Details | Last modification | View Log | RSS feed
Rev | Author | Line No. | Line |
---|---|---|---|
14 | pmbaty | 1 | //===- HashTable.h - PDB Hash Table -----------------------------*- C++ -*-===// |
2 | // |
||
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
||
4 | // See https://llvm.org/LICENSE.txt for license information. |
||
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
||
6 | // |
||
7 | //===----------------------------------------------------------------------===// |
||
8 | |||
9 | #ifndef LLVM_DEBUGINFO_PDB_NATIVE_HASHTABLE_H |
||
10 | #define LLVM_DEBUGINFO_PDB_NATIVE_HASHTABLE_H |
||
11 | |||
12 | #include "llvm/ADT/SparseBitVector.h" |
||
13 | #include "llvm/ADT/iterator.h" |
||
14 | #include "llvm/DebugInfo/PDB/Native/RawError.h" |
||
15 | #include "llvm/Support/BinaryStreamReader.h" |
||
16 | #include "llvm/Support/BinaryStreamWriter.h" |
||
17 | #include "llvm/Support/Endian.h" |
||
18 | #include "llvm/Support/Error.h" |
||
19 | #include <cstdint> |
||
20 | #include <iterator> |
||
21 | #include <utility> |
||
22 | #include <vector> |
||
23 | |||
24 | namespace llvm { |
||
25 | |||
26 | namespace pdb { |
||
27 | |||
28 | Error readSparseBitVector(BinaryStreamReader &Stream, SparseBitVector<> &V); |
||
29 | Error writeSparseBitVector(BinaryStreamWriter &Writer, SparseBitVector<> &Vec); |
||
30 | |||
31 | template <typename ValueT> class HashTable; |
||
32 | |||
33 | template <typename ValueT> |
||
34 | class HashTableIterator |
||
35 | : public iterator_facade_base<HashTableIterator<ValueT>, |
||
36 | std::forward_iterator_tag, |
||
37 | const std::pair<uint32_t, ValueT>> { |
||
38 | using BaseT = typename HashTableIterator::iterator_facade_base; |
||
39 | friend HashTable<ValueT>; |
||
40 | |||
41 | HashTableIterator(const HashTable<ValueT> &Map, uint32_t Index, |
||
42 | bool IsEnd) |
||
43 | : Map(&Map), Index(Index), IsEnd(IsEnd) {} |
||
44 | |||
45 | public: |
||
46 | HashTableIterator(const HashTable<ValueT> &Map) : Map(&Map) { |
||
47 | int I = Map.Present.find_first(); |
||
48 | if (I == -1) { |
||
49 | Index = 0; |
||
50 | IsEnd = true; |
||
51 | } else { |
||
52 | Index = static_cast<uint32_t>(I); |
||
53 | IsEnd = false; |
||
54 | } |
||
55 | } |
||
56 | |||
57 | HashTableIterator(const HashTableIterator &R) = default; |
||
58 | HashTableIterator &operator=(const HashTableIterator &R) { |
||
59 | Map = R.Map; |
||
60 | return *this; |
||
61 | } |
||
62 | bool operator==(const HashTableIterator &R) const { |
||
63 | if (IsEnd && R.IsEnd) |
||
64 | return true; |
||
65 | if (IsEnd != R.IsEnd) |
||
66 | return false; |
||
67 | |||
68 | return (Map == R.Map) && (Index == R.Index); |
||
69 | } |
||
70 | const std::pair<uint32_t, ValueT> &operator*() const { |
||
71 | assert(Map->Present.test(Index)); |
||
72 | return Map->Buckets[Index]; |
||
73 | } |
||
74 | |||
75 | // Implement postfix op++ in terms of prefix op++ by using the superclass |
||
76 | // implementation. |
||
77 | using BaseT::operator++; |
||
78 | HashTableIterator &operator++() { |
||
79 | while (Index < Map->Buckets.size()) { |
||
80 | ++Index; |
||
81 | if (Map->Present.test(Index)) |
||
82 | return *this; |
