Details | Last modification | View Log | RSS feed
| Rev | Author | Line No. | Line |
|---|---|---|---|
| 14 | pmbaty | 1 | //===- llvm/CodeGen/SelectionDAGNodes.h - SelectionDAG Nodes ----*- C++ -*-===// |
| 2 | // |
||
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
||
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
||
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
||
| 6 | // |
||
| 7 | //===----------------------------------------------------------------------===// |
||
| 8 | // |
||
| 9 | // This file declares the SDNode class and derived classes, which are used to |
||
| 10 | // represent the nodes and operations present in a SelectionDAG. These nodes |
||
| 11 | // and operations are machine code level operations, with some similarities to |
||
| 12 | // the GCC RTL representation. |
||
| 13 | // |
||
| 14 | // Clients should include the SelectionDAG.h file instead of this file directly. |
||
| 15 | // |
||
| 16 | //===----------------------------------------------------------------------===// |
||
| 17 | |||
| 18 | #ifndef LLVM_CODEGEN_SELECTIONDAGNODES_H |
||
| 19 | #define LLVM_CODEGEN_SELECTIONDAGNODES_H |
||
| 20 | |||
| 21 | #include "llvm/ADT/APFloat.h" |
||
| 22 | #include "llvm/ADT/ArrayRef.h" |
||
| 23 | #include "llvm/ADT/BitVector.h" |
||
| 24 | #include "llvm/ADT/FoldingSet.h" |
||
| 25 | #include "llvm/ADT/GraphTraits.h" |
||
| 26 | #include "llvm/ADT/SmallPtrSet.h" |
||
| 27 | #include "llvm/ADT/SmallVector.h" |
||
| 28 | #include "llvm/ADT/ilist_node.h" |
||
| 29 | #include "llvm/ADT/iterator.h" |
||
| 30 | #include "llvm/ADT/iterator_range.h" |
||
| 31 | #include "llvm/CodeGen/ISDOpcodes.h" |
||
| 32 | #include "llvm/CodeGen/MachineMemOperand.h" |
||
| 33 | #include "llvm/CodeGen/Register.h" |
||
| 34 | #include "llvm/CodeGen/ValueTypes.h" |
||
| 35 | #include "llvm/IR/Constants.h" |
||
| 36 | #include "llvm/IR/DebugLoc.h" |
||
| 37 | #include "llvm/IR/Instruction.h" |
||
| 38 | #include "llvm/IR/Instructions.h" |
||
| 39 | #include "llvm/IR/Metadata.h" |
||
| 40 | #include "llvm/IR/Operator.h" |
||
| 41 | #include "llvm/Support/AlignOf.h" |
||
| 42 | #include "llvm/Support/AtomicOrdering.h" |
||
| 43 | #include "llvm/Support/Casting.h" |
||
| 44 | #include "llvm/Support/ErrorHandling.h" |
||
| 45 | #include "llvm/Support/MachineValueType.h" |
||
| 46 | #include "llvm/Support/TypeSize.h" |
||
| 47 | #include <algorithm> |
||
| 48 | #include <cassert> |
||
| 49 | #include <climits> |
||
| 50 | #include <cstddef> |
||
| 51 | #include <cstdint> |
||
| 52 | #include <cstring> |
||
| 53 | #include <iterator> |
||
| 54 | #include <string> |
||
| 55 | #include <tuple> |
||
| 56 | #include <utility> |
||
| 57 | |||
| 58 | namespace llvm { |
||
| 59 | |||
| 60 | class APInt; |
||
| 61 | class Constant; |
||
| 62 | class GlobalValue; |
||
| 63 | class MachineBasicBlock; |
||
| 64 | class MachineConstantPoolValue; |
||
| 65 | class MCSymbol; |
||
| 66 | class raw_ostream; |
||
| 67 | class SDNode; |
||
| 68 | class SelectionDAG; |
||
| 69 | class Type; |
||
| 70 | class Value; |
||
| 71 | |||
| 72 | void checkForCycles(const SDNode *N, const SelectionDAG *DAG = nullptr, |
||
| 73 | bool force = false); |
||
| 74 | |||
| 75 | /// This represents a list of ValueType's that has been intern'd by |
||
| 76 | /// a SelectionDAG. Instances of this simple value class are returned by |
||
| 77 | /// SelectionDAG::getVTList(...). |
||
| 78 | /// |
||
| 79 | struct SDVTList { |
||
| 80 | const EVT *VTs; |
||
| 81 | unsigned int NumVTs; |
||
| 82 | }; |
||
| 83 | |||
| 84 | namespace ISD { |
||
| 85 | |||
| 86 | /// Node predicates |
||
| 87 | |||
| 88 | /// If N is a BUILD_VECTOR or SPLAT_VECTOR node whose elements are all the |
||
| 89 | /// same constant or undefined, return true and return the constant value in |
||
| 90 | /// \p SplatValue. |
||
| 91 | bool isConstantSplatVector(const SDNode *N, APInt &SplatValue); |
||
| 92 | |||
| 93 | /// Return true if the specified node is a BUILD_VECTOR or SPLAT_VECTOR where |
||
| 94 | /// all of the elements are ~0 or undef. If \p BuildVectorOnly is set to |
||
| 95 | /// true, it only checks BUILD_VECTOR. |
||
| 96 | bool isConstantSplatVectorAllOnes(const SDNode *N, |
||
| 97 | bool BuildVectorOnly = false); |
||
| 98 | |||
| 99 | /// Return true if the specified node is a BUILD_VECTOR or SPLAT_VECTOR where |
||
| 100 | /// all of the elements are 0 or undef. If \p BuildVectorOnly is set to true, it |
||
| 101 | /// only checks BUILD_VECTOR. |
||
| 102 | bool isConstantSplatVectorAllZeros(const SDNode *N, |
||
| 103 | bool BuildVectorOnly = false); |
||
| 104 | |||
| 105 | /// Return true if the specified node is a BUILD_VECTOR where all of the |
||
| 106 | /// elements are ~0 or undef. |
||
| 107 | bool isBuildVectorAllOnes(const SDNode *N); |
||
| 108 | |||
| 109 | /// Return true if the specified node is a BUILD_VECTOR where all of the |
||
| 110 | /// elements are 0 or undef. |
||
| 111 | bool isBuildVectorAllZeros(const SDNode *N); |
||
| 112 | |||
| 113 | /// Return true if the specified node is a BUILD_VECTOR node of all |
||
| 114 | /// ConstantSDNode or undef. |
||
| 115 | bool isBuildVectorOfConstantSDNodes(const SDNode *N); |
||
| 116 | |||
| 117 | /// Return true if the specified node is a BUILD_VECTOR node of all |
||
| 118 | /// ConstantFPSDNode or undef. |
||
| 119 | bool isBuildVectorOfConstantFPSDNodes(const SDNode *N); |
||
| 120 | |||
| 121 | /// Returns true if the specified node is a vector where all elements can |
||
| 122 | /// be truncated to the specified element size without a loss in meaning. |
||
| 123 | bool isVectorShrinkable(const SDNode *N, unsigned NewEltSize, bool Signed); |
||
| 124 | |||
| 125 | /// Return true if the node has at least one operand and all operands of the |
||
| 126 | /// specified node are ISD::UNDEF. |
||
| 127 | bool allOperandsUndef(const SDNode *N); |
||
| 128 | |||
| 129 | /// Return true if the specified node is FREEZE(UNDEF). |
||
| 130 | bool isFreezeUndef(const SDNode *N); |
||
| 131 | |||
| 132 | } // end namespace ISD |
||
| 133 | |||
| 134 | //===----------------------------------------------------------------------===// |
||
| 135 | /// Unlike LLVM values, Selection DAG nodes may return multiple |
||
| 136 | /// values as the result of a computation. Many nodes return multiple values, |
||
| 137 | /// from loads (which define a token and a return value) to ADDC (which returns |
||
| 138 | /// a result and a carry value), to calls (which may return an arbitrary number |
||
| 139 | /// of values). |
||
| 140 | /// |
||
| 141 | /// As such, each use of a SelectionDAG computation must indicate the node that |
||
| 142 | /// computes it as well as which return value to use from that node. This pair |
||
| 143 | /// of information is represented with the SDValue value type. |
||
| 144 | /// |
||
| 145 | class SDValue { |
||
| 146 | friend struct DenseMapInfo<SDValue>; |
||
| 147 | |||
| 148 | SDNode *Node = nullptr; // The node defining the value we are using. |
||
| 149 | unsigned ResNo = 0; // Which return value of the node we are using. |
||
| 150 | |||
| 151 | public: |
||
| 152 | SDValue() = default; |
||
| 153 | SDValue(SDNode *node, unsigned resno); |
||
| 154 | |||
| 155 | /// get the index which selects a specific result in the SDNode |
||
| 156 | unsigned getResNo() const { return ResNo; } |
||
| 157 | |||
| 158 | /// get the SDNode which holds the desired result |
||
| 159 | SDNode *getNode() const { return Node; } |
||
| 160 | |||
| 161 | /// set the SDNode |
||
| 162 | void setNode(SDNode *N) { Node = N; } |
||
| 163 | |||
| 164 | inline SDNode *operator->() const { return Node; } |
||
| 165 | |||
| 166 | bool operator==(const SDValue &O) const { |
||
| 167 | return Node == O.Node && ResNo == O.ResNo; |
||
| 168 | } |
||
| 169 | bool operator!=(const SDValue &O) const { |
||
| 170 | return !operator==(O); |
||
| 171 | } |
||
| 172 | bool operator<(const SDValue &O) const { |
||
| 173 | return std::tie(Node, ResNo) < std::tie(O.Node, O.ResNo); |
||
| 174 | } |
||
| 175 | explicit operator bool() const { |
||
| 176 | return Node != nullptr; |
||
| 177 | } |
||
| 178 | |||
| 179 | SDValue getValue(unsigned R) const { |
||
| 180 | return SDValue(Node, R); |
||
| 181 | } |
||
| 182 | |||
| 183 | /// Return true if this node is an operand of N. |
||
| 184 | bool isOperandOf(const SDNode *N) const; |
||
| 185 | |||
| 186 | /// Return the ValueType of the referenced return value. |
||
| 187 | inline EVT getValueType() const; |
||
| 188 | |||
| 189 | /// Return the simple ValueType of the referenced return value. |
||
| 190 | MVT getSimpleValueType() const { |
||
| 191 | return getValueType().getSimpleVT(); |
||
| 192 | } |
||
| 193 | |||
| 194 | /// Returns the size of the value in bits. |
||
| 195 | /// |
||
| 196 | /// If the value type is a scalable vector type, the scalable property will |
||
| 197 | /// be set and the runtime size will be a positive integer multiple of the |
||
| 198 | /// base size. |
||
| 199 | TypeSize getValueSizeInBits() const { |
||
| 200 | return getValueType().getSizeInBits(); |
||
| 201 | } |
||
| 202 | |||
| 203 | uint64_t getScalarValueSizeInBits() const { |
||
| 204 | return getValueType().getScalarType().getFixedSizeInBits(); |
||
| 205 | } |
||
| 206 | |||
| 207 | // Forwarding methods - These forward to the corresponding methods in SDNode. |
||
| 208 | inline unsigned getOpcode() const; |
||
| 209 | inline unsigned getNumOperands() const; |
||
| 210 | inline const SDValue &getOperand(unsigned i) const; |
||
| 211 | inline uint64_t getConstantOperandVal(unsigned i) const; |
||
| 212 | inline const APInt &getConstantOperandAPInt(unsigned i) const; |
||
| 213 | inline bool isTargetMemoryOpcode() const; |
||
| 214 | inline bool isTargetOpcode() const; |
||
| 215 | inline bool isMachineOpcode() const; |
||
| 216 | inline bool isUndef() const; |
||
| 217 | inline unsigned getMachineOpcode() const; |
||
| 218 | inline const DebugLoc &getDebugLoc() const; |
||
| 219 | inline void dump() const; |
||
| 220 | inline void dump(const SelectionDAG *G) const; |
||
| 221 | inline void dumpr() const; |
||
| 222 | inline void dumpr(const SelectionDAG *G) const; |
||
| 223 | |||
| 224 | /// Return true if this operand (which must be a chain) reaches the |
||
| 225 | /// specified operand without crossing any side-effecting instructions. |
||
| 226 | /// In practice, this looks through token factors and non-volatile loads. |
||
| 227 | /// In order to remain efficient, this only |
||
| 228 | /// looks a couple of nodes in, it does not do an exhaustive search. |
||
| 229 | bool reachesChainWithoutSideEffects(SDValue Dest, |
||
| 230 | unsigned Depth = 2) const; |
||
| 231 | |||
| 232 | /// Return true if there are no nodes using value ResNo of Node. |
||
| 233 | inline bool use_empty() const; |
||
| 234 | |||
| 235 | /// Return true if there is exactly one node using value ResNo of Node. |
||
| 236 | inline bool hasOneUse() const; |
||
| 237 | }; |
||
| 238 | |||
| 239 | template<> struct DenseMapInfo<SDValue> { |
||
| 240 | static inline SDValue getEmptyKey() { |
||
| 241 | SDValue V; |
||
| 242 | V.ResNo = -1U; |
||
| 243 | return V; |
||
| 244 | } |
||
| 245 | |||
| 246 | static inline SDValue getTombstoneKey() { |
||
| 247 | SDValue V; |
||
| 248 | V.ResNo = -2U; |
||
| 249 | return V; |
||
| 250 | } |
||
| 251 | |||
| 252 | static unsigned getHashValue(const SDValue &Val) { |
||
| 253 | return ((unsigned)((uintptr_t)Val.getNode() >> 4) ^ |
||
| 254 | (unsigned)((uintptr_t)Val.getNode() >> 9)) + Val.getResNo(); |
||
| 255 | } |
||
| 256 | |||
| 257 | static bool isEqual(const SDValue &LHS, const SDValue &RHS) { |
||
| 258 | return LHS == RHS; |
||
| 259 | } |
||
| 260 | }; |
||
| 261 | |||
| 262 | /// Allow casting operators to work directly on |
||
| 263 | /// SDValues as if they were SDNode*'s. |
||
| 264 | template<> struct simplify_type<SDValue> { |
||
| 265 | using SimpleType = SDNode *; |
||
| 266 | |||
| 267 | static SimpleType getSimplifiedValue(SDValue &Val) { |
||
| 268 | return Val.getNode(); |
||
| 269 | } |
||
| 270 | }; |
||
| 271 | template<> struct simplify_type<const SDValue> { |
||
| 272 | using SimpleType = /*const*/ SDNode *; |
||
| 273 | |||
| 274 | static SimpleType getSimplifiedValue(const SDValue &Val) { |
||
| 275 | return Val.getNode(); |
||
| 276 | } |
||
| 277 | }; |
||
| 278 | |||
| 279 | /// Represents a use of a SDNode. This class holds an SDValue, |
||
| 280 | /// which records the SDNode being used and the result number, a |
||
| 281 | /// pointer to the SDNode using the value, and Next and Prev pointers, |
||
| 282 | /// which link together all the uses of an SDNode. |
||
| 283 | /// |
||
| 284 | class SDUse { |
||
| 285 | /// Val - The value being used. |
||
| 286 | SDValue Val; |
||
| 287 | /// User - The user of this value. |
||
| 288 | SDNode *User = nullptr; |
||
| 289 | /// Prev, Next - Pointers to the uses list of the SDNode referred by |
||
| 290 | /// this operand. |
||
| 291 | SDUse **Prev = nullptr; |
||
| 292 | SDUse *Next = nullptr; |
||
| 293 | |||
| 294 | public: |
||
| 295 | SDUse() = default; |
||
| 296 | SDUse(const SDUse &U) = delete; |
||
| 297 | SDUse &operator=(const SDUse &) = delete; |
||
| 298 | |||
| 299 | /// Normally SDUse will just implicitly convert to an SDValue that it holds. |
||
| 300 | operator const SDValue&() const { return Val; } |
||
| 301 | |||
| 302 | /// If implicit conversion to SDValue doesn't work, the get() method returns |
||
| 303 | /// the SDValue. |
||
| 304 | const SDValue &get() const { return Val; } |
||
| 305 | |||
| 306 | /// This returns the SDNode that contains this Use. |
||
| 307 | SDNode *getUser() { return User; } |
||
| 308 | const SDNode *getUser() const { return User; } |
||
| 309 | |||
| 310 | /// Get the next SDUse in the use list. |
||
| 311 | SDUse *getNext() const { return Next; } |
||
| 312 | |||
| 313 | /// Convenience function for get().getNode(). |
||
| 314 | SDNode *getNode() const { return Val.getNode(); } |
||
| 315 | /// Convenience function for get().getResNo(). |
||
| 316 | unsigned getResNo() const { return Val.getResNo(); } |
||
| 317 | /// Convenience function for get().getValueType(). |
||
| 318 | EVT getValueType() const { return Val.getValueType(); } |
||
| 319 | |||
| 320 | /// Convenience function for get().operator== |
||
| 321 | bool operator==(const SDValue &V) const { |
||
| 322 | return Val == V; |
||
| 323 | } |
||
| 324 | |||
| 325 | /// Convenience function for get().operator!= |
||
| 326 | bool operator!=(const SDValue &V) const { |
||
| 327 | return Val != V; |
||
| 328 | } |
||
| 329 | |||
| 330 | /// Convenience function for get().operator< |
||
| 331 | bool operator<(const SDValue &V) const { |
||
| 332 | return Val < V; |
||
| 333 | } |
||
| 334 | |||
| 335 | private: |
||
| 336 | friend class SelectionDAG; |
||
| 337 | friend class SDNode; |
||
| 338 | // TODO: unfriend HandleSDNode once we fix its operand handling. |
||
| 339 | friend class HandleSDNode; |
||
| 340 | |||
| 341 | void setUser(SDNode *p) { User = p; } |
||
| 342 | |||
| 343 | /// Remove this use from its existing use list, assign it the |
||
| 344 | /// given value, and add it to the new value's node's use list. |
||
| 345 | inline void set(const SDValue &V); |
||
| 346 | /// Like set, but only supports initializing a newly-allocated |
||
| 347 | /// SDUse with a non-null value. |
||
| 348 | inline void setInitial(const SDValue &V); |
||
| 349 | /// Like set, but only sets the Node portion of the value, |
||
| 350 | /// leaving the ResNo portion unmodified. |
||
| 351 | inline void setNode(SDNode *N); |
||
| 352 | |||
| 353 | void addToList(SDUse **List) { |
||
| 354 | Next = *List; |
||
| 355 | if (Next) Next->Prev = &Next; |
||
| 356 | Prev = List; |
||
| 357 | *List = this; |
||
| 358 | } |
||
| 359 | |||
| 360 | void removeFromList() { |
||
| 361 | *Prev = Next; |
||
| 362 | if (Next) Next->Prev = Prev; |
||
| 363 | } |
||
| 364 | }; |
||
| 365 | |||
| 366 | /// simplify_type specializations - Allow casting operators to work directly on |
||
| 367 | /// SDValues as if they were SDNode*'s. |
||
| 368 | template<> struct simplify_type<SDUse> { |
||
| 369 | using SimpleType = SDNode *; |
||
| 370 | |||
| 371 | static SimpleType getSimplifiedValue(SDUse &Val) { |
||
| 372 | return Val.getNode(); |
||
| 373 | } |
||
| 374 | }; |
||
| 375 | |||
| 376 | /// These are IR-level optimization flags that may be propagated to SDNodes. |
||
| 377 | /// TODO: This data structure should be shared by the IR optimizer and the |
||
| 378 | /// the backend. |
||
| 379 | struct SDNodeFlags { |
||
| 380 | private: |
||
| 381 | bool NoUnsignedWrap : 1; |
||
| 382 | bool NoSignedWrap : 1; |
||
| 383 | bool Exact : 1; |
||
| 384 | bool NoNaNs : 1; |
||
| 385 | bool NoInfs : 1; |
||
| 386 | bool NoSignedZeros : 1; |
||
| 387 | bool AllowReciprocal : 1; |
||
| 388 | bool AllowContract : 1; |
||
| 389 | bool ApproximateFuncs : 1; |
||
| 390 | bool AllowReassociation : 1; |
||
| 391 | |||
| 392 | // We assume instructions do not raise floating-point exceptions by default, |
||
| 393 | // and only those marked explicitly may do so. We could choose to represent |
||
| 394 | // this via a positive "FPExcept" flags like on the MI level, but having a |
||
| 395 | // negative "NoFPExcept" flag here (that defaults to true) makes the flag |
||
| 396 | // intersection logic more straightforward. |
||
| 397 | bool NoFPExcept : 1; |
||
| 398 | |||
| 399 | public: |
||
| 400 | /// Default constructor turns off all optimization flags. |
||
| 401 | SDNodeFlags() |
||
| 402 | : NoUnsignedWrap(false), NoSignedWrap(false), Exact(false), NoNaNs(false), |
||
| 403 | NoInfs(false), NoSignedZeros(false), AllowReciprocal(false), |
||
| 404 | AllowContract(false), ApproximateFuncs(false), |
||
| 405 | AllowReassociation(false), NoFPExcept(false) {} |
||
| 406 | |||
| 407 | /// Propagate the fast-math-flags from an IR FPMathOperator. |
||
| 408 | void copyFMF(const FPMathOperator &FPMO) { |
||
