Details | Last modification | View Log | RSS feed
| Rev | Author | Line No. | Line |
|---|---|---|---|
| 14 | pmbaty | 1 | //===- llvm/CodeGen/TargetSchedule.h - Sched Machine Model ------*- C++ -*-===// |
| 2 | // |
||
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
||
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
||
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
||
| 6 | // |
||
| 7 | //===----------------------------------------------------------------------===// |
||
| 8 | // |
||
| 9 | // This file defines a wrapper around MCSchedModel that allows the interface to |
||
| 10 | // benefit from information currently only available in TargetInstrInfo. |
||
| 11 | // Ideally, the scheduling interface would be fully defined in the MC layer. |
||
| 12 | // |
||
| 13 | //===----------------------------------------------------------------------===// |
||
| 14 | |||
| 15 | #ifndef LLVM_CODEGEN_TARGETSCHEDULE_H |
||
| 16 | #define LLVM_CODEGEN_TARGETSCHEDULE_H |
||
| 17 | |||
| 18 | #include "llvm/ADT/SmallVector.h" |
||
| 19 | #include "llvm/CodeGen/TargetSubtargetInfo.h" |
||
| 20 | #include "llvm/Config/llvm-config.h" |
||
| 21 | #include "llvm/MC/MCInstrItineraries.h" |
||
| 22 | #include "llvm/MC/MCSchedule.h" |
||
| 23 | |||
| 24 | namespace llvm { |
||
| 25 | |||
| 26 | class MachineInstr; |
||
| 27 | class TargetInstrInfo; |
||
| 28 | |||
| 29 | /// Provide an instruction scheduling machine model to CodeGen passes. |
||
| 30 | class TargetSchedModel { |
||
| 31 | // For efficiency, hold a copy of the statically defined MCSchedModel for this |
||
| 32 | // processor. |
||
| 33 | MCSchedModel SchedModel; |
||
| 34 | InstrItineraryData InstrItins; |
||
| 35 | const TargetSubtargetInfo *STI = nullptr; |
||
| 36 | const TargetInstrInfo *TII = nullptr; |
||
| 37 | |||
| 38 | SmallVector<unsigned, 16> ResourceFactors; |
||
| 39 | |||
| 40 | // Multiply to normalize microops to resource units. |
||
| 41 | unsigned MicroOpFactor = 0; |
||
| 42 | |||
| 43 | // Resource units per cycle. Latency normalization factor. |
||
| 44 | unsigned ResourceLCM = 0; |
||
| 45 | |||
| 46 | unsigned computeInstrLatency(const MCSchedClassDesc &SCDesc) const; |
||
| 47 | |||
| 48 | public: |
||
| 49 | TargetSchedModel() : SchedModel(MCSchedModel::GetDefaultSchedModel()) {} |
||
| 50 | |||
| 51 | /// Initialize the machine model for instruction scheduling. |
||
| 52 | /// |
||
| 53 | /// The machine model API keeps a copy of the top-level MCSchedModel table |
||
| 54 | /// indices and may query TargetSubtargetInfo and TargetInstrInfo to resolve |
||
| 55 | /// dynamic properties. |
||
| 56 | void init(const TargetSubtargetInfo *TSInfo); |
||
| 57 | |||
| 58 | /// Return the MCSchedClassDesc for this instruction. |
||
| 59 | const MCSchedClassDesc *resolveSchedClass(const MachineInstr *MI) const; |
||
| 60 | |||
| 61 | /// TargetSubtargetInfo getter. |
||
| 62 | const TargetSubtargetInfo *getSubtargetInfo() const { return STI; } |
||
| 63 | |||
| 64 | /// TargetInstrInfo getter. |
||
| 65 | const TargetInstrInfo *getInstrInfo() const { return TII; } |
||
| 66 | |||
| 67 | /// Return true if this machine model includes an instruction-level |
||
| 68 | /// scheduling model. |
||
| 69 | /// |
||
| 70 | /// This is more detailed than the course grain IssueWidth and default |
||