||
83 | } |
||
84 | |||
85 | IsEnd = true; |
||
86 | return *this; |
||
87 | } |
||
88 | |||
89 | private: |
||
90 | bool isEnd() const { return IsEnd; } |
||
91 | uint32_t index() const { return Index; } |
||
92 | |||
93 | const HashTable<ValueT> *Map; |
||
94 | uint32_t Index; |
||
95 | bool IsEnd; |
||
96 | }; |
||
97 | |||
98 | template <typename ValueT> |
||
99 | class HashTable { |
||
100 | struct Header { |
||
101 | support::ulittle32_t Size; |
||
102 | support::ulittle32_t Capacity; |
||
103 | }; |
||
104 | |||
105 | using BucketList = std::vector<std::pair<uint32_t, ValueT>>; |
||
106 | |||
107 | public: |
||
108 | using const_iterator = HashTableIterator<ValueT>; |
||
109 | friend const_iterator; |
||
110 | |||
111 | HashTable() { Buckets.resize(8); } |
||
112 | explicit HashTable(uint32_t Capacity) { |
||
113 | Buckets.resize(Capacity); |
||
114 | } |
||
115 | |||
116 | Error load(BinaryStreamReader &Stream) { |
||
117 | const Header *H; |
||
118 | if (auto EC = Stream.readObject(H)) |
||
119 | return EC; |
||
120 | if (H->Capacity == 0) |
||
121 | return make_error<RawError>(raw_error_code::corrupt_file, |
||
122 | "Invalid Hash Table Capacity"); |
||
123 | if (H->Size > maxLoad(H->Capacity)) |
||
124 | return make_error<RawError>(raw_error_code::corrupt_file, |
||
125 | "Invalid Hash Table Size"); |
||
126 | |||
127 | Buckets.resize(H->Capacity); |
||
128 | |||
129 | if (auto EC = readSparseBitVector(Stream, Present)) |
||
130 | return EC; |
||
131 | if (Present.count() != H->Size) |
||
132 | return make_error<RawError>(raw_error_code::corrupt_file, |
||
133 | "Present bit vector does not match size!"); |
||
134 | |||
135 | if (auto EC = readSparseBitVector(Stream, Deleted)) |
||
136 | return EC; |
||
137 | if (Present.intersects(Deleted)) |
||
138 | return make_error<RawError>(raw_error_code::corrupt_file, |
||
139 | "Present bit vector intersects deleted!"); |
||
140 | |||
141 | for (uint32_t P : Present) { |
||
142 | if (auto EC = Stream.readInteger(Buckets[P].first)) |
||
143 | return EC; |
||
144 | const ValueT *Value; |
||
145 | if (auto EC = Stream.readObject(Value)) |
||
146 | return EC; |
||
147 | Buckets[P].second = *Value; |
||
148 | } |
||
149 | |||
150 | return Error::success(); |
||
151 | } |
||
152 | |||
153 | uint32_t calculateSerializedLength() const { |
||
154 | uint32_t Size = sizeof(Header); |
||
155 | |||
156 | constexpr int BitsPerWord = 8 * sizeof(uint32_t); |
||
157 | |||
158 | int NumBitsP = Present.find_last() + 1; |
||
159 | int NumBitsD = Deleted.find_last() + 1; |
||
160 | |||
161 | uint32_t NumWordsP = alignTo(NumBitsP, BitsPerWord) / BitsPerWord; |
||
162 | uint32_t NumWordsD = alignTo(NumBitsD, BitsPerWord) / BitsPerWord; |
||
163 | |||
164 | // Present bit set number of words (4 bytes), followed by that many actual |
||
165 | // words (4 bytes each). |
||
166 | Size += sizeof(uint32_t); |
||
167 | Size += NumWordsP * sizeof(uint32_t); |
||
168 | |||
169 | // Deleted bit set number of words (4 bytes), followed by that many actual |
||
170 | // words (4 bytes each). |
||
171 | Size += sizeof(uint32_t); |
||
172 | Size += NumWordsD * sizeof(uint32_t); |
||
