Details | Last modification | View Log | RSS feed
Rev | Author | Line No. | Line |
---|---|---|---|
14 | pmbaty | 1 | //===- llvm/CodeGen/SelectionDAGNodes.h - SelectionDAG Nodes ----*- C++ -*-===// |
2 | // |
||
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
||
4 | // See https://llvm.org/LICENSE.txt for license information. |
||
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
||
6 | // |
||
7 | //===----------------------------------------------------------------------===// |
||
8 | // |
||
9 | // This file declares the SDNode class and derived classes, which are used to |
||
10 | // represent the nodes and operations present in a SelectionDAG. These nodes |
||
11 | // and operations are machine code level operations, with some similarities to |
||
12 | // the GCC RTL representation. |
||
13 | // |
||
14 | // Clients should include the SelectionDAG.h file instead of this file directly. |
||
15 | // |
||
16 | //===----------------------------------------------------------------------===// |
||
17 | |||
18 | #ifndef LLVM_CODEGEN_SELECTIONDAGNODES_H |
||
19 | #define LLVM_CODEGEN_SELECTIONDAGNODES_H |
||
20 | |||
21 | #include "llvm/ADT/APFloat.h" |
||
22 | #include "llvm/ADT/ArrayRef.h" |
||
23 | #include "llvm/ADT/BitVector.h" |
||
24 | #include "llvm/ADT/FoldingSet.h" |
||
25 | #include "llvm/ADT/GraphTraits.h" |
||
26 | #include "llvm/ADT/SmallPtrSet.h" |
||
27 | #include "llvm/ADT/SmallVector.h" |
||
28 | #include "llvm/ADT/ilist_node.h" |
||
29 | #include "llvm/ADT/iterator.h" |
||
30 | #include "llvm/ADT/iterator_range.h" |
||
31 | #include "llvm/CodeGen/ISDOpcodes.h" |
||
32 | #include "llvm/CodeGen/MachineMemOperand.h" |
||
33 | #include "llvm/CodeGen/Register.h" |
||
34 | #include "llvm/CodeGen/ValueTypes.h" |
||
35 | #include "llvm/IR/Constants.h" |
||
36 | #include "llvm/IR/DebugLoc.h" |
||
37 | #include "llvm/IR/Instruction.h" |
||
38 | #include "llvm/IR/Instructions.h" |
||
39 | #include "llvm/IR/Metadata.h" |
||
40 | #include "llvm/IR/Operator.h" |
||
41 | #include "llvm/Support/AlignOf.h" |
||
42 | #include "llvm/Support/AtomicOrdering.h" |
||
43 | #include "llvm/Support/Casting.h" |
||
44 | #include "llvm/Support/ErrorHandling.h" |
||
45 | #include "llvm/Support/MachineValueType.h" |
||
46 | #include "llvm/Support/TypeSize.h" |
||
47 | #include <algorithm> |
||
48 | #include <cassert> |
||
49 | #include <climits> |
||
50 | #include <cstddef> |
||
51 | #include <cstdint> |
||
52 | #include <cstring> |
||
53 | #include <iterator> |
||
54 | #include <string> |
||
55 | #include <tuple> |
||
56 | #include <utility> |
||
57 | |||
58 | namespace llvm { |
||
59 | |||
60 | class APInt; |
||
61 | class Constant; |
||
62 | class GlobalValue; |
||
63 | class MachineBasicBlock; |
||
64 | class MachineConstantPoolValue; |
||
65 | class MCSymbol; |
||
66 | class raw_ostream; |
||
67 | class SDNode; |
||
68 | class SelectionDAG; |
||
69 | class Type; |
||
70 | class Value; |
||
71 | |||
72 | void checkForCycles(const SDNode *N, const SelectionDAG *DAG = nullptr, |
||
73 | bool force = false); |
||
74 | |||
75 | /// This represents a list of ValueType's that has been intern'd by |
||
76 | /// a SelectionDAG. Instances of this simple value class are returned by |
||
77 | /// SelectionDAG::getVTList(...). |
||
78 | /// |
||
79 | struct SDVTList { |
||
80 | const EVT *VTs; |
||
81 | unsigned int NumVTs; |
||
82 | }; |
||
83 | |||
84 | namespace ISD { |
||
85 | |||
86 | /// Node predicates |
||
87 | |||
88 | /// If N is a BUILD_VECTOR or SPLAT_VECTOR node whose elements are all the |
||
89 | /// same constant or undefined, return true and return the constant value in |
||
90 | /// \p SplatValue. |
||
91 | bool isConstantSplatVector(const SDNode *N, APInt &SplatValue); |
||
92 | |||
93 | /// Return true if the specified node is a BUILD_VECTOR or SPLAT_VECTOR where |
||
94 | /// all of the elements are ~0 or undef. If \p BuildVectorOnly is set to |
||
95 | /// true, it only checks BUILD_VECTOR. |
||
96 | bool isConstantSplatVectorAllOnes(const SDNode *N, |
||
97 | bool BuildVectorOnly = false); |
||
98 | |||
99 | /// Return true if the specified node is a BUILD_VECTOR or SPLAT_VECTOR where |
||
100 | /// all of the elements are 0 or undef. If \p BuildVectorOnly is set to true, it |
||
101 | /// only checks BUILD_VECTOR. |
||
102 | bool isConstantSplatVectorAllZeros(const SDNode *N, |
||
103 | bool BuildVectorOnly = false); |
||
104 | |||
105 | /// Return true if the specified node is a BUILD_VECTOR where all of the |
||
106 | /// elements are ~0 or undef. |
||
107 | bool isBuildVectorAllOnes(const SDNode *N); |
||
108 | |||
109 | /// Return true if the specified node is a BUILD_VECTOR where all of the |
||
110 | /// elements are 0 or undef. |
||
111 | bool isBuildVectorAllZeros(const SDNode *N); |
||
112 | |||
113 | /// Return true if the specified node is a BUILD_VECTOR node of all |
||
114 | /// ConstantSDNode or undef. |
||
115 | bool isBuildVectorOfConstantSDNodes(const SDNode *N); |
||
116 | |||
117 | /// Return true if the specified node is a BUILD_VECTOR node of all |
||
118 | /// ConstantFPSDNode or undef. |
||
119 | bool isBuildVectorOfConstantFPSDNodes(const SDNode *N); |
||
120 | |||
121 | /// Returns true if the specified node is a vector where all elements can |
||
122 | /// be truncated to the specified element size without a loss in meaning. |
||
123 | bool isVectorShrinkable(const SDNode *N, unsigned NewEltSize, bool Signed); |
||
124 | |||
125 | /// Return true if the node has at least one operand and all operands of the |
||
126 | /// specified node are ISD::UNDEF. |
||
127 | bool allOperandsUndef(const SDNode *N); |
||
128 | |||
129 | /// Return true if the specified node is FREEZE(UNDEF). |
||
130 | bool isFreezeUndef(const SDNode *N); |
||
131 | |||
132 | } // end namespace ISD |
||
133 | |||
134 | //===----------------------------------------------------------------------===// |
||
135 | /// Unlike LLVM values, Selection DAG nodes may return multiple |
||
136 | /// values as the result of a computation. Many nodes return multiple values, |
||
137 | /// from loads (which define a token and a return value) to ADDC (which returns |
||
138 | /// a result and a carry value), to calls (which may return an arbitrary number |
||
139 | /// of values). |
||
140 | /// |
||
141 | /// As such, each use of a SelectionDAG computation must indicate the node that |
||
142 | /// computes it as well as which return value to use from that node. This pair |
||
143 | /// of information is represented with the SDValue value type. |
||
144 | /// |
||
145 | class SDValue { |
||
146 | friend struct DenseMapInfo<SDValue>; |
||
147 | |||
148 | SDNode *Node = nullptr; // The node defining the value we are using. |
||
149 | unsigned ResNo = 0; // Which return value of the node we are using. |
||
150 | |||
151 | public: |
||
152 | SDValue() = default; |
||
153 | SDValue(SDNode *node, unsigned resno); |
||
154 | |||
155 | /// get the index which selects a specific result in the SDNode |
||
156 | unsigned getResNo() const { return ResNo; } |
||
157 | |||
158 | /// get the SDNode which holds the desired result |
||
159 | SDNode *getNode() const { return Node; } |
||
160 | |||
161 | /// set the SDNode |
||
162 | void setNode(SDNode *N) { Node = N; } |
||
163 | |||
164 | inline SDNode *operator->() const { return Node; } |
||
165 | |||
166 | bool operator==(const SDValue &O) const { |
||
167 | return Node == O.Node && ResNo == O.ResNo; |
||
168 | } |
||
169 | bool operator!=(const SDValue &O) const { |
||
170 | return !operator==(O); |
||
171 | } |
||
172 | bool operator<(const SDValue &O) const { |
||
173 | return std::tie(Node, ResNo) < std::tie(O.Node, O.ResNo); |
||
174 | } |
||
175 | explicit operator bool() const { |
||
176 | return Node != nullptr; |
||
177 | } |
||
178 | |||
179 | SDValue getValue(unsigned R) const { |
||
180 | return SDValue(Node, R); |
||
181 | } |
||
182 | |||
183 | /// Return true if this node is an operand of N. |
||
184 | bool isOperandOf(const SDNode *N) const; |
||
185 | |||
186 | /// Return the ValueType of the referenced return value. |
||
187 | inline EVT getValueType() const; |
||
188 | |||
189 | /// Return the simple ValueType of the referenced return value. |
||
190 | MVT getSimpleValueType() const { |
||
191 | return getValueType().getSimpleVT(); |
||
192 | } |
||
193 | |||
194 | /// Returns the size of the value in bits. |
||
195 | /// |
||
196 | /// If the value type is a scalable vector type, the scalable property will |
||
197 | /// be set and the runtime size will be a positive integer multiple of the |
||
198 | /// base size. |
||
199 | TypeSize getValueSizeInBits() const { |
||
200 | return getValueType().getSizeInBits(); |
||
201 | } |
||
202 | |||
203 | uint64_t getScalarValueSizeInBits() const { |
||
204 | return getValueType().getScalarType().getFixedSizeInBits(); |
||
205 | } |
||
206 | |||
207 | // Forwarding methods - These forward to the corresponding methods in SDNode. |
||
208 | inline unsigned getOpcode() const; |
||
209 | inline unsigned getNumOperands() const; |
||
210 | inline const SDValue &getOperand(unsigned i) const; |
||
211 | inline uint64_t getConstantOperandVal(unsigned i) const; |
||
212 | inline const APInt &getConstantOperandAPInt(unsigned i) const; |
||
213 | inline bool isTargetMemoryOpcode() const; |
||
214 | inline bool isTargetOpcode() const; |
||
215 | inline bool isMachineOpcode() const; |
||
216 | inline bool isUndef() const; |
||
217 | inline unsigned getMachineOpcode() const; |
||
218 | inline const DebugLoc &getDebugLoc() const; |
||
219 | inline void dump() const; |
||
220 | inline void dump(const SelectionDAG *G) const; |
||
221 | inline void dumpr() const; |
||
222 | inline void dumpr(const SelectionDAG *G) const; |
||
223 | |||
224 | /// Return true if this operand (which must be a chain) reaches the |