| 409 | setNoNaNs(FPMO.hasNoNaNs()); |
||
| 410 | setNoInfs(FPMO.hasNoInfs()); |
||
| 411 | setNoSignedZeros(FPMO.hasNoSignedZeros()); |
||
| 412 | setAllowReciprocal(FPMO.hasAllowReciprocal()); |
||
| 413 | setAllowContract(FPMO.hasAllowContract()); |
||
| 414 | setApproximateFuncs(FPMO.hasApproxFunc()); |
||
| 415 | setAllowReassociation(FPMO.hasAllowReassoc()); |
||
| 416 | } |
||
| 417 | |||
| 418 | // These are mutators for each flag. |
||
| 419 | void setNoUnsignedWrap(bool b) { NoUnsignedWrap = b; } |
||
| 420 | void setNoSignedWrap(bool b) { NoSignedWrap = b; } |
||
| 421 | void setExact(bool b) { Exact = b; } |
||
| 422 | void setNoNaNs(bool b) { NoNaNs = b; } |
||
| 423 | void setNoInfs(bool b) { NoInfs = b; } |
||
| 424 | void setNoSignedZeros(bool b) { NoSignedZeros = b; } |
||
| 425 | void setAllowReciprocal(bool b) { AllowReciprocal = b; } |
||
| 426 | void setAllowContract(bool b) { AllowContract = b; } |
||
| 427 | void setApproximateFuncs(bool b) { ApproximateFuncs = b; } |
||
| 428 | void setAllowReassociation(bool b) { AllowReassociation = b; } |
||
| 429 | void setNoFPExcept(bool b) { NoFPExcept = b; } |
||
| 430 | |||
| 431 | // These are accessors for each flag. |
||
| 432 | bool hasNoUnsignedWrap() const { return NoUnsignedWrap; } |
||
| 433 | bool hasNoSignedWrap() const { return NoSignedWrap; } |
||
| 434 | bool hasExact() const { return Exact; } |
||
| 435 | bool hasNoNaNs() const { return NoNaNs; } |
||
| 436 | bool hasNoInfs() const { return NoInfs; } |
||
| 437 | bool hasNoSignedZeros() const { return NoSignedZeros; } |
||
| 438 | bool hasAllowReciprocal() const { return AllowReciprocal; } |
||
| 439 | bool hasAllowContract() const { return AllowContract; } |
||
| 440 | bool hasApproximateFuncs() const { return ApproximateFuncs; } |
||
| 441 | bool hasAllowReassociation() const { return AllowReassociation; } |
||
| 442 | bool hasNoFPExcept() const { return NoFPExcept; } |
||
| 443 | |||
| 444 | /// Clear any flags in this flag set that aren't also set in Flags. All |
||
| 445 | /// flags will be cleared if Flags are undefined. |
||
| 446 | void intersectWith(const SDNodeFlags Flags) { |
||
| 447 | NoUnsignedWrap &= Flags.NoUnsignedWrap; |
||
| 448 | NoSignedWrap &= Flags.NoSignedWrap; |
||
| 449 | Exact &= Flags.Exact; |
||
| 450 | NoNaNs &= Flags.NoNaNs; |
||
| 451 | NoInfs &= Flags.NoInfs; |
||
| 452 | NoSignedZeros &= Flags.NoSignedZeros; |
||
| 453 | AllowReciprocal &= Flags.AllowReciprocal; |
||
| 454 | AllowContract &= Flags.AllowContract; |
||
| 455 | ApproximateFuncs &= Flags.ApproximateFuncs; |
||
| 456 | AllowReassociation &= Flags.AllowReassociation; |
||
| 457 | NoFPExcept &= Flags.NoFPExcept; |
||
| 458 | } |
||
| 459 | }; |
||
| 460 | |||
| 461 | /// Represents one node in the SelectionDAG. |
||
| 462 | /// |
||
| 463 | class SDNode : public FoldingSetNode, public ilist_node<SDNode> { |
||
| 464 | private: |
||
| 465 | /// The operation that this node performs. |
||
| 466 | int32_t NodeType; |
||
| 467 | |||
| 468 | public: |
||
| 469 | /// Unique and persistent id per SDNode in the DAG. Used for debug printing. |
||
| 470 | /// We do not place that under `#if LLVM_ENABLE_ABI_BREAKING_CHECKS` |
||
| 471 | /// intentionally because it adds unneeded complexity without noticeable |
||
| 472 | /// benefits (see discussion with @thakis in D120714). |
||
| 473 | uint16_t PersistentId; |
||
| 474 | |||
| 475 | protected: |
||
| 476 | // We define a set of mini-helper classes to help us interpret the bits in our |
||
| 477 | // SubclassData. These are designed to fit within a uint16_t so they pack |
||
| 478 | // with PersistentId. |
||
| 479 | |||
| 480 | #if defined(_AIX) && (!defined(__GNUC__) || defined(__clang__)) |
||
| 481 | // Except for GCC; by default, AIX compilers store bit-fields in 4-byte words |
||
| 482 | // and give the `pack` pragma push semantics. |
||
| 483 | #define BEGIN_TWO_BYTE_PACK() _Pragma("pack(2)") |
||
| 484 | #define END_TWO_BYTE_PACK() _Pragma("pack(pop)") |
||
| 485 | #else |
||
| 486 | #define BEGIN_TWO_BYTE_PACK() |
||
| 487 | #define END_TWO_BYTE_PACK() |
||
| 488 | #endif |
||
| 489 | |||
| 490 | BEGIN_TWO_BYTE_PACK() |
||
| 491 | class SDNodeBitfields { |
||
| 492 | friend class SDNode; |
||
| 493 | friend class MemIntrinsicSDNode; |
||
| 494 | friend class MemSDNode; |
||
| 495 | friend class SelectionDAG; |
||
| 496 | |||
| 497 | uint16_t HasDebugValue : 1; |
||
| 498 | uint16_t IsMemIntrinsic : 1; |
||
| 499 | uint16_t IsDivergent : 1; |
||
| 500 | }; |
||
| 501 | enum { NumSDNodeBits = 3 }; |
||
| 502 | |||
| 503 | class ConstantSDNodeBitfields { |
||
| 504 | friend class ConstantSDNode; |
||
| 505 | |||
| 506 | uint16_t : NumSDNodeBits; |
||
| 507 | |||
| 508 | uint16_t IsOpaque : 1; |
||
| 509 | }; |
||
| 510 | |||
| 511 | class MemSDNodeBitfields { |
||
| 512 | friend class MemSDNode; |
||
| 513 | friend class MemIntrinsicSDNode; |
||
| 514 | friend class AtomicSDNode; |
||
| 515 | |||
| 516 | uint16_t : NumSDNodeBits; |
||
| 517 | |||
| 518 | uint16_t IsVolatile : 1; |
||
| 519 | uint16_t IsNonTemporal : 1; |
||
| 520 | uint16_t IsDereferenceable : 1; |
||
| 521 | uint16_t IsInvariant : 1; |
||
| 522 | }; |
||
| 523 | enum { NumMemSDNodeBits = NumSDNodeBits + 4 }; |
||
| 524 | |||
| 525 | class LSBaseSDNodeBitfields { |
||
| 526 | friend class LSBaseSDNode; |
||
| 527 | friend class VPBaseLoadStoreSDNode; |
||
| 528 | friend class MaskedLoadStoreSDNode; |
||
| 529 | friend class MaskedGatherScatterSDNode; |
||
| 530 | friend class VPGatherScatterSDNode; |
||
| 531 | |||
| 532 | uint16_t : NumMemSDNodeBits; |
||
| 533 | |||
| 534 | // This storage is shared between disparate class hierarchies to hold an |
||
| 535 | // enumeration specific to the class hierarchy in use. |
||
| 536 | // LSBaseSDNode => enum ISD::MemIndexedMode |
||
| 537 | // VPLoadStoreBaseSDNode => enum ISD::MemIndexedMode |
||
| 538 | // MaskedLoadStoreBaseSDNode => enum ISD::MemIndexedMode |
||
| 539 | // VPGatherScatterSDNode => enum ISD::MemIndexType |
||
| 540 | // MaskedGatherScatterSDNode => enum ISD::MemIndexType |
||
| 541 | uint16_t AddressingMode : 3; |
||
| 542 | }; |
||
| 543 | enum { NumLSBaseSDNodeBits = NumMemSDNodeBits + 3 }; |
||
| 544 | |||
| 545 | class LoadSDNodeBitfields { |
||
| 546 | friend class LoadSDNode; |
||
| 547 | friend class VPLoadSDNode; |
||
| 548 | friend class VPStridedLoadSDNode; |
||
| 549 | friend class MaskedLoadSDNode; |
||
| 550 | friend class MaskedGatherSDNode; |
||
| 551 | friend class VPGatherSDNode; |
||
| 552 | |||
| 553 | uint16_t : NumLSBaseSDNodeBits; |
||
| 554 | |||
| 555 | uint16_t ExtTy : 2; // enum ISD::LoadExtType |
||
| 556 | uint16_t IsExpanding : 1; |
||
| 557 | }; |
||
| 558 | |||
| 559 | class StoreSDNodeBitfields { |
||
| 560 | friend class StoreSDNode; |
||
| 561 | friend class VPStoreSDNode; |
||
| 562 | friend class VPStridedStoreSDNode; |
||
| 563 | friend class MaskedStoreSDNode; |
||
| 564 | friend class MaskedScatterSDNode; |
||
| 565 | friend class VPScatterSDNode; |
||
| 566 | |||
| 567 | uint16_t : NumLSBaseSDNodeBits; |
||
| 568 | |||
| 569 | uint16_t IsTruncating : 1; |
||
| 570 | uint16_t IsCompressing : 1; |
||
| 571 | }; |
||
| 572 | |||
| 573 | union { |
||
| 574 | char RawSDNodeBits[sizeof(uint16_t)]; |
||
| 575 | SDNodeBitfields SDNodeBits; |
||
| 576 | ConstantSDNodeBitfields ConstantSDNodeBits; |
||
| 577 | MemSDNodeBitfields MemSDNodeBits; |
||
| 578 | LSBaseSDNodeBitfields LSBaseSDNodeBits; |
||
| 579 | LoadSDNodeBitfields LoadSDNodeBits; |
||
| 580 | StoreSDNodeBitfields StoreSDNodeBits; |
||
| 581 | }; |
||
| 582 | END_TWO_BYTE_PACK() |
||
| 583 | #undef BEGIN_TWO_BYTE_PACK |
||
| 584 | #undef END_TWO_BYTE_PACK |
||
| 585 | |||
| 586 | // RawSDNodeBits must cover the entirety of the union. This means that all of |
||
| 587 | // the union's members must have size <= RawSDNodeBits. We write the RHS as |
||
| 588 | // "2" instead of sizeof(RawSDNodeBits) because MSVC can't handle the latter. |
||
| 589 | static_assert(sizeof(SDNodeBitfields) <= 2, "field too wide"); |
||
| 590 | static_assert(sizeof(ConstantSDNodeBitfields) <= 2, "field too wide"); |
||
| 591 | static_assert(sizeof(MemSDNodeBitfields) <= 2, "field too wide"); |
||
| 592 | static_assert(sizeof(LSBaseSDNodeBitfields) <= 2, "field too wide"); |
||
| 593 | static_assert(sizeof(LoadSDNodeBitfields) <= 2, "field too wide"); |
||
| 594 | static_assert(sizeof(StoreSDNodeBitfields) <= 2, "field too wide"); |
||
| 595 | |||
| 596 | private: |
||
| 597 | friend class SelectionDAG; |
||
| 598 | // TODO: unfriend HandleSDNode once we fix its operand handling. |
||
| 599 | friend class HandleSDNode; |
||
| 600 | |||
| 601 | /// Unique id per SDNode in the DAG. |
||
| 602 | int NodeId = -1; |
||
| 603 | |||
| 604 | /// The values that are used by this operation. |
||
| 605 | SDUse *OperandList = nullptr; |
||
| 606 | |||
| 607 | /// The types of the values this node defines. SDNode's may |
||
| 608 | /// define multiple values simultaneously. |
||
| 609 | const EVT *ValueList; |
||
| 610 | |||
| 611 | /// List of uses for this SDNode. |
||
| 612 | SDUse *UseList = nullptr; |
||
| 613 | |||
| 614 | /// The number of entries in the Operand/Value list. |
||
| 615 | unsigned short NumOperands = 0; |
||
| 616 | unsigned short NumValues; |
||
| 617 | |||
| 618 | // The ordering of the SDNodes. It roughly corresponds to the ordering of the |
||
| 619 | // original LLVM instructions. |
||
| 620 | // This is used for turning off scheduling, because we'll forgo |
||
| 621 | // the normal scheduling algorithms and output the instructions according to |
||
| 622 | // this ordering. |
||
| 623 | unsigned IROrder; |
||
| 624 | |||
| 625 | /// Source line information. |
||
| 626 | DebugLoc debugLoc; |
||
| 627 | |||
| 628 | /// Return a pointer to the specified value type. |
||
| 629 | static const EVT *getValueTypeList(EVT VT); |
||
| 630 | |||
| 631 | SDNodeFlags Flags; |
||
| 632 | |||
| 633 | uint32_t CFIType = 0; |
||
| 634 | |||
| 635 | public: |
||
| 636 | //===--------------------------------------------------------------------===// |
||
| 637 | // Accessors |
||
| 638 | // |
||
| 639 | |||
| 640 | /// Return the SelectionDAG opcode value for this node. For |
||
| 641 | /// pre-isel nodes (those for which isMachineOpcode returns false), these |
||
| 642 | /// are the opcode values in the ISD and <target>ISD namespaces. For |
||
| 643 | /// post-isel opcodes, see getMachineOpcode. |
||
| 644 | unsigned getOpcode() const { return (unsigned)NodeType; } |
||
| 645 | |||
| 646 | /// Test if this node has a target-specific opcode (in the |
||
| 647 | /// \<target\>ISD namespace). |
||
| 648 | bool isTargetOpcode() const { return NodeType >= ISD::BUILTIN_OP_END; } |
||
| 649 | |||
| 650 | /// Test if this node has a target-specific opcode that may raise |
||
| 651 | /// FP exceptions (in the \<target\>ISD namespace and greater than |
||
| 652 | /// FIRST_TARGET_STRICTFP_OPCODE). Note that all target memory |
||
| 653 | /// opcode are currently automatically considered to possibly raise |
||
| 654 | /// FP exceptions as well. |
||
| 655 | bool isTargetStrictFPOpcode() const { |
||
| 656 | return NodeType >= ISD::FIRST_TARGET_STRICTFP_OPCODE; |
||
| 657 | } |
||
| 658 | |||
| 659 | /// Test if this node has a target-specific |
||
| 660 | /// memory-referencing opcode (in the \<target\>ISD namespace and |
||
| 661 | /// greater than FIRST_TARGET_MEMORY_OPCODE). |
||
| 662 | bool isTargetMemoryOpcode() const { |
||
| 663 | return NodeType >= ISD::FIRST_TARGET_MEMORY_OPCODE; |
||
| 664 | } |
||
| 665 | |||
| 666 | /// Return true if the type of the node type undefined. |
||
| 667 | bool isUndef() const { return NodeType == ISD::UNDEF; } |
||
| 668 | |||
| 669 | /// Test if this node is a memory intrinsic (with valid pointer information). |
||
| 670 | /// INTRINSIC_W_CHAIN and INTRINSIC_VOID nodes are sometimes created for |
||
| 671 | /// non-memory intrinsics (with chains) that are not really instances of |
||
| 672 | /// MemSDNode. For such nodes, we need some extra state to determine the |
||
| 673 | /// proper classof relationship. |
||
| 674 | bool isMemIntrinsic() const { |
||
| 675 | return (NodeType == ISD::INTRINSIC_W_CHAIN || |
||
| 676 | NodeType == ISD::INTRINSIC_VOID) && |
||
| 677 | SDNodeBits.IsMemIntrinsic; |
||
| 678 | } |
||
| 679 | |||
| 680 | /// Test if this node is a strict floating point pseudo-op. |
||
| 681 | bool isStrictFPOpcode() { |
||
| 682 | switch (NodeType) { |
||
| 683 | default: |
||
| 684 | return false; |
||
| 685 | case ISD::STRICT_FP16_TO_FP: |
||
| 686 | case ISD::STRICT_FP_TO_FP16: |
||
| 687 | #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ |
||
| 688 | case ISD::STRICT_##DAGN: |
||
| 689 | #include "llvm/IR/ConstrainedOps.def" |
||
| 690 | return true; |
||
| 691 | } |
||
| 692 | } |
||
| 693 | |||
| 694 | /// Test if this node is a vector predication operation. |
||
| 695 | bool isVPOpcode() const { return ISD::isVPOpcode(getOpcode()); } |
||
| 696 | |||
| 697 | /// Test if this node has a post-isel opcode, directly |
||
| 698 | /// corresponding to a MachineInstr opcode. |
||
| 699 | bool isMachineOpcode() const { return NodeType < 0; } |
||
| 700 | |||
| 701 | /// This may only be called if isMachineOpcode returns |
||
| 702 | /// true. It returns the MachineInstr opcode value that the node's opcode |
||
| 703 | /// corresponds to. |
||
| 704 | unsigned getMachineOpcode() const { |
||
| 705 | assert(isMachineOpcode() && "Not a MachineInstr opcode!"); |
||
| 706 | return ~NodeType; |
||
| 707 | } |
||
| 708 | |||
| 709 | bool getHasDebugValue() const { return SDNodeBits.HasDebugValue; } |
||
| 710 | void setHasDebugValue(bool b) { SDNodeBits.HasDebugValue = b; } |
||
| 711 | |||
| 712 | bool isDivergent() const { return SDNodeBits.IsDivergent; } |
||
| 713 | |||
| 714 | /// Return true if there are no uses of this node. |
||
| 715 | bool use_empty() const { return UseList == nullptr; } |
||
| 716 | |||
| 717 | /// Return true if there is exactly one use of this node. |
||
| 718 | bool hasOneUse() const { return hasSingleElement(uses()); } |
||
| 719 | |||
| 720 | /// Return the number of uses of this node. This method takes |
||
| 721 | /// time proportional to the number of uses. |
||
| 722 | size_t use_size() const { return std::distance(use_begin(), use_end()); } |
||
| 723 | |||
| 724 | /// Return the unique node id. |
||
| 725 | int getNodeId() const { return NodeId; } |
||
| 726 | |||
| 727 | /// Set unique node id. |
||
| 728 | void setNodeId(int Id) { NodeId = Id; } |
||
| 729 | |||
| 730 | /// Return the node ordering. |
||
| 731 | unsigned getIROrder() const { return IROrder; } |
||
| 732 | |||
| 733 | /// Set the node ordering. |
||
| 734 | void setIROrder(unsigned Order) { IROrder = Order; } |
||
| 735 | |||
| 736 | /// Return the source location info. |
||
| 737 | const DebugLoc &getDebugLoc() const { return debugLoc; } |
||
| 738 | |||
| 739 | /// Set source location info. Try to avoid this, putting |
||
| 740 | /// it in the constructor is preferable. |
||
| 741 | void setDebugLoc(DebugLoc dl) { debugLoc = std::move(dl); } |
||
| 742 | |||
| 743 | /// This class provides iterator support for SDUse |
||
| 744 | /// operands that use a specific SDNode. |
||
| 745 | class use_iterator { |
||
| 746 | friend class SDNode; |
||
| 747 | |||
| 748 | SDUse *Op = nullptr; |
||
| 749 | |||
| 750 | explicit use_iterator(SDUse *op) : Op(op) {} |
||
| 751 | |||
| 752 | public: |
||
| 753 | using iterator_category = std::forward_iterator_tag; |
||
| 754 | using value_type = SDUse; |
||
| 755 | using difference_type = std::ptrdiff_t; |
||
| 756 | using pointer = value_type *; |
||
| 757 | using reference = value_type &; |
||
| 758 | |||
| 759 | use_iterator() = default; |
||
| 760 | use_iterator(const use_iterator &I) = default; |
||
| 761 | use_iterator &operator=(const use_iterator &) = default; |
||
| 762 | |||
| 763 | bool operator==(const use_iterator &x) const { return Op == x.Op; } |
||
| 764 | bool operator!=(const use_iterator &x) const { |
||
| 765 | return !operator==(x); |
||
| 766 | } |
||
| 767 | |||
| 768 | /// Return true if this iterator is at the end of uses list. |
||
| 769 | bool atEnd() const { return Op == nullptr; } |
||
| 770 | |||
| 771 | // Iterator traversal: forward iteration only. |
||
| 772 | use_iterator &operator++() { // Preincrement |
||
| 773 | assert(Op && "Cannot increment end iterator!"); |
||
| 774 | Op = Op->getNext(); |
||
| 775 | return *this; |
||
| 776 | } |
||
| 777 | |||
| 778 | use_iterator operator++(int) { // Postincrement |
||
| 779 | use_iterator tmp = *this; ++*this; return tmp; |
||
| 780 | } |
||
| 781 | |||
| 782 | /// Retrieve a pointer to the current user node. |
||
| 783 | SDNode *operator*() const { |
||
| 784 | assert(Op && "Cannot dereference end iterator!"); |
||
| 785 | return Op->getUser(); |
||
| 786 | } |
||
| 787 | |||
| 788 | SDNode *operator->() const { return operator*(); } |
||
| 789 | |||
| 790 | SDUse &getUse() const { return *Op; } |
||
| 791 | |||
| 792 | /// Retrieve the operand # of this use in its user. |
||
| 793 | unsigned getOperandNo() const { |
||
| 794 | assert(Op && "Cannot dereference end iterator!"); |
||
| 795 | return (unsigned)(Op - Op->getUser()->OperandList); |
||
| 796 | } |
||
| 797 | }; |
||
| 798 | |||
| 799 | /// Provide iteration support to walk over all uses of an SDNode. |
||
| 800 | use_iterator use_begin() const { |
||
| 801 | return use_iterator(UseList); |
||
| 802 | } |
||
| 803 | |||
| 804 | static use_iterator use_end() { return use_iterator(nullptr); } |
||
| 805 | |||
| 806 | inline iterator_range<use_iterator> uses() { |
||
| 807 | return make_range(use_begin(), use_end()); |
||
| 808 | } |
||
| 809 | inline iterator_range<use_iterator> uses() const { |
||
| 810 | return make_range(use_begin(), use_end()); |
||
| 811 | } |
||
| 812 | |||
| 813 | /// Return true if there are exactly NUSES uses of the indicated value. |
||
| 814 | /// This method ignores uses of other values defined by this operation. |
