges.empty(); } |
||
332 | |||
333 | /// Remove the edge pointed to by the given iterator. |
||
334 | /// Returns an iterator to the new next element. |
||
335 | edge_iterator removeEdge(edge_iterator I) { return Edges.erase(I); } |
||
336 | |||
337 | /// Returns the address of the fixup for the given edge, which is equal to |
||
338 | /// this block's address plus the edge's offset. |
||
339 | orc::ExecutorAddr getFixupAddress(const Edge &E) const { |
||
340 | return getAddress() + E.getOffset(); |
||
341 | } |
||
342 | |||
343 | private: |
||
344 | static constexpr uint64_t MaxAlignmentOffset = (1ULL << 56) - 1; |
||
345 | |||
346 | void setSection(Section &Parent) { this->Parent = &Parent; } |
||
347 | |||
348 | Section *Parent; |
||
349 | const char *Data = nullptr; |
||
350 | size_t Size = 0; |
||
351 | std::vector<Edge> Edges; |
||
352 | }; |
||
353 | |||
354 | // Align an address to conform with block alignment requirements. |
||
355 | inline uint64_t alignToBlock(uint64_t Addr, Block &B) { |
||
356 | uint64_t Delta = (B.getAlignmentOffset() - Addr) % B.getAlignment(); |
||
357 | return Addr + Delta; |
||
358 | } |
||
359 | |||
360 | // Align a orc::ExecutorAddr to conform with block alignment requirements. |
||
361 | inline orc::ExecutorAddr alignToBlock(orc::ExecutorAddr Addr, Block &B) { |
||
362 | return orc::ExecutorAddr(alignToBlock(Addr.getValue(), B)); |
||
363 | } |
||
364 | |||
365 | /// Describes symbol linkage. This can be used to make resolve definition |
||
366 | /// clashes. |
||
367 | enum class Linkage : uint8_t { |
||
368 | Strong, |
||
369 | Weak, |
||
370 | }; |
||
371 | |||
372 | /// For errors and debugging output. |
||
373 | const char *getLinkageName(Linkage L); |
||
374 | |||
375 | /// Defines the scope in which this symbol should be visible: |
||
376 | /// Default -- Visible in the public interface of the linkage unit. |
||
377 | /// Hidden -- Visible within the linkage unit, but not exported from it. |
||
378 | /// Local -- Visible only within the LinkGraph. |
||
379 | enum class Scope : uint8_t { |
||
380 | Default, |
||
381 | Hidden, |
||
382 | Local |
||
383 | }; |
||
384 | |||
385 | /// For debugging output. |
||
386 | const char *getScopeName(Scope S); |
||
387 | |||
388 | raw_ostream &operator<<(raw_ostream &OS, const Block &B); |
||
389 | |||
390 | /// Symbol representation. |
||
391 | /// |
||
392 | /// Symbols represent locations within Addressable objects. |
||
393 | /// They can be either Named or Anonymous. |
||
394 | /// Anonymous symbols have neither linkage nor visibility, and must point at |
||
395 | /// ContentBlocks. |
||
396 | /// Named symbols may be in one of four states: |
||
397 | /// - Null: Default initialized. Assignable, but otherwise unusable. |
||
398 | /// - Defined: Has both linkage and visibility and points to a ContentBlock |
||
399 | /// - Common: Has both linkage and visibility, points to a null Addressable. |
||
400 | /// - External: Has neither linkage nor visibility, points to an external |
||
401 | /// Addressable. |
||
402 | /// |
||
403 | class Symbol { |
||
404 | friend class LinkGraph; |
||
405 | |||
406 | private: |
||
407 | Symbol(Addressable &Base, orc::ExecutorAddrDiff Offset, StringRef Name, |
||
408 | orc::ExecutorAddrDiff Size, Linkage L, Scope S, bool IsLive, |
||
409 | bool IsCallable) |
||
410 | : Name(Name), Base(&Base), Offset(Offset), WeakRef(0), Size(Size) { |
||
411 | assert(Offset <= MaxOffset && "Offset out of range"); |
||
412 | setLinkage(L); |
||
413 | setScope(S); |
||
414 | setLive(IsLive); |
||
415 | setCallable(IsCallable); |
||
416 | } |
||
417 | |||
418 | static Symbol &constructExternal(BumpPtrAllocator &Allocator, |
||
419 | Addressable &Base, StringRef Name, |
||
420 | orc::ExecutorAddrDiff Size, Linkage L, |
||
421 | bool WeaklyReferenced) { |
||
422 | assert(!Base.isDefined() && |
||
423 | "Cannot create external symbol from defined block"); |
||
424 | assert(!Name.empty() && "External symbol name cannot be empty"); |
||
425 | auto *Sym = Allocator.Allocate<Symbol>(); |
||
426 | new (Sym) Symbol(Base, 0, Name, Size, L, Scope::Default, false, false); |
||
427 | Sym->setWeaklyReferenced(WeaklyReferenced); |
||
428 | return *Sym; |
||
429 | } |
||
430 | |||
431 | static Symbol &constructAbsolute(BumpPtrAllocator &Allocator, |
||
432 | Addressable &Base, StringRef Name, |
||
433 | orc::ExecutorAddrDiff Size, Linkage L, |
||
434 | Scope S, bool IsLive) { |
||
435 | assert(!Base.isDefined() && |
||
436 | "Cannot create absolute symbol from a defined block"); |
||
437 | auto *Sym = Allocator.Allocate<Symbol>(); |
||
438 | new (Sym) Symbol(Base, 0, Name, Size, L, S, IsLive, false); |
||
439 | return *Sym; |
||
440 | } |
||
441 | |||
442 | static Symbol &constructAnonDef(BumpPtrAllocator &Allocator, Block &Base, |
||
443 | orc::ExecutorAddrDiff Offset, |
||
444 | orc::ExecutorAddrDiff Size, bool IsCallable, |
||
445 | bool IsLive) { |
||
446 | assert((Offset + Size) <= Base.getSize() && |
||
447 | "Symbol extends past end of block"); |
||
448 | auto *Sym = Allocator.Allocate<Symbol>(); |
||
449 | new (Sym) Symbol(Base, Offset, StringRef(), Size, Linkage::Strong, |
||
450 | Scope::Local, IsLive, IsCallable); |
||
451 | return *Sym; |
||
452 | } |
||
453 | |||
454 | static Symbol &constructNamedDef(BumpPtrAllocator &Allocator, Block &Base, |
||
455 | orc::ExecutorAddrDiff Offset, StringRef Name, |
||
456 | orc::ExecutorAddrDiff Size, Linkage L, |
||
457 | Scope S, bool IsLive, bool IsCallable) { |
||
458 | assert((Offset + Size) <= Base.getSize() && |
||
459 | "Symbol extends past end of block"); |
||
460 | assert(!Name.empty() && "Name cannot be empty"); |
||
461 | auto *Sym = Allocator.Allocate<Symbol>(); |
||
462 | new (Sym) Symbol(Base, Offset, Name, Size, L, S, IsLive, IsCallable); |
||
463 | return *Sym; |
||
464 | } |
||
465 | |||
466 | public: |
||
467 | /// Create a null Symbol. This allows Symbols to be default initialized for |
||
468 | /// use in containers (e.g. as map values). Null symbols are only useful for |
||
469 | /// assigning to. |
||
470 | Symbol() = default; |
||
471 | |||
472 | // Symbols are not movable or copyable. |
||
473 | Symbol(const Symbol &) = delete; |
||
474 | Symbol &operator=(const Symbol &) = delete; |
||
475 | Symbol(Symbol &&) = delete; |
||
476 | Symbol &operator=(Symbol &&) = delete; |
||
477 | |||
478 | /// Returns true if this symbol has a name. |
||
479 | bool hasName() const { return !Name.empty(); } |
||
480 | |||
481 | /// Returns the name of this symbol (empty if the symbol is anonymous). |
||
482 | StringRef getName() const { |
||
483 | assert((!Name.empty() || getScope() == Scope::Local) && |
||
484 | "Anonymous symbol has non-local scope"); |
||
485 | return Name; |
||
486 | } |
||
487 | |||
488 | /// Rename this symbol. The client is responsible for updating scope and |
||
489 | /// linkage if this name-change requires it. |
||
490 | void setName(StringRef Name) { this->Name = Name; } |
||
491 | |||
492 | /// Returns true if this Symbol has content (potentially) defined within this |
||
493 | /// object file (i.e. is anything but an external or absolute symbol). |
||
494 | bool isDefined() const { |
||
495 | assert(Base && "Attempt to access null symbol"); |
||
496 | return Base->isDefined(); |
||
497 | } |
||
498 | |||
499 | /// Returns true if this symbol is live (i.e. should be treated as a root for |
||
500 | /// dead stripping). |
||
501 | bool isLive() const { |
||
502 | assert(Base && "Attempting to access null symbol"); |
||
503 | return IsLive; |
||
504 | } |
||
505 | |||
506 | /// Set this symbol's live bit. |
||
507 | void setLive(bool IsLive) { this->IsLive = IsLive; } |
||
508 | |||
509 | /// Returns true is this symbol is callable. |
||
510 | bool isCallable() const { return IsCallable; } |
||
511 | |||
512 | /// Set this symbol's callable bit. |
||
513 | void setCallable(bool IsCallable) { this->IsCallable = IsCallable; } |
||
514 | |||
515 | /// Returns true if the underlying addressable is an unresolved external. |
||
516 | bool isExternal() const { |
||
517 | assert(Base && "Attempt to access null symbol"); |
||
518 | return !Base->isDefined() && !Base->isAbsolute(); |
||
519 | } |
||
520 | |||
521 | /// Returns true if the underlying addressable is an absolute symbol. |