||
225 | /// specified operand without crossing any side-effecting instructions. |
||
226 | /// In practice, this looks through token factors and non-volatile loads. |
||
227 | /// In order to remain efficient, this only |
||
228 | /// looks a couple of nodes in, it does not do an exhaustive search. |
||
229 | bool reachesChainWithoutSideEffects(SDValue Dest, |
||
230 | unsigned Depth = 2) const; |
||
231 | |||
232 | /// Return true if there are no nodes using value ResNo of Node. |
||
233 | inline bool use_empty() const; |
||
234 | |||
235 | /// Return true if there is exactly one node using value ResNo of Node. |
||
236 | inline bool hasOneUse() const; |
||
237 | }; |
||
238 | |||
239 | template<> struct DenseMapInfo<SDValue> { |
||
240 | static inline SDValue getEmptyKey() { |
||
241 | SDValue V; |
||
242 | V.ResNo = -1U; |
||
243 | return V; |
||
244 | } |
||
245 | |||
246 | static inline SDValue getTombstoneKey() { |
||
247 | SDValue V; |
||
248 | V.ResNo = -2U; |
||
249 | return V; |
||
250 | } |
||
251 | |||
252 | static unsigned getHashValue(const SDValue &Val) { |
||
253 | return ((unsigned)((uintptr_t)Val.getNode() >> 4) ^ |
||
254 | (unsigned)((uintptr_t)Val.getNode() >> 9)) + Val.getResNo(); |
||
255 | } |
||
256 | |||
257 | static bool isEqual(const SDValue &LHS, const SDValue &RHS) { |
||
258 | return LHS == RHS; |
||
259 | } |
||
260 | }; |
||
261 | |||
262 | /// Allow casting operators to work directly on |
||
263 | /// SDValues as if they were SDNode*'s. |
||
264 | template<> struct simplify_type<SDValue> { |
||
265 | using SimpleType = SDNode *; |
||
266 | |||
267 | static SimpleType getSimplifiedValue(SDValue &Val) { |
||
268 | return Val.getNode(); |
||
269 | } |
||
270 | }; |
||
271 | template<> struct simplify_type<const SDValue> { |
||
272 | using SimpleType = /*const*/ SDNode *; |
||
273 | |||
274 | static SimpleType getSimplifiedValue(const SDValue &Val) { |
||
275 | return Val.getNode(); |
||
276 | } |
||
277 | }; |
||
278 | |||
279 | /// Represents a use of a SDNode. This class holds an SDValue, |
||
280 | /// which records the SDNode being used and the result number, a |
||
281 | /// pointer to the SDNode using the value, and Next and Prev pointers, |
||
282 | /// which link together all the uses of an SDNode. |
||
283 | /// |
||
284 | class SDUse { |
||
285 | /// Val - The value being used. |
||
286 | SDValue Val; |
||
287 | /// User - The user of this value. |
||
288 | SDNode *User = nullptr; |
||
289 | /// Prev, Next - Pointers to the uses list of the SDNode referred by |
||
290 | /// this operand. |
||
291 | SDUse **Prev = nullptr; |
||
292 | SDUse *Next = nullptr; |
||
293 | |||
294 | public: |
||
295 | SDUse() = default; |
||
296 | SDUse(const SDUse &U) = delete; |
||
297 | SDUse &operator=(const SDUse &) = delete; |
||
298 | |||
299 | /// Normally SDUse will just implicitly convert to an SDValue that it holds. |
||
300 | operator const SDValue&() const { return Val; } |
||
301 | |||
302 | /// If implicit conversion to SDValue doesn't work, the get() method returns |
||
303 | /// the SDValue. |
||
304 | const SDValue &get() const { return Val; } |
||
305 | |||
306 | /// This returns the SDNode that contains this Use. |
||
307 | SDNode *getUser() { return User; } |
||
308 | const SDNode *getUser() const { return User; } |
||
309 | |||
310 | /// Get the next SDUse in the use list. |
||
311 | SDUse *getNext() const { return Next; } |
||
312 | |||
313 | /// Convenience function for get().getNode(). |
||
314 | SDNode *getNode() const { return Val.getNode(); } |
||
315 | /// Convenience function for get().getResNo(). |
||
316 | unsigned getResNo() const { return Val.getResNo(); } |
||
317 | /// Convenience function for get().getValueType(). |
||
318 | EVT getValueType() const { return Val.getValueType(); } |
||
319 | |||
320 | /// Convenience function for get().operator== |
||
321 | bool operator==(const SDValue &V) const { |
||
322 | return Val == V; |
||
323 | } |
||
324 | |||
325 | /// Convenience function for get().operator!= |
||
326 | bool operator!=(const SDValue &V) const { |
||
327 | return Val != V; |
||
328 | } |
||
329 | |||
330 | /// Convenience function for get().operator< |
||
331 | bool operator<(const SDValue &V) const { |
||
332 | return Val < V; |
||
333 | } |
||
334 | |||
335 | private: |
||
336 | friend class SelectionDAG; |
||
337 | friend class SDNode; |
||
338 | // TODO: unfriend HandleSDNode once we fix its operand handling. |
||
339 | friend class HandleSDNode; |
||
340 | |||
341 | void setUser(SDNode *p) { User = p; } |
||
342 | |||
343 | /// Remove this use from its existing use list, assign it the |
||
344 | /// given value, and add it to the new value's node's use list. |
||
345 | inline void set(const SDValue &V); |
||
346 | /// Like set, but only supports initializing a newly-allocated |
||
347 | /// SDUse with a non-null value. |
||
348 | inline void setInitial(const SDValue &V); |
||
349 | /// Like set, but only sets the Node portion of the value, |
||
350 | /// leaving the ResNo portion unmodified. |
||
351 | inline void setNode(SDNode *N); |
||
352 | |||
353 | void addToList(SDUse **List) { |
||
354 | Next = *List; |
||
355 | if (Next) Next->Prev = &Next; |
||
356 | Prev = List; |
||
357 | *List = this; |
||
358 | } |
||
359 | |||
360 | void removeFromList() { |
||
361 | *Prev = Next; |
||
362 | if (Next) Next->Prev = Prev; |
||
363 | } |
||
364 | }; |
||
365 | |||
366 | /// simplify_type specializations - Allow casting operators to work directly on |
||
367 | /// SDValues as if they were SDNode*'s. |
||
368 | template<> struct simplify_type<SDUse> { |
||
369 | using SimpleType = SDNode *; |
||
370 | |||
371 | static SimpleType getSimplifiedValue(SDUse &Val) { |
||
372 | return Val.getNode(); |
||
373 | } |
||
374 | }; |
||
375 | |||
376 | /// These are IR-level optimization flags that may be propagated to SDNodes. |
||
377 | /// TODO: This data structure should be shared by the IR optimizer and the |
||
378 | /// the backend. |
||
379 | struct SDNodeFlags { |
||
380 | private: |
||
381 | bool NoUnsignedWrap : 1; |
||
382 | bool NoSignedWrap : 1; |
||
383 | bool Exact : 1; |
||
384 | bool NoNaNs : 1; |
||
385 | bool NoInfs : 1; |
||
386 | bool NoSignedZeros : 1; |
||
387 | bool AllowReciprocal : 1; |
||
388 | bool AllowContract : 1; |
||
389 | bool ApproximateFuncs : 1; |
||
390 | bool AllowReassociation : 1; |
||
391 | |||
392 | // We assume instructions do not raise floating-point exceptions by default, |
||
393 | // and only those marked explicitly may do so. We could choose to represent |
||
394 | // this via a positive "FPExcept" flags like on the MI level, but having a |
||
395 | // negative "NoFPExcept" flag here (that defaults to true) makes the flag |
||
396 | // intersection logic more straightforward. |
||
397 | bool NoFPExcept : 1; |
||
398 | |||
399 | public: |
||
400 | /// Default constructor turns off all optimization flags. |
||
401 | SDNodeFlags() |
||
402 | : NoUnsignedWrap(false), NoSignedWrap(false), Exact(false), NoNaNs(false), |
||
403 | NoInfs(false), NoSignedZeros(false), AllowReciprocal(false), |
||
404 | AllowContract(false), ApproximateFuncs(false), |
||
405 | AllowReassociation(false), NoFPExcept(false) {} |
||
406 | |||
407 | /// Propagate the fast-math-flags from an IR FPMathOperator. |
||
408 | void copyFMF(const FPMathOperator &FPMO) { |
||
409 | setNoNaNs(FPMO.hasNoNaNs()); |
||
410 | setNoInfs(FPMO.hasNoInfs()); |
||
411 | setNoSignedZeros(FPMO.hasNoSignedZeros()); |
||
412 | setAllowReciprocal(FPMO.hasAllowReciprocal()); |
||
413 | setAllowContract(FPMO.hasAllowContract()); |
||
414 | setApproximateFuncs(FPMO.hasApproxFunc()); |
||
415 | setAllowReassociation(FPMO.hasAllowReassoc()); |
||
416 | } |
||
417 | |||
418 | // These are mutators for each flag. |
||
419 | void setNoUnsignedWrap(bool b) { NoUnsignedWrap = b; } |
||
420 | void setNoSignedWrap(bool b) { NoSignedWrap = b; } |
||
421 | void setExact(bool b) { Exact = b; } |
||
422 | void setNoNaNs(bool b) { NoNaNs = b; } |
||
423 | void setNoInfs(bool b) { NoInfs = b; } |
||
424 | void setNoSignedZeros(bool b) { NoSignedZeros = b; } |
||
425 | void setAllowReciprocal(bool b) { AllowReciprocal = b; } |
||
426 | void setAllowContract(bool b) { AllowContract = b; } |
||
427 | void setApproximateFuncs(bool b) { ApproximateFuncs = b; } |
||
428 | void setAllowReassociation(bool b) { AllowReassociation = b; } |
||
429 | void setNoFPExcept(bool b) { NoFPExcept = b; } |
||
430 | |||
431 | // These are accessors for each flag. |
||
432 | bool hasNoUnsignedWrap() const { return NoUnsignedWrap; } |
||
433 | bool hasNoSignedWrap() const { return NoSignedWrap; } |
||
434 | bool hasExact() const { return Exact; } |
||
435 | bool hasNoNaNs() const { return NoNaNs; } |
||
436 | bool hasNoInfs() const { return NoInfs; } |
||
437 | bool hasNoSignedZeros() const { return NoSignedZeros; } |
||
438 | bool hasAllowReciprocal() const { return AllowReciprocal; } |
||
439 | bool hasAllowContract() const { return AllowContract; } |
||
440 | bool hasApproximateFuncs() const { return ApproximateFuncs; } |
||
441 | bool hasAllowReassociation() const { return AllowReassociation; } |
||
442 | bool hasNoFPExcept() const { return NoFPExcept; } |
||
443 | |||
444 | /// Clear any flags in this flag set that aren't also set in Flags. All |
||
445 | /// flags will be cleared if Flags are undefined. |
||
446 | void intersectWith(const SDNodeFlags Flags) { |
||
447 | NoUnsignedWrap &= Flags.NoUnsignedWrap; |
||
448 | NoSignedWrap &= Flags.NoSignedWrap; |
||
449 | Exact &= Flags.Exact; |
||
450 | NoNaNs &= Flags.NoNaNs; |
||
451 | NoInfs &= Flags.NoInfs; |
||
452 | NoSignedZeros &= Flags.NoSignedZeros; |
||
453 | AllowReciprocal &= Flags.AllowReciprocal; |
||
454 | AllowContract &= Flags.AllowContract; |
||