||
| 815 | bool hasNUsesOfValue(unsigned NUses, unsigned Value) const; |
||
| 816 | |||
| 817 | /// Return true if there are any use of the indicated value. |
||
| 818 | /// This method ignores uses of other values defined by this operation. |
||
| 819 | bool hasAnyUseOfValue(unsigned Value) const; |
||
| 820 | |||
| 821 | /// Return true if this node is the only use of N. |
||
| 822 | bool isOnlyUserOf(const SDNode *N) const; |
||
| 823 | |||
| 824 | /// Return true if this node is an operand of N. |
||
| 825 | bool isOperandOf(const SDNode *N) const; |
||
| 826 | |||
| 827 | /// Return true if this node is a predecessor of N. |
||
| 828 | /// NOTE: Implemented on top of hasPredecessor and every bit as |
||
| 829 | /// expensive. Use carefully. |
||
| 830 | bool isPredecessorOf(const SDNode *N) const { |
||
| 831 | return N->hasPredecessor(this); |
||
| 832 | } |
||
| 833 | |||
| 834 | /// Return true if N is a predecessor of this node. |
||
| 835 | /// N is either an operand of this node, or can be reached by recursively |
||
| 836 | /// traversing up the operands. |
||
| 837 | /// NOTE: This is an expensive method. Use it carefully. |
||
| 838 | bool hasPredecessor(const SDNode *N) const; |
||
| 839 | |||
| 840 | /// Returns true if N is a predecessor of any node in Worklist. This |
||
| 841 | /// helper keeps Visited and Worklist sets externally to allow unions |
||
| 842 | /// searches to be performed in parallel, caching of results across |
||
| 843 | /// queries and incremental addition to Worklist. Stops early if N is |
||
| 844 | /// found but will resume. Remember to clear Visited and Worklists |
||
| 845 | /// if DAG changes. MaxSteps gives a maximum number of nodes to visit before |
||
| 846 | /// giving up. The TopologicalPrune flag signals that positive NodeIds are |
||
| 847 | /// topologically ordered (Operands have strictly smaller node id) and search |
||
| 848 | /// can be pruned leveraging this. |
||
| 849 | static bool hasPredecessorHelper(const SDNode *N, |
||
| 850 | SmallPtrSetImpl<const SDNode *> &Visited, |
||
| 851 | SmallVectorImpl<const SDNode *> &Worklist, |
||
| 852 | unsigned int MaxSteps = 0, |
||
| 853 | bool TopologicalPrune = false) { |
||
| 854 | SmallVector<const SDNode *, 8> DeferredNodes; |
||
| 855 | if (Visited.count(N)) |
||
| 856 | return true; |
||
| 857 | |||
| 858 | // Node Id's are assigned in three places: As a topological |
||
| 859 | // ordering (> 0), during legalization (results in values set to |
||
| 860 | // 0), new nodes (set to -1). If N has a topolgical id then we |
||
| 861 | // know that all nodes with ids smaller than it cannot be |
||
| 862 | // successors and we need not check them. Filter out all node |
||
| 863 | // that can't be matches. We add them to the worklist before exit |
||
| 864 | // in case of multiple calls. Note that during selection the topological id |
||
| 865 | // may be violated if a node's predecessor is selected before it. We mark |
||
| 866 | // this at selection negating the id of unselected successors and |
||
| 867 | // restricting topological pruning to positive ids. |
||
| 868 | |||
| 869 | int NId = N->getNodeId(); |
||
| 870 | // If we Invalidated the Id, reconstruct original NId. |
||
| 871 | if (NId < -1) |
||
| 872 | NId = -(NId + 1); |
||
| 873 | |||
| 874 | bool Found = false; |
||
| 875 | while (!Worklist.empty()) { |
||
| 876 | const SDNode *M = Worklist.pop_back_val(); |
||
| 877 | int MId = M->getNodeId(); |
||
| 878 | if (TopologicalPrune && M->getOpcode() != ISD::TokenFactor && (NId > 0) && |
||
| 879 | (MId > 0) && (MId < NId)) { |
||
| 880 | DeferredNodes.push_back(M); |
||
| 881 | continue; |
||
| 882 | } |
||
| 883 | for (const SDValue &OpV : M->op_values()) { |
||
| 884 | SDNode *Op = OpV.getNode(); |
||
| 885 | if (Visited.insert(Op).second) |
||
| 886 | Worklist.push_back(Op); |
||
| 887 | if (Op == N) |
||
| 888 | Found = true; |
||
| 889 | } |
||
| 890 | if (Found) |
||
| 891 | break; |
||
| 892 | if (MaxSteps != 0 && Visited.size() >= MaxSteps) |
||
| 893 | break; |
||
| 894 | } |
||
| 895 | // Push deferred nodes back on worklist. |
||
| 896 | Worklist.append(DeferredNodes.begin(), DeferredNodes.end()); |
||
| 897 | // If we bailed early, conservatively return found. |
||
| 898 | if (MaxSteps != 0 && Visited.size() >= MaxSteps) |
||
| 899 | return true; |
||
| 900 | return Found; |
||
| 901 | } |
||
| 902 | |||
| 903 | /// Return true if all the users of N are contained in Nodes. |
||
| 904 | /// NOTE: Requires at least one match, but doesn't require them all. |
||
| 905 | static bool areOnlyUsersOf(ArrayRef<const SDNode *> Nodes, const SDNode *N); |
||
| 906 | |||
| 907 | /// Return the number of values used by this operation. |
||
| 908 | unsigned getNumOperands() const { return NumOperands; } |
||
| 909 | |||
| 910 | /// Return the maximum number of operands that a SDNode can hold. |
||
| 911 | static constexpr size_t getMaxNumOperands() { |
||
| 912 | return std::numeric_limits<decltype(SDNode::NumOperands)>::max(); |
||
| 913 | } |
||
| 914 | |||
| 915 | /// Helper method returns the integer value of a ConstantSDNode operand. |
||
| 916 | inline uint64_t getConstantOperandVal(unsigned Num) const; |
||
| 917 | |||
| 918 | /// Helper method returns the APInt of a ConstantSDNode operand. |
||
| 919 | inline const APInt &getConstantOperandAPInt(unsigned Num) const; |
||
| 920 | |||
| 921 | const SDValue &getOperand(unsigned Num) const { |
||
| 922 | assert(Num < NumOperands && "Invalid child # of SDNode!"); |
||
| 923 | return OperandList[Num]; |
||
| 924 | } |
||
| 925 | |||
| 926 | using op_iterator = SDUse *; |
||
| 927 | |||
| 928 | op_iterator op_begin() const { return OperandList; } |
||
| 929 | op_iterator op_end() const { return OperandList+NumOperands; } |
||
| 930 | ArrayRef<SDUse> ops() const { return ArrayRef(op_begin(), op_end()); } |
||
| 931 | |||
| 932 | /// Iterator for directly iterating over the operand SDValue's. |
||
| 933 | struct value_op_iterator |
||
| 934 | : iterator_adaptor_base<value_op_iterator, op_iterator, |
||
| 935 | std::random_access_iterator_tag, SDValue, |
||
| 936 | ptrdiff_t, value_op_iterator *, |
||
| 937 | value_op_iterator *> { |
||
| 938 | explicit value_op_iterator(SDUse *U = nullptr) |
||
| 939 | : iterator_adaptor_base(U) {} |
||
| 940 | |||
| 941 | const SDValue &operator*() const { return I->get(); } |
||
| 942 | }; |
||
| 943 | |||
| 944 | iterator_range<value_op_iterator> op_values() const { |
||
| 945 | return make_range(value_op_iterator(op_begin()), |
||
| 946 | value_op_iterator(op_end())); |
||
| 947 | } |
||
| 948 | |||
| 949 | SDVTList getVTList() const { |
||
| 950 | SDVTList X = { ValueList, NumValues }; |
||
| 951 | return X; |
||
| 952 | } |
||
| 953 | |||
| 954 | /// If this node has a glue operand, return the node |
||
| 955 | /// to which the glue operand points. Otherwise return NULL. |
||
| 956 | SDNode *getGluedNode() const { |
||
| 957 | if (getNumOperands() != 0 && |
||
| 958 | getOperand(getNumOperands()-1).getValueType() == MVT::Glue) |
||
| 959 | return getOperand(getNumOperands()-1).getNode(); |
||
| 960 | return nullptr; |
||
| 961 | } |
||
| 962 | |||
| 963 | /// If this node has a glue value with a user, return |
||
| 964 | /// the user (there is at most one). Otherwise return NULL. |
||
| 965 | SDNode *getGluedUser() const { |
||
| 966 | for (use_iterator UI = use_begin(), UE = use_end(); UI != UE; ++UI) |
||
| 967 | if (UI.getUse().get().getValueType() == MVT::Glue) |
||
| 968 | return *UI; |
||
| 969 | return nullptr; |
||
| 970 | } |
||
| 971 | |||
| 972 | SDNodeFlags getFlags() const { return Flags; } |
||
| 973 | void setFlags(SDNodeFlags NewFlags) { Flags = NewFlags; } |
||
| 974 | |||
| 975 | /// Clear any flags in this node that aren't also set in Flags. |
||
| 976 | /// If Flags is not in a defined state then this has no effect. |
||
| 977 | void intersectFlagsWith(const SDNodeFlags Flags); |
||
| 978 | |||
| 979 | void setCFIType(uint32_t Type) { CFIType = Type; } |
||
| 980 | uint32_t getCFIType() const { return CFIType; } |
||
| 981 | |||
| 982 | /// Return the number of values defined/returned by this operator. |
||
| 983 | unsigned getNumValues() const { return NumValues; } |
||
| 984 | |||
| 985 | /// Return the type of a specified result. |
||
| 986 | EVT getValueType(unsigned ResNo) const { |
||
| 987 | assert(ResNo < NumValues && "Illegal result number!"); |
||
| 988 | return ValueList[ResNo]; |
||
| 989 | } |
||
| 990 | |||
| 991 | /// Return the type of a specified result as a simple type. |
||
| 992 | MVT getSimpleValueType(unsigned ResNo) const { |
||
| 993 | return getValueType(ResNo).getSimpleVT(); |
||
| 994 | } |
||
| 995 | |||
| 996 | /// Returns MVT::getSizeInBits(getValueType(ResNo)). |
||
| 997 | /// |
||
| 998 | /// If the value type is a scalable vector type, the scalable property will |
||
| 999 | /// be set and the runtime size will be a positive integer multiple of the |
||
| 1000 | /// base size. |
||
| 1001 | TypeSize getValueSizeInBits(unsigned ResNo) const { |
||
| 1002 | return getValueType(ResNo).getSizeInBits(); |
||
| 1003 | } |
||
| 1004 | |||
| 1005 | using value_iterator = const EVT *; |
||
| 1006 | |||
| 1007 | value_iterator value_begin() const { return ValueList; } |
||
| 1008 | value_iterator value_end() const { return ValueList+NumValues; } |
||
| 1009 | iterator_range<value_iterator> values() const { |
||
| 1010 | return llvm::make_range(value_begin(), value_end()); |
||
| 1011 | } |
||
| 1012 | |||
| 1013 | /// Return the opcode of this operation for printing. |
||
| 1014 | std::string getOperationName(const SelectionDAG *G = nullptr) const; |
||
| 1015 | static const char* getIndexedModeName(ISD::MemIndexedMode AM); |
||
| 1016 | void print_types(raw_ostream &OS, const SelectionDAG *G) const; |
||
| 1017 | void print_details(raw_ostream &OS, const SelectionDAG *G) const; |
||
| 1018 | void print(raw_ostream &OS, const SelectionDAG *G = nullptr) const; |
||
| 1019 | void printr(raw_ostream &OS, const SelectionDAG *G = nullptr) const; |
||
| 1020 | |||
| 1021 | /// Print a SelectionDAG node and all children down to |
||
| 1022 | /// the leaves. The given SelectionDAG allows target-specific nodes |
||
| 1023 | /// to be printed in human-readable form. Unlike printr, this will |
||
| 1024 | /// print the whole DAG, including children that appear multiple |
||
| 1025 | /// times. |
||
| 1026 | /// |
||
| 1027 | void printrFull(raw_ostream &O, const SelectionDAG *G = nullptr) const; |
||
| 1028 | |||
| 1029 | /// Print a SelectionDAG node and children up to |
||
| 1030 | /// depth "depth." The given SelectionDAG allows target-specific |
||
| 1031 | /// nodes to be printed in human-readable form. Unlike printr, this |
||
| 1032 | /// will print children that appear multiple times wherever they are |
||
| 1033 | /// used. |
||
| 1034 | /// |
||
| 1035 | void printrWithDepth(raw_ostream &O, const SelectionDAG *G = nullptr, |
||
| 1036 | unsigned depth = 100) const; |
||
| 1037 | |||
| 1038 | /// Dump this node, for debugging. |
||
| 1039 | void dump() const; |
||
| 1040 | |||
| 1041 | /// Dump (recursively) this node and its use-def subgraph. |
||
| 1042 | void dumpr() const; |
||
| 1043 | |||
| 1044 | /// Dump this node, for debugging. |
||
| 1045 | /// The given SelectionDAG allows target-specific nodes to be printed |
||
| 1046 | /// in human-readable form. |
||
| 1047 | void dump(const SelectionDAG *G) const; |
||
| 1048 | |||
| 1049 | /// Dump (recursively) this node and its use-def subgraph. |
||
| 1050 | /// The given SelectionDAG allows target-specific nodes to be printed |
||
| 1051 | /// in human-readable form. |
||
| 1052 | void dumpr(const SelectionDAG *G) const; |
||
| 1053 | |||
| 1054 | /// printrFull to dbgs(). The given SelectionDAG allows |
||
| 1055 | /// target-specific nodes to be printed in human-readable form. |
||
| 1056 | /// Unlike dumpr, this will print the whole DAG, including children |
||
| 1057 | /// that appear multiple times. |
||
| 1058 | void dumprFull(const SelectionDAG *G = nullptr) const; |
||
| 1059 | |||
| 1060 | /// printrWithDepth to dbgs(). The given |
||
| 1061 | /// SelectionDAG allows target-specific nodes to be printed in |
||
| 1062 | /// human-readable form. Unlike dumpr, this will print children |
||
| 1063 | /// that appear multiple times wherever they are used. |
||
| 1064 | /// |
||
| 1065 | void dumprWithDepth(const SelectionDAG *G = nullptr, |
||
| 1066 | unsigned depth = 100) const; |
||
| 1067 | |||
| 1068 | /// Gather unique data for the node. |
||
| 1069 | void Profile(FoldingSetNodeID &ID) const; |
||
| 1070 | |||
| 1071 | /// This method should only be used by the SDUse class. |
||
| 1072 | void addUse(SDUse &U) { U.addToList(&UseList); } |
||
| 1073 | |||
| 1074 | protected: |
||
| 1075 | static SDVTList getSDVTList(EVT VT) { |
||
| 1076 | SDVTList Ret = { getValueTypeList(VT), 1 }; |
||
| 1077 | return Ret; |
||
| 1078 | } |
||
| 1079 | |||
| 1080 | /// Create an SDNode. |
||
| 1081 | /// |
||
| 1082 | /// SDNodes are created without any operands, and never own the operand |
||
| 1083 | /// storage. To add operands, see SelectionDAG::createOperands. |
||
| 1084 | SDNode(unsigned Opc, unsigned Order, DebugLoc dl, SDVTList VTs) |
||
| 1085 | : NodeType(Opc), ValueList(VTs.VTs), NumValues(VTs.NumVTs), |
||
| 1086 | IROrder(Order), debugLoc(std::move(dl)) { |
||
| 1087 | memset(&RawSDNodeBits, 0, sizeof(RawSDNodeBits)); |
||
| 1088 | assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor"); |
||
| 1089 | assert(NumValues == VTs.NumVTs && |
||
| 1090 | "NumValues wasn't wide enough for its operands!"); |
||
| 1091 | } |
||
| 1092 | |||
| 1093 | /// Release the operands and set this node to have zero operands. |
||
| 1094 | void DropOperands(); |
||
| 1095 | }; |
||
| 1096 | |||
| 1097 | /// Wrapper class for IR location info (IR ordering and DebugLoc) to be passed |
||
| 1098 | /// into SDNode creation functions. |
||
| 1099 | /// When an SDNode is created from the DAGBuilder, the DebugLoc is extracted |
||
| 1100 | /// from the original Instruction, and IROrder is the ordinal position of |
||
| 1101 | /// the instruction. |
||
| 1102 | /// When an SDNode is created after the DAG is being built, both DebugLoc and |
||
| 1103 | /// the IROrder are propagated from the original SDNode. |
||
| 1104 | /// So SDLoc class provides two constructors besides the default one, one to |
||
| 1105 | /// be used by the DAGBuilder, the other to be used by others. |
||
| 1106 | class SDLoc { |
||
| 1107 | private: |
||
| 1108 | DebugLoc DL; |
||
| 1109 | int IROrder = 0; |
||
| 1110 | |||
| 1111 | public: |
||
| 1112 | SDLoc() = default; |
||
| 1113 | SDLoc(const SDNode *N) : DL(N->getDebugLoc()), IROrder(N->getIROrder()) {} |
||
| 1114 | SDLoc(const SDValue V) : SDLoc(V.getNode()) {} |
||
| 1115 | SDLoc(const Instruction *I, int Order) : IROrder(Order) { |
||
| 1116 | assert(Order >= 0 && "bad IROrder"); |
||
| 1117 | if (I) |
||
| 1118 | DL = I->getDebugLoc(); |
||
| 1119 | } |
||
| 1120 | |||
| 1121 | unsigned getIROrder() const { return IROrder; } |
||
| 1122 | const DebugLoc &getDebugLoc() const { return DL; } |
||
| 1123 | }; |
||
| 1124 | |||
| 1125 | // Define inline functions from the SDValue class. |
||
| 1126 | |||
| 1127 | inline SDValue::SDValue(SDNode *node, unsigned resno) |
||
| 1128 | : Node(node), ResNo(resno) { |
||
| 1129 | // Explicitly check for !ResNo to avoid use-after-free, because there are |
||
| 1130 | // callers that use SDValue(N, 0) with a deleted N to indicate successful |
||
| 1131 | // combines. |
||
| 1132 | assert((!Node || !ResNo || ResNo < Node->getNumValues()) && |
||
| 1133 | "Invalid result number for the given node!"); |
||
| 1134 | assert(ResNo < -2U && "Cannot use result numbers reserved for DenseMaps."); |
||
| 1135 | } |
||
| 1136 | |||
| 1137 | inline unsigned SDValue::getOpcode() const { |
||
| 1138 | return Node->getOpcode(); |
||
| 1139 | } |
||
| 1140 | |||
| 1141 | inline EVT SDValue::getValueType() const { |
||
| 1142 | return Node->getValueType(ResNo); |
||
| 1143 | } |
||
| 1144 | |||
| 1145 | inline unsigned SDValue::getNumOperands() const { |
||
| 1146 | return Node->getNumOperands(); |
||
| 1147 | } |
||
| 1148 | |||
| 1149 | inline const SDValue &SDValue::getOperand(unsigned i) const { |
||
| 1150 | return Node->getOperand(i); |
||
| 1151 | } |
||
| 1152 | |||
| 1153 | inline uint64_t SDValue::getConstantOperandVal(unsigned i) const { |
||
| 1154 | return Node->getConstantOperandVal(i); |
||
| 1155 | } |
||
| 1156 | |||
| 1157 | inline const APInt &SDValue::getConstantOperandAPInt(unsigned i) const { |
||
| 1158 | return Node->getConstantOperandAPInt(i); |
||
| 1159 | } |
||
| 1160 | |||
| 1161 | inline bool SDValue::isTargetOpcode() const { |
||
| 1162 | return Node->isTargetOpcode(); |
||
| 1163 | } |
||
| 1164 | |||
| 1165 | inline bool SDValue::isTargetMemoryOpcode() const { |
||
| 1166 | return Node->isTargetMemoryOpcode(); |
||
| 1167 | } |
||
| 1168 | |||
| 1169 | inline bool SDValue::isMachineOpcode() const { |
||
| 1170 | return Node->isMachineOpcode(); |
||
| 1171 | } |
||
| 1172 | |||
| 1173 | inline unsigned SDValue::getMachineOpcode() const { |
||
| 1174 | return Node->getMachineOpcode(); |
||
| 1175 | } |
||
| 1176 | |||
| 1177 | inline bool SDValue::isUndef() const { |
||
| 1178 | return Node->isUndef(); |
||
| 1179 | } |
||
| 1180 | |||
| 1181 | inline bool SDValue::use_empty() const { |
||
| 1182 | return !Node->hasAnyUseOfValue(ResNo); |
||
| 1183 | } |
||
| 1184 | |||
| 1185 | inline bool SDValue::hasOneUse() const { |
||
| 1186 | return Node->hasNUsesOfValue(1, ResNo); |
||
| 1187 | } |
||
| 1188 | |||
| 1189 | inline const DebugLoc &SDValue::getDebugLoc() const { |
||
| 1190 | return Node->getDebugLoc(); |
||
| 1191 | } |
||
| 1192 | |||
| 1193 | inline void SDValue::dump() const { |
||
| 1194 | return Node->dump(); |
||
| 1195 | } |
||
| 1196 | |||
| 1197 | inline void SDValue::dump(const SelectionDAG *G) const { |