||
522 | bool isAbsolute() const { |
||
523 | assert(Base && "Attempt to access null symbol"); |
||
524 | return Base->isAbsolute(); |
||
525 | } |
||
526 | |||
527 | /// Return the addressable that this symbol points to. |
||
528 | Addressable &getAddressable() { |
||
529 | assert(Base && "Cannot get underlying addressable for null symbol"); |
||
530 | return *Base; |
||
531 | } |
||
532 | |||
533 | /// Return the addressable that this symbol points to. |
||
534 | const Addressable &getAddressable() const { |
||
535 | assert(Base && "Cannot get underlying addressable for null symbol"); |
||
536 | return *Base; |
||
537 | } |
||
538 | |||
539 | /// Return the Block for this Symbol (Symbol must be defined). |
||
540 | Block &getBlock() { |
||
541 | assert(Base && "Cannot get block for null symbol"); |
||
542 | assert(Base->isDefined() && "Not a defined symbol"); |
||
543 | return static_cast<Block &>(*Base); |
||
544 | } |
||
545 | |||
546 | /// Return the Block for this Symbol (Symbol must be defined). |
||
547 | const Block &getBlock() const { |
||
548 | assert(Base && "Cannot get block for null symbol"); |
||
549 | assert(Base->isDefined() && "Not a defined symbol"); |
||
550 | return static_cast<const Block &>(*Base); |
||
551 | } |
||
552 | |||
553 | /// Returns the offset for this symbol within the underlying addressable. |
||
554 | orc::ExecutorAddrDiff getOffset() const { return Offset; } |
||
555 | |||
556 | /// Returns the address of this symbol. |
||
557 | orc::ExecutorAddr getAddress() const { return Base->getAddress() + Offset; } |
||
558 | |||
559 | /// Returns the size of this symbol. |
||
560 | orc::ExecutorAddrDiff getSize() const { return Size; } |
||
561 | |||
562 | /// Set the size of this symbol. |
||
563 | void setSize(orc::ExecutorAddrDiff Size) { |
||
564 | assert(Base && "Cannot set size for null Symbol"); |
||
565 | assert((Size == 0 || Base->isDefined()) && |
||
566 | "Non-zero size can only be set for defined symbols"); |
||
567 | assert((Offset + Size <= static_cast<const Block &>(*Base).getSize()) && |
||
568 | "Symbol size cannot extend past the end of its containing block"); |
||
569 | this->Size = Size; |
||
570 | } |
||
571 | |||
572 | /// Returns the address range of this symbol. |
||
573 | orc::ExecutorAddrRange getRange() const { |
||
574 | return orc::ExecutorAddrRange(getAddress(), getSize()); |
||
575 | } |
||
576 | |||
577 | /// Returns true if this symbol is backed by a zero-fill block. |
||
578 | /// This method may only be called on defined symbols. |
||
579 | bool isSymbolZeroFill() const { return getBlock().isZeroFill(); } |
||
580 | |||
581 | /// Returns the content in the underlying block covered by this symbol. |
||
582 | /// This method may only be called on defined non-zero-fill symbols. |
||
583 | ArrayRef<char> getSymbolContent() const { |
||
584 | return getBlock().getContent().slice(Offset, Size); |
||
585 | } |
||
586 | |||
587 | /// Get the linkage for this Symbol. |
||
588 | Linkage getLinkage() const { return static_cast<Linkage>(L); } |
||
589 | |||
590 | /// Set the linkage for this Symbol. |
||
591 | void setLinkage(Linkage L) { |
||
592 | assert((L == Linkage::Strong || (!Base->isAbsolute() && !Name.empty())) && |
||
593 | "Linkage can only be applied to defined named symbols"); |
||
594 | this->L = static_cast<uint8_t>(L); |
||
595 | } |
||
596 | |||
597 | /// Get the visibility for this Symbol. |
||
598 | Scope getScope() const { return static_cast<Scope>(S); } |
||
599 | |||
600 | /// Set the visibility for this Symbol. |
||
601 | void setScope(Scope S) { |
||
602 | assert((!Name.empty() || S == Scope::Local) && |
||
603 | "Can not set anonymous symbol to non-local scope"); |
||
604 | assert((S != Scope::Local || Base->isDefined() || Base->isAbsolute()) && |
||
605 | "Invalid visibility for symbol type"); |
||
606 | this->S = static_cast<uint8_t>(S); |
||
607 | } |
||
608 | |||
609 | /// Returns true if this is a weakly referenced external symbol. |
||
610 | /// This method may only be called on external symbols. |
||
611 | bool isWeaklyReferenced() const { |
||
612 | assert(isExternal() && "isWeaklyReferenced called on non-external"); |
||
613 | return WeakRef; |
||
614 | } |
||
615 | |||
616 | /// Set the WeaklyReferenced value for this symbol. |
||
617 | /// This method may only be called on external symbols. |
||
618 | void setWeaklyReferenced(bool WeakRef) { |
||
619 | assert(isExternal() && "setWeaklyReferenced called on non-external"); |
||
620 | this->WeakRef = WeakRef; |
||
621 | } |
||
622 | |||
623 | private: |
||
624 | void makeExternal(Addressable &A) { |
||
625 | assert(!A.isDefined() && !A.isAbsolute() && |
||
626 | "Attempting to make external with defined or absolute block"); |
||
627 | Base = &A; |
||
628 | Offset = 0; |
||
629 | setScope(Scope::Default); |
||
630 | IsLive = 0; |
||
631 | // note: Size, Linkage and IsCallable fields left unchanged. |
||
632 | } |
||
633 | |||
634 | void makeAbsolute(Addressable &A) { |
||
635 | assert(!A.isDefined() && A.isAbsolute() && |
||
636 | "Attempting to make absolute with defined or external block"); |
||
637 | Base = &A; |
||
638 | Offset = 0; |
||
639 | } |
||
640 | |||
641 | void setBlock(Block &B) { Base = &B; } |
||
642 | |||
643 | void setOffset(orc::ExecutorAddrDiff NewOffset) { |
||
644 | assert(NewOffset <= MaxOffset && "Offset out of range"); |
||
645 | Offset = NewOffset; |
||
646 | } |
||
647 | |||
648 | static constexpr uint64_t MaxOffset = (1ULL << 59) - 1; |
||
649 | |||
650 | // FIXME: A char* or SymbolStringPtr may pack better. |
||
651 | StringRef Name; |
||
652 | Addressable *Base = nullptr; |
||
653 | uint64_t Offset : 58; |
||
654 | uint64_t L : 1; |
||
655 | uint64_t S : 2; |
||
656 | uint64_t IsLive : 1; |
||
657 | uint64_t IsCallable : 1; |
||
658 | uint64_t WeakRef : 1; |
||
659 | size_t Size = 0; |
||
660 | }; |
||
661 | |||
662 | raw_ostream &operator<<(raw_ostream &OS, const Symbol &A); |
||
663 | |||
664 | void printEdge(raw_ostream &OS, const Block &B, const Edge &E, |
||
665 | StringRef EdgeKindName); |
||
666 | |||
667 | /// Represents an object file section. |
||
668 | class Section { |
||
669 | friend class LinkGraph; |
||
670 | |||
671 | private: |
||
672 | Section(StringRef Name, orc::MemProt Prot, SectionOrdinal SecOrdinal) |
||
673 | : Name(Name), Prot(Prot), SecOrdinal(SecOrdinal) {} |
||
674 | |||
675 | using SymbolSet = DenseSet<Symbol *>; |
||
676 | using BlockSet = DenseSet<Block *>; |
||
677 | |||
678 | public: |
||
679 | using symbol_iterator = SymbolSet::iterator; |
||
680 | using const_symbol_iterator = SymbolSet::const_iterator; |
||
681 | |||
682 | using block_iterator = BlockSet::iterator; |
||
683 | using const_block_iterator = BlockSet::const_iterator; |
||
684 | |||
685 | ~Section(); |
||
686 | |||
687 | // Sections are not movable or copyable. |
||
688 | Section(const Section &) = delete; |
||
689 | Section &operator=(const Section &) = delete; |
||
690 | Section(Section &&) = delete; |
||
691 | Section &operator=(Section &&) = delete; |
||
692 | |||
693 | /// Returns the name of this section. |
||
694 | StringRef getName() const { return Name; } |
||
695 | |||
696 | /// Returns the protection flags for this section. |
||
697 | orc::MemProt getMemProt() const { return Prot; } |
||
698 | |||
699 | /// Set the protection flags for this section. |
||
700 | void setMemProt(orc::MemProt Prot) { this->Prot = Prot; } |
||
701 | |||
702 | /// Get the deallocation policy for this section. |
||
703 | orc::MemDeallocPolicy getMemDeallocPolicy() const { return MDP; } |
||
704 | |||
705 | /// Set the deallocation policy for this section. |
||
706 | void setMemDeallocPolicy(orc::MemDeallocPolicy MDP) { this->MDP = MDP; } |
||
707 | |||
708 | /// Returns the ordinal for this section. |
||
709 | SectionOrdinal getOrdinal() const { return SecOrdinal; } |
||
710 | |||
711 | /// Returns an iterator over the blocks defined in this section. |
||
712 | iterator_range<block_iterator> blocks() { |
||
713 | return make_range(Blocks.begin(), Blocks.end()); |
||
714 | } |
||
715 | |||
716 | /// Returns an iterator over the blocks defined in this section. |
||
717 | iterator_range<const_block_iterator> blocks() const { |
||