455 | ApproximateFuncs &= Flags.ApproximateFuncs; |
||
456 | AllowReassociation &= Flags.AllowReassociation; |
||
457 | NoFPExcept &= Flags.NoFPExcept; |
||
458 | } |
||
459 | }; |
||
460 | |||
461 | /// Represents one node in the SelectionDAG. |
||
462 | /// |
||
463 | class SDNode : public FoldingSetNode, public ilist_node<SDNode> { |
||
464 | private: |
||
465 | /// The operation that this node performs. |
||
466 | int32_t NodeType; |
||
467 | |||
468 | public: |
||
469 | /// Unique and persistent id per SDNode in the DAG. Used for debug printing. |
||
470 | /// We do not place that under `#if LLVM_ENABLE_ABI_BREAKING_CHECKS` |
||
471 | /// intentionally because it adds unneeded complexity without noticeable |
||
472 | /// benefits (see discussion with @thakis in D120714). |
||
473 | uint16_t PersistentId; |
||
474 | |||
475 | protected: |
||
476 | // We define a set of mini-helper classes to help us interpret the bits in our |
||
477 | // SubclassData. These are designed to fit within a uint16_t so they pack |
||
478 | // with PersistentId. |
||
479 | |||
480 | #if defined(_AIX) && (!defined(__GNUC__) || defined(__clang__)) |
||
481 | // Except for GCC; by default, AIX compilers store bit-fields in 4-byte words |
||
482 | // and give the `pack` pragma push semantics. |
||
483 | #define BEGIN_TWO_BYTE_PACK() _Pragma("pack(2)") |
||
484 | #define END_TWO_BYTE_PACK() _Pragma("pack(pop)") |
||
485 | #else |
||
486 | #define BEGIN_TWO_BYTE_PACK() |
||
487 | #define END_TWO_BYTE_PACK() |
||
488 | #endif |
||
489 | |||
490 | BEGIN_TWO_BYTE_PACK() |
||
491 | class SDNodeBitfields { |
||
492 | friend class SDNode; |
||
493 | friend class MemIntrinsicSDNode; |
||
494 | friend class MemSDNode; |
||
495 | friend class SelectionDAG; |
||
496 | |||
497 | uint16_t HasDebugValue : 1; |
||
498 | uint16_t IsMemIntrinsic : 1; |
||
499 | uint16_t IsDivergent : 1; |
||
500 | }; |
||
501 | enum { NumSDNodeBits = 3 }; |
||
502 | |||
503 | class ConstantSDNodeBitfields { |
||
504 | friend class ConstantSDNode; |
||
505 | |||
506 | uint16_t : NumSDNodeBits; |
||
507 | |||
508 | uint16_t IsOpaque : 1; |
||
509 | }; |
||
510 | |||
511 | class MemSDNodeBitfields { |
||
512 | friend class MemSDNode; |
||
513 | friend class MemIntrinsicSDNode; |
||
514 | friend class AtomicSDNode; |
||
515 | |||
516 | uint16_t : NumSDNodeBits; |
||
517 | |||
518 | uint16_t IsVolatile : 1; |
||
519 | uint16_t IsNonTemporal : 1; |
||
520 | uint16_t IsDereferenceable : 1; |
||
521 | uint16_t IsInvariant : 1; |
||
522 | }; |
||
523 | enum { NumMemSDNodeBits = NumSDNodeBits + 4 }; |
||
524 | |||
525 | class LSBaseSDNodeBitfields { |
||
526 | friend class LSBaseSDNode; |
||
527 | friend class VPBaseLoadStoreSDNode; |
||
528 | friend class MaskedLoadStoreSDNode; |
||
529 | friend class MaskedGatherScatterSDNode; |
||
530 | friend class VPGatherScatterSDNode; |
||
531 | |||
532 | uint16_t : NumMemSDNodeBits; |
||
533 | |||
534 | // This storage is shared between disparate class hierarchies to hold an |
||
535 | // enumeration specific to the class hierarchy in use. |
||
536 | // LSBaseSDNode => enum ISD::MemIndexedMode |
||
537 | // VPLoadStoreBaseSDNode => enum ISD::MemIndexedMode |
||
538 | // MaskedLoadStoreBaseSDNode => enum ISD::MemIndexedMode |
||
539 | // VPGatherScatterSDNode => enum ISD::MemIndexType |
||
540 | // MaskedGatherScatterSDNode => enum ISD::MemIndexType |
||
541 | uint16_t AddressingMode : 3; |
||
542 | }; |
||
543 | enum { NumLSBaseSDNodeBits = NumMemSDNodeBits + 3 }; |
||
544 | |||
545 | class LoadSDNodeBitfields { |
||
546 | friend class LoadSDNode; |
||
547 | friend class VPLoadSDNode; |
||
548 | friend class VPStridedLoadSDNode; |
||
549 | friend class MaskedLoadSDNode; |
||
550 | friend class MaskedGatherSDNode; |
||
551 | friend class VPGatherSDNode; |
||
552 | |||
553 | uint16_t : NumLSBaseSDNodeBits; |
||
554 | |||
555 | uint16_t ExtTy : 2; // enum ISD::LoadExtType |
||
556 | uint16_t IsExpanding : 1; |
||
557 | }; |
||
558 | |||
559 | class StoreSDNodeBitfields { |
||
560 | friend class StoreSDNode; |
||
561 | friend class VPStoreSDNode; |
||
562 | friend class VPStridedStoreSDNode; |
||
563 | friend class MaskedStoreSDNode; |
||
564 | friend class MaskedScatterSDNode; |
||
565 | friend class VPScatterSDNode; |
||
566 | |||
567 | uint16_t : NumLSBaseSDNodeBits; |
||
568 | |||
569 | uint16_t IsTruncating : 1; |
||
570 | uint16_t IsCompressing : 1; |
||
571 | }; |
||
572 | |||
573 | union { |
||
574 | char RawSDNodeBits[sizeof(uint16_t)]; |
||
575 | SDNodeBitfields SDNodeBits; |
||
576 | ConstantSDNodeBitfields ConstantSDNodeBits; |
||
577 | MemSDNodeBitfields MemSDNodeBits; |
||
578 | LSBaseSDNodeBitfields LSBaseSDNodeBits; |
||
579 | LoadSDNodeBitfields LoadSDNodeBits; |
||
580 | StoreSDNodeBitfields StoreSDNodeBits; |
||
581 | }; |
||
582 | END_TWO_BYTE_PACK() |
||
583 | #undef BEGIN_TWO_BYTE_PACK |
||
584 | #undef END_TWO_BYTE_PACK |
||
585 | |||
586 | // RawSDNodeBits must cover the entirety of the union. This means that all of |
||
587 | // the union's members must have size <= RawSDNodeBits. We write the RHS as |
||
588 | // "2" instead of sizeof(RawSDNodeBits) because MSVC can't handle the latter. |
||
589 | static_assert(sizeof(SDNodeBitfields) <= 2, "field too wide"); |
||
590 | static_assert(sizeof(ConstantSDNodeBitfields) <= 2, "field too wide"); |
||
591 | static_assert(sizeof(MemSDNodeBitfields) <= 2, "field too wide"); |
||
592 | static_assert(sizeof(LSBaseSDNodeBitfields) <= 2, "field too wide"); |
||
593 | static_assert(sizeof(LoadSDNodeBitfields) <= 2, "field too wide"); |
||
594 | static_assert(sizeof(StoreSDNodeBitfields) <= 2, "field too wide"); |
||
595 | |||
596 | private: |
||
597 | friend class SelectionDAG; |
||
598 | // TODO: unfriend HandleSDNode once we fix its operand handling. |
||
599 | friend class HandleSDNode; |
||
600 | |||
601 | /// Unique id per SDNode in the DAG. |
||
602 | int NodeId = -1; |
||
603 | |||
604 | /// The values that are used by this operation. |
||
605 | SDUse *OperandList = nullptr; |
||
606 | |||
607 | /// The types of the values this node defines. SDNode's may |
||
608 | /// define multiple values simultaneously. |
||
609 | const EVT *ValueList; |
||
610 | |||
611 | /// List of uses for this SDNode. |
||
612 | SDUse *UseList = nullptr; |
||
613 | |||
614 | /// The number of entries in the Operand/Value list. |
||
615 | unsigned short NumOperands = 0; |
||
616 | unsigned short NumValues; |
||
617 | |||
618 | // The ordering of the SDNodes. It roughly corresponds to the ordering of the |
||
619 | // original LLVM instructions. |
||
620 | // This is used for turning off scheduling, because we'll forgo |
||
621 | // the normal scheduling algorithms and output the instructions according to |
||
622 | // this ordering. |
||
623 | unsigned IROrder; |
||
624 | |||
625 | /// Source line information. |
||
626 | DebugLoc debugLoc; |
||
627 | |||
628 | /// Return a pointer to the specified value type. |
||
629 | static const EVT *getValueTypeList(EVT VT); |
||
630 | |||
631 | SDNodeFlags Flags; |
||
632 | |||
633 | uint32_t CFIType = 0; |
||
634 | |||
635 | public: |
||
636 | //===--------------------------------------------------------------------===// |
||
637 | // Accessors |
||
638 | // |
||
639 | |||
640 | /// Return the SelectionDAG opcode value for this node. For |
||
641 | /// pre-isel nodes (those for which isMachineOpcode returns false), these |
||
642 | /// are the opcode values in the ISD and <target>ISD namespaces. For |
||
643 | /// post-isel opcodes, see getMachineOpcode. |
||
644 | unsigned getOpcode() const { return (unsigned)NodeType; } |
||
645 | |||
646 | /// Test if this node has a target-specific opcode (in the |
||
647 | /// \<target\>ISD namespace). |
||
648 | bool isTargetOpcode() const { return NodeType >= ISD::BUILTIN_OP_END; } |
||
649 | |||
650 | /// Test if this node has a target-specific opcode that may raise |
||
651 | /// FP exceptions (in the \<target\>ISD namespace and greater than |
||
652 | /// FIRST_TARGET_STRICTFP_OPCODE). Note that all target memory |
||
653 | /// opcode are currently automatically considered to possibly raise |
||
654 | /// FP exceptions as well. |
||
655 | bool isTargetStrictFPOpcode() const { |
||
656 | return NodeType >= ISD::FIRST_TARGET_STRICTFP_OPCODE; |
||
657 | } |
||
658 | |||
659 | /// Test if this node has a target-specific |
||
660 | /// memory-referencing opcode (in the \<target\>ISD namespace and |
||
661 | /// greater than FIRST_TARGET_MEMORY_OPCODE). |
||
662 | bool isTargetMemoryOpcode() const { |
||
663 | return NodeType >= ISD::FIRST_TARGET_MEMORY_OPCODE; |
||
664 | } |
||
665 | |||
666 | /// Return true if the type of the node type undefined. |
||
667 | bool isUndef() const { return NodeType == ISD::UNDEF; } |
||
668 | |||
669 | /// Test if this node is a memory intrinsic (with valid pointer information). |
||
670 | /// INTRINSIC_W_CHAIN and INTRINSIC_VOID nodes are sometimes created for |
||
671 | /// non-memory intrinsics (with chains) that are not really instances of |
||
672 | /// MemSDNode. For such nodes, we need some extra state to determine the |
||
673 | /// proper classof relationship. |
||
674 | bool isMemIntrinsic() const { |
||
675 | return (NodeType == ISD::INTRINSIC_W_CHAIN || |
||
676 | NodeType == ISD::INTRINSIC_VOID) && |
||
677 | SDNodeBits.IsMemIntrinsic; |
||
678 | } |
||
679 | |||
680 | /// Test if this node is a strict floating point pseudo-op. |
||
681 | bool isStrictFPOpcode() { |
||
682 | switch (NodeType) { |
||
683 | default: |
||
684 | return false; |
||
685 | case ISD::STRICT_FP16_TO_FP: |
||
686 | case ISD::STRICT_FP_TO_FP16: |
||
687 | #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ |
||
688 | case ISD::STRICT_##DAGN: |
||
689 | #include "llvm/IR/ConstrainedOps.def" |
||
690 | return true; |
||
691 | } |
||
692 | } |
||
693 | |||