||
| 1198 | return Node->dump(G); |
||
| 1199 | } |
||
| 1200 | |||
| 1201 | inline void SDValue::dumpr() const { |
||
| 1202 | return Node->dumpr(); |
||
| 1203 | } |
||
| 1204 | |||
| 1205 | inline void SDValue::dumpr(const SelectionDAG *G) const { |
||
| 1206 | return Node->dumpr(G); |
||
| 1207 | } |
||
| 1208 | |||
| 1209 | // Define inline functions from the SDUse class. |
||
| 1210 | |||
| 1211 | inline void SDUse::set(const SDValue &V) { |
||
| 1212 | if (Val.getNode()) removeFromList(); |
||
| 1213 | Val = V; |
||
| 1214 | if (V.getNode()) |
||
| 1215 | V->addUse(*this); |
||
| 1216 | } |
||
| 1217 | |||
| 1218 | inline void SDUse::setInitial(const SDValue &V) { |
||
| 1219 | Val = V; |
||
| 1220 | V->addUse(*this); |
||
| 1221 | } |
||
| 1222 | |||
| 1223 | inline void SDUse::setNode(SDNode *N) { |
||
| 1224 | if (Val.getNode()) removeFromList(); |
||
| 1225 | Val.setNode(N); |
||
| 1226 | if (N) N->addUse(*this); |
||
| 1227 | } |
||
| 1228 | |||
| 1229 | /// This class is used to form a handle around another node that |
||
| 1230 | /// is persistent and is updated across invocations of replaceAllUsesWith on its |
||
| 1231 | /// operand. This node should be directly created by end-users and not added to |
||
| 1232 | /// the AllNodes list. |
||
| 1233 | class HandleSDNode : public SDNode { |
||
| 1234 | SDUse Op; |
||
| 1235 | |||
| 1236 | public: |
||
| 1237 | explicit HandleSDNode(SDValue X) |
||
| 1238 | : SDNode(ISD::HANDLENODE, 0, DebugLoc(), getSDVTList(MVT::Other)) { |
||
| 1239 | // HandleSDNodes are never inserted into the DAG, so they won't be |
||
| 1240 | // auto-numbered. Use ID 65535 as a sentinel. |
||
| 1241 | PersistentId = 0xffff; |
||
| 1242 | |||
| 1243 | // Manually set up the operand list. This node type is special in that it's |
||
| 1244 | // always stack allocated and SelectionDAG does not manage its operands. |
||
| 1245 | // TODO: This should either (a) not be in the SDNode hierarchy, or (b) not |
||
| 1246 | // be so special. |
||
| 1247 | Op.setUser(this); |
||
| 1248 | Op.setInitial(X); |
||
| 1249 | NumOperands = 1; |
||
| 1250 | OperandList = &Op; |
||
| 1251 | } |
||
| 1252 | ~HandleSDNode(); |
||
| 1253 | |||
| 1254 | const SDValue &getValue() const { return Op; } |
||
| 1255 | }; |
||
| 1256 | |||
| 1257 | class AddrSpaceCastSDNode : public SDNode { |
||
| 1258 | private: |
||
| 1259 | unsigned SrcAddrSpace; |
||
| 1260 | unsigned DestAddrSpace; |
||
| 1261 | |||
| 1262 | public: |
||
| 1263 | AddrSpaceCastSDNode(unsigned Order, const DebugLoc &dl, EVT VT, |
||
| 1264 | unsigned SrcAS, unsigned DestAS); |
||
| 1265 | |||
| 1266 | unsigned getSrcAddressSpace() const { return SrcAddrSpace; } |
||
| 1267 | unsigned getDestAddressSpace() const { return DestAddrSpace; } |
||
| 1268 | |||
| 1269 | static bool classof(const SDNode *N) { |
||
| 1270 | return N->getOpcode() == ISD::ADDRSPACECAST; |
||
| 1271 | } |
||
| 1272 | }; |
||
| 1273 | |||
| 1274 | /// This is an abstract virtual class for memory operations. |
||
| 1275 | class MemSDNode : public SDNode { |
||
| 1276 | private: |
||
| 1277 | // VT of in-memory value. |
||
| 1278 | EVT MemoryVT; |
||
| 1279 | |||
| 1280 | protected: |
||
| 1281 | /// Memory reference information. |
||
| 1282 | MachineMemOperand *MMO; |
||
| 1283 | |||
| 1284 | public: |
||
| 1285 | MemSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl, SDVTList VTs, |
||
| 1286 | EVT memvt, MachineMemOperand *MMO); |
||
| 1287 | |||
| 1288 | bool readMem() const { return MMO->isLoad(); } |
||
| 1289 | bool writeMem() const { return MMO->isStore(); } |
||
| 1290 | |||
| 1291 | /// Returns alignment and volatility of the memory access |
||
| 1292 | Align getOriginalAlign() const { return MMO->getBaseAlign(); } |
||
| 1293 | Align getAlign() const { return MMO->getAlign(); } |
||
| 1294 | |||
| 1295 | /// Return the SubclassData value, without HasDebugValue. This contains an |
||
| 1296 | /// encoding of the volatile flag, as well as bits used by subclasses. This |
||
| 1297 | /// function should only be used to compute a FoldingSetNodeID value. |
||
| 1298 | /// The HasDebugValue bit is masked out because CSE map needs to match |
||
| 1299 | /// nodes with debug info with nodes without debug info. Same is about |
||
| 1300 | /// isDivergent bit. |
||
| 1301 | unsigned getRawSubclassData() const { |
||
| 1302 | uint16_t Data; |
||
| 1303 | union { |
||
| 1304 | char RawSDNodeBits[sizeof(uint16_t)]; |
||
| 1305 | SDNodeBitfields SDNodeBits; |
||
| 1306 | }; |
||
| 1307 | memcpy(&RawSDNodeBits, &this->RawSDNodeBits, sizeof(this->RawSDNodeBits)); |
||
| 1308 | SDNodeBits.HasDebugValue = 0; |
||
| 1309 | SDNodeBits.IsDivergent = false; |
||
| 1310 | memcpy(&Data, &RawSDNodeBits, sizeof(RawSDNodeBits)); |
||
| 1311 | return Data; |
||
| 1312 | } |
||
| 1313 | |||
| 1314 | bool isVolatile() const { return MemSDNodeBits.IsVolatile; } |
||
| 1315 | bool isNonTemporal() const { return MemSDNodeBits.IsNonTemporal; } |
||
| 1316 | bool isDereferenceable() const { return MemSDNodeBits.IsDereferenceable; } |
||
| 1317 | bool isInvariant() const { return MemSDNodeBits.IsInvariant; } |
||
| 1318 | |||
| 1319 | // Returns the offset from the location of the access. |
||
| 1320 | int64_t getSrcValueOffset() const { return MMO->getOffset(); } |
||
| 1321 | |||
| 1322 | /// Returns the AA info that describes the dereference. |
||
| 1323 | AAMDNodes getAAInfo() const { return MMO->getAAInfo(); } |
||
| 1324 | |||
| 1325 | /// Returns the Ranges that describes the dereference. |
||
| 1326 | const MDNode *getRanges() const { return MMO->getRanges(); } |
||
| 1327 | |||
| 1328 | /// Returns the synchronization scope ID for this memory operation. |
||
| 1329 | SyncScope::ID getSyncScopeID() const { return MMO->getSyncScopeID(); } |
||
| 1330 | |||
| 1331 | /// Return the atomic ordering requirements for this memory operation. For |
||
| 1332 | /// cmpxchg atomic operations, return the atomic ordering requirements when |
||
| 1333 | /// store occurs. |
||
| 1334 | AtomicOrdering getSuccessOrdering() const { |
||
| 1335 | return MMO->getSuccessOrdering(); |
||
| 1336 | } |
||
| 1337 | |||
| 1338 | /// Return a single atomic ordering that is at least as strong as both the |
||
| 1339 | /// success and failure orderings for an atomic operation. (For operations |
||
| 1340 | /// other than cmpxchg, this is equivalent to getSuccessOrdering().) |
||
| 1341 | AtomicOrdering getMergedOrdering() const { return MMO->getMergedOrdering(); } |
||
| 1342 | |||
| 1343 | /// Return true if the memory operation ordering is Unordered or higher. |
||
| 1344 | bool isAtomic() const { return MMO->isAtomic(); } |
||
| 1345 | |||
| 1346 | /// Returns true if the memory operation doesn't imply any ordering |
||
| 1347 | /// constraints on surrounding memory operations beyond the normal memory |
||
| 1348 | /// aliasing rules. |
||
| 1349 | bool isUnordered() const { return MMO->isUnordered(); } |
||
| 1350 | |||
| 1351 | /// Returns true if the memory operation is neither atomic or volatile. |
||
| 1352 | bool isSimple() const { return !isAtomic() && !isVolatile(); } |
||
| 1353 | |||
| 1354 | /// Return the type of the in-memory value. |
||
| 1355 | EVT getMemoryVT() const { return MemoryVT; } |
||
| 1356 | |||
| 1357 | /// Return a MachineMemOperand object describing the memory |
||
| 1358 | /// reference performed by operation. |
||
| 1359 | MachineMemOperand *getMemOperand() const { return MMO; } |
||
| 1360 | |||
| 1361 | const MachinePointerInfo &getPointerInfo() const { |
||
| 1362 | return MMO->getPointerInfo(); |
||
| 1363 | } |
||
| 1364 | |||
| 1365 | /// Return the address space for the associated pointer |
||
| 1366 | unsigned getAddressSpace() const { |
||
| 1367 | return getPointerInfo().getAddrSpace(); |
||
| 1368 | } |
||
| 1369 | |||
| 1370 | /// Update this MemSDNode's MachineMemOperand information |
||
| 1371 | /// to reflect the alignment of NewMMO, if it has a greater alignment. |
||
| 1372 | /// This must only be used when the new alignment applies to all users of |
||
| 1373 | /// this MachineMemOperand. |
||
| 1374 | void refineAlignment(const MachineMemOperand *NewMMO) { |
||
| 1375 | MMO->refineAlignment(NewMMO); |
||
| 1376 | } |
||
| 1377 | |||
| 1378 | const SDValue &getChain() const { return getOperand(0); } |
||
| 1379 | |||
| 1380 | const SDValue &getBasePtr() const { |
||
| 1381 | switch (getOpcode()) { |
||
| 1382 | case ISD::STORE: |
||
| 1383 | case ISD::VP_STORE: |
||
| 1384 | case ISD::MSTORE: |
||
| 1385 | case ISD::VP_SCATTER: |
||
| 1386 | case ISD::EXPERIMENTAL_VP_STRIDED_STORE: |
||
| 1387 | return getOperand(2); |
||
| 1388 | case ISD::MGATHER: |
||
| 1389 | case ISD::MSCATTER: |
||
| 1390 | return getOperand(3); |
||
| 1391 | default: |
||
| 1392 | return getOperand(1); |
||
| 1393 | } |
||
| 1394 | } |
||
| 1395 | |||
| 1396 | // Methods to support isa and dyn_cast |
||
| 1397 | static bool classof(const SDNode *N) { |
||
| 1398 | // For some targets, we lower some target intrinsics to a MemIntrinsicNode |
||
| 1399 | // with either an intrinsic or a target opcode. |
||
| 1400 | switch (N->getOpcode()) { |
||
| 1401 | case ISD::LOAD: |
||
| 1402 | case ISD::STORE: |
||
| 1403 | case ISD::PREFETCH: |
||
| 1404 | case ISD::ATOMIC_CMP_SWAP: |
||
| 1405 | case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: |
||
| 1406 | case ISD::ATOMIC_SWAP: |
||
| 1407 | case ISD::ATOMIC_LOAD_ADD: |
||
| 1408 | case ISD::ATOMIC_LOAD_SUB: |
||
| 1409 | case ISD::ATOMIC_LOAD_AND: |
||
| 1410 | case ISD::ATOMIC_LOAD_CLR: |
||
| 1411 | case ISD::ATOMIC_LOAD_OR: |
||
| 1412 | case ISD::ATOMIC_LOAD_XOR: |
||
| 1413 | case ISD::ATOMIC_LOAD_NAND: |
||
| 1414 | case ISD::ATOMIC_LOAD_MIN: |
||
| 1415 | case ISD::ATOMIC_LOAD_MAX: |
||
| 1416 | case ISD::ATOMIC_LOAD_UMIN: |
||
| 1417 | case ISD::ATOMIC_LOAD_UMAX: |
||
| 1418 | case ISD::ATOMIC_LOAD_FADD: |
||
| 1419 | case ISD::ATOMIC_LOAD_FSUB: |
||
| 1420 | case ISD::ATOMIC_LOAD_FMAX: |
||
| 1421 | case ISD::ATOMIC_LOAD_FMIN: |
||
| 1422 | case ISD::ATOMIC_LOAD_UINC_WRAP: |
||
| 1423 | case ISD::ATOMIC_LOAD_UDEC_WRAP: |
||
| 1424 | case ISD::ATOMIC_LOAD: |
||
| 1425 | case ISD::ATOMIC_STORE: |
||
| 1426 | case ISD::MLOAD: |
||
| 1427 | case ISD::MSTORE: |
||
| 1428 | case ISD::MGATHER: |
||
| 1429 | case ISD::MSCATTER: |
||
| 1430 | case ISD::VP_LOAD: |
||
| 1431 | case ISD::VP_STORE: |
||
| 1432 | case ISD::VP_GATHER: |
||
| 1433 | case ISD::VP_SCATTER: |
||
| 1434 | case ISD::EXPERIMENTAL_VP_STRIDED_LOAD: |
||
| 1435 | case ISD::EXPERIMENTAL_VP_STRIDED_STORE: |
||
| 1436 | return true; |
||
| 1437 | default: |
||
| 1438 | return N->isMemIntrinsic() || N->isTargetMemoryOpcode(); |
||
| 1439 | } |
||
| 1440 | } |
||
| 1441 | }; |
||
| 1442 | |||
| 1443 | /// This is an SDNode representing atomic operations. |
||
| 1444 | class AtomicSDNode : public MemSDNode { |
||
| 1445 | public: |
||
| 1446 | AtomicSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl, SDVTList VTL, |
||
| 1447 | EVT MemVT, MachineMemOperand *MMO) |
||
| 1448 | : MemSDNode(Opc, Order, dl, VTL, MemVT, MMO) { |
||
| 1449 | assert(((Opc != ISD::ATOMIC_LOAD && Opc != ISD::ATOMIC_STORE) || |
||
| 1450 | MMO->isAtomic()) && "then why are we using an AtomicSDNode?"); |
||
| 1451 | } |
||
| 1452 | |||
| 1453 | const SDValue &getBasePtr() const { return getOperand(1); } |
||
| 1454 | const SDValue &getVal() const { return getOperand(2); } |
||
| 1455 | |||
| 1456 | /// Returns true if this SDNode represents cmpxchg atomic operation, false |
||
| 1457 | /// otherwise. |
||
| 1458 | bool isCompareAndSwap() const { |
||
| 1459 | unsigned Op = getOpcode(); |
||
| 1460 | return Op == ISD::ATOMIC_CMP_SWAP || |
||
| 1461 | Op == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS; |
||
| 1462 | } |
||
| 1463 | |||
| 1464 | /// For cmpxchg atomic operations, return the atomic ordering requirements |
||
| 1465 | /// when store does not occur. |
||
| 1466 | AtomicOrdering getFailureOrdering() const { |
||
| 1467 | assert(isCompareAndSwap() && "Must be cmpxchg operation"); |
||
| 1468 | return MMO->getFailureOrdering(); |
||
| 1469 | } |
||
| 1470 | |||
| 1471 | // Methods to support isa and dyn_cast |
||
| 1472 | static bool classof(const SDNode *N) { |
||
| 1473 | return N->getOpcode() == ISD::ATOMIC_CMP_SWAP || |
||
| 1474 | N->getOpcode() == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS || |
||
| 1475 | N->getOpcode() == ISD::ATOMIC_SWAP || |
||
| 1476 | N->getOpcode() == ISD::ATOMIC_LOAD_ADD || |
||
| 1477 | N->getOpcode() == ISD::ATOMIC_LOAD_SUB || |
||
| 1478 | N->getOpcode() == ISD::ATOMIC_LOAD_AND || |
||
| 1479 | N->getOpcode() == ISD::ATOMIC_LOAD_CLR || |
||
| 1480 | N->getOpcode() == ISD::ATOMIC_LOAD_OR || |
||
| 1481 | N->getOpcode() == ISD::ATOMIC_LOAD_XOR || |
||
| 1482 | N->getOpcode() == ISD::ATOMIC_LOAD_NAND || |
||
| 1483 | N->getOpcode() == ISD::ATOMIC_LOAD_MIN || |
||
| 1484 | N->getOpcode() == ISD::ATOMIC_LOAD_MAX || |
||
| 1485 | N->getOpcode() == ISD::ATOMIC_LOAD_UMIN || |
||
| 1486 | N->getOpcode() == ISD::ATOMIC_LOAD_UMAX || |
||
| 1487 | N->getOpcode() == ISD::ATOMIC_LOAD_FADD || |
||
| 1488 | N->getOpcode() == ISD::ATOMIC_LOAD_FSUB || |
||
| 1489 | N->getOpcode() == ISD::ATOMIC_LOAD_FMAX || |
||
| 1490 | N->getOpcode() == ISD::ATOMIC_LOAD_FMIN || |
||
| 1491 | N->getOpcode() == ISD::ATOMIC_LOAD_UINC_WRAP || |
||
| 1492 | N->getOpcode() == ISD::ATOMIC_LOAD_UDEC_WRAP || |
||
| 1493 | N->getOpcode() == ISD::ATOMIC_LOAD || |
||
| 1494 | N->getOpcode() == ISD::ATOMIC_STORE; |
||
| 1495 | } |
||
| 1496 | }; |
||
| 1497 | |||
| 1498 | /// This SDNode is used for target intrinsics that touch |
||
| 1499 | /// memory and need an associated MachineMemOperand. Its opcode may be |
||
| 1500 | /// INTRINSIC_VOID, INTRINSIC_W_CHAIN, PREFETCH, or a target-specific opcode |
||
| 1501 | /// with a value not less than FIRST_TARGET_MEMORY_OPCODE. |
||
| 1502 | class MemIntrinsicSDNode : public MemSDNode { |
||
| 1503 | public: |
||
| 1504 | MemIntrinsicSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl, |
||
| 1505 | SDVTList VTs, EVT MemoryVT, MachineMemOperand *MMO) |
||
| 1506 | : MemSDNode(Opc, Order, dl, VTs, MemoryVT, MMO) { |
||
| 1507 | SDNodeBits.IsMemIntrinsic = true; |
||
| 1508 | } |
||
| 1509 | |||
| 1510 | // Methods to support isa and dyn_cast |
||
| 1511 | static bool classof(const SDNode *N) { |
||
| 1512 | // We lower some target intrinsics to their target opcode |
||
| 1513 | // early a node with a target opcode can be of this class |
||
| 1514 | return N->isMemIntrinsic() || |
||
| 1515 | N->getOpcode() == ISD::PREFETCH || |
||
| 1516 | N->isTargetMemoryOpcode(); |
||
| 1517 | } |
||
| 1518 | }; |
||
| 1519 | |||
| 1520 | /// This SDNode is used to implement the code generator |
||
| 1521 | /// support for the llvm IR shufflevector instruction. It combines elements |
||
| 1522 | /// from two input vectors into a new input vector, with the selection and |
||
| 1523 | /// ordering of elements determined by an array of integers, referred to as |
||
| 1524 | /// the shuffle mask. For input vectors of width N, mask indices of 0..N-1 |
||
| 1525 | /// refer to elements from the LHS input, and indices from N to 2N-1 the RHS. |
||
| 1526 | /// An index of -1 is treated as undef, such that the code generator may put |
||
| 1527 | /// any value in the corresponding element of the result. |
||
| 1528 | class ShuffleVectorSDNode : public SDNode { |
||
| 1529 | // The memory for Mask is owned by the SelectionDAG's OperandAllocator, and |
||
| 1530 | // is freed when the SelectionDAG object is destroyed. |
||
| 1531 | const int *Mask; |
||
| 1532 | |||
| 1533 | protected: |
||
| 1534 | friend class SelectionDAG; |
||
| 1535 | |||
| 1536 | ShuffleVectorSDNode(EVT VT, unsigned Order, const DebugLoc &dl, const int *M) |
||
| 1537 | : SDNode(ISD::VECTOR_SHUFFLE, Order, dl, getSDVTList(VT)), Mask(M) {} |
||
| 1538 | |||
| 1539 | public: |
||
| 1540 | ArrayRef<int> getMask() const { |
||
| 1541 | EVT VT = getValueType(0); |
||
| 1542 | return ArrayRef(Mask, VT.getVectorNumElements()); |
||
| 1543 | } |
||
| 1544 | |||
| 1545 | int getMaskElt(unsigned Idx) const { |
||
| 1546 | assert(Idx < getValueType(0).getVectorNumElements() && "Idx out of range!"); |
||
| 1547 | return Mask[Idx]; |
||
| 1548 | } |
||
| 1549 | |||
| 1550 | bool isSplat() const { return isSplatMask(Mask, getValueType(0)); } |
||
| 1551 | |||
| 1552 | int getSplatIndex() const { |
||
| 1553 | assert(isSplat() && "Cannot get splat index for non-splat!"); |
||
| 1554 | EVT VT = getValueType(0); |
||
| 1555 | for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) |
||
| 1556 | if (Mask[i] >= 0) |
||
| 1557 | return Mask[i]; |
||
| 1558 | |||
| 1559 | // We can choose any index value here and be correct because all elements |
||
| 1560 | // are undefined. Return 0 for better potential for callers to simplify. |
||
| 1561 | return 0; |
||
| 1562 | } |
||
| 1563 | |||
| 1564 | static bool isSplatMask(const int *Mask, EVT VT); |
||
| 1565 | |||
| 1566 | /// Change values in a shuffle permute mask assuming |
||
| 1567 | /// the two vector operands have swapped position. |
||
| 1568 | static void commuteMask(MutableArrayRef<int> Mask) { |
||
| 1569 | unsigned NumElems = Mask.size(); |
||
| 1570 | for (unsigned i = 0; i != NumElems; ++i) { |
||
| 1571 | int idx = Mask[i]; |
||
| 1572 | if (idx < 0) |
||
| 1573 | continue; |
||
| 1574 | else if (idx < (int)NumElems) |
||
| 1575 | Mask[i] = idx + NumElems; |
||
| 1576 | else |
||
| 1577 | Mask[i] = idx - NumElems; |
||
| 1578 | } |
||
| 1579 | } |
||
| 1580 | |||
| 1581 | static bool classof(const SDNode *N) { |
||
| 1582 | return N->getOpcode() == ISD::VECTOR_SHUFFLE; |
||
| 1583 | } |
||
| 1584 | }; |
||
| 1585 | |||
| 1586 | class ConstantSDNode : public SDNode { |
||
| 1587 | friend class SelectionDAG; |
||
| 1588 | |||
| 1589 | const ConstantInt *Value; |
||
| 1590 | |||
| 1591 | ConstantSDNode(bool isTarget, bool isOpaque, const ConstantInt *val, EVT VT) |
||
| 1592 | : SDNode(isTarget ? ISD::TargetConstant : ISD::Constant, 0, DebugLoc(), |