173 | |||
174 | // One (Key, ValueT) pair for each entry Present. |
||
175 | Size += (sizeof(uint32_t) + sizeof(ValueT)) * size(); |
||
176 | |||
177 | return Size; |
||
178 | } |
||
179 | |||
180 | Error commit(BinaryStreamWriter &Writer) const { |
||
181 | Header H; |
||
182 | H.Size = size(); |
||
183 | H.Capacity = capacity(); |
||
184 | if (auto EC = Writer.writeObject(H)) |
||
185 | return EC; |
||
186 | |||
187 | if (auto EC = writeSparseBitVector(Writer, Present)) |
||
188 | return EC; |
||
189 | |||
190 | if (auto EC = writeSparseBitVector(Writer, Deleted)) |
||
191 | return EC; |
||
192 | |||
193 | for (const auto &Entry : *this) { |
||
194 | if (auto EC = Writer.writeInteger(Entry.first)) |
||
195 | return EC; |
||
196 | if (auto EC = Writer.writeObject(Entry.second)) |
||
197 | return EC; |
||
198 | } |
||
199 | return Error::success(); |
||
200 | } |
||
201 | |||
202 | void clear() { |
||
203 | Buckets.resize(8); |
||
204 | Present.clear(); |
||
205 | Deleted.clear(); |
||
206 | } |
||
207 | |||
208 | bool empty() const { return size() == 0; } |
||
209 | uint32_t capacity() const { return Buckets.size(); } |
||
210 | uint32_t size() const { return Present.count(); } |
||
211 | |||
212 | const_iterator begin() const { return const_iterator(*this); } |
||
213 | const_iterator end() const { return const_iterator(*this, 0, true); } |
||
214 | |||
215 | /// Find the entry whose key has the specified hash value, using the specified |
||
216 | /// traits defining hash function and equality. |
||
217 | template <typename Key, typename TraitsT> |
||
218 | const_iterator find_as(const Key &K, TraitsT &Traits) const { |
||
219 | uint32_t H = Traits.hashLookupKey(K) % capacity(); |
||
220 | uint32_t I = H; |
||
221 | std::optional<uint32_t> FirstUnused; |
||
222 | do { |
||
223 | if (isPresent(I)) { |
||
224 | if (Traits.storageKeyToLookupKey(Buckets[I].first) == K) |
||
225 | return const_iterator(*this, I, false); |
||
226 | } else { |
||
227 | if (!FirstUnused) |
||
228 | FirstUnused = I; |
||
229 | // Insertion occurs via linear probing from the slot hint, and will be |
||
230 | // inserted at the first empty / deleted location. Therefore, if we are |
||
231 | // probing and find a location that is neither present nor deleted, then |
||
232 | // nothing must have EVER been inserted at this location, and thus it is |
||
233 | // not possible for a matching value to occur later. |
||
234 | if (!isDeleted(I)) |
||
235 | break; |
||
236 | } |
||
237 | I = (I + 1) % capacity(); |
||
238 | } while (I != H); |
||
239 | |||
240 | // The only way FirstUnused would not be set is if every single entry in the |
||
241 | // table were Present. But this would violate the load factor constraints |
||
242 | // that we impose, so it should never happen. |
||
243 | assert(FirstUnused); |
||
244 | return const_iterator(*this, *FirstUnused, true); |
||
245 | } |
||
246 | |||
247 | /// Set the entry using a key type that the specified Traits can convert |
||
248 | /// from a real key to an internal key. |
||
249 | template <typename Key, typename TraitsT> |
||
250 | bool set_as(const Key &K, ValueT V, TraitsT &Traits) { |
||