694 | /// Test if this node is a vector predication operation. |
||
695 | bool isVPOpcode() const { return ISD::isVPOpcode(getOpcode()); } |
||
696 | |||
697 | /// Test if this node has a post-isel opcode, directly |
||
698 | /// corresponding to a MachineInstr opcode. |
||
699 | bool isMachineOpcode() const { return NodeType < 0; } |
||
700 | |||
701 | /// This may only be called if isMachineOpcode returns |
||
702 | /// true. It returns the MachineInstr opcode value that the node's opcode |
||
703 | /// corresponds to. |
||
704 | unsigned getMachineOpcode() const { |
||
705 | assert(isMachineOpcode() && "Not a MachineInstr opcode!"); |
||
706 | return ~NodeType; |
||
707 | } |
||
708 | |||
709 | bool getHasDebugValue() const { return SDNodeBits.HasDebugValue; } |
||
710 | void setHasDebugValue(bool b) { SDNodeBits.HasDebugValue = b; } |
||
711 | |||
712 | bool isDivergent() const { return SDNodeBits.IsDivergent; } |
||
713 | |||
714 | /// Return true if there are no uses of this node. |
||
715 | bool use_empty() const { return UseList == nullptr; } |
||
716 | |||
717 | /// Return true if there is exactly one use of this node. |
||
718 | bool hasOneUse() const { return hasSingleElement(uses()); } |
||
719 | |||
720 | /// Return the number of uses of this node. This method takes |
||
721 | /// time proportional to the number of uses. |
||
722 | size_t use_size() const { return std::distance(use_begin(), use_end()); } |
||
723 | |||
724 | /// Return the unique node id. |
||
725 | int getNodeId() const { return NodeId; } |
||
726 | |||
727 | /// Set unique node id. |
||
728 | void setNodeId(int Id) { NodeId = Id; } |
||
729 | |||
730 | /// Return the node ordering. |
||
731 | unsigned getIROrder() const { return IROrder; } |
||
732 | |||
733 | /// Set the node ordering. |
||
734 | void setIROrder(unsigned Order) { IROrder = Order; } |
||
735 | |||
736 | /// Return the source location info. |
||
737 | const DebugLoc &getDebugLoc() const { return debugLoc; } |
||
738 | |||
739 | /// Set source location info. Try to avoid this, putting |
||
740 | /// it in the constructor is preferable. |
||
741 | void setDebugLoc(DebugLoc dl) { debugLoc = std::move(dl); } |
||
742 | |||
743 | /// This class provides iterator support for SDUse |
||
744 | /// operands that use a specific SDNode. |
||
745 | class use_iterator { |
||
746 | friend class SDNode; |
||
747 | |||
748 | SDUse *Op = nullptr; |
||
749 | |||
750 | explicit use_iterator(SDUse *op) : Op(op) {} |
||
751 | |||
752 | public: |
||
753 | using iterator_category = std::forward_iterator_tag; |
||
754 | using value_type = SDUse; |
||
755 | using difference_type = std::ptrdiff_t; |
||
756 | using pointer = value_type *; |
||
757 | using reference = value_type &; |
||
758 | |||
759 | use_iterator() = default; |
||
760 | use_iterator(const use_iterator &I) = default; |
||
761 | use_iterator &operator=(const use_iterator &) = default; |
||
762 | |||
763 | bool operator==(const use_iterator &x) const { return Op == x.Op; } |
||
764 | bool operator!=(const use_iterator &x) const { |
||
765 | return !operator==(x); |
||
766 | } |
||
767 | |||
768 | /// Return true if this iterator is at the end of uses list. |
||
769 | bool atEnd() const { return Op == nullptr; } |
||
770 | |||
771 | // Iterator traversal: forward iteration only. |
||
772 | use_iterator &operator++() { // Preincrement |
||
773 | assert(Op && "Cannot increment end iterator!"); |
||
774 | Op = Op->getNext(); |
||
775 | return *this; |
||
776 | } |
||
777 | |||
778 | use_iterator operator++(int) { // Postincrement |
||
779 | use_iterator tmp = *this; ++*this; return tmp; |
||
780 | } |
||
781 | |||
782 | /// Retrieve a pointer to the current user node. |
||
783 | SDNode *operator*() const { |
||
784 | assert(Op && "Cannot dereference end iterator!"); |
||
785 | return Op->getUser(); |
||
786 | } |
||
787 | |||
788 | SDNode *operator->() const { return operator*(); } |
||
789 | |||
790 | SDUse &getUse() const { return *Op; } |
||
791 | |||
792 | /// Retrieve the operand # of this use in its user. |
||
793 | unsigned getOperandNo() const { |
||
794 | assert(Op && "Cannot dereference end iterator!"); |
||
795 | return (unsigned)(Op - Op->getUser()->OperandList); |
||
796 | } |
||
797 | }; |
||
798 | |||
799 | /// Provide iteration support to walk over all uses of an SDNode. |
||
800 | use_iterator use_begin() const { |
||
801 | return use_iterator(UseList); |
||
802 | } |
||
803 | |||
804 | static use_iterator use_end() { return use_iterator(nullptr); } |
||
805 | |||
806 | inline iterator_range<use_iterator> uses() { |
||
807 | return make_range(use_begin(), use_end()); |
||
808 | } |
||
809 | inline iterator_range<use_iterator> uses() const { |
||
810 | return make_range(use_begin(), use_end()); |
||
811 | } |
||
812 | |||
813 | /// Return true if there are exactly NUSES uses of the indicated value. |
||
814 | /// This method ignores uses of other values defined by this operation. |
||
815 | bool hasNUsesOfValue(unsigned NUses, unsigned Value) const; |
||
816 | |||
817 | /// Return true if there are any use of the indicated value. |
||
818 | /// This method ignores uses of other values defined by this operation. |
||
819 | bool hasAnyUseOfValue(unsigned Value) const; |
||
820 | |||
821 | /// Return true if this node is the only use of N. |
||
822 | bool isOnlyUserOf(const SDNode *N) const; |
||
823 | |||
824 | /// Return true if this node is an operand of N. |
||
825 | bool isOperandOf(const SDNode *N) const; |
||
826 | |||
827 | /// Return true if this node is a predecessor of N. |
||
828 | /// NOTE: Implemented on top of hasPredecessor and every bit as |
||
829 | /// expensive. Use carefully. |
||
830 | bool isPredecessorOf(const SDNode *N) const { |
||
831 | return N->hasPredecessor(this); |
||
832 | } |
||
833 | |||
834 | /// Return true if N is a predecessor of this node. |
||
835 | /// N is either an operand of this node, or can be reached by recursively |
||
836 | /// traversing up the operands. |
||
837 | /// NOTE: This is an expensive method. Use it carefully. |
||
838 | bool hasPredecessor(const SDNode *N) const; |
||
839 | |||
840 | /// Returns true if N is a predecessor of any node in Worklist. This |
||
841 | /// helper keeps Visited and Worklist sets externally to allow unions |
||
842 | /// searches to be performed in parallel, caching of results across |
||
843 | /// queries and incremental addition to Worklist. Stops early if N is |
||
844 | /// found but will resume. Remember to clear Visited and Worklists |
||
845 | /// if DAG changes. MaxSteps gives a maximum number of nodes to visit before |
||
846 | /// giving up. The TopologicalPrune flag signals that positive NodeIds are |
||
847 | /// topologically ordered (Operands have strictly smaller node id) and search |
||
848 | /// can be pruned leveraging this. |
||
849 | static bool hasPredecessorHelper(const SDNode *N, |
||
850 | SmallPtrSetImpl<const SDNode *> &Visited, |
||
851 | SmallVectorImpl<const SDNode *> &Worklist, |
||
852 | unsigned int MaxSteps = 0, |
||
853 | bool TopologicalPrune = false) { |
||
854 | SmallVector<const SDNode *, 8> DeferredNodes; |
||
855 | if (Visited.count(N)) |
||
856 | return true; |
||
857 | |||
858 | // Node Id's are assigned in three places: As a topological |
||
859 | // ordering (> 0), during legalization (results in values set to |
||
860 | // 0), new nodes (set to -1). If N has a topolgical id then we |
||
861 | // know that all nodes with ids smaller than it cannot be |
||
862 | // successors and we need not check them. Filter out all node |
||
863 | // that can't be matches. We add them to the worklist before exit |
||
864 | // in case of multiple calls. Note that during selection the topological id |
||
865 | // may be violated if a node's predecessor is selected before it. We mark |
||
866 | // this at selection negating the id of unselected successors and |
||
867 | // restricting topological pruning to positive ids. |
||
868 | |||
869 | int NId = N->getNodeId(); |
||
870 | // If we Invalidated the Id, reconstruct original NId. |
||
871 | if (NId < -1) |
||
872 | NId = -(NId + 1); |
||
873 | |||
874 | bool Found = false; |
||
875 | while (!Worklist.empty()) { |
||
876 | const SDNode *M = Worklist.pop_back_val(); |
||
877 | int MId = M->getNodeId(); |
||
878 | if (TopologicalPrune && M->getOpcode() != ISD::TokenFactor && (NId > 0) && |
||
879 | (MId > 0) && (MId < NId)) { |
||
880 | DeferredNodes.push_back(M); |
||
881 | continue; |
||
882 | } |
||
883 | for (const SDValue &OpV : M->op_values()) { |
||
884 | SDNode *Op = OpV.getNode(); |
||
885 | if (Visited.insert(Op).second) |
||
886 | Worklist.push_back(Op); |
||
887 | if (Op == N) |
||
888 | Found = true; |
||
889 | } |
||
890 | if (Found) |
||
891 | break; |
||
892 | if (MaxSteps != 0 && Visited.size() >= MaxSteps) |
||
893 | break; |
||
894 | } |
||
895 | // Push deferred nodes back on worklist. |
||
896 | Worklist.append(DeferredNodes.begin(), DeferredNodes.end()); |
||
897 | // If we bailed early, conservatively return found. |
||
898 | if (MaxSteps != 0 && Visited.size() >= MaxSteps) |
||
899 | return true; |
||
900 | return Found; |
||
901 | } |
||
902 | |||
903 | /// Return true if all the users of N are contained in Nodes. |
||
904 | /// NOTE: Requires at least one match, but doesn't require them all. |
||
905 | static bool areOnlyUsersOf(ArrayRef<const SDNode *> Nodes, const SDNode *N); |
||
906 | |||
907 | /// Return the number of values used by this operation. |
||
908 | unsigned getNumOperands() const { return NumOperands; } |
||
909 | |||
910 | /// Return the maximum number of operands that a SDNode can hold. |
||
911 | static constexpr size_t getMaxNumOperands() { |
||
912 | return std::numeric_limits<decltype(SDNode::NumOperands)>::max(); |
||
913 | } |
||
914 | |||