||
| 1593 | getSDVTList(VT)), |
||
| 1594 | Value(val) { |
||
| 1595 | ConstantSDNodeBits.IsOpaque = isOpaque; |
||
| 1596 | } |
||
| 1597 | |||
| 1598 | public: |
||
| 1599 | const ConstantInt *getConstantIntValue() const { return Value; } |
||
| 1600 | const APInt &getAPIntValue() const { return Value->getValue(); } |
||
| 1601 | uint64_t getZExtValue() const { return Value->getZExtValue(); } |
||
| 1602 | int64_t getSExtValue() const { return Value->getSExtValue(); } |
||
| 1603 | uint64_t getLimitedValue(uint64_t Limit = UINT64_MAX) { |
||
| 1604 | return Value->getLimitedValue(Limit); |
||
| 1605 | } |
||
| 1606 | MaybeAlign getMaybeAlignValue() const { return Value->getMaybeAlignValue(); } |
||
| 1607 | Align getAlignValue() const { return Value->getAlignValue(); } |
||
| 1608 | |||
| 1609 | bool isOne() const { return Value->isOne(); } |
||
| 1610 | bool isZero() const { return Value->isZero(); } |
||
| 1611 | // NOTE: This is soft-deprecated. Please use `isZero()` instead. |
||
| 1612 | bool isNullValue() const { return isZero(); } |
||
| 1613 | bool isAllOnes() const { return Value->isMinusOne(); } |
||
| 1614 | // NOTE: This is soft-deprecated. Please use `isAllOnes()` instead. |
||
| 1615 | bool isAllOnesValue() const { return isAllOnes(); } |
||
| 1616 | bool isMaxSignedValue() const { return Value->isMaxValue(true); } |
||
| 1617 | bool isMinSignedValue() const { return Value->isMinValue(true); } |
||
| 1618 | |||
| 1619 | bool isOpaque() const { return ConstantSDNodeBits.IsOpaque; } |
||
| 1620 | |||
| 1621 | static bool classof(const SDNode *N) { |
||
| 1622 | return N->getOpcode() == ISD::Constant || |
||
| 1623 | N->getOpcode() == ISD::TargetConstant; |
||
| 1624 | } |
||
| 1625 | }; |
||
| 1626 | |||
| 1627 | uint64_t SDNode::getConstantOperandVal(unsigned Num) const { |
||
| 1628 | return cast<ConstantSDNode>(getOperand(Num))->getZExtValue(); |
||
| 1629 | } |
||
| 1630 | |||
| 1631 | const APInt &SDNode::getConstantOperandAPInt(unsigned Num) const { |
||
| 1632 | return cast<ConstantSDNode>(getOperand(Num))->getAPIntValue(); |
||
| 1633 | } |
||
| 1634 | |||
| 1635 | class ConstantFPSDNode : public SDNode { |
||
| 1636 | friend class SelectionDAG; |
||
| 1637 | |||
| 1638 | const ConstantFP *Value; |
||
| 1639 | |||
| 1640 | ConstantFPSDNode(bool isTarget, const ConstantFP *val, EVT VT) |
||
| 1641 | : SDNode(isTarget ? ISD::TargetConstantFP : ISD::ConstantFP, 0, |
||
| 1642 | DebugLoc(), getSDVTList(VT)), |
||
| 1643 | Value(val) {} |
||
| 1644 | |||
| 1645 | public: |
||
| 1646 | const APFloat& getValueAPF() const { return Value->getValueAPF(); } |
||
| 1647 | const ConstantFP *getConstantFPValue() const { return Value; } |
||
| 1648 | |||
| 1649 | /// Return true if the value is positive or negative zero. |
||
| 1650 | bool isZero() const { return Value->isZero(); } |
||
| 1651 | |||
| 1652 | /// Return true if the value is a NaN. |
||
| 1653 | bool isNaN() const { return Value->isNaN(); } |
||
| 1654 | |||
| 1655 | /// Return true if the value is an infinity |
||
| 1656 | bool isInfinity() const { return Value->isInfinity(); } |
||
| 1657 | |||
| 1658 | /// Return true if the value is negative. |
||
| 1659 | bool isNegative() const { return Value->isNegative(); } |
||
| 1660 | |||
| 1661 | /// We don't rely on operator== working on double values, as |
||
| 1662 | /// it returns true for things that are clearly not equal, like -0.0 and 0.0. |
||
| 1663 | /// As such, this method can be used to do an exact bit-for-bit comparison of |
||
| 1664 | /// two floating point values. |
||
| 1665 | |||
| 1666 | /// We leave the version with the double argument here because it's just so |
||
| 1667 | /// convenient to write "2.0" and the like. Without this function we'd |
||
| 1668 | /// have to duplicate its logic everywhere it's called. |
||
| 1669 | bool isExactlyValue(double V) const { |
||
| 1670 | return Value->getValueAPF().isExactlyValue(V); |
||
| 1671 | } |
||
| 1672 | bool isExactlyValue(const APFloat& V) const; |
||
| 1673 | |||
| 1674 | static bool isValueValidForType(EVT VT, const APFloat& Val); |
||
| 1675 | |||
| 1676 | static bool classof(const SDNode *N) { |
||
| 1677 | return N->getOpcode() == ISD::ConstantFP || |
||
| 1678 | N->getOpcode() == ISD::TargetConstantFP; |
||
| 1679 | } |
||
| 1680 | }; |
||
| 1681 | |||
| 1682 | /// Returns true if \p V is a constant integer zero. |
||
| 1683 | bool isNullConstant(SDValue V); |
||
| 1684 | |||
| 1685 | /// Returns true if \p V is an FP constant with a value of positive zero. |
||
| 1686 | bool isNullFPConstant(SDValue V); |
||
| 1687 | |||
| 1688 | /// Returns true if \p V is an integer constant with all bits set. |
||
| 1689 | bool isAllOnesConstant(SDValue V); |
||
| 1690 | |||
| 1691 | /// Returns true if \p V is a constant integer one. |
||
| 1692 | bool isOneConstant(SDValue V); |
||
| 1693 | |||
| 1694 | /// Returns true if \p V is a constant min signed integer value. |
||
| 1695 | bool isMinSignedConstant(SDValue V); |
||
| 1696 | |||
| 1697 | /// Returns true if \p V is a neutral element of Opc with Flags. |
||
| 1698 | /// When OperandNo is 0, it checks that V is a left identity. Otherwise, it |
||
| 1699 | /// checks that V is a right identity. |
||
| 1700 | bool isNeutralConstant(unsigned Opc, SDNodeFlags Flags, SDValue V, |
||
| 1701 | unsigned OperandNo); |
||
| 1702 | |||
| 1703 | /// Return the non-bitcasted source operand of \p V if it exists. |
||
| 1704 | /// If \p V is not a bitcasted value, it is returned as-is. |
||
| 1705 | SDValue peekThroughBitcasts(SDValue V); |
||
| 1706 | |||
| 1707 | /// Return the non-bitcasted and one-use source operand of \p V if it exists. |
||
| 1708 | /// If \p V is not a bitcasted one-use value, it is returned as-is. |
||
| 1709 | SDValue peekThroughOneUseBitcasts(SDValue V); |
||
| 1710 | |||
| 1711 | /// Return the non-extracted vector source operand of \p V if it exists. |
||
| 1712 | /// If \p V is not an extracted subvector, it is returned as-is. |
||
| 1713 | SDValue peekThroughExtractSubvectors(SDValue V); |
||
| 1714 | |||
| 1715 | /// Returns true if \p V is a bitwise not operation. Assumes that an all ones |
||
| 1716 | /// constant is canonicalized to be operand 1. |
||
| 1717 | bool isBitwiseNot(SDValue V, bool AllowUndefs = false); |
||
| 1718 | |||
| 1719 | /// If \p V is a bitwise not, returns the inverted operand. Otherwise returns |
||
| 1720 | /// an empty SDValue. Only bits set in \p Mask are required to be inverted, |
||
| 1721 | /// other bits may be arbitrary. |
||
| 1722 | SDValue getBitwiseNotOperand(SDValue V, SDValue Mask, bool AllowUndefs); |
||
| 1723 | |||
| 1724 | /// Returns the SDNode if it is a constant splat BuildVector or constant int. |
||
| 1725 | ConstantSDNode *isConstOrConstSplat(SDValue N, bool AllowUndefs = false, |
||
| 1726 | bool AllowTruncation = false); |
||
| 1727 | |||
| 1728 | /// Returns the SDNode if it is a demanded constant splat BuildVector or |
||
| 1729 | /// constant int. |
||
| 1730 | ConstantSDNode *isConstOrConstSplat(SDValue N, const APInt &DemandedElts, |
||
| 1731 | bool AllowUndefs = false, |
||
| 1732 | bool AllowTruncation = false); |
||
| 1733 | |||
| 1734 | /// Returns the SDNode if it is a constant splat BuildVector or constant float. |
||
| 1735 | ConstantFPSDNode *isConstOrConstSplatFP(SDValue N, bool AllowUndefs = false); |
||
| 1736 | |||
| 1737 | /// Returns the SDNode if it is a demanded constant splat BuildVector or |
||
| 1738 | /// constant float. |
||
| 1739 | ConstantFPSDNode *isConstOrConstSplatFP(SDValue N, const APInt &DemandedElts, |
||
| 1740 | bool AllowUndefs = false); |
||
| 1741 | |||
| 1742 | /// Return true if the value is a constant 0 integer or a splatted vector of |
||
| 1743 | /// a constant 0 integer (with no undefs by default). |
||
| 1744 | /// Build vector implicit truncation is not an issue for null values. |
||
| 1745 | bool isNullOrNullSplat(SDValue V, bool AllowUndefs = false); |
||
| 1746 | |||
| 1747 | /// Return true if the value is a constant 1 integer or a splatted vector of a |
||
| 1748 | /// constant 1 integer (with no undefs). |
||
| 1749 | /// Build vector implicit truncation is allowed, but the truncated bits need to |
||
| 1750 | /// be zero. |
||
| 1751 | bool isOneOrOneSplat(SDValue V, bool AllowUndefs = false); |
||
| 1752 | |||
| 1753 | /// Return true if the value is a constant -1 integer or a splatted vector of a |
||
| 1754 | /// constant -1 integer (with no undefs). |
||
| 1755 | /// Does not permit build vector implicit truncation. |
||
| 1756 | bool isAllOnesOrAllOnesSplat(SDValue V, bool AllowUndefs = false); |
||
| 1757 | |||
| 1758 | /// Return true if \p V is either a integer or FP constant. |
||
| 1759 | inline bool isIntOrFPConstant(SDValue V) { |
||
| 1760 | return isa<ConstantSDNode>(V) || isa<ConstantFPSDNode>(V); |
||
| 1761 | } |
||
| 1762 | |||
| 1763 | class GlobalAddressSDNode : public SDNode { |
||
| 1764 | friend class SelectionDAG; |
||
| 1765 | |||
| 1766 | const GlobalValue *TheGlobal; |
||
| 1767 | int64_t Offset; |
||
| 1768 | unsigned TargetFlags; |
||
| 1769 | |||
| 1770 | GlobalAddressSDNode(unsigned Opc, unsigned Order, const DebugLoc &DL, |
||
| 1771 | const GlobalValue *GA, EVT VT, int64_t o, |
||
| 1772 | unsigned TF); |
||
| 1773 | |||
| 1774 | public: |
||
| 1775 | const GlobalValue *getGlobal() const { return TheGlobal; } |
||
| 1776 | int64_t getOffset() const { return Offset; } |
||
| 1777 | unsigned getTargetFlags() const { return TargetFlags; } |
||
| 1778 | // Return the address space this GlobalAddress belongs to. |
||
| 1779 | unsigned getAddressSpace() const; |
||
| 1780 | |||
| 1781 | static bool classof(const SDNode *N) { |
||
| 1782 | return N->getOpcode() == ISD::GlobalAddress || |
||
| 1783 | N->getOpcode() == ISD::TargetGlobalAddress || |
||
| 1784 | N->getOpcode() == ISD::GlobalTLSAddress || |
||
| 1785 | N->getOpcode() == ISD::TargetGlobalTLSAddress; |
||
| 1786 | } |
||
| 1787 | }; |
||
| 1788 | |||
| 1789 | class FrameIndexSDNode : public SDNode { |
||
| 1790 | friend class SelectionDAG; |
||
| 1791 | |||
| 1792 | int FI; |
||
| 1793 | |||
| 1794 | FrameIndexSDNode(int fi, EVT VT, bool isTarg) |
||
| 1795 | : SDNode(isTarg ? ISD::TargetFrameIndex : ISD::FrameIndex, |
||
| 1796 | 0, DebugLoc(), getSDVTList(VT)), FI(fi) { |
||
| 1797 | } |
||
| 1798 | |||
| 1799 | public: |
||
| 1800 | int getIndex() const { return FI; } |
||
| 1801 | |||
| 1802 | static bool classof(const SDNode *N) { |
||
| 1803 | return N->getOpcode() == ISD::FrameIndex || |
||
| 1804 | N->getOpcode() == ISD::TargetFrameIndex; |
||
| 1805 | } |
||
| 1806 | }; |
||
| 1807 | |||
| 1808 | /// This SDNode is used for LIFETIME_START/LIFETIME_END values, which indicate |
||
| 1809 | /// the offet and size that are started/ended in the underlying FrameIndex. |
||
| 1810 | class LifetimeSDNode : public SDNode { |
||
| 1811 | friend class SelectionDAG; |
||
| 1812 | int64_t Size; |
||
| 1813 | int64_t Offset; // -1 if offset is unknown. |
||
| 1814 | |||
| 1815 | LifetimeSDNode(unsigned Opcode, unsigned Order, const DebugLoc &dl, |
||
| 1816 | SDVTList VTs, int64_t Size, int64_t Offset) |
||
| 1817 | : SDNode(Opcode, Order, dl, VTs), Size(Size), Offset(Offset) {} |
||
| 1818 | public: |
||
| 1819 | int64_t getFrameIndex() const { |
||
| 1820 | return cast<FrameIndexSDNode>(getOperand(1))->getIndex(); |
||
| 1821 | } |
||
| 1822 | |||
| 1823 | bool hasOffset() const { return Offset >= 0; } |
||
| 1824 | int64_t getOffset() const { |
||
| 1825 | assert(hasOffset() && "offset is unknown"); |
||
| 1826 | return Offset; |
||
| 1827 | } |
||
| 1828 | int64_t getSize() const { |
||
| 1829 | assert(hasOffset() && "offset is unknown"); |
||
| 1830 | return Size; |
||
| 1831 | } |
||
| 1832 | |||
| 1833 | // Methods to support isa and dyn_cast |
||
| 1834 | static bool classof(const SDNode *N) { |
||
| 1835 | return N->getOpcode() == ISD::LIFETIME_START || |
||
| 1836 | N->getOpcode() == ISD::LIFETIME_END; |
||
| 1837 | } |
||
| 1838 | }; |
||
| 1839 | |||
| 1840 | /// This SDNode is used for PSEUDO_PROBE values, which are the function guid and |
||
| 1841 | /// the index of the basic block being probed. A pseudo probe serves as a place |
||
| 1842 | /// holder and will be removed at the end of compilation. It does not have any |
||
| 1843 | /// operand because we do not want the instruction selection to deal with any. |
||
| 1844 | class PseudoProbeSDNode : public SDNode { |
||
| 1845 | friend class SelectionDAG; |
||
| 1846 | uint64_t Guid; |
||
| 1847 | uint64_t Index; |
||
| 1848 | uint32_t Attributes; |
||
| 1849 | |||
| 1850 | PseudoProbeSDNode(unsigned Opcode, unsigned Order, const DebugLoc &Dl, |
||
| 1851 | SDVTList VTs, uint64_t Guid, uint64_t Index, uint32_t Attr) |
||
| 1852 | : SDNode(Opcode, Order, Dl, VTs), Guid(Guid), Index(Index), |
||
| 1853 | Attributes(Attr) {} |
||
| 1854 | |||
| 1855 | public: |
||
| 1856 | uint64_t getGuid() const { return Guid; } |
||
| 1857 | uint64_t getIndex() const { return Index; } |
||
| 1858 | uint32_t getAttributes() const { return Attributes; } |
||
| 1859 | |||
| 1860 | // Methods to support isa and dyn_cast |
||
| 1861 | static bool classof(const SDNode *N) { |
||
| 1862 | return N->getOpcode() == ISD::PSEUDO_PROBE; |
||
| 1863 | } |
||
| 1864 | }; |
||
| 1865 | |||
| 1866 | class JumpTableSDNode : public SDNode { |
||
| 1867 | friend class SelectionDAG; |
||
| 1868 | |||
| 1869 | int JTI; |
||
| 1870 | unsigned TargetFlags; |
||
| 1871 | |||
| 1872 | JumpTableSDNode(int jti, EVT VT, bool isTarg, unsigned TF) |
||
| 1873 | : SDNode(isTarg ? ISD::TargetJumpTable : ISD::JumpTable, |
||
| 1874 | 0, DebugLoc(), getSDVTList(VT)), JTI(jti), TargetFlags(TF) { |
||
| 1875 | } |
||
| 1876 | |||
| 1877 | public: |
||
| 1878 | int getIndex() const { return JTI; } |
||
| 1879 | unsigned getTargetFlags() const { return TargetFlags; } |
||
| 1880 | |||
| 1881 | static bool classof(const SDNode *N) { |
||
| 1882 | return N->getOpcode() == ISD::JumpTable || |
||
| 1883 | N->getOpcode() == ISD::TargetJumpTable; |
||
| 1884 | } |
||
| 1885 | }; |
||
| 1886 | |||
| 1887 | class ConstantPoolSDNode : public SDNode { |
||
| 1888 | friend class SelectionDAG; |
||
| 1889 | |||
| 1890 | union { |
||
| 1891 | const Constant *ConstVal; |
||
| 1892 | MachineConstantPoolValue *MachineCPVal; |
||
| 1893 | } Val; |
||
| 1894 | int Offset; // It's a MachineConstantPoolValue if top bit is set. |
||
| 1895 | Align Alignment; // Minimum alignment requirement of CP. |
||
| 1896 | unsigned TargetFlags; |
||
| 1897 | |||
| 1898 | ConstantPoolSDNode(bool isTarget, const Constant *c, EVT VT, int o, |
||
| 1899 | Align Alignment, unsigned TF) |
||
| 1900 | : SDNode(isTarget ? ISD::TargetConstantPool : ISD::ConstantPool, 0, |
||
| 1901 | DebugLoc(), getSDVTList(VT)), |
||
| 1902 | Offset(o), Alignment(Alignment), TargetFlags(TF) { |
||
| 1903 | assert(Offset >= 0 && "Offset is too large"); |
||
| 1904 | Val.ConstVal = c; |
||
| 1905 | } |
||
| 1906 | |||
| 1907 | ConstantPoolSDNode(bool isTarget, MachineConstantPoolValue *v, EVT VT, int o, |
||
| 1908 | Align Alignment, unsigned TF) |
||
| 1909 | : SDNode(isTarget ? ISD::TargetConstantPool : ISD::ConstantPool, 0, |
||
| 1910 | DebugLoc(), getSDVTList(VT)), |
||
| 1911 | Offset(o), Alignment(Alignment), TargetFlags(TF) { |
||
| 1912 | assert(Offset >= 0 && "Offset is too large"); |
||
| 1913 | Val.MachineCPVal = v; |
||
| 1914 | Offset |= 1 << (sizeof(unsigned)*CHAR_BIT-1); |
||
| 1915 | } |
||
| 1916 | |||
| 1917 | public: |
||
| 1918 | bool isMachineConstantPoolEntry() const { |
||
| 1919 | return Offset < 0; |
||
| 1920 | } |
||
| 1921 | |||
| 1922 | const Constant *getConstVal() const { |
||
| 1923 | assert(!isMachineConstantPoolEntry() && "Wrong constantpool type"); |
||
| 1924 | return Val.ConstVal; |
||
| 1925 | } |
||
| 1926 | |||
| 1927 | MachineConstantPoolValue *getMachineCPVal() const { |
||
| 1928 | assert(isMachineConstantPoolEntry() && "Wrong constantpool type"); |
||
| 1929 | return Val.MachineCPVal; |
||
| 1930 | } |
||
| 1931 | |||
| 1932 | int getOffset() const { |
||
| 1933 | return Offset & ~(1 << (sizeof(unsigned)*CHAR_BIT-1)); |
||
| 1934 | } |
||
| 1935 | |||
| 1936 | // Return the alignment of this constant pool object, which is either 0 (for |
||
| 1937 | // default alignment) or the desired value. |
||
| 1938 | Align getAlign() const { return Alignment; } |
||
| 1939 | unsigned getTargetFlags() const { return TargetFlags; } |
||
| 1940 | |||
| 1941 | Type *getType() const; |
||
| 1942 | |||
| 1943 | static bool classof(const SDNode *N) { |
||
| 1944 | return N->getOpcode() == ISD::ConstantPool || |
||
| 1945 | N->getOpcode() == ISD::TargetConstantPool; |
||
| 1946 | } |
||
| 1947 | }; |
||
| 1948 | |||
| 1949 | /// Completely target-dependent object reference. |
||
| 1950 | class TargetIndexSDNode : public SDNode { |
||
| 1951 | friend class SelectionDAG; |
||
| 1952 | |||
| 1953 | unsigned TargetFlags; |
||
| 1954 | int Index; |
||
| 1955 | int64_t Offset; |
||
| 1956 | |||
| 1957 | public: |
||
| 1958 | TargetIndexSDNode(int Idx, EVT VT, int64_t Ofs, unsigned TF) |
||
| 1959 | : SDNode(ISD::TargetIndex, 0, DebugLoc(), getSDVTList(VT)), |
||
| 1960 | TargetFlags(TF), Index(Idx), Offset(Ofs) {} |
||
| 1961 | |||
| 1962 | unsigned getTargetFlags() const { return TargetFlags; } |
||
| 1963 | int getIndex() const { return Index; } |
||
| 1964 | int64_t getOffset() const { return Offset; } |
||
| 1965 | |||
| 1966 | static bool classof(const SDNode *N) { |
||
| 1967 | return N->getOpcode() == ISD::TargetIndex; |
||
| 1968 | } |
||
| 1969 | }; |
||
| 1970 | |||
| 1971 | class BasicBlockSDNode : public SDNode { |
||
| 1972 | friend class SelectionDAG; |
||
| 1973 | |||
| 1974 | MachineBasicBlock *MBB; |
||
| 1975 | |||
| 1976 | /// Debug info is meaningful and potentially useful here, but we create |
||
| 1977 | /// blocks out of order when they're jumped to, which makes it a bit |
||
| 1978 | /// harder. Let's see if we need it first. |
||