718 | return make_range(Blocks.begin(), Blocks.end()); |
||
719 | } |
||
720 | |||
721 | /// Returns the number of blocks in this section. |
||
722 | BlockSet::size_type blocks_size() const { return Blocks.size(); } |
||
723 | |||
724 | /// Returns an iterator over the symbols defined in this section. |
||
725 | iterator_range<symbol_iterator> symbols() { |
||
726 | return make_range(Symbols.begin(), Symbols.end()); |
||
727 | } |
||
728 | |||
729 | /// Returns an iterator over the symbols defined in this section. |
||
730 | iterator_range<const_symbol_iterator> symbols() const { |
||
731 | return make_range(Symbols.begin(), Symbols.end()); |
||
732 | } |
||
733 | |||
734 | /// Return the number of symbols in this section. |
||
735 | SymbolSet::size_type symbols_size() const { return Symbols.size(); } |
||
736 | |||
737 | private: |
||
738 | void addSymbol(Symbol &Sym) { |
||
739 | assert(!Symbols.count(&Sym) && "Symbol is already in this section"); |
||
740 | Symbols.insert(&Sym); |
||
741 | } |
||
742 | |||
743 | void removeSymbol(Symbol &Sym) { |
||
744 | assert(Symbols.count(&Sym) && "symbol is not in this section"); |
||
745 | Symbols.erase(&Sym); |
||
746 | } |
||
747 | |||
748 | void addBlock(Block &B) { |
||
749 | assert(!Blocks.count(&B) && "Block is already in this section"); |
||
750 | Blocks.insert(&B); |
||
751 | } |
||
752 | |||
753 | void removeBlock(Block &B) { |
||
754 | assert(Blocks.count(&B) && "Block is not in this section"); |
||
755 | Blocks.erase(&B); |
||
756 | } |
||
757 | |||
758 | void transferContentTo(Section &DstSection) { |
||
759 | if (&DstSection == this) |
||
760 | return; |
||
761 | for (auto *S : Symbols) |
||
762 | DstSection.addSymbol(*S); |
||
763 | for (auto *B : Blocks) |
||
764 | DstSection.addBlock(*B); |
||
765 | Symbols.clear(); |
||
766 | Blocks.clear(); |
||
767 | } |
||
768 | |||
769 | StringRef Name; |
||
770 | orc::MemProt Prot; |
||
771 | orc::MemDeallocPolicy MDP = orc::MemDeallocPolicy::Standard; |
||
772 | SectionOrdinal SecOrdinal = 0; |
||
773 | BlockSet Blocks; |
||
774 | SymbolSet Symbols; |
||
775 | }; |
||
776 | |||
777 | /// Represents a section address range via a pair of Block pointers |
||
778 | /// to the first and last Blocks in the section. |
||
779 | class SectionRange { |
||
780 | public: |
||
781 | SectionRange() = default; |
||
782 | SectionRange(const Section &Sec) { |
||
783 | if (Sec.blocks().empty()) |
||
784 | return; |
||
785 | First = Last = *Sec.blocks().begin(); |
||
786 | for (auto *B : Sec.blocks()) { |
||
787 | if (B->getAddress() < First->getAddress()) |
||
788 | First = B; |
||
789 | if (B->getAddress() > Last->getAddress()) |
||
790 | Last = B; |
||
791 | } |
||
792 | } |
||
793 | Block *getFirstBlock() const { |
||
794 | assert((!Last || First) && "First can not be null if end is non-null"); |
||
795 | return First; |
||
796 | } |
||
797 | Block *getLastBlock() const { |
||
798 | assert((First || !Last) && "Last can not be null if start is non-null"); |
||
799 | return Last; |
||
800 | } |
||
801 | bool empty() const { |
||
802 | assert((First || !Last) && "Last can not be null if start is non-null"); |
||
803 | return !First; |
||
804 | } |
||
805 | orc::ExecutorAddr getStart() const { |
||
806 | return First ? First->getAddress() : orc::ExecutorAddr(); |
||
807 | } |
||
808 | orc::ExecutorAddr getEnd() const { |
||
809 | return Last ? Last->getAddress() + Last->getSize() : orc::ExecutorAddr(); |
||
810 | } |
||
811 | orc::ExecutorAddrDiff getSize() const { return getEnd() - getStart(); } |
||
812 | |||
813 | orc::ExecutorAddrRange getRange() const { |
||
814 | return orc::ExecutorAddrRange(getStart(), getEnd()); |
||
815 | } |
||
816 | |||
817 | private: |
||
818 | Block *First = nullptr; |
||
819 | Block *Last = nullptr; |
||
820 | }; |
||
821 | |||
822 | class LinkGraph { |
||
823 | private: |
||
824 | using SectionList = std::vector<std::unique_ptr<Section>>; |
||
825 | using ExternalSymbolSet = DenseSet<Symbol *>; |
||
826 | using BlockSet = DenseSet<Block *>; |
||
827 | |||
828 | template <typename... ArgTs> |
||
829 | Addressable &createAddressable(ArgTs &&... Args) { |
||
830 | Addressable *A = |
||
831 | reinterpret_cast<Addressable *>(Allocator.Allocate<Addressable>()); |
||
832 | new (A) Addressable(std::forward<ArgTs>(Args)...); |
||
833 | return *A; |
||
834 | } |
||
835 | |||
836 | void destroyAddressable(Addressable &A) { |
||
837 | A.~Addressable(); |
||
838 | Allocator.Deallocate(&A); |
||
839 | } |
||
840 | |||
841 | template <typename... ArgTs> Block &createBlock(ArgTs &&... Args) { |
||
842 | Block *B = reinterpret_cast<Block *>(Allocator.Allocate<Block>()); |
||
843 | new (B) Block(std::forward<ArgTs>(Args)...); |
||
844 | B->getSection().addBlock(*B); |
||
845 | return *B; |
||
846 | } |
||
847 | |||
848 | void destroyBlock(Block &B) { |
||
849 | B.~Block(); |
||
850 | Allocator.Deallocate(&B); |
||
851 | } |
||
852 | |||
853 | void destroySymbol(Symbol &S) { |
||
854 | S.~Symbol(); |
||
855 | Allocator.Deallocate(&S); |
||
856 | } |
||
857 | |||
858 | static iterator_range<Section::block_iterator> getSectionBlocks(Section &S) { |
||
859 | return S.blocks(); |
||
860 | } |
||
861 | |||
862 | static iterator_range<Section::const_block_iterator> |
||
863 | getSectionConstBlocks(Section &S) { |
||
864 | return S.blocks(); |
||
865 | } |
||
866 | |||
867 | static iterator_range<Section::symbol_iterator> |
||
868 | getSectionSymbols(Section &S) { |
||
869 | return S.symbols(); |
||
870 | } |
||
871 | |||
872 | static iterator_range<Section::const_symbol_iterator> |
||
873 | getSectionConstSymbols(Section &S) { |
||
874 | return S.symbols(); |
||
875 | } |
||
876 | |||
877 | public: |
||
878 | using external_symbol_iterator = ExternalSymbolSet::iterator; |
||
879 | |||
880 | using section_iterator = pointee_iterator<SectionList::iterator>; |
||
881 | using const_section_iterator = pointee_iterator<SectionList::const_iterator>; |
||
882 | |||
883 | template <typename OuterItrT, typename InnerItrT, typename T, |
||
884 | iterator_range<InnerItrT> getInnerRange( |
||
885 | typename OuterItrT::reference)> |
||
886 | class nested_collection_iterator |
||
887 | : public iterator_facade_base< |
||
888 | nested_collection_iterator<OuterItrT, InnerItrT, T, getInnerRange>, |
||
889 | std::forward_iterator_tag, T> { |
||
890 | public: |
||
891 | nested_collection_iterator() = default; |
||
892 | |||
893 | nested_collection_iterator(OuterItrT OuterI, OuterItrT OuterE) |
||
894 | : OuterI(OuterI), OuterE(OuterE), |
||
895 | InnerI(getInnerBegin(OuterI, OuterE)) { |
||
896 | moveToNonEmptyInnerOrEnd(); |
||
897 | } |
||
898 | |||
899 | bool operator==(const nested_collection_iterator &RHS) const { |
||
900 | return (OuterI == RHS.OuterI) && (InnerI == RHS.InnerI); |
||
901 | } |
||
902 | |||
903 | T operator*() const { |
||
904 | assert(InnerI != getInnerRange(*OuterI).end() && "Dereferencing end?"); |
||
905 | return *InnerI; |
||
906 | } |
||
907 | |||
908 | nested_collection_iterator operator++() { |
||
909 | ++InnerI; |
||
910 | moveToNonEmptyInnerOrEnd(); |
||
911 | return *this; |
||
912 | } |
||
913 | |||
914 | private: |
||
915 | static InnerItrT getInnerBegin(OuterItrT OuterI, OuterItrT OuterE) { |
||
916 | return OuterI != OuterE ? getInnerRange(*OuterI).begin() : InnerItrT(); |
||
917 | } |
||
918 | |||
919 | void moveToNonEmptyInnerOrEnd() { |
||
920 | while (OuterI != OuterE && InnerI == getInnerRange(*OuterI).end()) { |
||
921 | ++OuterI; |
||
922 | InnerI = getInnerBegin(OuterI, OuterE); |
||
923 | } |
||
924 | } |
||
925 | |||
926 | OuterItrT OuterI, OuterE; |
||
927 | InnerItrT InnerI; |
||
928 | }; |
||
929 | |||
930 | using defined_symbol_iterator = |
||
931 | nested_collection_iterator<const_section_iterator, |
||
932 | Section::symbol_iterator, Symbol *, |
||
933 | getSectionSymbols>; |
||
934 | |||
935 | using const_defined_symbol_iterator = |
||
936 | nested_collection_iterator<const_section_iterator, |
||
937 | Section::const_symbol_iterator, const Symbol *, |
||
938 | getSectionConstSymbols>; |
||
939 | |||
940 | using block_iterator = nested_collection_iterator<const_section_iterator, |
||
941 | Section::block_iterator, |
||
942 | Block *, getSectionBlocks>; |
||
943 | |||
944 | using const_block_iterator = |
||