915 | /// Helper method returns the integer value of a ConstantSDNode operand. |
||
916 | inline uint64_t getConstantOperandVal(unsigned Num) const; |
||
917 | |||
918 | /// Helper method returns the APInt of a ConstantSDNode operand. |
||
919 | inline const APInt &getConstantOperandAPInt(unsigned Num) const; |
||
920 | |||
921 | const SDValue &getOperand(unsigned Num) const { |
||
922 | assert(Num < NumOperands && "Invalid child # of SDNode!"); |
||
923 | return OperandList[Num]; |
||
924 | } |
||
925 | |||
926 | using op_iterator = SDUse *; |
||
927 | |||
928 | op_iterator op_begin() const { return OperandList; } |
||
929 | op_iterator op_end() const { return OperandList+NumOperands; } |
||
930 | ArrayRef<SDUse> ops() const { return ArrayRef(op_begin(), op_end()); } |
||
931 | |||
932 | /// Iterator for directly iterating over the operand SDValue's. |
||
933 | struct value_op_iterator |
||
934 | : iterator_adaptor_base<value_op_iterator, op_iterator, |
||
935 | std::random_access_iterator_tag, SDValue, |
||
936 | ptrdiff_t, value_op_iterator *, |
||
937 | value_op_iterator *> { |
||
938 | explicit value_op_iterator(SDUse *U = nullptr) |
||
939 | : iterator_adaptor_base(U) {} |
||
940 | |||
941 | const SDValue &operator*() const { return I->get(); } |
||
942 | }; |
||
943 | |||
944 | iterator_range<value_op_iterator> op_values() const { |
||
945 | return make_range(value_op_iterator(op_begin()), |
||
946 | value_op_iterator(op_end())); |
||
947 | } |
||
948 | |||
949 | SDVTList getVTList() const { |
||
950 | SDVTList X = { ValueList, NumValues }; |
||
951 | return X; |
||
952 | } |
||
953 | |||
954 | /// If this node has a glue operand, return the node |
||
955 | /// to which the glue operand points. Otherwise return NULL. |
||
956 | SDNode *getGluedNode() const { |
||
957 | if (getNumOperands() != 0 && |
||
958 | getOperand(getNumOperands()-1).getValueType() == MVT::Glue) |
||
959 | return getOperand(getNumOperands()-1).getNode(); |
||
960 | return nullptr; |
||
961 | } |
||
962 | |||
963 | /// If this node has a glue value with a user, return |
||
964 | /// the user (there is at most one). Otherwise return NULL. |
||
965 | SDNode *getGluedUser() const { |
||
966 | for (use_iterator UI = use_begin(), UE = use_end(); UI != UE; ++UI) |
||
967 | if (UI.getUse().get().getValueType() == MVT::Glue) |
||
968 | return *UI; |
||
969 | return nullptr; |
||
970 | } |
||
971 | |||
972 | SDNodeFlags getFlags() const { return Flags; } |
||
973 | void setFlags(SDNodeFlags NewFlags) { Flags = NewFlags; } |
||
974 | |||
975 | /// Clear any flags in this node that aren't also set in Flags. |
||
976 | /// If Flags is not in a defined state then this has no effect. |
||
977 | void intersectFlagsWith(const SDNodeFlags Flags); |
||
978 | |||
979 | void setCFIType(uint32_t Type) { CFIType = Type; } |
||
980 | uint32_t getCFIType() const { return CFIType; } |
||
981 | |||
982 | /// Return the number of values defined/returned by this operator. |
||
983 | unsigned getNumValues() const { return NumValues; } |
||
984 | |||
985 | /// Return the type of a specified result. |
||
986 | EVT getValueType(unsigned ResNo) const { |
||
987 | assert(ResNo < NumValues && "Illegal result number!"); |
||
988 | return ValueList[ResNo]; |
||
989 | } |
||
990 | |||
991 | /// Return the type of a specified result as a simple type. |
||
992 | MVT getSimpleValueType(unsigned ResNo) const { |
||
993 | return getValueType(ResNo).getSimpleVT(); |
||
994 | } |
||
995 | |||
996 | /// Returns MVT::getSizeInBits(getValueType(ResNo)). |
||
997 | /// |
||
998 | /// If the value type is a scalable vector type, the scalable property will |
||
999 | /// be set and the runtime size will be a positive integer multiple of the |
||
1000 | /// base size. |
||
1001 | TypeSize getValueSizeInBits(unsigned ResNo) const { |
||
1002 | return getValueType(ResNo).getSizeInBits(); |
||
1003 | } |
||
1004 | |||
1005 | using value_iterator = const EVT *; |
||
1006 | |||
1007 | value_iterator value_begin() const { return ValueList; } |
||
1008 | value_iterator value_end() const { return ValueList+NumValues; } |
||
1009 | iterator_range<value_iterator> values() const { |
||
1010 | return llvm::make_range(value_begin(), value_end()); |
||
1011 | } |
||
1012 | |||
1013 | /// Return the opcode of this operation for printing. |
||
1014 | std::string getOperationName(const SelectionDAG *G = nullptr) const; |
||
1015 | static const char* getIndexedModeName(ISD::MemIndexedMode AM); |
||
1016 | void print_types(raw_ostream &OS, const SelectionDAG *G) const; |
||
1017 | void print_details(raw_ostream &OS, const SelectionDAG *G) const; |
||
1018 | void print(raw_ostream &OS, const SelectionDAG *G = nullptr) const; |
||
1019 | void printr(raw_ostream &OS, const SelectionDAG *G = nullptr) const; |
||
1020 | |||
1021 | /// Print a SelectionDAG node and all children down to |
||
1022 | /// the leaves. The given SelectionDAG allows target-specific nodes |
||
1023 | /// to be printed in human-readable form. Unlike printr, this will |
||
1024 | /// print the whole DAG, including children that appear multiple |
||
1025 | /// times. |
||
1026 | /// |
||
1027 | void printrFull(raw_ostream &O, const SelectionDAG *G = nullptr) const; |
||
1028 | |||
1029 | /// Print a SelectionDAG node and children up to |
||
1030 | /// depth "depth." The given SelectionDAG allows target-specific |
||
1031 | /// nodes to be printed in human-readable form. Unlike printr, this |
||
1032 | /// will print children that appear multiple times wherever they are |
||
1033 | /// used. |
||
1034 | /// |
||
1035 | void printrWithDepth(raw_ostream &O, const SelectionDAG *G = nullptr, |
||
1036 | unsigned depth = 100) const; |
||
1037 | |||
1038 | /// Dump this node, for debugging. |
||
1039 | void dump() const; |
||
1040 | |||
1041 | /// Dump (recursively) this node and its use-def subgraph. |
||
1042 | void dumpr() const; |
||
1043 | |||
1044 | /// Dump this node, for debugging. |
||
1045 | /// The given SelectionDAG allows target-specific nodes to be printed |
||
1046 | /// in human-readable form. |
||
1047 | void dump(const SelectionDAG *G) const; |
||
1048 | |||
1049 | /// Dump (recursively) this node and its use-def subgraph. |
||
1050 | /// The given SelectionDAG allows target-specific nodes to be printed |
||
1051 | /// in human-readable form. |
||
1052 | void dumpr(const SelectionDAG *G) const; |
||
1053 | |||
1054 | /// printrFull to dbgs(). The given SelectionDAG allows |
||
1055 | /// target-specific nodes to be printed in human-readable form. |
||
1056 | /// Unlike dumpr, this will print the whole DAG, including children |
||
1057 | /// that appear multiple times. |
||
1058 | void dumprFull(const SelectionDAG *G = nullptr) const; |
||
1059 | |||
1060 | /// printrWithDepth to dbgs(). The given |
||
1061 | /// SelectionDAG allows target-specific nodes to be printed in |
||
1062 | /// human-readable form. Unlike dumpr, this will print children |
||
1063 | /// that appear multiple times wherever they are used. |
||
1064 | /// |
||
1065 | void dumprWithDepth(const SelectionDAG *G = nullptr, |
||
1066 | unsigned depth = 100) const; |
||
1067 | |||
1068 | /// Gather unique data for the node. |
||
1069 | void Profile(FoldingSetNodeID &ID) const; |
||
1070 | |||
1071 | /// This method should only be used by the SDUse class. |
||
1072 | void addUse(SDUse &U) { U.addToList(&UseList); } |
||
1073 | |||
1074 | protected: |
||
1075 | static SDVTList getSDVTList(EVT VT) { |
||
1076 | SDVTList Ret = { getValueTypeList(VT), 1 }; |
||
1077 | return Ret; |
||
1078 | } |
||
1079 | |||
1080 | /// Create an SDNode. |
||
1081 | /// |
||
1082 | /// SDNodes are created without any operands, and never own the operand |
||
1083 | /// storage. To add operands, see SelectionDAG::createOperands. |
||
1084 | SDNode(unsigned Opc, unsigned Order, DebugLoc dl, SDVTList VTs) |
||
1085 | : NodeType(Opc), ValueList(VTs.VTs), NumValues(VTs.NumVTs), |
||
1086 | IROrder(Order), debugLoc(std::move(dl)) { |
||
1087 | memset(&RawSDNodeBits, 0, sizeof(RawSDNodeBits)); |
||
1088 | assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor"); |
||
1089 | assert(NumValues == VTs.NumVTs && |
||
1090 | "NumValues wasn't wide enough for its operands!"); |
||
1091 | } |
||
1092 | |||
1093 | /// Release the operands and set this node to have zero operands. |
||
1094 | void DropOperands(); |
||
1095 | }; |
||
1096 | |||
1097 | /// Wrapper class for IR location info (IR ordering and DebugLoc) to be passed |
||
1098 | /// into SDNode creation functions. |
||
1099 | /// When an SDNode is created from the DAGBuilder, the DebugLoc is extracted |
||
1100 | /// from the original Instruction, and IROrder is the ordinal position of |
||
1101 | /// the instruction. |
||
1102 | /// When an SDNode is created after the DAG is being built, both DebugLoc and |
||
1103 | /// the IROrder are propagated from the original SDNode. |
||
1104 | /// So SDLoc class provides two constructors besides the default one, one to |
||
1105 | /// be used by the DAGBuilder, the other to be used by others. |
||
1106 | class SDLoc { |
||
1107 | private: |
||
1108 | DebugLoc DL; |
||
1109 | int IROrder = 0; |
||
1110 | |||
1111 | public: |
||
1112 | SDLoc() = default; |
||
1113 | SDLoc(const SDNode *N) : DL(N->getDebugLoc()), IROrder(N->getIROrder()) {} |
||
1114 | SDLoc(const SDValue V) : SDLoc(V.getNode()) {} |
||
1115 | SDLoc(const Instruction *I, int Order) : IROrder(Order) { |
||
1116 | assert(Order >= 0 && "bad IROrder"); |
||
1117 | if (I) |
||
1118 | DL = I->getDebugLoc(); |
||
1119 | } |
||
1120 | |||
1121 | unsigned getIROrder() const { return IROrder; } |
||
1122 | const DebugLoc &getDebugLoc() const { return DL; } |
||
1123 | }; |
||
1124 | |||
1125 | // Define inline functions from the SDValue class. |
||
1126 | |||
1127 | inline SDValue::SDValue(SDNode *node, unsigned resno) |