| 1979 | explicit BasicBlockSDNode(MachineBasicBlock *mbb) |
||
| 1980 | : SDNode(ISD::BasicBlock, 0, DebugLoc(), getSDVTList(MVT::Other)), MBB(mbb) |
||
| 1981 | {} |
||
| 1982 | |||
| 1983 | public: |
||
| 1984 | MachineBasicBlock *getBasicBlock() const { return MBB; } |
||
| 1985 | |||
| 1986 | static bool classof(const SDNode *N) { |
||
| 1987 | return N->getOpcode() == ISD::BasicBlock; |
||
| 1988 | } |
||
| 1989 | }; |
||
| 1990 | |||
| 1991 | /// A "pseudo-class" with methods for operating on BUILD_VECTORs. |
||
| 1992 | class BuildVectorSDNode : public SDNode { |
||
| 1993 | public: |
||
| 1994 | // These are constructed as SDNodes and then cast to BuildVectorSDNodes. |
||
| 1995 | explicit BuildVectorSDNode() = delete; |
||
| 1996 | |||
| 1997 | /// Check if this is a constant splat, and if so, find the |
||
| 1998 | /// smallest element size that splats the vector. If MinSplatBits is |
||
| 1999 | /// nonzero, the element size must be at least that large. Note that the |
||
| 2000 | /// splat element may be the entire vector (i.e., a one element vector). |
||
| 2001 | /// Returns the splat element value in SplatValue. Any undefined bits in |
||
| 2002 | /// that value are zero, and the corresponding bits in the SplatUndef mask |
||
| 2003 | /// are set. The SplatBitSize value is set to the splat element size in |
||
| 2004 | /// bits. HasAnyUndefs is set to true if any bits in the vector are |
||
| 2005 | /// undefined. isBigEndian describes the endianness of the target. |
||
| 2006 | bool isConstantSplat(APInt &SplatValue, APInt &SplatUndef, |
||
| 2007 | unsigned &SplatBitSize, bool &HasAnyUndefs, |
||
| 2008 | unsigned MinSplatBits = 0, |
||
| 2009 | bool isBigEndian = false) const; |
||
| 2010 | |||
| 2011 | /// Returns the demanded splatted value or a null value if this is not a |
||
| 2012 | /// splat. |
||
| 2013 | /// |
||
| 2014 | /// The DemandedElts mask indicates the elements that must be in the splat. |
||
| 2015 | /// If passed a non-null UndefElements bitvector, it will resize it to match |
||
| 2016 | /// the vector width and set the bits where elements are undef. |
||
| 2017 | SDValue getSplatValue(const APInt &DemandedElts, |
||
| 2018 | BitVector *UndefElements = nullptr) const; |
||
| 2019 | |||
| 2020 | /// Returns the splatted value or a null value if this is not a splat. |
||
| 2021 | /// |
||
| 2022 | /// If passed a non-null UndefElements bitvector, it will resize it to match |
||
| 2023 | /// the vector width and set the bits where elements are undef. |
||
| 2024 | SDValue getSplatValue(BitVector *UndefElements = nullptr) const; |
||
| 2025 | |||
| 2026 | /// Find the shortest repeating sequence of values in the build vector. |
||
| 2027 | /// |
||
| 2028 | /// e.g. { u, X, u, X, u, u, X, u } -> { X } |
||
| 2029 | /// { X, Y, u, Y, u, u, X, u } -> { X, Y } |
||
| 2030 | /// |
||
| 2031 | /// Currently this must be a power-of-2 build vector. |
||
| 2032 | /// The DemandedElts mask indicates the elements that must be present, |
||
| 2033 | /// undemanded elements in Sequence may be null (SDValue()). If passed a |
||
| 2034 | /// non-null UndefElements bitvector, it will resize it to match the original |
||
| 2035 | /// vector width and set the bits where elements are undef. If result is |
||
| 2036 | /// false, Sequence will be empty. |
||
| 2037 | bool getRepeatedSequence(const APInt &DemandedElts, |
||
| 2038 | SmallVectorImpl<SDValue> &Sequence, |
||
| 2039 | BitVector *UndefElements = nullptr) const; |
||
| 2040 | |||
| 2041 | /// Find the shortest repeating sequence of values in the build vector. |
||
| 2042 | /// |
||
| 2043 | /// e.g. { u, X, u, X, u, u, X, u } -> { X } |
||
| 2044 | /// { X, Y, u, Y, u, u, X, u } -> { X, Y } |
||
| 2045 | /// |
||
| 2046 | /// Currently this must be a power-of-2 build vector. |
||
| 2047 | /// If passed a non-null UndefElements bitvector, it will resize it to match |
||
| 2048 | /// the original vector width and set the bits where elements are undef. |
||
| 2049 | /// If result is false, Sequence will be empty. |
||
| 2050 | bool getRepeatedSequence(SmallVectorImpl<SDValue> &Sequence, |
||
| 2051 | BitVector *UndefElements = nullptr) const; |
||
| 2052 | |||
| 2053 | /// Returns the demanded splatted constant or null if this is not a constant |
||
| 2054 | /// splat. |
||
| 2055 | /// |
||
| 2056 | /// The DemandedElts mask indicates the elements that must be in the splat. |
||
| 2057 | /// If passed a non-null UndefElements bitvector, it will resize it to match |
||
| 2058 | /// the vector width and set the bits where elements are undef. |
||
| 2059 | ConstantSDNode * |
||
| 2060 | getConstantSplatNode(const APInt &DemandedElts, |
||
| 2061 | BitVector *UndefElements = nullptr) const; |
||
| 2062 | |||
| 2063 | /// Returns the splatted constant or null if this is not a constant |
||
| 2064 | /// splat. |
||
| 2065 | /// |
||
| 2066 | /// If passed a non-null UndefElements bitvector, it will resize it to match |
||
| 2067 | /// the vector width and set the bits where elements are undef. |
||
| 2068 | ConstantSDNode * |
||
| 2069 | getConstantSplatNode(BitVector *UndefElements = nullptr) const; |
||
| 2070 | |||
| 2071 | /// Returns the demanded splatted constant FP or null if this is not a |
||
| 2072 | /// constant FP splat. |
||
| 2073 | /// |
||
| 2074 | /// The DemandedElts mask indicates the elements that must be in the splat. |
||
| 2075 | /// If passed a non-null UndefElements bitvector, it will resize it to match |
||
| 2076 | /// the vector width and set the bits where elements are undef. |
||
| 2077 | ConstantFPSDNode * |
||
| 2078 | getConstantFPSplatNode(const APInt &DemandedElts, |
||
| 2079 | BitVector *UndefElements = nullptr) const; |
||
| 2080 | |||
| 2081 | /// Returns the splatted constant FP or null if this is not a constant |
||
| 2082 | /// FP splat. |
||
| 2083 | /// |
||
| 2084 | /// If passed a non-null UndefElements bitvector, it will resize it to match |
||
| 2085 | /// the vector width and set the bits where elements are undef. |
||
| 2086 | ConstantFPSDNode * |
||
| 2087 | getConstantFPSplatNode(BitVector *UndefElements = nullptr) const; |
||
| 2088 | |||
| 2089 | /// If this is a constant FP splat and the splatted constant FP is an |
||
| 2090 | /// exact power or 2, return the log base 2 integer value. Otherwise, |
||
| 2091 | /// return -1. |
||
| 2092 | /// |
||
| 2093 | /// The BitWidth specifies the necessary bit precision. |
||
| 2094 | int32_t getConstantFPSplatPow2ToLog2Int(BitVector *UndefElements, |
||
| 2095 | uint32_t BitWidth) const; |
||
| 2096 | |||
| 2097 | /// Extract the raw bit data from a build vector of Undef, Constant or |
||
| 2098 | /// ConstantFP node elements. Each raw bit element will be \p |
||
| 2099 | /// DstEltSizeInBits wide, undef elements are treated as zero, and entirely |
||
| 2100 | /// undefined elements are flagged in \p UndefElements. |
||
| 2101 | bool getConstantRawBits(bool IsLittleEndian, unsigned DstEltSizeInBits, |
||
| 2102 | SmallVectorImpl<APInt> &RawBitElements, |
||
| 2103 | BitVector &UndefElements) const; |
||
| 2104 | |||
| 2105 | bool isConstant() const; |
||
| 2106 | |||
| 2107 | /// If this BuildVector is constant and represents the numerical series |
||
| 2108 | /// "<a, a+n, a+2n, a+3n, ...>" where a is integer and n is a non-zero integer, |
||
| 2109 | /// the value "<a,n>" is returned. |
||
| 2110 | std::optional<std::pair<APInt, APInt>> isConstantSequence() const; |
||
| 2111 | |||
| 2112 | /// Recast bit data \p SrcBitElements to \p DstEltSizeInBits wide elements. |
||
| 2113 | /// Undef elements are treated as zero, and entirely undefined elements are |
||
| 2114 | /// flagged in \p DstUndefElements. |
||
| 2115 | static void recastRawBits(bool IsLittleEndian, unsigned DstEltSizeInBits, |
||
| 2116 | SmallVectorImpl<APInt> &DstBitElements, |
||
| 2117 | ArrayRef<APInt> SrcBitElements, |
||
| 2118 | BitVector &DstUndefElements, |
||
| 2119 | const BitVector &SrcUndefElements); |
||
| 2120 | |||
| 2121 | static bool classof(const SDNode *N) { |
||
| 2122 | return N->getOpcode() == ISD::BUILD_VECTOR; |
||
| 2123 | } |
||
| 2124 | }; |
||
| 2125 | |||
| 2126 | /// An SDNode that holds an arbitrary LLVM IR Value. This is |
||
| 2127 | /// used when the SelectionDAG needs to make a simple reference to something |
||
| 2128 | /// in the LLVM IR representation. |
||
| 2129 | /// |
||
| 2130 | class SrcValueSDNode : public SDNode { |
||
| 2131 | friend class SelectionDAG; |
||
| 2132 | |||
| 2133 | const Value *V; |
||
| 2134 | |||
| 2135 | /// Create a SrcValue for a general value. |
||
| 2136 | explicit SrcValueSDNode(const Value *v) |
||
| 2137 | : SDNode(ISD::SRCVALUE, 0, DebugLoc(), getSDVTList(MVT::Other)), V(v) {} |
||
| 2138 | |||
| 2139 | public: |
||
| 2140 | /// Return the contained Value. |
||
| 2141 | const Value *getValue() const { return V; } |
||
| 2142 | |||
| 2143 | static bool classof(const SDNode *N) { |
||
| 2144 | return N->getOpcode() == ISD::SRCVALUE; |
||
| 2145 | } |
||
| 2146 | }; |
||
| 2147 | |||
| 2148 | class MDNodeSDNode : public SDNode { |
||
| 2149 | friend class SelectionDAG; |
||
| 2150 | |||
| 2151 | const MDNode *MD; |
||
| 2152 | |||
| 2153 | explicit MDNodeSDNode(const MDNode *md) |
||
| 2154 | : SDNode(ISD::MDNODE_SDNODE, 0, DebugLoc(), getSDVTList(MVT::Other)), MD(md) |
||
| 2155 | {} |
||
| 2156 | |||
| 2157 | public: |
||
| 2158 | const MDNode *getMD() const { return MD; } |
||
| 2159 | |||
| 2160 | static bool classof(const SDNode *N) { |
||
| 2161 | return N->getOpcode() == ISD::MDNODE_SDNODE; |
||
| 2162 | } |
||
| 2163 | }; |
||
| 2164 | |||
| 2165 | class RegisterSDNode : public SDNode { |
||
| 2166 | friend class SelectionDAG; |
||
| 2167 | |||
| 2168 | Register Reg; |
||
| 2169 | |||
| 2170 | RegisterSDNode(Register reg, EVT VT) |
||
| 2171 | : SDNode(ISD::Register, 0, DebugLoc(), getSDVTList(VT)), Reg(reg) {} |
||
| 2172 | |||
| 2173 | public: |
||
| 2174 | Register getReg() const { return Reg; } |
||
| 2175 | |||
| 2176 | static bool classof(const SDNode *N) { |
||
| 2177 | return N->getOpcode() == ISD::Register; |
||
| 2178 | } |
||
| 2179 | }; |
||
| 2180 | |||
| 2181 | class RegisterMaskSDNode : public SDNode { |
||
| 2182 | friend class SelectionDAG; |
||
| 2183 | |||
| 2184 | // The memory for RegMask is not owned by the node. |
||
| 2185 | const uint32_t *RegMask; |
||
| 2186 | |||
| 2187 | RegisterMaskSDNode(const uint32_t *mask) |
||
| 2188 | : SDNode(ISD::RegisterMask, 0, DebugLoc(), getSDVTList(MVT::Untyped)), |
||
| 2189 | RegMask(mask) {} |
||
| 2190 | |||
| 2191 | public: |
||
| 2192 | const uint32_t *getRegMask() const { return RegMask; } |
||
| 2193 | |||
| 2194 | static bool classof(const SDNode *N) { |
||
| 2195 | return N->getOpcode() == ISD::RegisterMask; |
||
| 2196 | } |
||
| 2197 | }; |
||
| 2198 | |||
| 2199 | class BlockAddressSDNode : public SDNode { |
||
| 2200 | friend class SelectionDAG; |
||
| 2201 | |||
| 2202 | const BlockAddress *BA; |
||
| 2203 | int64_t Offset; |
||
| 2204 | unsigned TargetFlags; |
||
| 2205 | |||
| 2206 | BlockAddressSDNode(unsigned NodeTy, EVT VT, const BlockAddress *ba, |
||
| 2207 | int64_t o, unsigned Flags) |
||
| 2208 | : SDNode(NodeTy, 0, DebugLoc(), getSDVTList(VT)), |
||
| 2209 | BA(ba), Offset(o), TargetFlags(Flags) {} |
||
| 2210 | |||
| 2211 | public: |
||
| 2212 | const BlockAddress *getBlockAddress() const { return BA; } |
||
| 2213 | int64_t getOffset() const { return Offset; } |
||
| 2214 | unsigned getTargetFlags() const { return TargetFlags; } |
||
| 2215 | |||
| 2216 | static bool classof(const SDNode *N) { |
||
| 2217 | return N->getOpcode() == ISD::BlockAddress || |
||
| 2218 | N->getOpcode() == ISD::TargetBlockAddress; |
||
| 2219 | } |
||
| 2220 | }; |
||
| 2221 | |||
| 2222 | class LabelSDNode : public SDNode { |
||
| 2223 | friend class SelectionDAG; |
||
| 2224 | |||
| 2225 | MCSymbol *Label; |
||
| 2226 | |||
| 2227 | LabelSDNode(unsigned Opcode, unsigned Order, const DebugLoc &dl, MCSymbol *L) |
||
| 2228 | : SDNode(Opcode, Order, dl, getSDVTList(MVT::Other)), Label(L) { |
||
| 2229 | assert(LabelSDNode::classof(this) && "not a label opcode"); |
||
| 2230 | } |
||
| 2231 | |||
| 2232 | public: |
||
| 2233 | MCSymbol *getLabel() const { return Label; } |
||
| 2234 | |||
| 2235 | static bool classof(const SDNode *N) { |
||
| 2236 | return N->getOpcode() == ISD::EH_LABEL || |
||
| 2237 | N->getOpcode() == ISD::ANNOTATION_LABEL; |
||
| 2238 | } |
||
| 2239 | }; |
||
| 2240 | |||
| 2241 | class ExternalSymbolSDNode : public SDNode { |
||
| 2242 | friend class SelectionDAG; |
||
| 2243 | |||
| 2244 | const char *Symbol; |
||
| 2245 | unsigned TargetFlags; |
||
| 2246 | |||
| 2247 | ExternalSymbolSDNode(bool isTarget, const char *Sym, unsigned TF, EVT VT) |
||
| 2248 | : SDNode(isTarget ? ISD::TargetExternalSymbol : ISD::ExternalSymbol, 0, |
||
| 2249 | DebugLoc(), getSDVTList(VT)), |
||
| 2250 | Symbol(Sym), TargetFlags(TF) {} |
||
| 2251 | |||
| 2252 | public: |
||
| 2253 | const char *getSymbol() const { return Symbol; } |
||
| 2254 | unsigned getTargetFlags() const { return TargetFlags; } |
||
| 2255 | |||
| 2256 | static bool classof(const SDNode *N) { |
||
| 2257 | return N->getOpcode() == ISD::ExternalSymbol || |
||
| 2258 | N->getOpcode() == ISD::TargetExternalSymbol; |
||
| 2259 | } |
||
| 2260 | }; |
||
| 2261 | |||
| 2262 | class MCSymbolSDNode : public SDNode { |
||
| 2263 | friend class SelectionDAG; |
||
| 2264 | |||
| 2265 | MCSymbol *Symbol; |
||
| 2266 | |||
| 2267 | MCSymbolSDNode(MCSymbol *Symbol, EVT VT) |
||
| 2268 | : SDNode(ISD::MCSymbol, 0, DebugLoc(), getSDVTList(VT)), Symbol(Symbol) {} |
||
| 2269 | |||
| 2270 | public: |
||
| 2271 | MCSymbol *getMCSymbol() const { return Symbol; } |
||
| 2272 | |||
| 2273 | static bool classof(const SDNode *N) { |
||
| 2274 | return N->getOpcode() == ISD::MCSymbol; |
||
| 2275 | } |
||
| 2276 | }; |
||
| 2277 | |||
| 2278 | class CondCodeSDNode : public SDNode { |
||
| 2279 | friend class SelectionDAG; |
||
| 2280 | |||
| 2281 | ISD::CondCode Condition; |
||
| 2282 | |||
| 2283 | explicit CondCodeSDNode(ISD::CondCode Cond) |
||
| 2284 | : SDNode(ISD::CONDCODE, 0, DebugLoc(), getSDVTList(MVT::Other)), |
||
| 2285 | Condition(Cond) {} |
||
| 2286 | |||
| 2287 | public: |
||
| 2288 | ISD::CondCode get() const { return Condition; } |
||
| 2289 | |||
| 2290 | static bool classof(const SDNode *N) { |
||
| 2291 | return N->getOpcode() == ISD::CONDCODE; |
||
| 2292 | } |
||
| 2293 | }; |
||
| 2294 | |||
| 2295 | /// This class is used to represent EVT's, which are used |
||
| 2296 | /// to parameterize some operations. |
||
| 2297 | class VTSDNode : public SDNode { |
||
| 2298 | friend class SelectionDAG; |
||
| 2299 | |||
| 2300 | EVT ValueType; |
||
| 2301 | |||
| 2302 | explicit VTSDNode(EVT VT) |
||
| 2303 | : SDNode(ISD::VALUETYPE, 0, DebugLoc(), getSDVTList(MVT::Other)), |
||
| 2304 | ValueType(VT) {} |
||
| 2305 | |||
| 2306 | public: |
||
| 2307 | EVT getVT() const { return ValueType; } |
||
| 2308 | |||
| 2309 | static bool classof(const SDNode *N) { |
||
| 2310 | return N->getOpcode() == ISD::VALUETYPE; |
||
| 2311 | } |
||
| 2312 | }; |
||
| 2313 | |||
| 2314 | /// Base class for LoadSDNode and StoreSDNode |
||
| 2315 | class LSBaseSDNode : public MemSDNode { |
||
| 2316 | public: |
||
| 2317 | LSBaseSDNode(ISD::NodeType NodeTy, unsigned Order, const DebugLoc &dl, |
||
| 2318 | SDVTList VTs, ISD::MemIndexedMode AM, EVT MemVT, |
||
| 2319 | MachineMemOperand *MMO) |
||
| 2320 | : MemSDNode(NodeTy, Order, dl, VTs, MemVT, MMO) { |
||
| 2321 | LSBaseSDNodeBits.AddressingMode = AM; |
||
| 2322 | assert(getAddressingMode() == AM && "Value truncated"); |
||
| 2323 | } |
||
| 2324 | |||
| 2325 | const SDValue &getOffset() const { |
||
| 2326 | return getOperand(getOpcode() == ISD::LOAD ? 2 : 3); |
||
| 2327 | } |
||
| 2328 | |||
| 2329 | /// Return the addressing mode for this load or store: |
||
| 2330 | /// unindexed, pre-inc, pre-dec, post-inc, or post-dec. |
||
| 2331 | ISD::MemIndexedMode getAddressingMode() const { |
||
| 2332 | return static_cast<ISD::MemIndexedMode>(LSBaseSDNodeBits.AddressingMode); |
||
| 2333 | } |
||
| 2334 | |||
| 2335 | /// Return true if this is a pre/post inc/dec load/store. |
||
| 2336 | bool isIndexed() const { return getAddressingMode() != ISD::UNINDEXED; } |
||
| 2337 | |||
| 2338 | /// Return true if this is NOT a pre/post inc/dec load/store. |
||
| 2339 | bool isUnindexed() const { return getAddressingMode() == ISD::UNINDEXED; } |
||
| 2340 | |||
| 2341 | static bool classof(const SDNode *N) { |
||
| 2342 | return N->getOpcode() == ISD::LOAD || |
||
| 2343 | N->getOpcode() == ISD::STORE; |
||
| 2344 | } |
||
| 2345 | }; |
||
| 2346 | |||
| 2347 | /// This class is used to represent ISD::LOAD nodes. |
||
| 2348 | class LoadSDNode : public LSBaseSDNode { |
||
| 2349 | friend class SelectionDAG; |
||
| 2350 | |||
| 2351 | LoadSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs, |
||
| 2352 | ISD::MemIndexedMode AM, ISD::LoadExtType ETy, EVT MemVT, |
||
| 2353 | MachineMemOperand *MMO) |
||
| 2354 | : LSBaseSDNode(ISD::LOAD, Order, dl, VTs, AM, MemVT, MMO) { |
||
| 2355 | LoadSDNodeBits.ExtTy = ETy; |
||
| 2356 | assert(readMem() && "Load MachineMemOperand is not a load!"); |
||
| 2357 | assert(!writeMem() && "Load MachineMemOperand is a store!"); |
||
| 2358 | } |
||
| 2359 | |||
| 2360 | public: |
||
| 2361 | /// Return whether this is a plain node, |
||
| 2362 | /// or one of the varieties of value-extending loads. |
||
| 2363 | ISD::LoadExtType getExtensionType() const { |
||
| 2364 | return static_cast<ISD::LoadExtType>(LoadSDNodeBits.ExtTy); |
||
| 2365 | } |
||
| 2366 | |||
| 2367 | const SDValue &getBasePtr() const { return getOperand(1); } |
||
| 2368 | const SDValue &getOffset() const { return getOperand(2); } |
||
| 2369 | |||
| 2370 | static bool classof(const SDNode *N) { |
||
| 2371 | return N->getOpcode() == ISD::LOAD; |
||
| 2372 | } |
||
| 2373 | }; |
||
| 2374 | |||
| 2375 | /// This class is used to represent ISD::STORE nodes. |