945 | nested_collection_iterator<const_section_iterator, |
||
946 | Section::const_block_iterator, const Block *, |
||
947 | getSectionConstBlocks>; |
||
948 | |||
949 | using GetEdgeKindNameFunction = const char *(*)(Edge::Kind); |
||
950 | |||
951 | LinkGraph(std::string Name, const Triple &TT, unsigned PointerSize, |
||
952 | support::endianness Endianness, |
||
953 | GetEdgeKindNameFunction GetEdgeKindName) |
||
954 | : Name(std::move(Name)), TT(TT), PointerSize(PointerSize), |
||
955 | Endianness(Endianness), GetEdgeKindName(std::move(GetEdgeKindName)) {} |
||
956 | |||
957 | LinkGraph(const LinkGraph &) = delete; |
||
958 | LinkGraph &operator=(const LinkGraph &) = delete; |
||
959 | LinkGraph(LinkGraph &&) = delete; |
||
960 | LinkGraph &operator=(LinkGraph &&) = delete; |
||
961 | |||
962 | /// Returns the name of this graph (usually the name of the original |
||
963 | /// underlying MemoryBuffer). |
||
964 | const std::string &getName() const { return Name; } |
||
965 | |||
966 | /// Returns the target triple for this Graph. |
||
967 | const Triple &getTargetTriple() const { return TT; } |
||
968 | |||
969 | /// Returns the pointer size for use in this graph. |
||
970 | unsigned getPointerSize() const { return PointerSize; } |
||
971 | |||
972 | /// Returns the endianness of content in this graph. |
||
973 | support::endianness getEndianness() const { return Endianness; } |
||
974 | |||
975 | const char *getEdgeKindName(Edge::Kind K) const { return GetEdgeKindName(K); } |
||
976 | |||
977 | /// Allocate a mutable buffer of the given size using the LinkGraph's |
||
978 | /// allocator. |
||
979 | MutableArrayRef<char> allocateBuffer(size_t Size) { |
||
980 | return {Allocator.Allocate<char>(Size), Size}; |
||
981 | } |
||
982 | |||
983 | /// Allocate a copy of the given string using the LinkGraph's allocator. |
||
984 | /// This can be useful when renaming symbols or adding new content to the |
||
985 | /// graph. |
||
986 | MutableArrayRef<char> allocateContent(ArrayRef<char> Source) { |
||
987 | auto *AllocatedBuffer = Allocator.Allocate<char>(Source.size()); |
||
988 | llvm::copy(Source, AllocatedBuffer); |
||
989 | return MutableArrayRef<char>(AllocatedBuffer, Source.size()); |
||
990 | } |
||
991 | |||
992 | /// Allocate a copy of the given string using the LinkGraph's allocator. |
||
993 | /// This can be useful when renaming symbols or adding new content to the |
||
994 | /// graph. |
||
995 | /// |
||
996 | /// Note: This Twine-based overload requires an extra string copy and an |
||
997 | /// extra heap allocation for large strings. The ArrayRef<char> overload |
||
998 | /// should be preferred where possible. |
||
999 | MutableArrayRef<char> allocateString(Twine Source) { |
||
1000 | SmallString<256> TmpBuffer; |
||
1001 | auto SourceStr = Source.toStringRef(TmpBuffer); |
||
1002 | auto *AllocatedBuffer = Allocator.Allocate<char>(SourceStr.size()); |
||
1003 | llvm::copy(SourceStr, AllocatedBuffer); |
||
1004 | return MutableArrayRef<char>(AllocatedBuffer, SourceStr.size()); |
||
1005 | } |
||
1006 | |||
1007 | /// Create a section with the given name, protection flags, and alignment. |
||
1008 | Section &createSection(StringRef Name, orc::MemProt Prot) { |
||
1009 | assert(llvm::none_of(Sections, |
||
1010 | [&](std::unique_ptr<Section> &Sec) { |
||
1011 | return Sec->getName() == Name; |
||
1012 | }) && |
||
1013 | "Duplicate section name"); |
||
1014 | std::unique_ptr<Section> Sec(new Section(Name, Prot, Sections.size())); |
||
1015 | Sections.push_back(std::move(Sec)); |
||
1016 | return *Sections.back(); |
||
1017 | } |
||
1018 | |||
1019 | /// Create a content block. |
||
1020 | Block &createContentBlock(Section &Parent, ArrayRef<char> Content, |
||
1021 | orc::ExecutorAddr Address, uint64_t Alignment, |
||
1022 | uint64_t AlignmentOffset) { |
||
1023 | return createBlock(Parent, Content, Address, Alignment, AlignmentOffset); |
||
1024 | } |
||
1025 | |||
1026 | /// Create a content block with initially mutable data. |
||
1027 | Block &createMutableContentBlock(Section &Parent, |
||
1028 | MutableArrayRef<char> MutableContent, |
||
1029 | orc::ExecutorAddr Address, |
||
1030 | uint64_t Alignment, |
||
1031 | uint64_t AlignmentOffset) { |
||
1032 | return createBlock(Parent, MutableContent, Address, Alignment, |
||
1033 | AlignmentOffset); |
||
1034 | } |
||
1035 | |||
1036 | /// Create a content block with initially mutable data of the given size. |
||
1037 | /// Content will be allocated via the LinkGraph's allocateBuffer method. |
||
1038 | /// By default the memory will be zero-initialized. Passing false for |
||
1039 | /// ZeroInitialize will prevent this. |
||
1040 | Block &createMutableContentBlock(Section &Parent, size_t ContentSize, |
||
1041 | orc::ExecutorAddr Address, |
||
1042 | uint64_t Alignment, uint64_t AlignmentOffset, |
||
1043 | bool ZeroInitialize = true) { |
||
1044 | auto Content = allocateContent(ContentSize); |
||
1045 | if (ZeroInitialize) |
||
1046 | memset(Content.data(), 0, Content.size()); |
||
1047 | return createBlock(Parent, Content, Address, Alignment, AlignmentOffset); |
||
1048 | } |
||
1049 | |||
1050 | /// Create a zero-fill block. |
||
1051 | Block &createZeroFillBlock(Section &Parent, orc::ExecutorAddrDiff Size, |
||
1052 | orc::ExecutorAddr Address, uint64_t Alignment, |
||
1053 | uint64_t AlignmentOffset) { |
||
1054 | return createBlock(Parent, Size, Address, Alignment, AlignmentOffset); |
||
1055 | } |
||
1056 | |||
1057 | /// Returns a BinaryStreamReader for the given block. |
||
1058 | BinaryStreamReader getBlockContentReader(Block &B) { |
||
1059 | ArrayRef<uint8_t> C( |
||
1060 | reinterpret_cast<const uint8_t *>(B.getContent().data()), B.getSize()); |
||
1061 | return BinaryStreamReader(C, getEndianness()); |
||
1062 | } |
||
1063 | |||
1064 | /// Returns a BinaryStreamWriter for the given block. |
||
1065 | /// This will call getMutableContent to obtain mutable content for the block. |
||
1066 | BinaryStreamWriter getBlockContentWriter(Block &B) { |
||
1067 | MutableArrayRef<uint8_t> C( |
||
1068 | reinterpret_cast<uint8_t *>(B.getMutableContent(*this).data()), |
||
1069 | B.getSize()); |
||
1070 | return BinaryStreamWriter(C, getEndianness()); |
||
1071 | } |
||
1072 | |||
1073 | /// Cache type for the splitBlock function. |
||
1074 | using SplitBlockCache = std::optional<SmallVector<Symbol *, 8>>; |
||
1075 | |||
1076 | /// Splits block B at the given index which must be greater than zero. |
||
1077 | /// If SplitIndex == B.getSize() then this function is a no-op and returns B. |
||
1078 | /// If SplitIndex < B.getSize() then this function returns a new block |
||
1079 | /// covering the range [ 0, SplitIndex ), and B is modified to cover the range |
||
1080 | /// [ SplitIndex, B.size() ). |
||
1081 | /// |
||
1082 | /// The optional Cache parameter can be used to speed up repeated calls to |
||
1083 | /// splitBlock for a single block. If the value is None the cache will be |
||
1084 | /// treated as uninitialized and splitBlock will populate it. Otherwise it |
||
1085 | /// is assumed to contain the list of Symbols pointing at B, sorted in |
||
1086 | /// descending order of offset. |
||
1087 | /// |
||
1088 | /// Notes: |
||
1089 | /// |
||
1090 | /// 1. splitBlock must be used with care. Splitting a block may cause |
||
1091 | /// incoming edges to become invalid if the edge target subexpression |
||
1092 | /// points outside the bounds of the newly split target block (E.g. an |
||
1093 | /// edge 'S + 10 : Pointer64' where S points to a newly split block |
||
1094 | /// whose size is less than 10). No attempt is made to detect invalidation |
||
1095 | /// of incoming edges, as in general this requires context that the |
||
1096 | /// LinkGraph does not have. Clients are responsible for ensuring that |
||
1097 | /// splitBlock is not used in a way that invalidates edges. |
||
1098 | /// |
||
1099 | /// 2. The newly introduced block will have a new ordinal which will be |
||
1100 | /// higher than any other ordinals in the section. Clients are responsible |
||
1101 | /// for re-assigning block ordinals to restore a compatible order if |
||
1102 | /// needed. |
||
1103 | /// |
||
1104 | /// 3. The cache is not automatically updated if new symbols are introduced |