||
1128 | : Node(node), ResNo(resno) { |
||
1129 | // Explicitly check for !ResNo to avoid use-after-free, because there are |
||
1130 | // callers that use SDValue(N, 0) with a deleted N to indicate successful |
||
1131 | // combines. |
||
1132 | assert((!Node || !ResNo || ResNo < Node->getNumValues()) && |
||
1133 | "Invalid result number for the given node!"); |
||
1134 | assert(ResNo < -2U && "Cannot use result numbers reserved for DenseMaps."); |
||
1135 | } |
||
1136 | |||
1137 | inline unsigned SDValue::getOpcode() const { |
||
1138 | return Node->getOpcode(); |
||
1139 | } |
||
1140 | |||
1141 | inline EVT SDValue::getValueType() const { |
||
1142 | return Node->getValueType(ResNo); |
||
1143 | } |
||
1144 | |||
1145 | inline unsigned SDValue::getNumOperands() const { |
||
1146 | return Node->getNumOperands(); |
||
1147 | } |
||
1148 | |||
1149 | inline const SDValue &SDValue::getOperand(unsigned i) const { |
||
1150 | return Node->getOperand(i); |
||
1151 | } |
||
1152 | |||
1153 | inline uint64_t SDValue::getConstantOperandVal(unsigned i) const { |
||
1154 | return Node->getConstantOperandVal(i); |
||
1155 | } |
||
1156 | |||
1157 | inline const APInt &SDValue::getConstantOperandAPInt(unsigned i) const { |
||
1158 | return Node->getConstantOperandAPInt(i); |
||
1159 | } |
||
1160 | |||
1161 | inline bool SDValue::isTargetOpcode() const { |
||
1162 | return Node->isTargetOpcode(); |
||
1163 | } |
||
1164 | |||
1165 | inline bool SDValue::isTargetMemoryOpcode() const { |
||
1166 | return Node->isTargetMemoryOpcode(); |
||
1167 | } |
||
1168 | |||
1169 | inline bool SDValue::isMachineOpcode() const { |
||
1170 | return Node->isMachineOpcode(); |
||
1171 | } |
||
1172 | |||
1173 | inline unsigned SDValue::getMachineOpcode() const { |
||
1174 | return Node->getMachineOpcode(); |
||
1175 | } |
||
1176 | |||
1177 | inline bool SDValue::isUndef() const { |
||
1178 | return Node->isUndef(); |
||
1179 | } |
||
1180 | |||
1181 | inline bool SDValue::use_empty() const { |
||
1182 | return !Node->hasAnyUseOfValue(ResNo); |
||
1183 | } |
||
1184 | |||
1185 | inline bool SDValue::hasOneUse() const { |
||
1186 | return Node->hasNUsesOfValue(1, ResNo); |
||
1187 | } |
||
1188 | |||
1189 | inline const DebugLoc &SDValue::getDebugLoc() const { |
||
1190 | return Node->getDebugLoc(); |
||
1191 | } |
||
1192 | |||
1193 | inline void SDValue::dump() const { |
||
1194 | return Node->dump(); |
||
1195 | } |
||
1196 | |||
1197 | inline void SDValue::dump(const SelectionDAG *G) const { |
||
1198 | return Node->dump(G); |
||
1199 | } |
||
1200 | |||
1201 | inline void SDValue::dumpr() const { |
||
1202 | return Node->dumpr(); |
||
1203 | } |
||
1204 | |||
1205 | inline void SDValue::dumpr(const SelectionDAG *G) const { |
||
1206 | return Node->dumpr(G); |
||
1207 | } |
||
1208 | |||
1209 | // Define inline functions from the SDUse class. |
||
1210 | |||
1211 | inline void SDUse::set(const SDValue &V) { |
||
1212 | if (Val.getNode()) removeFromList(); |
||
1213 | Val = V; |
||
1214 | if (V.getNode()) |
||
1215 | V->addUse(*this); |
||
1216 | } |
||
1217 | |||
1218 | inline void SDUse::setInitial(const SDValue &V) { |
||
1219 | Val = V; |
||
1220 | V->addUse(*this); |
||
1221 | } |
||
1222 | |||
1223 | inline void SDUse::setNode(SDNode *N) { |
||
1224 | if (Val.getNode()) removeFromList(); |
||
1225 | Val.setNode(N); |
||
1226 | if (N) N->addUse(*this); |
||
1227 | } |
||
1228 | |||
1229 | /// This class is used to form a handle around another node that |
||
1230 | /// is persistent and is updated across invocations of replaceAllUsesWith on its |
||
1231 | /// operand. This node should be directly created by end-users and not added to |
||
1232 | /// the AllNodes list. |
||
1233 | class HandleSDNode : public SDNode { |
||
1234 | SDUse Op; |
||
1235 | |||
1236 | public: |
||
1237 | explicit HandleSDNode(SDValue X) |
||
1238 | : SDNode(ISD::HANDLENODE, 0, DebugLoc(), getSDVTList(MVT::Other)) { |
||
1239 | // HandleSDNodes are never inserted into the DAG, so they won't be |
||
1240 | // auto-numbered. Use ID 65535 as a sentinel. |
||
1241 | PersistentId = 0xffff; |
||
1242 | |||
1243 | // Manually set up the operand list. This node type is special in that it's |
||
1244 | // always stack allocated and SelectionDAG does not manage its operands. |
||
1245 | // TODO: This should either (a) not be in the SDNode hierarchy, or (b) not |
||
1246 | // be so special. |
||
1247 | Op.setUser(this); |
||
1248 | Op.setInitial(X); |
||
1249 | NumOperands = 1; |
||
1250 | OperandList = &Op; |
||
1251 | } |
||
1252 | ~HandleSDNode(); |
||
1253 | |||
1254 | const SDValue &getValue() const { return Op; } |
||
1255 | }; |
||
1256 | |||
1257 | class AddrSpaceCastSDNode : public SDNode { |
||
1258 | private: |
||
1259 | unsigned SrcAddrSpace; |
||
1260 | unsigned DestAddrSpace; |
||
1261 | |||
1262 | public: |
||
1263 | AddrSpaceCastSDNode(unsigned Order, const DebugLoc &dl, EVT VT, |
||
1264 | unsigned SrcAS, unsigned DestAS); |
||
1265 | |||
1266 | unsigned getSrcAddressSpace() const { return SrcAddrSpace; } |
||
1267 | unsigned getDestAddressSpace() const { return DestAddrSpace; } |
||
1268 | |||
1269 | static bool classof(const SDNode *N) { |
||
1270 | return N->getOpcode() == ISD::ADDRSPACECAST; |
||
1271 | } |
||
1272 | }; |
||
1273 | |||
1274 | /// This is an abstract virtual class for memory operations. |
||
1275 | class MemSDNode : public SDNode { |
||
1276 | private: |
||
1277 | // VT of in-memory value. |
||
1278 | EVT MemoryVT; |
||
1279 | |||
1280 | protected: |
||
1281 | /// Memory reference information. |
||
1282 | MachineMemOperand *MMO; |
||
1283 | |||
1284 | public: |
||
1285 | MemSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl, SDVTList VTs, |
||
1286 | EVT memvt, MachineMemOperand *MMO); |
||
1287 | |||
1288 | bool readMem() const { return MMO->isLoad(); } |
||
1289 | bool writeMem() const { return MMO->isStore(); } |
||
1290 | |||
1291 | /// Returns alignment and volatility of the memory access |
||
1292 | Align getOriginalAlign() const { return MMO->getBaseAlign(); } |
||
1293 | Align getAlign() const { return MMO->getAlign(); } |
||
1294 | |||
1295 | /// Return the SubclassData value, without HasDebugValue. This contains an |
||
1296 | /// encoding of the volatile flag, as well as bits used by subclasses. This |
||
1297 | /// function should only be used to compute a FoldingSetNodeID value. |
||
1298 | /// The HasDebugValue bit is masked out because CSE map needs to match |
||
1299 | /// nodes with debug info with nodes without debug info. Same is about |
||
1300 | /// isDivergent bit. |
||
1301 | unsigned getRawSubclassData() const { |
||
1302 | uint16_t Data; |
||
1303 | union { |
||
1304 | char RawSDNodeBits[sizeof(uint16_t)]; |
||
1305 | SDNodeBitfields SDNodeBits; |
||
1306 | }; |
||
1307 | memcpy(&RawSDNodeBits, &this->RawSDNodeBits, sizeof(this->RawSDNodeBits)); |
||
1308 | SDNodeBits.HasDebugValue = 0; |
||
1309 | SDNodeBits.IsDivergent = false; |
||
1310 | memcpy(&Data, &RawSDNodeBits, sizeof(RawSDNodeBits)); |
||
1311 | return Data; |
||
1312 | } |
||
1313 | |||
1314 | bool isVolatile() const { return MemSDNodeBits.IsVolatile; } |
||
1315 | bool isNonTemporal() const { return MemSDNodeBits.IsNonTemporal; } |
||
1316 | bool isDereferenceable() const { return MemSDNodeBits.IsDereferenceable; } |
||
1317 | bool isInvariant() const { return MemSDNodeBits.IsInvariant; } |
||
1318 | |||
1319 | // Returns the offset from the location of the access. |
||
1320 | int64_t getSrcValueOffset() const { return MMO->getOffset(); } |
||
1321 | |||
1322 | /// Returns the AA info that describes the dereference. |
||
1323 | AAMDNodes getAAInfo() const { return MMO->getAAInfo(); } |
||
1324 | |||
1325 | /// Returns the Ranges that describes the dereference. |
||
1326 | const MDNode *getRanges() const { return MMO->getRanges(); } |
||
1327 | |||
1328 | /// Returns the synchronization scope ID for this memory operation. |
||
1329 | SyncScope::ID getSyncScopeID() const { return MMO->getSyncScopeID(); } |
||
1330 | |||
1331 | /// Return the atomic ordering requirements for this memory operation. For |
||
1332 | /// cmpxchg atomic operations, return the atomic ordering requirements when |
||
1333 | /// store occurs. |
||
1334 | AtomicOrdering getSuccessOrdering() const { |
||
1335 | return MMO->getSuccessOrdering(); |
||
1336 | } |
||
1337 | |||
1338 | /// Return a single atomic ordering that is at least as strong as both the |
||
1339 | /// success and failure orderings for an atomic operation. (For operations |
||
1340 | /// other than cmpxchg, this is equivalent to getSuccessOrdering().) |
||
1341 | AtomicOrdering getMergedOrdering() const { return MMO->getMergedOrdering(); } |
||
1342 | |||
1343 | /// Return true if the memory operation ordering is Unordered or higher. |
||
1344 | bool isAtomic() const { return MMO->isAtomic(); } |
||
1345 | |||
1346 | /// Returns true if the memory operation doesn't imply any ordering |
||
1347 | /// constraints on surrounding memory operations beyond the normal memory |
||
1348 | /// aliasing rules. |
||
1349 | bool isUnordered() const { return MMO->isUnordered(); } |
||
1350 | |||
1351 | /// Returns true if the memory operation is neither atomic or volatile. |
||
1352 | bool isSimple() const { return !isAtomic() && !isVolatile(); } |
||
1353 | |||
1354 | /// Return the type of the in-memory value. |
||
1355 | EVT getMemoryVT() const { return MemoryVT; } |
||
1356 | |||
1357 | /// Return a MachineMemOperand object describing the memory |
||
1358 | /// reference performed by operation. |
||
1359 | MachineMemOperand *getMemOperand() const { return MMO; } |
||
1360 | |||
1361 | const MachinePointerInfo &getPointerInfo() const { |
||
1362 | return MMO->getPointerInfo(); |
||
1363 | } |
||
1364 | |||