| 71 | /// latency properties, but separate from the per-cycle itinerary data. |
||
| 72 | bool hasInstrSchedModel() const; |
||
| 73 | |||
| 74 | const MCSchedModel *getMCSchedModel() const { return &SchedModel; } |
||
| 75 | |||
| 76 | /// Return true if this machine model includes cycle-to-cycle itinerary |
||
| 77 | /// data. |
||
| 78 | /// |
||
| 79 | /// This models scheduling at each stage in the processor pipeline. |
||
| 80 | bool hasInstrItineraries() const; |
||
| 81 | |||
| 82 | const InstrItineraryData *getInstrItineraries() const { |
||
| 83 | if (hasInstrItineraries()) |
||
| 84 | return &InstrItins; |
||
| 85 | return nullptr; |
||
| 86 | } |
||
| 87 | |||
| 88 | /// Return true if this machine model includes an instruction-level |
||
| 89 | /// scheduling model or cycle-to-cycle itinerary data. |
||
| 90 | bool hasInstrSchedModelOrItineraries() const { |
||
| 91 | return hasInstrSchedModel() || hasInstrItineraries(); |
||
| 92 | } |
||
| 93 | |||
| 94 | /// Identify the processor corresponding to the current subtarget. |
||
| 95 | unsigned getProcessorID() const { return SchedModel.getProcessorID(); } |
||
| 96 | |||
| 97 | /// Maximum number of micro-ops that may be scheduled per cycle. |
||
| 98 | unsigned getIssueWidth() const { return SchedModel.IssueWidth; } |
||
| 99 | |||
| 100 | /// Return true if new group must begin. |
||
| 101 | bool mustBeginGroup(const MachineInstr *MI, |
||
| 102 | const MCSchedClassDesc *SC = nullptr) const; |
||
| 103 | /// Return true if current group must end. |
||
| 104 | bool mustEndGroup(const MachineInstr *MI, |
||
| 105 | const MCSchedClassDesc *SC = nullptr) const; |
||
| 106 | |||
| 107 | /// Return the number of issue slots required for this MI. |
||
| 108 | unsigned getNumMicroOps(const MachineInstr *MI, |
||
| 109 | const MCSchedClassDesc *SC = nullptr) const; |
||
| 110 | |||
| 111 | /// Get the number of kinds of resources for this target. |
||
| 112 | unsigned getNumProcResourceKinds() const { |
||
| 113 | return SchedModel.getNumProcResourceKinds(); |
||
| 114 | } |
||
| 115 | |||
| 116 | /// Get a processor resource by ID for convenience. |
||
| 117 | const MCProcResourceDesc *getProcResource(unsigned PIdx) const { |
||
| 118 | return SchedModel.getProcResource(PIdx); |
||
| 119 | } |
||
| 120 | |||
| 121 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
||
| 122 | const char *getResourceName(unsigned PIdx) const { |
||
| 123 | if (!PIdx) |
||
| 124 | return "MOps"; |
||
| 125 | return SchedModel.getProcResource(PIdx)->Name; |
||
| 126 | } |
||
| 127 | #endif |
||
| 128 | |||
| 129 | using ProcResIter = const MCWriteProcResEntry *; |
||
| 130 | |||
| 131 | // Get an iterator into the processor resources consumed by this |
||
| 132 | // scheduling class. |
||
| 133 | ProcResIter getWriteProcResBegin(const MCSchedClassDesc *SC) const { |
||
| 134 | // The subtarget holds a single resource table for all processors. |
||
| 135 | return STI->getWriteProcResBegin(SC); |
||
| 136 | } |
||
| 137 | ProcResIter getWriteProcResEnd(const MCSchedClassDesc *SC) const { |
||
| 138 | return STI->getWriteProcResEnd(SC); |
||
| 139 | } |
||
| 140 | |||
| 141 | /// Multiply the number of units consumed for a resource by this factor |
||
| 142 | /// to normalize it relative to other resources. |
||