||
1105 | /// between calls to splitBlock. Any newly introduced symbols may be |
||
1106 | /// added to the cache manually (descending offset order must be |
||
1107 | /// preserved), or the cache can be set to None and rebuilt by |
||
1108 | /// splitBlock on the next call. |
||
1109 | Block &splitBlock(Block &B, size_t SplitIndex, |
||
1110 | SplitBlockCache *Cache = nullptr); |
||
1111 | |||
1112 | /// Add an external symbol. |
||
1113 | /// Some formats (e.g. ELF) allow Symbols to have sizes. For Symbols whose |
||
1114 | /// size is not known, you should substitute '0'. |
||
1115 | /// The IsWeaklyReferenced argument determines whether the symbol must be |
||
1116 | /// present during lookup: Externals that are strongly referenced must be |
||
1117 | /// found or an error will be emitted. Externals that are weakly referenced |
||
1118 | /// are permitted to be undefined, in which case they are assigned an address |
||
1119 | /// of 0. |
||
1120 | Symbol &addExternalSymbol(StringRef Name, orc::ExecutorAddrDiff Size, |
||
1121 | bool IsWeaklyReferenced) { |
||
1122 | assert(llvm::count_if(ExternalSymbols, |
||
1123 | [&](const Symbol *Sym) { |
||
1124 | return Sym->getName() == Name; |
||
1125 | }) == 0 && |
||
1126 | "Duplicate external symbol"); |
||
1127 | auto &Sym = Symbol::constructExternal( |
||
1128 | Allocator, createAddressable(orc::ExecutorAddr(), false), Name, Size, |
||
1129 | Linkage::Strong, IsWeaklyReferenced); |
||
1130 | ExternalSymbols.insert(&Sym); |
||
1131 | return Sym; |
||
1132 | } |
||
1133 | |||
1134 | /// Add an absolute symbol. |
||
1135 | Symbol &addAbsoluteSymbol(StringRef Name, orc::ExecutorAddr Address, |
||
1136 | orc::ExecutorAddrDiff Size, Linkage L, Scope S, |
||
1137 | bool IsLive) { |
||
1138 | assert((S == Scope::Local || llvm::count_if(AbsoluteSymbols, |
||
1139 | [&](const Symbol *Sym) { |
||
1140 | return Sym->getName() == Name; |
||
1141 | }) == 0) && |
||
1142 | "Duplicate absolute symbol"); |
||
1143 | auto &Sym = Symbol::constructAbsolute(Allocator, createAddressable(Address), |
||
1144 | Name, Size, L, S, IsLive); |
||
1145 | AbsoluteSymbols.insert(&Sym); |
||
1146 | return Sym; |
||
1147 | } |
||
1148 | |||
1149 | /// Add an anonymous symbol. |
||
1150 | Symbol &addAnonymousSymbol(Block &Content, orc::ExecutorAddrDiff Offset, |
||
1151 | orc::ExecutorAddrDiff Size, bool IsCallable, |
||
1152 | bool IsLive) { |
||
1153 | auto &Sym = Symbol::constructAnonDef(Allocator, Content, Offset, Size, |
||
1154 | IsCallable, IsLive); |
||
1155 | Content.getSection().addSymbol(Sym); |
||
1156 | return Sym; |
||
1157 | } |
||
1158 | |||
1159 | /// Add a named symbol. |
||
1160 | Symbol &addDefinedSymbol(Block &Content, orc::ExecutorAddrDiff Offset, |
||
1161 | StringRef Name, orc::ExecutorAddrDiff Size, |
||
1162 | Linkage L, Scope S, bool IsCallable, bool IsLive) { |
||
1163 | assert((S == Scope::Local || llvm::count_if(defined_symbols(), |
||
1164 | [&](const Symbol *Sym) { |
||
1165 | return Sym->getName() == Name; |
||
1166 | }) == 0) && |
||
1167 | "Duplicate defined symbol"); |
||
1168 | auto &Sym = Symbol::constructNamedDef(Allocator, Content, Offset, Name, |
||
1169 | Size, L, S, IsLive, IsCallable); |
||
1170 | Content.getSection().addSymbol(Sym); |
||
1171 | return Sym; |
||
1172 | } |
||
1173 | |||
1174 | iterator_range<section_iterator> sections() { |
||
1175 | return make_range(section_iterator(Sections.begin()), |
||
1176 | section_iterator(Sections.end())); |
||
1177 | } |
||
1178 | |||
1179 | SectionList::size_type sections_size() const { return Sections.size(); } |
||
1180 | |||
1181 | /// Returns the section with the given name if it exists, otherwise returns |
||
1182 | /// null. |
||
1183 | Section *findSectionByName(StringRef Name) { |
||
1184 | for (auto &S : sections()) |
||
1185 | if (S.getName() == Name) |
||
1186 | return &S; |
||
1187 | return nullptr; |
||
1188 | } |
||
1189 | |||
1190 | iterator_range<block_iterator> blocks() { |
||
1191 | return make_range(block_iterator(Sections.begin(), Sections.end()), |
||
1192 | block_iterator(Sections.end(), Sections.end())); |
||
1193 | } |
||
1194 | |||
1195 | iterator_range<const_block_iterator> blocks() const { |
||
1196 | return make_range(const_block_iterator(Sections.begin(), Sections.end()), |
||
1197 | const_block_iterator(Sections.end(), Sections.end())); |
||
1198 | } |
||
1199 | |||
1200 | iterator_range<external_symbol_iterator> external_symbols() { |
||
1201 | return make_range(ExternalSymbols.begin(), ExternalSymbols.end()); |
||
1202 | } |
||
1203 | |||
1204 | iterator_range<external_symbol_iterator> absolute_symbols() { |
||
1205 | return make_range(AbsoluteSymbols.begin(), AbsoluteSymbols.end()); |
||
1206 | } |
||
1207 | |||
1208 | iterator_range<defined_symbol_iterator> defined_symbols() { |
||
1209 | return make_range(defined_symbol_iterator(Sections.begin(), Sections.end()), |
||
1210 | defined_symbol_iterator(Sections.end(), Sections.end())); |
||
1211 | } |
||
1212 | |||
1213 | iterator_range<const_defined_symbol_iterator> defined_symbols() const { |
||
1214 | return make_range( |
||
1215 | const_defined_symbol_iterator(Sections.begin(), Sections.end()), |
||
1216 | const_defined_symbol_iterator(Sections.end(), Sections.end())); |
||
1217 | } |
||
1218 | |||
1219 | /// Make the given symbol external (must not already be external). |
||
1220 | /// |
||
1221 | /// Symbol size, linkage and callability will be left unchanged. Symbol scope |
||
1222 | /// will be set to Default, and offset will be reset to 0. |
||
1223 | void makeExternal(Symbol &Sym) { |
||
1224 | assert(!Sym.isExternal() && "Symbol is already external"); |
||
1225 | if (Sym.isAbsolute()) { |
||
1226 | assert(AbsoluteSymbols.count(&Sym) && |
||
1227 | "Sym is not in the absolute symbols set"); |
||
1228 | assert(Sym.getOffset() == 0 && "Absolute not at offset 0"); |
||
1229 | AbsoluteSymbols.erase(&Sym); |
||
1230 | auto &A = Sym.getAddressable(); |
||
1231 | A.setAbsolute(false); |
||
1232 | A.setAddress(orc::ExecutorAddr()); |
||
1233 | } else { |
||
1234 | assert(Sym.isDefined() && "Sym is not a defined symbol"); |
||
1235 | Section &Sec = Sym.getBlock().getSection(); |
||
1236 | Sec.removeSymbol(Sym); |
||
1237 | Sym.makeExternal(createAddressable(orc::ExecutorAddr(), false)); |
||
1238 | } |
||
1239 | ExternalSymbols.insert(&Sym); |
||
1240 | } |
||
1241 | |||
1242 | /// Make the given symbol an absolute with the given address (must not already |
||
1243 | /// be absolute). |
||
1244 | /// |
||
1245 | /// The symbol's size, linkage, and callability, and liveness will be left |
||
1246 | /// unchanged, and its offset will be reset to 0. |
||
1247 | /// |
||
1248 | /// If the symbol was external then its scope will be set to local, otherwise |
||
1249 | /// it will be left unchanged. |
||
1250 | void makeAbsolute(Symbol &Sym, orc::ExecutorAddr Address) { |
||
1251 | assert(!Sym.isAbsolute() && "Symbol is already absolute"); |
||
1252 | if (Sym.isExternal()) { |
||
1253 | assert(ExternalSymbols.count(&Sym) && |
||
1254 | "Sym is not in the absolute symbols set"); |
||
1255 | assert(Sym.getOffset() == 0 && "External is not at offset 0"); |
||
1256 | ExternalSymbols.erase(&Sym); |
||
1257 | auto &A = Sym.getAddressable(); |
||
1258 | A.setAbsolute(true); |
||
1259 | A.setAddress(Address); |
||
1260 | Sym.setScope(Scope::Local); |
||
1261 | } else { |
||
1262 | assert(Sym.isDefined() && "Sym is not a defined symbol"); |
||
1263 | Section &Sec = Sym.getBlock().getSection(); |
||
1264 | Sec.removeSymbol(Sym); |
||
1265 | Sym.makeAbsolute(createAddressable(Address)); |
||
1266 | } |
||
1267 | AbsoluteSymbols.insert(&Sym); |
||
1268 | } |
||
1269 | |||
1270 | /// Turn an absolute or external symbol into a defined one by attaching it to |
||
1271 | /// a block. Symbol must not already be defined. |
||
1272 | void makeDefined(Symbol &Sym, Block &Content, orc::ExecutorAddrDiff Offset, |
||
1273 | orc::ExecutorAddrDiff Size, Linkage L, Scope S, |
||
1274 | bool IsLive) { |
||
1275 | assert(!Sym.isDefined() && "Sym is already a defined symbol"); |
||
1276 | if (Sym.isAbsolute()) { |
||
1277 | assert(AbsoluteSymbols.count(&Sym) && |
||
1278 | "Symbol is not in the absolutes set"); |
||
1279 | AbsoluteSymbols.erase(&Sym); |