1365 | /// Return the address space for the associated pointer |
||
1366 | unsigned getAddressSpace() const { |
||
1367 | return getPointerInfo().getAddrSpace(); |
||
1368 | } |
||
1369 | |||
1370 | /// Update this MemSDNode's MachineMemOperand information |
||
1371 | /// to reflect the alignment of NewMMO, if it has a greater alignment. |
||
1372 | /// This must only be used when the new alignment applies to all users of |
||
1373 | /// this MachineMemOperand. |
||
1374 | void refineAlignment(const MachineMemOperand *NewMMO) { |
||
1375 | MMO->refineAlignment(NewMMO); |
||
1376 | } |
||
1377 | |||
1378 | const SDValue &getChain() const { return getOperand(0); } |
||
1379 | |||
1380 | const SDValue &getBasePtr() const { |
||
1381 | switch (getOpcode()) { |
||
1382 | case ISD::STORE: |
||
1383 | case ISD::VP_STORE: |
||
1384 | case ISD::MSTORE: |
||
1385 | case ISD::VP_SCATTER: |
||
1386 | case ISD::EXPERIMENTAL_VP_STRIDED_STORE: |
||
1387 | return getOperand(2); |
||
1388 | case ISD::MGATHER: |
||
1389 | case ISD::MSCATTER: |
||
1390 | return getOperand(3); |
||
1391 | default: |
||
1392 | return getOperand(1); |
||
1393 | } |
||
1394 | } |
||
1395 | |||
1396 | // Methods to support isa and dyn_cast |
||
1397 | static bool classof(const SDNode *N) { |
||
1398 | // For some targets, we lower some target intrinsics to a MemIntrinsicNode |
||
1399 | // with either an intrinsic or a target opcode. |
||
1400 | switch (N->getOpcode()) { |
||
1401 | case ISD::LOAD: |
||
1402 | case ISD::STORE: |
||
1403 | case ISD::PREFETCH: |
||
1404 | case ISD::ATOMIC_CMP_SWAP: |
||
1405 | case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: |
||
1406 | case ISD::ATOMIC_SWAP: |
||
1407 | case ISD::ATOMIC_LOAD_ADD: |
||
1408 | case ISD::ATOMIC_LOAD_SUB: |
||
1409 | case ISD::ATOMIC_LOAD_AND: |
||
1410 | case ISD::ATOMIC_LOAD_CLR: |
||
1411 | case ISD::ATOMIC_LOAD_OR: |
||
1412 | case ISD::ATOMIC_LOAD_XOR: |
||
1413 | case ISD::ATOMIC_LOAD_NAND: |
||
1414 | case ISD::ATOMIC_LOAD_MIN: |
||
1415 | case ISD::ATOMIC_LOAD_MAX: |
||
1416 | case ISD::ATOMIC_LOAD_UMIN: |
||
1417 | case ISD::ATOMIC_LOAD_UMAX: |
||
1418 | case ISD::ATOMIC_LOAD_FADD: |
||
1419 | case ISD::ATOMIC_LOAD_FSUB: |
||
1420 | case ISD::ATOMIC_LOAD_FMAX: |
||
1421 | case ISD::ATOMIC_LOAD_FMIN: |
||
1422 | case ISD::ATOMIC_LOAD_UINC_WRAP: |
||
1423 | case ISD::ATOMIC_LOAD_UDEC_WRAP: |
||
1424 | case ISD::ATOMIC_LOAD: |
||
1425 | case ISD::ATOMIC_STORE: |
||
1426 | case ISD::MLOAD: |
||
1427 | case ISD::MSTORE: |
||
1428 | case ISD::MGATHER: |
||
1429 | case ISD::MSCATTER: |
||
1430 | case ISD::VP_LOAD: |
||
1431 | case ISD::VP_STORE: |
||
1432 | case ISD::VP_GATHER: |
||
1433 | case ISD::VP_SCATTER: |
||
1434 | case ISD::EXPERIMENTAL_VP_STRIDED_LOAD: |
||
1435 | case ISD::EXPERIMENTAL_VP_STRIDED_STORE: |
||
1436 | return true; |
||
1437 | default: |
||
1438 | return N->isMemIntrinsic() || N->isTargetMemoryOpcode(); |
||
1439 | } |
||
1440 | } |
||
1441 | }; |
||
1442 | |||
1443 | /// This is an SDNode representing atomic operations. |
||
1444 | class AtomicSDNode : public MemSDNode { |
||
1445 | public: |
||
1446 | AtomicSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl, SDVTList VTL, |
||
1447 | EVT MemVT, MachineMemOperand *MMO) |
||
1448 | : MemSDNode(Opc, Order, dl, VTL, MemVT, MMO) { |
||
1449 | assert(((Opc != ISD::ATOMIC_LOAD && Opc != ISD::ATOMIC_STORE) || |
||
1450 | MMO->isAtomic()) && "then why are we using an AtomicSDNode?"); |
||
1451 | } |
||
1452 | |||
1453 | const SDValue &getBasePtr() const { return getOperand(1); } |
||
1454 | const SDValue &getVal() const { return getOperand(2); } |
||
1455 | |||
1456 | /// Returns true if this SDNode represents cmpxchg atomic operation, false |
||
1457 | /// otherwise. |
||
1458 | bool isCompareAndSwap() const { |
||
1459 | unsigned Op = getOpcode(); |
||
1460 | return Op == ISD::ATOMIC_CMP_SWAP || |
||
1461 | Op == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS; |
||
1462 | } |
||
1463 | |||
1464 | /// For cmpxchg atomic operations, return the atomic ordering requirements |
||
1465 | /// when store does not occur. |
||
1466 | AtomicOrdering getFailureOrdering() const { |
||
1467 | assert(isCompareAndSwap() && "Must be cmpxchg operation"); |
||
1468 | return MMO->getFailureOrdering(); |
||
1469 | } |
||
1470 | |||
1471 | // Methods to support isa and dyn_cast |
||
1472 | static bool classof(const SDNode *N) { |
||
1473 | return N->getOpcode() == ISD::ATOMIC_CMP_SWAP || |
||
1474 | N->getOpcode() == ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS || |
||
1475 | N->getOpcode() == ISD::ATOMIC_SWAP || |
||
1476 | N->getOpcode() == ISD::ATOMIC_LOAD_ADD || |
||
1477 | N->getOpcode() == ISD::ATOMIC_LOAD_SUB || |
||
1478 | N->getOpcode() == ISD::ATOMIC_LOAD_AND || |
||
1479 | N->getOpcode() == ISD::ATOMIC_LOAD_CLR || |
||
1480 | N->getOpcode() == ISD::ATOMIC_LOAD_OR || |
||
1481 | N->getOpcode() == ISD::ATOMIC_LOAD_XOR || |
||
1482 | N->getOpcode() == ISD::ATOMIC_LOAD_NAND || |
||
1483 | N->getOpcode() == ISD::ATOMIC_LOAD_MIN || |
||
1484 | N->getOpcode() == ISD::ATOMIC_LOAD_MAX || |
||
1485 | N->getOpcode() == ISD::ATOMIC_LOAD_UMIN || |
||
1486 | N->getOpcode() == ISD::ATOMIC_LOAD_UMAX || |
||
1487 | N->getOpcode() == ISD::ATOMIC_LOAD_FADD || |
||
1488 | N->getOpcode() == ISD::ATOMIC_LOAD_FSUB || |
||
1489 | N->getOpcode() == ISD::ATOMIC_LOAD_FMAX || |
||
1490 | N->getOpcode() == ISD::ATOMIC_LOAD_FMIN || |
||
1491 | N->getOpcode() == ISD::ATOMIC_LOAD_UINC_WRAP || |
||
1492 | N->getOpcode() == ISD::ATOMIC_LOAD_UDEC_WRAP || |
||
1493 | N->getOpcode() == ISD::ATOMIC_LOAD || |
||
1494 | N->getOpcode() == ISD::ATOMIC_STORE; |
||
1495 | } |
||
1496 | }; |
||
1497 | |||
1498 | /// This SDNode is used for target intrinsics that touch |
||
1499 | /// memory and need an associated MachineMemOperand. Its opcode may be |
||
1500 | /// INTRINSIC_VOID, INTRINSIC_W_CHAIN, PREFETCH, or a target-specific opcode |
||
1501 | /// with a value not less than FIRST_TARGET_MEMORY_OPCODE. |
||
1502 | class MemIntrinsicSDNode : public MemSDNode { |
||
1503 | public: |
||
1504 | MemIntrinsicSDNode(unsigned Opc, unsigned Order, const DebugLoc &dl, |
||
1505 | SDVTList VTs, EVT MemoryVT, MachineMemOperand *MMO) |
||
1506 | : MemSDNode(Opc, Order, dl, VTs, MemoryVT, MMO) { |
||
1507 | SDNodeBits.IsMemIntrinsic = true; |
||
1508 | } |
||
1509 | |||
1510 | // Methods to support isa and dyn_cast |
||
1511 | static bool classof(const SDNode *N) { |
||
1512 | // We lower some target intrinsics to their target opcode |
||
1513 | // early a node with a target opcode can be of this class |
||
1514 | return N->isMemIntrinsic() || |
||
1515 | N->getOpcode() == ISD::PREFETCH || |
||
1516 | N->isTargetMemoryOpcode(); |
||
1517 | } |
||
1518 | }; |
||
1519 | |||
1520 | /// This SDNode is used to implement the code generator |
||
1521 | /// support for the llvm IR shufflevector instruction. It combines elements |
||
1522 | /// from two input vectors into a new input vector, with the selection and |
||
1523 | /// ordering of elements determined by an array of integers, referred to as |
||
1524 | /// the shuffle mask. For input vectors of width N, mask indices of 0..N-1 |
||
1525 | /// refer to elements from the LHS input, and indices from N to 2N-1 the RHS. |
||
1526 | /// An index of -1 is treated as undef, such that the code generator may put |
||
1527 | /// any value in the corresponding element of the result. |
||
1528 | class ShuffleVectorSDNode : public SDNode { |
||
1529 | // The memory for Mask is owned by the SelectionDAG's OperandAllocator, and |
||
1530 | // is freed when the SelectionDAG object is destroyed. |
||
1531 | const int *Mask; |
||
1532 | |||
1533 | protected: |
||
1534 | friend class SelectionDAG; |
||
1535 | |||
1536 | ShuffleVectorSDNode(EVT VT, unsigned Order, const DebugLoc &dl, const int *M) |
||
1537 | : SDNode(ISD::VECTOR_SHUFFLE, Order, dl, getSDVTList(VT)), Mask(M) {} |
||
1538 | |||
1539 | public: |
||
1540 | ArrayRef<int> getMask() const { |
||
1541 | EVT VT = getValueType(0); |
||
1542 | return ArrayRef(Mask, VT.getVectorNumElements()); |
||
1543 | } |
||
1544 | |||
1545 | int getMaskElt(unsigned Idx) const { |
||
1546 | assert(Idx < getValueType(0).getVectorNumElements() && "Idx out of range!"); |
||
1547 | return Mask[Idx]; |
||
1548 | } |
||
1549 | |||
1550 | bool isSplat() const { return isSplatMask(Mask, getValueType(0)); } |
||
1551 | |||
1552 | int getSplatIndex() const { |
||
1553 | assert(isSplat() && "Cannot get splat index for non-splat!"); |
||
1554 | EVT VT = getValueType(0); |
||
1555 | for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) |
||
1556 | if (Mask[i] >= 0) |
||
1557 | return Mask[i]; |
||
1558 | |||
1559 | // We can choose any index value here and be correct because all elements |
||
1560 | // are undefined. Return 0 for better potential for callers to simplify. |
||
1561 | return 0; |
||
1562 | } |
||
1563 | |||
1564 | static bool isSplatMask(const int *Mask, EVT VT); |
||
1565 | |||
1566 | /// Change values in a shuffle permute mask assuming |
||
1567 | /// the two vector operands have swapped position. |
||
1568 | static void commuteMask(MutableArrayRef<int> Mask) { |
||
1569 | unsigned NumElems = Mask.size(); |
||
1570 | for (unsigned i = 0; i != NumElems; ++i) { |
||
1571 | int idx = Mask[i]; |
||
1572 | if (idx < 0) |
||
1573 | continue; |
||
1574 | else if (idx < (int)NumElems) |
||
1575 | Mask[i] = idx + NumElems; |
||
1576 | else |
||
1577 | Mask[i] = idx - NumElems; |
||
1578 | } |
||
1579 | } |
||
1580 | |||
1581 | static bool classof(const SDNode *N) { |
||
1582 | return N->getOpcode() == ISD::VECTOR_SHUFFLE; |
||
1583 | } |
||
1584 | }; |
||
1585 | |||
1586 | class ConstantSDNode : public SDNode { |
||
1587 | friend class SelectionDAG; |
||
1588 | |||
1589 | const ConstantInt *Value; |
||
1590 | |||