||
| 2376 | class StoreSDNode : public LSBaseSDNode { |
||
| 2377 | friend class SelectionDAG; |
||
| 2378 | |||
| 2379 | StoreSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs, |
||
| 2380 | ISD::MemIndexedMode AM, bool isTrunc, EVT MemVT, |
||
| 2381 | MachineMemOperand *MMO) |
||
| 2382 | : LSBaseSDNode(ISD::STORE, Order, dl, VTs, AM, MemVT, MMO) { |
||
| 2383 | StoreSDNodeBits.IsTruncating = isTrunc; |
||
| 2384 | assert(!readMem() && "Store MachineMemOperand is a load!"); |
||
| 2385 | assert(writeMem() && "Store MachineMemOperand is not a store!"); |
||
| 2386 | } |
||
| 2387 | |||
| 2388 | public: |
||
| 2389 | /// Return true if the op does a truncation before store. |
||
| 2390 | /// For integers this is the same as doing a TRUNCATE and storing the result. |
||
| 2391 | /// For floats, it is the same as doing an FP_ROUND and storing the result. |
||
| 2392 | bool isTruncatingStore() const { return StoreSDNodeBits.IsTruncating; } |
||
| 2393 | void setTruncatingStore(bool Truncating) { |
||
| 2394 | StoreSDNodeBits.IsTruncating = Truncating; |
||
| 2395 | } |
||
| 2396 | |||
| 2397 | const SDValue &getValue() const { return getOperand(1); } |
||
| 2398 | const SDValue &getBasePtr() const { return getOperand(2); } |
||
| 2399 | const SDValue &getOffset() const { return getOperand(3); } |
||
| 2400 | |||
| 2401 | static bool classof(const SDNode *N) { |
||
| 2402 | return N->getOpcode() == ISD::STORE; |
||
| 2403 | } |
||
| 2404 | }; |
||
| 2405 | |||
| 2406 | /// This base class is used to represent VP_LOAD, VP_STORE, |
||
| 2407 | /// EXPERIMENTAL_VP_STRIDED_LOAD and EXPERIMENTAL_VP_STRIDED_STORE nodes |
||
| 2408 | class VPBaseLoadStoreSDNode : public MemSDNode { |
||
| 2409 | public: |
||
| 2410 | friend class SelectionDAG; |
||
| 2411 | |||
| 2412 | VPBaseLoadStoreSDNode(ISD::NodeType NodeTy, unsigned Order, |
||
| 2413 | const DebugLoc &DL, SDVTList VTs, |
||
| 2414 | ISD::MemIndexedMode AM, EVT MemVT, |
||
| 2415 | MachineMemOperand *MMO) |
||
| 2416 | : MemSDNode(NodeTy, Order, DL, VTs, MemVT, MMO) { |
||
| 2417 | LSBaseSDNodeBits.AddressingMode = AM; |
||
| 2418 | assert(getAddressingMode() == AM && "Value truncated"); |
||
| 2419 | } |
||
| 2420 | |||
| 2421 | // VPStridedStoreSDNode (Chain, Data, Ptr, Offset, Stride, Mask, EVL) |
||
| 2422 | // VPStoreSDNode (Chain, Data, Ptr, Offset, Mask, EVL) |
||
| 2423 | // VPStridedLoadSDNode (Chain, Ptr, Offset, Stride, Mask, EVL) |
||
| 2424 | // VPLoadSDNode (Chain, Ptr, Offset, Mask, EVL) |
||
| 2425 | // Mask is a vector of i1 elements; |
||
| 2426 | // the type of EVL is TLI.getVPExplicitVectorLengthTy(). |
||
| 2427 | const SDValue &getOffset() const { |
||
| 2428 | return getOperand((getOpcode() == ISD::EXPERIMENTAL_VP_STRIDED_LOAD || |
||
| 2429 | getOpcode() == ISD::VP_LOAD) |
||
| 2430 | ? 2 |
||
| 2431 | : 3); |
||
| 2432 | } |
||
| 2433 | const SDValue &getBasePtr() const { |
||
| 2434 | return getOperand((getOpcode() == ISD::EXPERIMENTAL_VP_STRIDED_LOAD || |
||
| 2435 | getOpcode() == ISD::VP_LOAD) |
||
| 2436 | ? 1 |
||
| 2437 | : 2); |
||
| 2438 | } |
||
| 2439 | const SDValue &getMask() const { |
||
| 2440 | switch (getOpcode()) { |
||
| 2441 | default: |
||
| 2442 | llvm_unreachable("Invalid opcode"); |
||
| 2443 | case ISD::VP_LOAD: |
||
| 2444 | return getOperand(3); |
||
| 2445 | case ISD::VP_STORE: |
||
| 2446 | case ISD::EXPERIMENTAL_VP_STRIDED_LOAD: |
||
| 2447 | return getOperand(4); |
||
| 2448 | case ISD::EXPERIMENTAL_VP_STRIDED_STORE: |
||
| 2449 | return getOperand(5); |
||
| 2450 | } |
||
| 2451 | } |
||
| 2452 | const SDValue &getVectorLength() const { |
||
| 2453 | switch (getOpcode()) { |
||
| 2454 | default: |
||
| 2455 | llvm_unreachable("Invalid opcode"); |
||
| 2456 | case ISD::VP_LOAD: |
||
| 2457 | return getOperand(4); |
||
| 2458 | case ISD::VP_STORE: |
||
| 2459 | case ISD::EXPERIMENTAL_VP_STRIDED_LOAD: |
||
| 2460 | return getOperand(5); |
||
| 2461 | case ISD::EXPERIMENTAL_VP_STRIDED_STORE: |
||
| 2462 | return getOperand(6); |
||
| 2463 | } |
||
| 2464 | } |
||
| 2465 | |||
| 2466 | /// Return the addressing mode for this load or store: |
||
| 2467 | /// unindexed, pre-inc, pre-dec, post-inc, or post-dec. |
||
| 2468 | ISD::MemIndexedMode getAddressingMode() const { |
||
| 2469 | return static_cast<ISD::MemIndexedMode>(LSBaseSDNodeBits.AddressingMode); |
||
| 2470 | } |
||
| 2471 | |||
| 2472 | /// Return true if this is a pre/post inc/dec load/store. |
||
| 2473 | bool isIndexed() const { return getAddressingMode() != ISD::UNINDEXED; } |
||
| 2474 | |||
| 2475 | /// Return true if this is NOT a pre/post inc/dec load/store. |
||
| 2476 | bool isUnindexed() const { return getAddressingMode() == ISD::UNINDEXED; } |
||
| 2477 | |||
| 2478 | static bool classof(const SDNode *N) { |
||
| 2479 | return N->getOpcode() == ISD::EXPERIMENTAL_VP_STRIDED_LOAD || |
||
| 2480 | N->getOpcode() == ISD::EXPERIMENTAL_VP_STRIDED_STORE || |
||
| 2481 | N->getOpcode() == ISD::VP_LOAD || N->getOpcode() == ISD::VP_STORE; |
||
| 2482 | } |
||
| 2483 | }; |
||
| 2484 | |||
| 2485 | /// This class is used to represent a VP_LOAD node |
||
| 2486 | class VPLoadSDNode : public VPBaseLoadStoreSDNode { |
||
| 2487 | public: |
||
| 2488 | friend class SelectionDAG; |
||
| 2489 | |||
| 2490 | VPLoadSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs, |
||
| 2491 | ISD::MemIndexedMode AM, ISD::LoadExtType ETy, bool isExpanding, |
||
| 2492 | EVT MemVT, MachineMemOperand *MMO) |
||
| 2493 | : VPBaseLoadStoreSDNode(ISD::VP_LOAD, Order, dl, VTs, AM, MemVT, MMO) { |
||
| 2494 | LoadSDNodeBits.ExtTy = ETy; |
||
| 2495 | LoadSDNodeBits.IsExpanding = isExpanding; |
||
| 2496 | } |
||
| 2497 | |||
| 2498 | ISD::LoadExtType getExtensionType() const { |
||
| 2499 | return static_cast<ISD::LoadExtType>(LoadSDNodeBits.ExtTy); |
||
| 2500 | } |
||
| 2501 | |||
| 2502 | const SDValue &getBasePtr() const { return getOperand(1); } |
||
| 2503 | const SDValue &getOffset() const { return getOperand(2); } |
||
| 2504 | const SDValue &getMask() const { return getOperand(3); } |
||
| 2505 | const SDValue &getVectorLength() const { return getOperand(4); } |
||
| 2506 | |||
| 2507 | static bool classof(const SDNode *N) { |
||
| 2508 | return N->getOpcode() == ISD::VP_LOAD; |
||
| 2509 | } |
||
| 2510 | bool isExpandingLoad() const { return LoadSDNodeBits.IsExpanding; } |
||
| 2511 | }; |
||
| 2512 | |||
| 2513 | /// This class is used to represent an EXPERIMENTAL_VP_STRIDED_LOAD node. |
||
| 2514 | class VPStridedLoadSDNode : public VPBaseLoadStoreSDNode { |
||
| 2515 | public: |
||
| 2516 | friend class SelectionDAG; |
||
| 2517 | |||
| 2518 | VPStridedLoadSDNode(unsigned Order, const DebugLoc &DL, SDVTList VTs, |
||
| 2519 | ISD::MemIndexedMode AM, ISD::LoadExtType ETy, |
||
| 2520 | bool IsExpanding, EVT MemVT, MachineMemOperand *MMO) |
||
| 2521 | : VPBaseLoadStoreSDNode(ISD::EXPERIMENTAL_VP_STRIDED_LOAD, Order, DL, VTs, |
||
| 2522 | AM, MemVT, MMO) { |
||
| 2523 | LoadSDNodeBits.ExtTy = ETy; |
||
| 2524 | LoadSDNodeBits.IsExpanding = IsExpanding; |
||
| 2525 | } |
||
| 2526 | |||
| 2527 | ISD::LoadExtType getExtensionType() const { |
||
| 2528 | return static_cast<ISD::LoadExtType>(LoadSDNodeBits.ExtTy); |
||
| 2529 | } |
||
| 2530 | |||
| 2531 | const SDValue &getBasePtr() const { return getOperand(1); } |
||
| 2532 | const SDValue &getOffset() const { return getOperand(2); } |
||
| 2533 | const SDValue &getStride() const { return getOperand(3); } |
||
| 2534 | const SDValue &getMask() const { return getOperand(4); } |
||
| 2535 | const SDValue &getVectorLength() const { return getOperand(5); } |
||
| 2536 | |||
| 2537 | static bool classof(const SDNode *N) { |
||
| 2538 | return N->getOpcode() == ISD::EXPERIMENTAL_VP_STRIDED_LOAD; |
||
| 2539 | } |
||
| 2540 | bool isExpandingLoad() const { return LoadSDNodeBits.IsExpanding; } |
||
| 2541 | }; |
||
| 2542 | |||
| 2543 | /// This class is used to represent a VP_STORE node |
||
| 2544 | class VPStoreSDNode : public VPBaseLoadStoreSDNode { |
||
| 2545 | public: |
||
| 2546 | friend class SelectionDAG; |
||
| 2547 | |||
| 2548 | VPStoreSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs, |
||
| 2549 | ISD::MemIndexedMode AM, bool isTrunc, bool isCompressing, |
||
| 2550 | EVT MemVT, MachineMemOperand *MMO) |
||
| 2551 | : VPBaseLoadStoreSDNode(ISD::VP_STORE, Order, dl, VTs, AM, MemVT, MMO) { |
||
| 2552 | StoreSDNodeBits.IsTruncating = isTrunc; |
||
| 2553 | StoreSDNodeBits.IsCompressing = isCompressing; |
||
| 2554 | } |
||
| 2555 | |||
| 2556 | /// Return true if this is a truncating store. |
||
| 2557 | /// For integers this is the same as doing a TRUNCATE and storing the result. |
||
| 2558 | /// For floats, it is the same as doing an FP_ROUND and storing the result. |
||
| 2559 | bool isTruncatingStore() const { return StoreSDNodeBits.IsTruncating; } |
||
| 2560 | |||
| 2561 | /// Returns true if the op does a compression to the vector before storing. |
||
| 2562 | /// The node contiguously stores the active elements (integers or floats) |
||
| 2563 | /// in src (those with their respective bit set in writemask k) to unaligned |
||
| 2564 | /// memory at base_addr. |
||
| 2565 | bool isCompressingStore() const { return StoreSDNodeBits.IsCompressing; } |
||
| 2566 | |||
| 2567 | const SDValue &getValue() const { return getOperand(1); } |
||
| 2568 | const SDValue &getBasePtr() const { return getOperand(2); } |
||
| 2569 | const SDValue &getOffset() const { return getOperand(3); } |
||
| 2570 | const SDValue &getMask() const { return getOperand(4); } |
||
| 2571 | const SDValue &getVectorLength() const { return getOperand(5); } |
||
| 2572 | |||
| 2573 | static bool classof(const SDNode *N) { |
||
| 2574 | return N->getOpcode() == ISD::VP_STORE; |
||
| 2575 | } |
||
| 2576 | }; |
||
| 2577 | |||
| 2578 | /// This class is used to represent an EXPERIMENTAL_VP_STRIDED_STORE node. |
||
| 2579 | class VPStridedStoreSDNode : public VPBaseLoadStoreSDNode { |
||
| 2580 | public: |
||
| 2581 | friend class SelectionDAG; |
||
| 2582 | |||
| 2583 | VPStridedStoreSDNode(unsigned Order, const DebugLoc &DL, SDVTList VTs, |
||
| 2584 | ISD::MemIndexedMode AM, bool IsTrunc, bool IsCompressing, |
||
| 2585 | EVT MemVT, MachineMemOperand *MMO) |
||
| 2586 | : VPBaseLoadStoreSDNode(ISD::EXPERIMENTAL_VP_STRIDED_STORE, Order, DL, |
||
| 2587 | VTs, AM, MemVT, MMO) { |
||
| 2588 | StoreSDNodeBits.IsTruncating = IsTrunc; |
||
| 2589 | StoreSDNodeBits.IsCompressing = IsCompressing; |
||
| 2590 | } |
||
| 2591 | |||
| 2592 | /// Return true if this is a truncating store. |
||
| 2593 | /// For integers this is the same as doing a TRUNCATE and storing the result. |
||
| 2594 | /// For floats, it is the same as doing an FP_ROUND and storing the result. |
||
| 2595 | bool isTruncatingStore() const { return StoreSDNodeBits.IsTruncating; } |
||
| 2596 | |||
| 2597 | /// Returns true if the op does a compression to the vector before storing. |
||
| 2598 | /// The node contiguously stores the active elements (integers or floats) |
||
| 2599 | /// in src (those with their respective bit set in writemask k) to unaligned |
||
| 2600 | /// memory at base_addr. |
||
| 2601 | bool isCompressingStore() const { return StoreSDNodeBits.IsCompressing; } |
||
| 2602 | |||
| 2603 | const SDValue &getValue() const { return getOperand(1); } |
||
| 2604 | const SDValue &getBasePtr() const { return getOperand(2); } |
||
| 2605 | const SDValue &getOffset() const { return getOperand(3); } |
||
| 2606 | const SDValue &getStride() const { return getOperand(4); } |
||
| 2607 | const SDValue &getMask() const { return getOperand(5); } |
||
| 2608 | const SDValue &getVectorLength() const { return getOperand(6); } |
||
| 2609 | |||
| 2610 | static bool classof(const SDNode *N) { |
||
| 2611 | return N->getOpcode() == ISD::EXPERIMENTAL_VP_STRIDED_STORE; |
||
| 2612 | } |
||
| 2613 | }; |
||
| 2614 | |||
| 2615 | /// This base class is used to represent MLOAD and MSTORE nodes |
||
| 2616 | class MaskedLoadStoreSDNode : public MemSDNode { |
||
| 2617 | public: |
||
| 2618 | friend class SelectionDAG; |
||
| 2619 | |||
| 2620 | MaskedLoadStoreSDNode(ISD::NodeType NodeTy, unsigned Order, |
||
| 2621 | const DebugLoc &dl, SDVTList VTs, |
||
| 2622 | ISD::MemIndexedMode AM, EVT MemVT, |
||
| 2623 | MachineMemOperand *MMO) |
||
| 2624 | : MemSDNode(NodeTy, Order, dl, VTs, MemVT, MMO) { |
||
| 2625 | LSBaseSDNodeBits.AddressingMode = AM; |
||
| 2626 | assert(getAddressingMode() == AM && "Value truncated"); |
||
| 2627 | } |
||
| 2628 | |||
| 2629 | // MaskedLoadSDNode (Chain, ptr, offset, mask, passthru) |
||
| 2630 | // MaskedStoreSDNode (Chain, data, ptr, offset, mask) |
||
| 2631 | // Mask is a vector of i1 elements |
||
| 2632 | const SDValue &getOffset() const { |
||
| 2633 | return getOperand(getOpcode() == ISD::MLOAD ? 2 : 3); |
||
| 2634 | } |
||
| 2635 | const SDValue &getMask() const { |
||
| 2636 | return getOperand(getOpcode() == ISD::MLOAD ? 3 : 4); |
||
| 2637 | } |
||
| 2638 | |||
| 2639 | /// Return the addressing mode for this load or store: |
||
| 2640 | /// unindexed, pre-inc, pre-dec, post-inc, or post-dec. |
||
| 2641 | ISD::MemIndexedMode getAddressingMode() const { |
||
| 2642 | return static_cast<ISD::MemIndexedMode>(LSBaseSDNodeBits.AddressingMode); |
||
| 2643 | } |
||
| 2644 | |||
| 2645 | /// Return true if this is a pre/post inc/dec load/store. |
||
| 2646 | bool isIndexed() const { return getAddressingMode() != ISD::UNINDEXED; } |
||
| 2647 | |||
| 2648 | /// Return true if this is NOT a pre/post inc/dec load/store. |
||
| 2649 | bool isUnindexed() const { return getAddressingMode() == ISD::UNINDEXED; } |
||
| 2650 | |||
| 2651 | static bool classof(const SDNode *N) { |
||
| 2652 | return N->getOpcode() == ISD::MLOAD || |
||
| 2653 | N->getOpcode() == ISD::MSTORE; |
||
| 2654 | } |
||
| 2655 | }; |
||
| 2656 | |||
| 2657 | /// This class is used to represent an MLOAD node |
||
| 2658 | class MaskedLoadSDNode : public MaskedLoadStoreSDNode { |
||
| 2659 | public: |
||
| 2660 | friend class SelectionDAG; |
||
| 2661 | |||
| 2662 | MaskedLoadSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs, |
||
| 2663 | ISD::MemIndexedMode AM, ISD::LoadExtType ETy, |
||
| 2664 | bool IsExpanding, EVT MemVT, MachineMemOperand *MMO) |
||
| 2665 | : MaskedLoadStoreSDNode(ISD::MLOAD, Order, dl, VTs, AM, MemVT, MMO) { |
||
| 2666 | LoadSDNodeBits.ExtTy = ETy; |
||
| 2667 | LoadSDNodeBits.IsExpanding = IsExpanding; |
||
| 2668 | } |
||
| 2669 | |||
| 2670 | ISD::LoadExtType getExtensionType() const { |
||
| 2671 | return static_cast<ISD::LoadExtType>(LoadSDNodeBits.ExtTy); |
||
| 2672 | } |
||
| 2673 | |||
| 2674 | const SDValue &getBasePtr() const { return getOperand(1); } |
||
| 2675 | const SDValue &getOffset() const { return getOperand(2); } |
||
| 2676 | const SDValue &getMask() const { return getOperand(3); } |
||
| 2677 | const SDValue &getPassThru() const { return getOperand(4); } |
||
| 2678 | |||
| 2679 | static bool classof(const SDNode *N) { |
||
| 2680 | return N->getOpcode() == ISD::MLOAD; |
||
| 2681 | } |
||
| 2682 | |||
| 2683 | bool isExpandingLoad() const { return LoadSDNodeBits.IsExpanding; } |
||
| 2684 | }; |
||
| 2685 | |||
| 2686 | /// This class is used to represent an MSTORE node |
||
| 2687 | class MaskedStoreSDNode : public MaskedLoadStoreSDNode { |
||
| 2688 | public: |
||
| 2689 | friend class SelectionDAG; |
||
| 2690 | |||
| 2691 | MaskedStoreSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs, |
||
| 2692 | ISD::MemIndexedMode AM, bool isTrunc, bool isCompressing, |
||
| 2693 | EVT MemVT, MachineMemOperand *MMO) |
||
| 2694 | : MaskedLoadStoreSDNode(ISD::MSTORE, Order, dl, VTs, AM, MemVT, MMO) { |
||
| 2695 | StoreSDNodeBits.IsTruncating = isTrunc; |
||
| 2696 | StoreSDNodeBits.IsCompressing = isCompressing; |
||
| 2697 | } |
||
| 2698 | |||
| 2699 | /// Return true if the op does a truncation before store. |
||
| 2700 | /// For integers this is the same as doing a TRUNCATE and storing the result. |
||
| 2701 | /// For floats, it is the same as doing an FP_ROUND and storing the result. |
||
| 2702 | bool isTruncatingStore() const { return StoreSDNodeBits.IsTruncating; } |
||
| 2703 | |||
| 2704 | /// Returns true if the op does a compression to the vector before storing. |
||
| 2705 | /// The node contiguously stores the active elements (integers or floats) |
||
| 2706 | /// in src (those with their respective bit set in writemask k) to unaligned |
||
| 2707 | /// memory at base_addr. |
||
| 2708 | bool isCompressingStore() const { return StoreSDNodeBits.IsCompressing; } |
||
| 2709 | |||
| 2710 | const SDValue &getValue() const { return getOperand(1); } |
||
| 2711 | const SDValue &getBasePtr() const { return getOperand(2); } |
||
| 2712 | const SDValue &getOffset() const { return getOperand(3); } |
||
| 2713 | const SDValue &getMask() const { return getOperand(4); } |
||
| 2714 | |||
| 2715 | static bool classof(const SDNode *N) { |
||
| 2716 | return N->getOpcode() == ISD::MSTORE; |
||
| 2717 | } |
||
| 2718 | }; |
||
| 2719 | |||
| 2720 | /// This is a base class used to represent |
||
| 2721 | /// VP_GATHER and VP_SCATTER nodes |
||
| 2722 | /// |
||
| 2723 | class VPGatherScatterSDNode : public MemSDNode { |
||
| 2724 | public: |
||
| 2725 | friend class SelectionDAG; |
||
| 2726 | |||
| 2727 | VPGatherScatterSDNode(ISD::NodeType NodeTy, unsigned Order, |
||
| 2728 | const DebugLoc &dl, SDVTList VTs, EVT MemVT, |
||
| 2729 | MachineMemOperand *MMO, ISD::MemIndexType IndexType) |
||
| 2730 | : MemSDNode(NodeTy, Order, dl, VTs, MemVT, MMO) { |
||
| 2731 | LSBaseSDNodeBits.AddressingMode = IndexType; |
||
| 2732 | assert(getIndexType() == IndexType && "Value truncated"); |
||
| 2733 | } |
||
| 2734 | |||
| 2735 | /// How is Index applied to BasePtr when computing addresses. |
||
| 2736 | ISD::MemIndexType getIndexType() const { |
||
| 2737 | return static_cast<ISD::MemIndexType>(LSBaseSDNodeBits.AddressingMode); |
||
| 2738 | } |
||
| 2739 | bool isIndexScaled() const { |
||