||
1280 | } else { |
||
1281 | assert(ExternalSymbols.count(&Sym) && |
||
1282 | "Symbol is not in the externals set"); |
||
1283 | ExternalSymbols.erase(&Sym); |
||
1284 | } |
||
1285 | Addressable &OldBase = *Sym.Base; |
||
1286 | Sym.setBlock(Content); |
||
1287 | Sym.setOffset(Offset); |
||
1288 | Sym.setSize(Size); |
||
1289 | Sym.setLinkage(L); |
||
1290 | Sym.setScope(S); |
||
1291 | Sym.setLive(IsLive); |
||
1292 | Content.getSection().addSymbol(Sym); |
||
1293 | destroyAddressable(OldBase); |
||
1294 | } |
||
1295 | |||
1296 | /// Transfer a defined symbol from one block to another. |
||
1297 | /// |
||
1298 | /// The symbol's offset within DestBlock is set to NewOffset. |
||
1299 | /// |
||
1300 | /// If ExplicitNewSize is given as None then the size of the symbol will be |
||
1301 | /// checked and auto-truncated to at most the size of the remainder (from the |
||
1302 | /// given offset) of the size of the new block. |
||
1303 | /// |
||
1304 | /// All other symbol attributes are unchanged. |
||
1305 | void |
||
1306 | transferDefinedSymbol(Symbol &Sym, Block &DestBlock, |
||
1307 | orc::ExecutorAddrDiff NewOffset, |
||
1308 | std::optional<orc::ExecutorAddrDiff> ExplicitNewSize) { |
||
1309 | auto &OldSection = Sym.getBlock().getSection(); |
||
1310 | Sym.setBlock(DestBlock); |
||
1311 | Sym.setOffset(NewOffset); |
||
1312 | if (ExplicitNewSize) |
||
1313 | Sym.setSize(*ExplicitNewSize); |
||
1314 | else { |
||
1315 | auto RemainingBlockSize = DestBlock.getSize() - NewOffset; |
||
1316 | if (Sym.getSize() > RemainingBlockSize) |
||
1317 | Sym.setSize(RemainingBlockSize); |
||
1318 | } |
||
1319 | if (&DestBlock.getSection() != &OldSection) { |
||
1320 | OldSection.removeSymbol(Sym); |
||
1321 | DestBlock.getSection().addSymbol(Sym); |
||
1322 | } |
||
1323 | } |
||
1324 | |||
1325 | /// Transfers the given Block and all Symbols pointing to it to the given |
||
1326 | /// Section. |
||
1327 | /// |
||
1328 | /// No attempt is made to check compatibility of the source and destination |
||
1329 | /// sections. Blocks may be moved between sections with incompatible |
||
1330 | /// permissions (e.g. from data to text). The client is responsible for |
||
1331 | /// ensuring that this is safe. |
||
1332 | void transferBlock(Block &B, Section &NewSection) { |
||
1333 | auto &OldSection = B.getSection(); |
||
1334 | if (&OldSection == &NewSection) |
||
1335 | return; |
||
1336 | SmallVector<Symbol *> AttachedSymbols; |
||
1337 | for (auto *S : OldSection.symbols()) |
||
1338 | if (&S->getBlock() == &B) |
||
1339 | AttachedSymbols.push_back(S); |
||
1340 | for (auto *S : AttachedSymbols) { |
||
1341 | OldSection.removeSymbol(*S); |
||
1342 | NewSection.addSymbol(*S); |
||
1343 | } |
||
1344 | OldSection.removeBlock(B); |
||
1345 | NewSection.addBlock(B); |
||
1346 | } |
||
1347 | |||
1348 | /// Move all blocks and symbols from the source section to the destination |
||
1349 | /// section. |
||
1350 | /// |
||
1351 | /// If PreserveSrcSection is true (or SrcSection and DstSection are the same) |
||
1352 | /// then SrcSection is preserved, otherwise it is removed (the default). |
||
1353 | void mergeSections(Section &DstSection, Section &SrcSection, |
||
1354 | bool PreserveSrcSection = false) { |
||
1355 | if (&DstSection == &SrcSection) |
||
1356 | return; |
||
1357 | for (auto *B : SrcSection.blocks()) |
||
1358 | B->setSection(DstSection); |
||
1359 | SrcSection.transferContentTo(DstSection); |
||
1360 | if (!PreserveSrcSection) |
||
1361 | removeSection(SrcSection); |
||
1362 | } |
||
1363 | |||
1364 | /// Removes an external symbol. Also removes the underlying Addressable. |
||
1365 | void removeExternalSymbol(Symbol &Sym) { |
||
1366 | assert(!Sym.isDefined() && !Sym.isAbsolute() && |
||
1367 | "Sym is not an external symbol"); |
||
1368 | assert(ExternalSymbols.count(&Sym) && "Symbol is not in the externals set"); |
||
1369 | ExternalSymbols.erase(&Sym); |
||
1370 | Addressable &Base = *Sym.Base; |
||
1371 | assert(llvm::none_of(ExternalSymbols, |
||
1372 | [&](Symbol *AS) { return AS->Base == &Base; }) && |
||
1373 | "Base addressable still in use"); |
||
1374 | destroySymbol(Sym); |
||
1375 | destroyAddressable(Base); |
||
1376 | } |
||
1377 | |||
1378 | /// Remove an absolute symbol. Also removes the underlying Addressable. |
||
1379 | void removeAbsoluteSymbol(Symbol &Sym) { |
||
1380 | assert(!Sym.isDefined() && Sym.isAbsolute() && |
||
1381 | "Sym is not an absolute symbol"); |
||
1382 | assert(AbsoluteSymbols.count(&Sym) && |
||
1383 | "Symbol is not in the absolute symbols set"); |
||
1384 | AbsoluteSymbols.erase(&Sym); |
||
1385 | Addressable &Base = *Sym.Base; |
||
1386 | assert(llvm::none_of(ExternalSymbols, |
||
1387 | [&](Symbol *AS) { return AS->Base == &Base; }) && |
||
1388 | "Base addressable still in use"); |
||
1389 | destroySymbol(Sym); |
||
1390 | destroyAddressable(Base); |
||
1391 | } |
||
1392 | |||
1393 | /// Removes defined symbols. Does not remove the underlying block. |
||
1394 | void removeDefinedSymbol(Symbol &Sym) { |
||
1395 | assert(Sym.isDefined() && "Sym is not a defined symbol"); |
||
1396 | Sym.getBlock().getSection().removeSymbol(Sym); |
||
1397 | destroySymbol(Sym); |
||
1398 | } |
||
1399 | |||
1400 | /// Remove a block. The block reference is defunct after calling this |
||
1401 | /// function and should no longer be used. |
||
1402 | void removeBlock(Block &B) { |
||
1403 | assert(llvm::none_of(B.getSection().symbols(), |
||
1404 | [&](const Symbol *Sym) { |
||
1405 | return &Sym->getBlock() == &B; |
||
1406 | }) && |
||
1407 | "Block still has symbols attached"); |
||
1408 | B.getSection().removeBlock(B); |
||
1409 | destroyBlock(B); |
||
1410 | } |
||
1411 | |||
1412 | /// Remove a section. The section reference is defunct after calling this |
||
1413 | /// function and should no longer be used. |
||
1414 | void removeSection(Section &Sec) { |
||
1415 | auto I = llvm::find_if(Sections, [&Sec](const std::unique_ptr<Section> &S) { |
||
1416 | return S.get() == &Sec; |
||
1417 | }); |
||
1418 | assert(I != Sections.end() && "Section does not appear in this graph"); |
||
1419 | Sections.erase(I); |
||
1420 | } |
||
1421 | |||
1422 | /// Accessor for the AllocActions object for this graph. This can be used to |
||
1423 | /// register allocation action calls prior to finalization. |
||
1424 | /// |
||
1425 | /// Accessing this object after finalization will result in undefined |
||
1426 | /// behavior. |
||
1427 | orc::shared::AllocActions &allocActions() { return AAs; } |
||
1428 | |||
1429 | /// Dump the graph. |
||
1430 | void dump(raw_ostream &OS); |
||
1431 | |||
1432 | private: |
||
1433 | // Put the BumpPtrAllocator first so that we don't free any of the underlying |
||
1434 | // memory until the Symbol/Addressable destructors have been run. |
||
1435 | BumpPtrAllocator Allocator; |
||
1436 | |||
1437 | std::string Name; |
||
1438 | Triple TT; |
||
1439 | unsigned PointerSize; |
||
1440 | support::endianness Endianness; |
||
1441 | GetEdgeKindNameFunction GetEdgeKindName = nullptr; |
||
1442 | SectionList Sections; |
||
1443 | ExternalSymbolSet ExternalSymbols; |
||
1444 | ExternalSymbolSet AbsoluteSymbols; |
||
1445 | orc::shared::AllocActions AAs; |
||
1446 | }; |
||
1447 | |||
1448 | inline MutableArrayRef<char> Block::getMutableContent(LinkGraph &G) { |
||
1449 | if (!ContentMutable) |
||
1450 | setMutableContent(G.allocateContent({Data, Size})); |
||
1451 | return MutableArrayRef<char>(const_cast<char *>(Data), Size); |
||
1452 | } |
||
1453 | |||
1454 | /// Enables easy lookup of blocks by addresses. |
||
1455 | class BlockAddressMap { |
||
1456 | public: |
||
1457 | using AddrToBlockMap = std::map<orc::ExecutorAddr, Block *>; |
||
1458 | using const_iterator = AddrToBlockMap::const_iterator; |
||
1459 | |||
1460 | /// A block predicate that always adds all blocks. |
||
1461 | static bool includeAllBlocks(const Block &B) { return true; } |
||
1462 | |||
1463 | /// A block predicate that always includes blocks with non-null addresses. |
||
1464 | static bool includeNonNull(const Block &B) { return !!B.getAddress(); } |
||
1465 | |||
1466 | BlockAddressMap() = default; |
||
1467 | |||
1468 | /// Add a block to the map. Returns an error if the block overlaps with any |