251 | return set_as_internal(K, std::move(V), Traits, std::nullopt); |
||
252 | } |
||
253 | |||
254 | template <typename Key, typename TraitsT> |
||
255 | ValueT get(const Key &K, TraitsT &Traits) const { |
||
256 | auto Iter = find_as(K, Traits); |
||
257 | assert(Iter != end()); |
||
258 | return (*Iter).second; |
||
259 | } |
||
260 | |||
261 | protected: |
||
262 | bool isPresent(uint32_t K) const { return Present.test(K); } |
||
263 | bool isDeleted(uint32_t K) const { return Deleted.test(K); } |
||
264 | |||
265 | BucketList Buckets; |
||
266 | mutable SparseBitVector<> Present; |
||
267 | mutable SparseBitVector<> Deleted; |
||
268 | |||
269 | private: |
||
270 | /// Set the entry using a key type that the specified Traits can convert |
||
271 | /// from a real key to an internal key. |
||
272 | template <typename Key, typename TraitsT> |
||
273 | bool set_as_internal(const Key &K, ValueT V, TraitsT &Traits, |
||
274 | std::optional<uint32_t> InternalKey) { |
||
275 | auto Entry = find_as(K, Traits); |
||
276 | if (Entry != end()) { |
||
277 | assert(isPresent(Entry.index())); |
||
278 | assert(Traits.storageKeyToLookupKey(Buckets[Entry.index()].first) == K); |
||
279 | // We're updating, no need to do anything special. |
||
280 | Buckets[Entry.index()].second = V; |
||
281 | return false; |
||
282 | } |
||
283 | |||
284 | auto &B = Buckets[Entry.index()]; |
||
285 | assert(!isPresent(Entry.index())); |
||
286 | assert(Entry.isEnd()); |
||
287 | B.first = InternalKey ? *InternalKey : Traits.lookupKeyToStorageKey(K); |
||
288 | B.second = V; |
||
289 | Present.set(Entry.index()); |
||
290 | Deleted.reset(Entry.index()); |
||
291 | |||
292 | grow(Traits); |
||
293 | |||
294 | assert((find_as(K, Traits)) != end()); |
||
295 | return true; |
||
296 | } |
||
297 | |||
298 | static uint32_t maxLoad(uint32_t capacity) { return capacity * 2 / 3 + 1; } |
||
299 | |||
300 | template <typename TraitsT> |
||
301 | void grow(TraitsT &Traits) { |
||
302 | uint32_t S = size(); |
||
303 | uint32_t MaxLoad = maxLoad(capacity()); |
||
304 | if (S < maxLoad(capacity())) |
||
305 | return; |
||
306 | assert(capacity() != UINT32_MAX && "Can't grow Hash table!"); |
||
307 | |||
308 | uint32_t NewCapacity = (capacity() <= INT32_MAX) ? MaxLoad * 2 : UINT32_MAX; |
||
309 | |||
310 | // Growing requires rebuilding the table and re-hashing every item. Make a |
||
311 | // copy with a larger capacity, insert everything into the copy, then swap |
||
312 | // it in. |
||
313 | HashTable NewMap(NewCapacity); |
||
314 | for (auto I : Present) { |
||
315 | auto LookupKey = Traits.storageKeyToLookupKey(Buckets[I].first); |
||
316 | NewMap.set_as_internal(LookupKey, Buckets[I].second, Traits, |
||
317 | Buckets[I].first); |
||
318 | } |
||
319 | |||
320 | Buckets.swap(NewMap.Buckets); |
||
321 | std::swap(Present, NewMap.Present); |
||
322 | std::swap(Deleted, NewMap.Deleted); |
||
323 | assert(capacity() == NewCapacity); |
||
324 | assert(size() == S); |
||
325 | } |
||
326 | }; |
||
327 | |||
328 | } // end namespace pdb |
||
329 | |||
330 | } // end namespace llvm |
||
331 | |||
332 | #endif // LLVM_DEBUGINFO_PDB_NATIVE_HASHTABLE_H |