| 143 | unsigned getResourceFactor(unsigned ResIdx) const { |
||
| 144 | return ResourceFactors[ResIdx]; |
||
| 145 | } |
||
| 146 | |||
| 147 | /// Multiply number of micro-ops by this factor to normalize it |
||
| 148 | /// relative to other resources. |
||
| 149 | unsigned getMicroOpFactor() const { |
||
| 150 | return MicroOpFactor; |
||
| 151 | } |
||
| 152 | |||
| 153 | /// Multiply cycle count by this factor to normalize it relative to |
||
| 154 | /// other resources. This is the number of resource units per cycle. |
||
| 155 | unsigned getLatencyFactor() const { |
||
| 156 | return ResourceLCM; |
||
| 157 | } |
||
| 158 | |||
| 159 | /// Number of micro-ops that may be buffered for OOO execution. |
||
| 160 | unsigned getMicroOpBufferSize() const { return SchedModel.MicroOpBufferSize; } |
||
| 161 | |||
| 162 | /// Number of resource units that may be buffered for OOO execution. |
||
| 163 | /// \return The buffer size in resource units or -1 for unlimited. |
||
| 164 | int getResourceBufferSize(unsigned PIdx) const { |
||
| 165 | return SchedModel.getProcResource(PIdx)->BufferSize; |
||
| 166 | } |
||
| 167 | |||
| 168 | /// Compute operand latency based on the available machine model. |
||
| 169 | /// |
||
| 170 | /// Compute and return the latency of the given data dependent def and use |
||
| 171 | /// when the operand indices are already known. UseMI may be NULL for an |
||
| 172 | /// unknown user. |
||
| 173 | unsigned computeOperandLatency(const MachineInstr *DefMI, unsigned DefOperIdx, |
||
| 174 | const MachineInstr *UseMI, unsigned UseOperIdx) |
||
| 175 | const; |
||
| 176 | |||
| 177 | /// Compute the instruction latency based on the available machine |
||
| 178 | /// model. |
||
| 179 | /// |
||
| 180 | /// Compute and return the expected latency of this instruction independent of |
||
| 181 | /// a particular use. computeOperandLatency is the preferred API, but this is |
||
| 182 | /// occasionally useful to help estimate instruction cost. |
||
| 183 | /// |
||
| 184 | /// If UseDefaultDefLatency is false and no new machine sched model is |
||
| 185 | /// present this method falls back to TII->getInstrLatency with an empty |
||
| 186 | /// instruction itinerary (this is so we preserve the previous behavior of the |
||
| 187 | /// if converter after moving it to TargetSchedModel). |
||
| 188 | unsigned computeInstrLatency(const MachineInstr *MI, |
||
| 189 | bool UseDefaultDefLatency = true) const; |
||
| 190 | unsigned computeInstrLatency(const MCInst &Inst) const; |
||
| 191 | unsigned computeInstrLatency(unsigned Opcode) const; |
||
| 192 | |||
| 193 | |||
| 194 | /// Output dependency latency of a pair of defs of the same register. |
||
| 195 | /// |
||
| 196 | /// This is typically one cycle. |
||
| 197 | unsigned computeOutputLatency(const MachineInstr *DefMI, unsigned DefOperIdx, |
||
| 198 | const MachineInstr *DepMI) const; |
||
| 199 | |||
| 200 | /// Compute the reciprocal throughput of the given instruction. |
||
| 201 | double computeReciprocalThroughput(const MachineInstr *MI) const; |
||
| 202 | double computeReciprocalThroughput(const MCInst &MI) const; |
||
| 203 | double computeReciprocalThroughput(unsigned Opcode) const; |
||
| 204 | }; |
||
| 205 | |||
| 206 | } // end namespace llvm |
||
| 207 | |||
| 208 | #endif // LLVM_CODEGEN_TARGETSCHEDULE_H |