||
1469 | /// existing block. |
||
1470 | template <typename PredFn = decltype(includeAllBlocks)> |
||
1471 | Error addBlock(Block &B, PredFn Pred = includeAllBlocks) { |
||
1472 | if (!Pred(B)) |
||
1473 | return Error::success(); |
||
1474 | |||
1475 | auto I = AddrToBlock.upper_bound(B.getAddress()); |
||
1476 | |||
1477 | // If we're not at the end of the map, check for overlap with the next |
||
1478 | // element. |
||
1479 | if (I != AddrToBlock.end()) { |
||
1480 | if (B.getAddress() + B.getSize() > I->second->getAddress()) |
||
1481 | return overlapError(B, *I->second); |
||
1482 | } |
||
1483 | |||
1484 | // If we're not at the start of the map, check for overlap with the previous |
||
1485 | // element. |
||
1486 | if (I != AddrToBlock.begin()) { |
||
1487 | auto &PrevBlock = *std::prev(I)->second; |
||
1488 | if (PrevBlock.getAddress() + PrevBlock.getSize() > B.getAddress()) |
||
1489 | return overlapError(B, PrevBlock); |
||
1490 | } |
||
1491 | |||
1492 | AddrToBlock.insert(I, std::make_pair(B.getAddress(), &B)); |
||
1493 | return Error::success(); |
||
1494 | } |
||
1495 | |||
1496 | /// Add a block to the map without checking for overlap with existing blocks. |
||
1497 | /// The client is responsible for ensuring that the block added does not |
||
1498 | /// overlap with any existing block. |
||
1499 | void addBlockWithoutChecking(Block &B) { AddrToBlock[B.getAddress()] = &B; } |
||
1500 | |||
1501 | /// Add a range of blocks to the map. Returns an error if any block in the |
||
1502 | /// range overlaps with any other block in the range, or with any existing |
||
1503 | /// block in the map. |
||
1504 | template <typename BlockPtrRange, |
||
1505 | typename PredFn = decltype(includeAllBlocks)> |
||
1506 | Error addBlocks(BlockPtrRange &&Blocks, PredFn Pred = includeAllBlocks) { |
||
1507 | for (auto *B : Blocks) |
||
1508 | if (auto Err = addBlock(*B, Pred)) |
||
1509 | return Err; |
||
1510 | return Error::success(); |
||
1511 | } |
||
1512 | |||
1513 | /// Add a range of blocks to the map without checking for overlap with |
||
1514 | /// existing blocks. The client is responsible for ensuring that the block |
||
1515 | /// added does not overlap with any existing block. |
||
1516 | template <typename BlockPtrRange> |
||
1517 | void addBlocksWithoutChecking(BlockPtrRange &&Blocks) { |
||
1518 | for (auto *B : Blocks) |
||
1519 | addBlockWithoutChecking(*B); |
||
1520 | } |
||
1521 | |||
1522 | /// Iterates over (Address, Block*) pairs in ascending order of address. |
||
1523 | const_iterator begin() const { return AddrToBlock.begin(); } |
||
1524 | const_iterator end() const { return AddrToBlock.end(); } |
||
1525 | |||
1526 | /// Returns the block starting at the given address, or nullptr if no such |
||
1527 | /// block exists. |
||
1528 | Block *getBlockAt(orc::ExecutorAddr Addr) const { |
||
1529 | auto I = AddrToBlock.find(Addr); |
||
1530 | if (I == AddrToBlock.end()) |
||
1531 | return nullptr; |
||
1532 | return I->second; |
||
1533 | } |
||
1534 | |||
1535 | /// Returns the block covering the given address, or nullptr if no such block |
||
1536 | /// exists. |
||
1537 | Block *getBlockCovering(orc::ExecutorAddr Addr) const { |
||
1538 | auto I = AddrToBlock.upper_bound(Addr); |
||
1539 | if (I == AddrToBlock.begin()) |
||
1540 | return nullptr; |
||
1541 | auto *B = std::prev(I)->second; |
||
1542 | if (Addr < B->getAddress() + B->getSize()) |
||
1543 | return B; |
||
1544 | return nullptr; |
||
1545 | } |
||
1546 | |||
1547 | private: |
||
1548 | Error overlapError(Block &NewBlock, Block &ExistingBlock) { |
||
1549 | auto NewBlockEnd = NewBlock.getAddress() + NewBlock.getSize(); |
||
1550 | auto ExistingBlockEnd = |
||
1551 | ExistingBlock.getAddress() + ExistingBlock.getSize(); |
||
1552 | return make_error<JITLinkError>( |
||
1553 | "Block at " + |
||
1554 | formatv("{0:x16} -- {1:x16}", NewBlock.getAddress().getValue(), |
||
1555 | NewBlockEnd.getValue()) + |
||
1556 | " overlaps " + |
||
1557 | formatv("{0:x16} -- {1:x16}", ExistingBlock.getAddress().getValue(), |
||
1558 | ExistingBlockEnd.getValue())); |
||
1559 | } |
||
1560 | |||
1561 | AddrToBlockMap AddrToBlock; |
||
1562 | }; |
||
1563 | |||
1564 | /// A map of addresses to Symbols. |
||
1565 | class SymbolAddressMap { |
||
1566 | public: |
||
1567 | using SymbolVector = SmallVector<Symbol *, 1>; |
||
1568 | |||
1569 | /// Add a symbol to the SymbolAddressMap. |
||
1570 | void addSymbol(Symbol &Sym) { |
||
1571 | AddrToSymbols[Sym.getAddress()].push_back(&Sym); |
||
1572 | } |
||
1573 | |||
1574 | /// Add all symbols in a given range to the SymbolAddressMap. |
||
1575 | template <typename SymbolPtrCollection> |
||
1576 | void addSymbols(SymbolPtrCollection &&Symbols) { |
||
1577 | for (auto *Sym : Symbols) |
||
1578 | addSymbol(*Sym); |
||
1579 | } |
||
1580 | |||
1581 | /// Returns the list of symbols that start at the given address, or nullptr if |
||
1582 | /// no such symbols exist. |
||
1583 | const SymbolVector *getSymbolsAt(orc::ExecutorAddr Addr) const { |
||
1584 | auto I = AddrToSymbols.find(Addr); |
||
1585 | if (I == AddrToSymbols.end()) |
||
1586 | return nullptr; |
||
1587 | return &I->second; |
||
1588 | } |
||
1589 | |||
1590 | private: |
||
1591 | std::map<orc::ExecutorAddr, SymbolVector> AddrToSymbols; |
||
1592 | }; |
||
1593 | |||
1594 | /// A function for mutating LinkGraphs. |
||
1595 | using LinkGraphPassFunction = std::function<Error(LinkGraph &)>; |
||
1596 | |||
1597 | /// A list of LinkGraph passes. |
||
1598 | using LinkGraphPassList = std::vector<LinkGraphPassFunction>; |
||
1599 | |||
1600 | /// An LinkGraph pass configuration, consisting of a list of pre-prune, |
||
1601 | /// post-prune, and post-fixup passes. |
||
1602 | struct PassConfiguration { |
||
1603 | |||
1604 | /// Pre-prune passes. |
||
1605 | /// |
||
1606 | /// These passes are called on the graph after it is built, and before any |
||
1607 | /// symbols have been pruned. Graph nodes still have their original vmaddrs. |
||
1608 | /// |
||
1609 | /// Notable use cases: Marking symbols live or should-discard. |
||
1610 | LinkGraphPassList PrePrunePasses; |
||
1611 | |||
1612 | /// Post-prune passes. |
||
1613 | /// |
||
1614 | /// These passes are called on the graph after dead stripping, but before |
||
1615 | /// memory is allocated or nodes assigned their final addresses. |
||
1616 | /// |
||
1617 | /// Notable use cases: Building GOT, stub, and TLV symbols. |
||
1618 | LinkGraphPassList PostPrunePasses; |
||
1619 | |||
1620 | /// Post-allocation passes. |
||
1621 | /// |
||
1622 | /// These passes are called on the graph after memory has been allocated and |
||
1623 | /// defined nodes have been assigned their final addresses, but before the |
||
1624 | /// context has been notified of these addresses. At this point externals |
||
1625 | /// have not been resolved, and symbol content has not yet been copied into |
||
1626 | /// working memory. |
||
1627 | /// |
||
1628 | /// Notable use cases: Setting up data structures associated with addresses |
||
1629 | /// of defined symbols (e.g. a mapping of __dso_handle to JITDylib* for the |
||
1630 | /// JIT runtime) -- using a PostAllocationPass for this ensures that the |
||
1631 | /// data structures are in-place before any query for resolved symbols |
||
1632 | /// can complete. |
||
1633 | LinkGraphPassList PostAllocationPasses; |
||
1634 | |||
1635 | /// Pre-fixup passes. |
||
1636 | /// |
||
1637 | /// These passes are called on the graph after memory has been allocated, |
||
1638 | /// content copied into working memory, and all nodes (including externals) |
||
1639 | /// have been assigned their final addresses, but before any fixups have been |
||
1640 | /// applied. |
||
1641 | /// |
||
1642 | /// Notable use cases: Late link-time optimizations like GOT and stub |
||
1643 | /// elimination. |
||
1644 | LinkGraphPassList PreFixupPasses; |
||
1645 | |||
1646 | /// Post-fixup passes. |
||
1647 | /// |
||
1648 | /// These passes are called on the graph after block contents has been copied |
||
1649 | /// to working memory, and fixups applied. Blocks have been updated to point |
||
1650 | /// to their fixed up content. |
||
1651 | /// |
||