| 2740 | return !cast<ConstantSDNode>(getScale())->isOne(); |
||
| 2741 | } |
||
| 2742 | bool isIndexSigned() const { return isIndexTypeSigned(getIndexType()); } |
||
| 2743 | |||
| 2744 | // In the both nodes address is Op1, mask is Op2: |
||
| 2745 | // VPGatherSDNode (Chain, base, index, scale, mask, vlen) |
||
| 2746 | // VPScatterSDNode (Chain, value, base, index, scale, mask, vlen) |
||
| 2747 | // Mask is a vector of i1 elements |
||
| 2748 | const SDValue &getBasePtr() const { |
||
| 2749 | return getOperand((getOpcode() == ISD::VP_GATHER) ? 1 : 2); |
||
| 2750 | } |
||
| 2751 | const SDValue &getIndex() const { |
||
| 2752 | return getOperand((getOpcode() == ISD::VP_GATHER) ? 2 : 3); |
||
| 2753 | } |
||
| 2754 | const SDValue &getScale() const { |
||
| 2755 | return getOperand((getOpcode() == ISD::VP_GATHER) ? 3 : 4); |
||
| 2756 | } |
||
| 2757 | const SDValue &getMask() const { |
||
| 2758 | return getOperand((getOpcode() == ISD::VP_GATHER) ? 4 : 5); |
||
| 2759 | } |
||
| 2760 | const SDValue &getVectorLength() const { |
||
| 2761 | return getOperand((getOpcode() == ISD::VP_GATHER) ? 5 : 6); |
||
| 2762 | } |
||
| 2763 | |||
| 2764 | static bool classof(const SDNode *N) { |
||
| 2765 | return N->getOpcode() == ISD::VP_GATHER || |
||
| 2766 | N->getOpcode() == ISD::VP_SCATTER; |
||
| 2767 | } |
||
| 2768 | }; |
||
| 2769 | |||
| 2770 | /// This class is used to represent an VP_GATHER node |
||
| 2771 | /// |
||
| 2772 | class VPGatherSDNode : public VPGatherScatterSDNode { |
||
| 2773 | public: |
||
| 2774 | friend class SelectionDAG; |
||
| 2775 | |||
| 2776 | VPGatherSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs, EVT MemVT, |
||
| 2777 | MachineMemOperand *MMO, ISD::MemIndexType IndexType) |
||
| 2778 | : VPGatherScatterSDNode(ISD::VP_GATHER, Order, dl, VTs, MemVT, MMO, |
||
| 2779 | IndexType) {} |
||
| 2780 | |||
| 2781 | static bool classof(const SDNode *N) { |
||
| 2782 | return N->getOpcode() == ISD::VP_GATHER; |
||
| 2783 | } |
||
| 2784 | }; |
||
| 2785 | |||
| 2786 | /// This class is used to represent an VP_SCATTER node |
||
| 2787 | /// |
||
| 2788 | class VPScatterSDNode : public VPGatherScatterSDNode { |
||
| 2789 | public: |
||
| 2790 | friend class SelectionDAG; |
||
| 2791 | |||
| 2792 | VPScatterSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs, EVT MemVT, |
||
| 2793 | MachineMemOperand *MMO, ISD::MemIndexType IndexType) |
||
| 2794 | : VPGatherScatterSDNode(ISD::VP_SCATTER, Order, dl, VTs, MemVT, MMO, |
||
| 2795 | IndexType) {} |
||
| 2796 | |||
| 2797 | const SDValue &getValue() const { return getOperand(1); } |
||
| 2798 | |||
| 2799 | static bool classof(const SDNode *N) { |
||
| 2800 | return N->getOpcode() == ISD::VP_SCATTER; |
||
| 2801 | } |
||
| 2802 | }; |
||
| 2803 | |||
| 2804 | /// This is a base class used to represent |
||
| 2805 | /// MGATHER and MSCATTER nodes |
||
| 2806 | /// |
||
| 2807 | class MaskedGatherScatterSDNode : public MemSDNode { |
||
| 2808 | public: |
||
| 2809 | friend class SelectionDAG; |
||
| 2810 | |||
| 2811 | MaskedGatherScatterSDNode(ISD::NodeType NodeTy, unsigned Order, |
||
| 2812 | const DebugLoc &dl, SDVTList VTs, EVT MemVT, |
||
| 2813 | MachineMemOperand *MMO, ISD::MemIndexType IndexType) |
||
| 2814 | : MemSDNode(NodeTy, Order, dl, VTs, MemVT, MMO) { |
||
| 2815 | LSBaseSDNodeBits.AddressingMode = IndexType; |
||
| 2816 | assert(getIndexType() == IndexType && "Value truncated"); |
||
| 2817 | } |
||
| 2818 | |||
| 2819 | /// How is Index applied to BasePtr when computing addresses. |
||
| 2820 | ISD::MemIndexType getIndexType() const { |
||
| 2821 | return static_cast<ISD::MemIndexType>(LSBaseSDNodeBits.AddressingMode); |
||
| 2822 | } |
||
| 2823 | bool isIndexScaled() const { |
||
| 2824 | return !cast<ConstantSDNode>(getScale())->isOne(); |
||
| 2825 | } |
||
| 2826 | bool isIndexSigned() const { return isIndexTypeSigned(getIndexType()); } |
||
| 2827 | |||
| 2828 | // In the both nodes address is Op1, mask is Op2: |
||
| 2829 | // MaskedGatherSDNode (Chain, passthru, mask, base, index, scale) |
||
| 2830 | // MaskedScatterSDNode (Chain, value, mask, base, index, scale) |
||
| 2831 | // Mask is a vector of i1 elements |
||
| 2832 | const SDValue &getBasePtr() const { return getOperand(3); } |
||
| 2833 | const SDValue &getIndex() const { return getOperand(4); } |
||
| 2834 | const SDValue &getMask() const { return getOperand(2); } |
||
| 2835 | const SDValue &getScale() const { return getOperand(5); } |
||
| 2836 | |||
| 2837 | static bool classof(const SDNode *N) { |
||
| 2838 | return N->getOpcode() == ISD::MGATHER || |
||
| 2839 | N->getOpcode() == ISD::MSCATTER; |
||
| 2840 | } |
||
| 2841 | }; |
||
| 2842 | |||
| 2843 | /// This class is used to represent an MGATHER node |
||
| 2844 | /// |
||
| 2845 | class MaskedGatherSDNode : public MaskedGatherScatterSDNode { |
||
| 2846 | public: |
||
| 2847 | friend class SelectionDAG; |
||
| 2848 | |||
| 2849 | MaskedGatherSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs, |
||
| 2850 | EVT MemVT, MachineMemOperand *MMO, |
||
| 2851 | ISD::MemIndexType IndexType, ISD::LoadExtType ETy) |
||
| 2852 | : MaskedGatherScatterSDNode(ISD::MGATHER, Order, dl, VTs, MemVT, MMO, |
||
| 2853 | IndexType) { |
||
| 2854 | LoadSDNodeBits.ExtTy = ETy; |
||
| 2855 | } |
||
| 2856 | |||
| 2857 | const SDValue &getPassThru() const { return getOperand(1); } |
||
| 2858 | |||
| 2859 | ISD::LoadExtType getExtensionType() const { |
||
| 2860 | return ISD::LoadExtType(LoadSDNodeBits.ExtTy); |
||
| 2861 | } |
||
| 2862 | |||
| 2863 | static bool classof(const SDNode *N) { |
||
| 2864 | return N->getOpcode() == ISD::MGATHER; |
||
| 2865 | } |
||
| 2866 | }; |
||
| 2867 | |||
| 2868 | /// This class is used to represent an MSCATTER node |
||
| 2869 | /// |
||
| 2870 | class MaskedScatterSDNode : public MaskedGatherScatterSDNode { |
||
| 2871 | public: |
||
| 2872 | friend class SelectionDAG; |
||
| 2873 | |||
| 2874 | MaskedScatterSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs, |
||
| 2875 | EVT MemVT, MachineMemOperand *MMO, |
||
| 2876 | ISD::MemIndexType IndexType, bool IsTrunc) |
||
| 2877 | : MaskedGatherScatterSDNode(ISD::MSCATTER, Order, dl, VTs, MemVT, MMO, |
||
| 2878 | IndexType) { |
||
| 2879 | StoreSDNodeBits.IsTruncating = IsTrunc; |
||
| 2880 | } |
||
| 2881 | |||
| 2882 | /// Return true if the op does a truncation before store. |
||
| 2883 | /// For integers this is the same as doing a TRUNCATE and storing the result. |
||
| 2884 | /// For floats, it is the same as doing an FP_ROUND and storing the result. |
||
| 2885 | bool isTruncatingStore() const { return StoreSDNodeBits.IsTruncating; } |
||
| 2886 | |||
| 2887 | const SDValue &getValue() const { return getOperand(1); } |
||
| 2888 | |||
| 2889 | static bool classof(const SDNode *N) { |
||
| 2890 | return N->getOpcode() == ISD::MSCATTER; |
||
| 2891 | } |
||
| 2892 | }; |
||
| 2893 | |||
| 2894 | /// An SDNode that represents everything that will be needed |
||
| 2895 | /// to construct a MachineInstr. These nodes are created during the |
||
| 2896 | /// instruction selection proper phase. |
||
| 2897 | /// |
||
| 2898 | /// Note that the only supported way to set the `memoperands` is by calling the |
||
| 2899 | /// `SelectionDAG::setNodeMemRefs` function as the memory management happens |
||
| 2900 | /// inside the DAG rather than in the node. |
||
| 2901 | class MachineSDNode : public SDNode { |
||
| 2902 | private: |
||
| 2903 | friend class SelectionDAG; |
||
| 2904 | |||
| 2905 | MachineSDNode(unsigned Opc, unsigned Order, const DebugLoc &DL, SDVTList VTs) |
||
| 2906 | : SDNode(Opc, Order, DL, VTs) {} |
||
| 2907 | |||
| 2908 | // We use a pointer union between a single `MachineMemOperand` pointer and |
||
| 2909 | // a pointer to an array of `MachineMemOperand` pointers. This is null when |
||
| 2910 | // the number of these is zero, the single pointer variant used when the |
||
| 2911 | // number is one, and the array is used for larger numbers. |
||
| 2912 | // |
||
| 2913 | // The array is allocated via the `SelectionDAG`'s allocator and so will |
||
| 2914 | // always live until the DAG is cleaned up and doesn't require ownership here. |
||
| 2915 | // |
||
| 2916 | // We can't use something simpler like `TinyPtrVector` here because `SDNode` |
||
| 2917 | // subclasses aren't managed in a conforming C++ manner. See the comments on |
||
| 2918 | // `SelectionDAG::MorphNodeTo` which details what all goes on, but the |
||
| 2919 | // constraint here is that these don't manage memory with their constructor or |
||
| 2920 | // destructor and can be initialized to a good state even if they start off |
||
| 2921 | // uninitialized. |
||
| 2922 | PointerUnion<MachineMemOperand *, MachineMemOperand **> MemRefs = {}; |
||
| 2923 | |||
| 2924 | // Note that this could be folded into the above `MemRefs` member if doing so |
||
| 2925 | // is advantageous at some point. We don't need to store this in most cases. |
||
| 2926 | // However, at the moment this doesn't appear to make the allocation any |
||
| 2927 | // smaller and makes the code somewhat simpler to read. |
||
| 2928 | int NumMemRefs = 0; |
||
| 2929 | |||
| 2930 | public: |
||
| 2931 | using mmo_iterator = ArrayRef<MachineMemOperand *>::const_iterator; |
||
| 2932 | |||
| 2933 | ArrayRef<MachineMemOperand *> memoperands() const { |
||
| 2934 | // Special case the common cases. |
||
| 2935 | if (NumMemRefs == 0) |
||
| 2936 | return {}; |
||
| 2937 | if (NumMemRefs == 1) |
||
| 2938 | return ArrayRef(MemRefs.getAddrOfPtr1(), 1); |
||
| 2939 | |||
| 2940 | // Otherwise we have an actual array. |
||
| 2941 | return ArrayRef(MemRefs.get<MachineMemOperand **>(), NumMemRefs); |
||
| 2942 | } |
||
| 2943 | mmo_iterator memoperands_begin() const { return memoperands().begin(); } |
||
| 2944 | mmo_iterator memoperands_end() const { return memoperands().end(); } |
||
| 2945 | bool memoperands_empty() const { return memoperands().empty(); } |
||
| 2946 | |||
| 2947 | /// Clear out the memory reference descriptor list. |
||
| 2948 | void clearMemRefs() { |
||
| 2949 | MemRefs = nullptr; |
||
| 2950 | NumMemRefs = 0; |
||
| 2951 | } |
||
| 2952 | |||
| 2953 | static bool classof(const SDNode *N) { |
||
| 2954 | return N->isMachineOpcode(); |
||
| 2955 | } |
||
| 2956 | }; |
||
| 2957 | |||
| 2958 | /// An SDNode that records if a register contains a value that is guaranteed to |
||
| 2959 | /// be aligned accordingly. |
||
| 2960 | class AssertAlignSDNode : public SDNode { |
||
| 2961 | Align Alignment; |
||
| 2962 | |||
| 2963 | public: |
||
| 2964 | AssertAlignSDNode(unsigned Order, const DebugLoc &DL, EVT VT, Align A) |
||
| 2965 | : SDNode(ISD::AssertAlign, Order, DL, getSDVTList(VT)), Alignment(A) {} |
||
| 2966 | |||
| 2967 | Align getAlign() const { return Alignment; } |
||
| 2968 | |||
| 2969 | static bool classof(const SDNode *N) { |
||
| 2970 | return N->getOpcode() == ISD::AssertAlign; |
||
| 2971 | } |
||
| 2972 | }; |
||
| 2973 | |||
| 2974 | class SDNodeIterator { |
||
| 2975 | const SDNode *Node; |
||
| 2976 | unsigned Operand; |
||
| 2977 | |||
| 2978 | SDNodeIterator(const SDNode *N, unsigned Op) : Node(N), Operand(Op) {} |
||
| 2979 | |||
| 2980 | public: |
||
| 2981 | using iterator_category = std::forward_iterator_tag; |
||
| 2982 | using value_type = SDNode; |
||
| 2983 | using difference_type = std::ptrdiff_t; |
||
| 2984 | using pointer = value_type *; |
||
| 2985 | using reference = value_type &; |
||
| 2986 | |||
| 2987 | bool operator==(const SDNodeIterator& x) const { |
||
| 2988 | return Operand == x.Operand; |
||
| 2989 | } |
||
| 2990 | bool operator!=(const SDNodeIterator& x) const { return !operator==(x); } |
||
| 2991 | |||
| 2992 | pointer operator*() const { |
||
| 2993 | return Node->getOperand(Operand).getNode(); |
||
| 2994 | } |
||
| 2995 | pointer operator->() const { return operator*(); } |
||
| 2996 | |||
| 2997 | SDNodeIterator& operator++() { // Preincrement |
||
| 2998 | ++Operand; |
||
| 2999 | return *this; |
||
| 3000 | } |
||
| 3001 | SDNodeIterator operator++(int) { // Postincrement |
||
| 3002 | SDNodeIterator tmp = *this; ++*this; return tmp; |
||
| 3003 | } |
||
| 3004 | size_t operator-(SDNodeIterator Other) const { |
||
| 3005 | assert(Node == Other.Node && |
||
| 3006 | "Cannot compare iterators of two different nodes!"); |
||
| 3007 | return Operand - Other.Operand; |
||
| 3008 | } |
||
| 3009 | |||
| 3010 | static SDNodeIterator begin(const SDNode *N) { return SDNodeIterator(N, 0); } |
||
| 3011 | static SDNodeIterator end (const SDNode *N) { |
||
| 3012 | return SDNodeIterator(N, N->getNumOperands()); |
||
| 3013 | } |
||
| 3014 | |||
| 3015 | unsigned getOperand() const { return Operand; } |
||
| 3016 | const SDNode *getNode() const { return Node; } |
||
| 3017 | }; |
||
| 3018 | |||
| 3019 | template <> struct GraphTraits<SDNode*> { |
||
| 3020 | using NodeRef = SDNode *; |
||
| 3021 | using ChildIteratorType = SDNodeIterator; |
||
| 3022 | |||
| 3023 | static NodeRef getEntryNode(SDNode *N) { return N; } |
||
| 3024 | |||
| 3025 | static ChildIteratorType child_begin(NodeRef N) { |
||
| 3026 | return SDNodeIterator::begin(N); |
||
| 3027 | } |
||
| 3028 | |||
| 3029 | static ChildIteratorType child_end(NodeRef N) { |
||
| 3030 | return SDNodeIterator::end(N); |
||
| 3031 | } |
||
| 3032 | }; |
||
| 3033 | |||
| 3034 | /// A representation of the largest SDNode, for use in sizeof(). |
||
| 3035 | /// |
||
| 3036 | /// This needs to be a union because the largest node differs on 32 bit systems |
||
| 3037 | /// with 4 and 8 byte pointer alignment, respectively. |
||
| 3038 | using LargestSDNode = AlignedCharArrayUnion<AtomicSDNode, TargetIndexSDNode, |
||
| 3039 | BlockAddressSDNode, |
||
| 3040 | GlobalAddressSDNode, |
||
| 3041 | PseudoProbeSDNode>; |
||
| 3042 | |||
| 3043 | /// The SDNode class with the greatest alignment requirement. |
||
| 3044 | using MostAlignedSDNode = GlobalAddressSDNode; |
||
| 3045 | |||
| 3046 | namespace ISD { |
||
| 3047 | |||
| 3048 | /// Returns true if the specified node is a non-extending and unindexed load. |
||
| 3049 | inline bool isNormalLoad(const SDNode *N) { |
||
| 3050 | const LoadSDNode *Ld = dyn_cast<LoadSDNode>(N); |
||
| 3051 | return Ld && Ld->getExtensionType() == ISD::NON_EXTLOAD && |
||
| 3052 | Ld->getAddressingMode() == ISD::UNINDEXED; |
||
| 3053 | } |
||
| 3054 | |||
| 3055 | /// Returns true if the specified node is a non-extending load. |
||
| 3056 | inline bool isNON_EXTLoad(const SDNode *N) { |
||
| 3057 | return isa<LoadSDNode>(N) && |
||
| 3058 | cast<LoadSDNode>(N)->getExtensionType() == ISD::NON_EXTLOAD; |
||
| 3059 | } |
||
| 3060 | |||
| 3061 | /// Returns true if the specified node is a EXTLOAD. |
||
| 3062 | inline bool isEXTLoad(const SDNode *N) { |
||
| 3063 | return isa<LoadSDNode>(N) && |
||
| 3064 | cast<LoadSDNode>(N)->getExtensionType() == ISD::EXTLOAD; |
||
| 3065 | } |
||
| 3066 | |||
| 3067 | /// Returns true if the specified node is a SEXTLOAD. |
||
| 3068 | inline bool isSEXTLoad(const SDNode *N) { |
||
| 3069 | return isa<LoadSDNode>(N) && |
||
| 3070 | cast<LoadSDNode>(N)->getExtensionType() == ISD::SEXTLOAD; |
||
| 3071 | } |
||
| 3072 | |||
| 3073 | /// Returns true if the specified node is a ZEXTLOAD. |
||
| 3074 | inline bool isZEXTLoad(const SDNode *N) { |
||
| 3075 | return isa<LoadSDNode>(N) && |
||
| 3076 | cast<LoadSDNode>(N)->getExtensionType() == ISD::ZEXTLOAD; |
||
| 3077 | } |
||
| 3078 | |||
| 3079 | /// Returns true if the specified node is an unindexed load. |
||
| 3080 | inline bool isUNINDEXEDLoad(const SDNode *N) { |
||
| 3081 | return isa<LoadSDNode>(N) && |
||
| 3082 | cast<LoadSDNode>(N)->getAddressingMode() == ISD::UNINDEXED; |
||
| 3083 | } |
||
| 3084 | |||
| 3085 | /// Returns true if the specified node is a non-truncating |
||
| 3086 | /// and unindexed store. |
||
| 3087 | inline bool isNormalStore(const SDNode *N) { |
||
| 3088 | const StoreSDNode *St = dyn_cast<StoreSDNode>(N); |
||
| 3089 | return St && !St->isTruncatingStore() && |
||
| 3090 | St->getAddressingMode() == ISD::UNINDEXED; |
||
| 3091 | } |
||
| 3092 | |||
| 3093 | /// Returns true if the specified node is an unindexed store. |
||
| 3094 | inline bool isUNINDEXEDStore(const SDNode *N) { |
||
| 3095 | return isa<StoreSDNode>(N) && |
||
| 3096 | cast<StoreSDNode>(N)->getAddressingMode() == ISD::UNINDEXED; |
||
| 3097 | } |
||
| 3098 | |||
| 3099 | /// Attempt to match a unary predicate against a scalar/splat constant or |
||
| 3100 | /// every element of a constant BUILD_VECTOR. |
||
| 3101 | /// If AllowUndef is true, then UNDEF elements will pass nullptr to Match. |
||
| 3102 | bool matchUnaryPredicate(SDValue Op, |
||
| 3103 | std::function<bool(ConstantSDNode *)> Match, |
||
| 3104 | bool AllowUndefs = false); |
||
| 3105 | |||
| 3106 | /// Attempt to match a binary predicate against a pair of scalar/splat |
||
| 3107 | /// constants or every element of a pair of constant BUILD_VECTORs. |
||
| 3108 | /// If AllowUndef is true, then UNDEF elements will pass nullptr to Match. |
||
| 3109 | /// If AllowTypeMismatch is true then RetType + ArgTypes don't need to match. |
||
| 3110 | bool matchBinaryPredicate( |
||
| 3111 | SDValue LHS, SDValue RHS, |
||
| 3112 | std::function<bool(ConstantSDNode *, ConstantSDNode *)> Match, |
||
| 3113 | bool AllowUndefs = false, bool AllowTypeMismatch = false); |
||
| 3114 | |||
| 3115 | /// Returns true if the specified value is the overflow result from one |
||
| 3116 | /// of the overflow intrinsic nodes. |
||
| 3117 | inline bool isOverflowIntrOpRes(SDValue Op) { |
||
| 3118 | unsigned Opc = Op.getOpcode(); |
||
| 3119 | return (Op.getResNo() == 1 && |
||
| 3120 | (Opc == ISD::SADDO || Opc == ISD::UADDO || Opc == ISD::SSUBO || |
||
| 3121 | Opc == ISD::USUBO || Opc == ISD::SMULO || Opc == ISD::UMULO)); |
||
| 3122 | } |
||
| 3123 | |||
| 3124 | } // end namespace ISD |
||
| 3125 | |||
| 3126 | } // end namespace llvm |
||
| 3127 | |||
| 3128 | #endif // LLVM_CODEGEN_SELECTIONDAGNODES_H |