1652 | /// Notable use cases: Testing and validation. |
||
1653 | LinkGraphPassList PostFixupPasses; |
||
1654 | }; |
||
1655 | |||
1656 | /// Flags for symbol lookup. |
||
1657 | /// |
||
1658 | /// FIXME: These basically duplicate orc::SymbolLookupFlags -- We should merge |
||
1659 | /// the two types once we have an OrcSupport library. |
||
1660 | enum class SymbolLookupFlags { RequiredSymbol, WeaklyReferencedSymbol }; |
||
1661 | |||
1662 | raw_ostream &operator<<(raw_ostream &OS, const SymbolLookupFlags &LF); |
||
1663 | |||
1664 | /// A map of symbol names to resolved addresses. |
||
1665 | using AsyncLookupResult = DenseMap<StringRef, JITEvaluatedSymbol>; |
||
1666 | |||
1667 | /// A function object to call with a resolved symbol map (See AsyncLookupResult) |
||
1668 | /// or an error if resolution failed. |
||
1669 | class JITLinkAsyncLookupContinuation { |
||
1670 | public: |
||
1671 | virtual ~JITLinkAsyncLookupContinuation() = default; |
||
1672 | virtual void run(Expected<AsyncLookupResult> LR) = 0; |
||
1673 | |||
1674 | private: |
||
1675 | virtual void anchor(); |
||
1676 | }; |
||
1677 | |||
1678 | /// Create a lookup continuation from a function object. |
||
1679 | template <typename Continuation> |
||
1680 | std::unique_ptr<JITLinkAsyncLookupContinuation> |
||
1681 | createLookupContinuation(Continuation Cont) { |
||
1682 | |||
1683 | class Impl final : public JITLinkAsyncLookupContinuation { |
||
1684 | public: |
||
1685 | Impl(Continuation C) : C(std::move(C)) {} |
||
1686 | void run(Expected<AsyncLookupResult> LR) override { C(std::move(LR)); } |
||
1687 | |||
1688 | private: |
||
1689 | Continuation C; |
||
1690 | }; |
||
1691 | |||
1692 | return std::make_unique<Impl>(std::move(Cont)); |
||
1693 | } |
||
1694 | |||
1695 | /// Holds context for a single jitLink invocation. |
||
1696 | class JITLinkContext { |
||
1697 | public: |
||
1698 | using LookupMap = DenseMap<StringRef, SymbolLookupFlags>; |
||
1699 | |||
1700 | /// Create a JITLinkContext. |
||
1701 | JITLinkContext(const JITLinkDylib *JD) : JD(JD) {} |
||
1702 | |||
1703 | /// Destroy a JITLinkContext. |
||
1704 | virtual ~JITLinkContext(); |
||
1705 | |||
1706 | /// Return the JITLinkDylib that this link is targeting, if any. |
||
1707 | const JITLinkDylib *getJITLinkDylib() const { return JD; } |
||
1708 | |||
1709 | /// Return the MemoryManager to be used for this link. |
||
1710 | virtual JITLinkMemoryManager &getMemoryManager() = 0; |
||
1711 | |||
1712 | /// Notify this context that linking failed. |
||
1713 | /// Called by JITLink if linking cannot be completed. |
||
1714 | virtual void notifyFailed(Error Err) = 0; |
||
1715 | |||
1716 | /// Called by JITLink to resolve external symbols. This method is passed a |
||
1717 | /// lookup continutation which it must call with a result to continue the |
||
1718 | /// linking process. |
||
1719 | virtual void lookup(const LookupMap &Symbols, |
||
1720 | std::unique_ptr<JITLinkAsyncLookupContinuation> LC) = 0; |
||
1721 | |||
1722 | /// Called by JITLink once all defined symbols in the graph have been assigned |
||
1723 | /// their final memory locations in the target process. At this point the |
||
1724 | /// LinkGraph can be inspected to build a symbol table, however the block |
||
1725 | /// content will not generally have been copied to the target location yet. |
||
1726 | /// |
||
1727 | /// If the client detects an error in the LinkGraph state (e.g. unexpected or |
||
1728 | /// missing symbols) they may return an error here. The error will be |
||
1729 | /// propagated to notifyFailed and the linker will bail out. |
||
1730 | virtual Error notifyResolved(LinkGraph &G) = 0; |
||
1731 | |||
1732 | /// Called by JITLink to notify the context that the object has been |
||
1733 | /// finalized (i.e. emitted to memory and memory permissions set). If all of |
||
1734 | /// this objects dependencies have also been finalized then the code is ready |
||
1735 | /// to run. |
||
1736 | virtual void notifyFinalized(JITLinkMemoryManager::FinalizedAlloc Alloc) = 0; |
||
1737 | |||
1738 | /// Called by JITLink prior to linking to determine whether default passes for |
||
1739 | /// the target should be added. The default implementation returns true. |
||
1740 | /// If subclasses override this method to return false for any target then |
||
1741 | /// they are required to fully configure the pass pipeline for that target. |
||
1742 | virtual bool shouldAddDefaultTargetPasses(const Triple &TT) const; |
||
1743 | |||
1744 | /// Returns the mark-live pass to be used for this link. If no pass is |
||
1745 | /// returned (the default) then the target-specific linker implementation will |
||
1746 | /// choose a conservative default (usually marking all symbols live). |
||
1747 | /// This function is only called if shouldAddDefaultTargetPasses returns true, |
||
1748 | /// otherwise the JITContext is responsible for adding a mark-live pass in |
||
1749 | /// modifyPassConfig. |
||
1750 | virtual LinkGraphPassFunction getMarkLivePass(const Triple &TT) const; |
||
1751 | |||
1752 | /// Called by JITLink to modify the pass pipeline prior to linking. |
||
1753 | /// The default version performs no modification. |
||
1754 | virtual Error modifyPassConfig(LinkGraph &G, PassConfiguration &Config); |
||
1755 | |||
1756 | private: |
||
1757 | const JITLinkDylib *JD = nullptr; |
||
1758 | }; |
||
1759 | |||
1760 | /// Marks all symbols in a graph live. This can be used as a default, |
||
1761 | /// conservative mark-live implementation. |
||
1762 | Error markAllSymbolsLive(LinkGraph &G); |
||
1763 | |||
1764 | /// Create an out of range error for the given edge in the given block. |
||
1765 | Error makeTargetOutOfRangeError(const LinkGraph &G, const Block &B, |
||
1766 | const Edge &E); |
||
1767 | |||
1768 | Error makeAlignmentError(llvm::orc::ExecutorAddr Loc, uint64_t Value, int N, |
||
1769 | const Edge &E); |
||
1770 | |||
1771 | /// Base case for edge-visitors where the visitor-list is empty. |
||
1772 | inline void visitEdge(LinkGraph &G, Block *B, Edge &E) {} |
||
1773 | |||
1774 | /// Applies the first visitor in the list to the given edge. If the visitor's |
||
1775 | /// visitEdge method returns true then we return immediately, otherwise we |
||
1776 | /// apply the next visitor. |
||
1777 | template <typename VisitorT, typename... VisitorTs> |
||
1778 | void visitEdge(LinkGraph &G, Block *B, Edge &E, VisitorT &&V, |
||
1779 | VisitorTs &&...Vs) { |
||
1780 | if (!V.visitEdge(G, B, E)) |
||
1781 | visitEdge(G, B, E, std::forward<VisitorTs>(Vs)...); |
||
1782 | } |
||
1783 | |||
1784 | /// For each edge in the given graph, apply a list of visitors to the edge, |
||
1785 | /// stopping when the first visitor's visitEdge method returns true. |
||
1786 | /// |
||
1787 | /// Only visits edges that were in the graph at call time: if any visitor |
||
1788 | /// adds new edges those will not be visited. Visitors are not allowed to |
||
1789 | /// remove edges (though they can change their kind, target, and addend). |
||
1790 | template <typename... VisitorTs> |
||
1791 | void visitExistingEdges(LinkGraph &G, VisitorTs &&...Vs) { |
||
1792 | // We may add new blocks during this process, but we don't want to iterate |
||
1793 | // over them, so build a worklist. |
||
1794 | std::vector<Block *> Worklist(G.blocks().begin(), G.blocks().end()); |
||
1795 | |||
1796 | for (auto *B : Worklist) |
||
1797 | for (auto &E : B->edges()) |
||
1798 | visitEdge(G, B, E, std::forward<VisitorTs>(Vs)...); |
||
1799 | } |
||
1800 | |||
1801 | /// Create a LinkGraph from the given object buffer. |
||
1802 | /// |
||
1803 | /// Note: The graph does not take ownership of the underlying buffer, nor copy |
||
1804 | /// its contents. The caller is responsible for ensuring that the object buffer |
||
1805 | /// outlives the graph. |
||
1806 | Expected<std::unique_ptr<LinkGraph>> |
||
1807 | createLinkGraphFromObject(MemoryBufferRef ObjectBuffer); |
||
1808 | |||
1809 | /// Link the given graph. |
||
1810 | void link(std::unique_ptr<LinkGraph> G, std::unique_ptr<JITLinkContext> Ctx); |
||
1811 | |||
1812 | } // end namespace jitlink |
||
1813 | } // end namespace llvm |
||
1814 | |||
1815 | #endif // LLVM_EXECUTIONENGINE_JITLINK_JITLINK_H |