1591 | ConstantSDNode(bool isTarget, bool isOpaque, const ConstantInt *val, EVT VT) |
||
1592 | : SDNode(isTarget ? ISD::TargetConstant : ISD::Constant, 0, DebugLoc(), |
||
1593 | getSDVTList(VT)), |
||
1594 | Value(val) { |
||
1595 | ConstantSDNodeBits.IsOpaque = isOpaque; |
||
1596 | } |
||
1597 | |||
1598 | public: |
||
1599 | const ConstantInt *getConstantIntValue() const { return Value; } |
||
1600 | const APInt &getAPIntValue() const { return Value->getValue(); } |
||
1601 | uint64_t getZExtValue() const { return Value->getZExtValue(); } |
||
1602 | int64_t getSExtValue() const { return Value->getSExtValue(); } |
||
1603 | uint64_t getLimitedValue(uint64_t Limit = UINT64_MAX) { |
||
1604 | return Value->getLimitedValue(Limit); |
||
1605 | } |
||
1606 | MaybeAlign getMaybeAlignValue() const { return Value->getMaybeAlignValue(); } |
||
1607 | Align getAlignValue() const { return Value->getAlignValue(); } |
||
1608 | |||
1609 | bool isOne() const { return Value->isOne(); } |
||
1610 | bool isZero() const { return Value->isZero(); } |
||
1611 | // NOTE: This is soft-deprecated. Please use `isZero()` instead. |
||
1612 | bool isNullValue() const { return isZero(); } |
||
1613 | bool isAllOnes() const { return Value->isMinusOne(); } |
||
1614 | // NOTE: This is soft-deprecated. Please use `isAllOnes()` instead. |
||
1615 | bool isAllOnesValue() const { return isAllOnes(); } |
||
1616 | bool isMaxSignedValue() const { return Value->isMaxValue(true); } |
||
1617 | bool isMinSignedValue() const { return Value->isMinValue(true); } |
||
1618 | |||
1619 | bool isOpaque() const { return ConstantSDNodeBits.IsOpaque; } |
||
1620 | |||
1621 | static bool classof(const SDNode *N) { |
||
1622 | return N->getOpcode() == ISD::Constant || |
||
1623 | N->getOpcode() == ISD::TargetConstant; |
||
1624 | } |
||
1625 | }; |
||
1626 | |||
1627 | uint64_t SDNode::getConstantOperandVal(unsigned Num) const { |
||
1628 | return cast<ConstantSDNode>(getOperand(Num))->getZExtValue(); |
||
1629 | } |
||
1630 | |||
1631 | const APInt &SDNode::getConstantOperandAPInt(unsigned Num) const { |
||
1632 | return cast<ConstantSDNode>(getOperand(Num))->getAPIntValue(); |
||
1633 | } |
||
1634 | |||
1635 | class ConstantFPSDNode : public SDNode { |
||
1636 | friend class SelectionDAG; |
||
1637 | |||
1638 | const ConstantFP *Value; |
||
1639 | |||
1640 | ConstantFPSDNode(bool isTarget, const ConstantFP *val, EVT VT) |
||
1641 | : SDNode(isTarget ? ISD::TargetConstantFP : ISD::ConstantFP, 0, |
||
1642 | DebugLoc(), getSDVTList(VT)), |
||
1643 | Value(val) {} |
||
1644 | |||
1645 | public: |
||
1646 | const APFloat& getValueAPF() const { return Value->getValueAPF(); } |
||
1647 | const ConstantFP *getConstantFPValue() const { return Value; } |
||
1648 | |||
1649 | /// Return true if the value is positive or negative zero. |
||
1650 | bool isZero() const { return Value->isZero(); } |
||
1651 | |||
1652 | /// Return true if the value is a NaN. |
||
1653 | bool isNaN() const { return Value->isNaN(); } |
||
1654 | |||
1655 | /// Return true if the value is an infinity |
||
1656 | bool isInfinity() const { return Value->isInfinity(); } |
||
1657 | |||
1658 | /// Return true if the value is negative. |
||
1659 | bool isNegative() const { return Value->isNegative(); } |
||
1660 | |||
1661 | /// We don't rely on operator== working on double values, as |
||
1662 | /// it returns true for things that are clearly not equal, like -0.0 and 0.0. |
||
1663 | /// As such, this method can be used to do an exact bit-for-bit comparison of |
||
1664 | /// two floating point values. |
||
1665 | |||
1666 | /// We leave the version with the double argument here because it's just so |
||
1667 | /// convenient to write "2.0" and the like. Without this function we'd |
||
1668 | /// have to duplicate its logic everywhere it's called. |
||
1669 | bool isExactlyValue(double V) const { |
||
1670 | return Value->getValueAPF().isExactlyValue(V); |
||
1671 | } |
||
1672 | bool isExactlyValue(const APFloat& V) const; |
||
1673 | |||
1674 | static bool isValueValidForType(EVT VT, const APFloat& Val); |
||
1675 | |||
1676 | static bool classof(const SDNode *N) { |
||
1677 | return N->getOpcode() == ISD::ConstantFP || |
||
1678 | N->getOpcode() == ISD::TargetConstantFP; |
||
1679 | } |
||
1680 | }; |
||
1681 | |||
1682 | /// Returns true if \p V is a constant integer zero. |
||
1683 | bool isNullConstant(SDValue V); |
||
1684 | |||
1685 | /// Returns true if \p V is an FP constant with a value of positive zero. |
||
1686 | bool isNullFPConstant(SDValue V); |
||
1687 | |||
1688 | /// Returns true if \p V is an integer constant with all bits set. |
||
1689 | bool isAllOnesConstant(SDValue V); |
||
1690 | |||
1691 | /// Returns true if \p V is a constant integer one. |
||
1692 | bool isOneConstant(SDValue V); |
||
1693 | |||
1694 | /// Returns true if \p V is a constant min signed integer value. |
||
1695 | bool isMinSignedConstant(SDValue V); |
||
1696 | |||
1697 | /// Returns true if \p V is a neutral element of Opc with Flags. |
||
1698 | /// When OperandNo is 0, it checks that V is a left identity. Otherwise, it |
||
1699 | /// checks that V is a right identity. |
||
1700 | bool isNeutralConstant(unsigned Opc, SDNodeFlags Flags, SDValue V, |
||
1701 | unsigned OperandNo); |
||
1702 | |||
1703 | /// Return the non-bitcasted source operand of \p V if it exists. |
||
1704 | /// If \p V is not a bitcasted value, it is returned as-is. |
||
1705 | SDValue peekThroughBitcasts(SDValue V); |
||
1706 | |||
1707 | /// Return the non-bitcasted and one-use source operand of \p V if it exists. |
||
1708 | /// If \p V is not a bitcasted one-use value, it is returned as-is. |
||
1709 | SDValue peekThroughOneUseBitcasts(SDValue V); |
||
1710 | |||
1711 | /// Return the non-extracted vector source operand of \p V if it exists. |
||
1712 | /// If \p V is not an extracted subvector, it is returned as-is. |
||
1713 | SDValue peekThroughExtractSubvectors(SDValue V); |
||
1714 | |||
1715 | /// Returns true if \p V is a bitwise not operation. Assumes that an all ones |
||
1716 | /// constant is canonicalized to be operand 1. |
||
1717 | bool isBitwiseNot(SDValue V, bool AllowUndefs = false); |
||
1718 | |||
1719 | /// If \p V is a bitwise not, returns the inverted operand. Otherwise returns |
||
1720 | /// an empty SDValue. Only bits set in \p Mask are required to be inverted, |
||
1721 | /// other bits may be arbitrary. |
||
1722 | SDValue getBitwiseNotOperand(SDValue V, SDValue Mask, bool AllowUndefs); |
||
1723 | |||
1724 | /// Returns the SDNode if it is a constant splat BuildVector or constant int. |
||
1725 | ConstantSDNode *isConstOrConstSplat(SDValue N, bool AllowUndefs = false, |
||
1726 | bool AllowTruncation = false); |
||
1727 | |||
1728 | /// Returns the SDNode if it is a demanded constant splat BuildVector or |
||
1729 | /// constant int. |
||
1730 | ConstantSDNode *isConstOrConstSplat(SDValue N, const APInt &DemandedElts, |
||
1731 | bool AllowUndefs = false, |
||
1732 | bool AllowTruncation = false); |
||
1733 | |||
1734 | /// Returns the SDNode if it is a constant splat BuildVector or constant float. |
||
1735 | ConstantFPSDNode *isConstOrConstSplatFP(SDValue N, bool AllowUndefs = false); |
||
1736 | |||
1737 | /// Returns the SDNode if it is a demanded constant splat BuildVector or |
||
1738 | /// constant float. |
||
1739 | ConstantFPSDNode *isConstOrConstSplatFP(SDValue N, const APInt &DemandedElts, |
||
1740 | bool AllowUndefs = false); |
||
1741 | |||
1742 | /// Return true if the value is a constant 0 integer or a splatted vector of |
||
1743 | /// a constant 0 integer (with no undefs by default). |
||
1744 | /// Build vector implicit truncation is not an issue for null values. |
||
1745 | bool isNullOrNullSplat(SDValue V, bool AllowUndefs = false); |
||
1746 | |||
1747 | /// Return true if the value is a constant 1 integer or a splatted vector of a |
||
1748 | /// constant 1 integer (with no undefs). |
||
1749 | /// Build vector implicit truncation is allowed, but the truncated bits need to |
||
1750 | /// be zero. |
||
1751 | bool isOneOrOneSplat(SDValue V, bool AllowUndefs = false); |
||
1752 | |||
1753 | /// Return true if the value is a constant -1 integer or a splatted vector of a |
||
1754 | /// constant -1 integer (with no undefs). |
||
1755 | /// Does not permit build vector implicit truncation. |
||
1756 | bool isAllOnesOrAllOnesSplat(SDValue V, bool AllowUndefs = false); |
||
1757 | |||
1758 | /// Return true if \p V is either a integer or FP constant. |
||
1759 | inline bool isIntOrFPConstant(SDValue V) { |
||
1760 | return isa<ConstantSDNode>(V) || isa<ConstantFPSDNode>(V); |
||
1761 | } |
||
1762 | |||
1763 | class GlobalAddressSDNode : public SDNode { |
||
1764 | friend class SelectionDAG; |
||
1765 | |||
1766 | const GlobalValue *TheGlobal; |
||
1767 | int64_t Offset; |
||
1768 | unsigned TargetFlags; |
||
1769 | |||
1770 | GlobalAddressSDNode(unsigned Opc, unsigned Order, const DebugLoc &DL, |
||
1771 | const GlobalValue *GA, EVT VT, int64_t o, |
||
1772 | unsigned TF); |
||
1773 | |||
1774 | public: |
||
1775 | const GlobalValue *getGlobal() const { return TheGlobal; } |
||
1776 | int64_t getOffset() const { return Offset; } |
||
1777 | unsigned getTargetFlags() const { return TargetFlags; } |
||
1778 | // Return the address space this GlobalAddress belongs to. |
||
1779 | unsigned getAddressSpace() const; |
||
1780 | |||
1781 | static bool classof(const SDNode *N) { |
||
1782 | return N->getOpcode() == ISD::GlobalAddress || |
||
1783 | N->getOpcode() == ISD::TargetGlobalAddress || |
||
1784 | N->getOpcode() == ISD::GlobalTLSAddress || |
||
1785 | N->getOpcode() == ISD::TargetGlobalTLSAddress; |
||
1786 | } |
||
1787 | }; |
||
1788 | |||
1789 | class FrameIndexSDNode : public SDNode { |
||
1790 | friend class SelectionDAG; |
||
1791 | |||
1792 | int FI; |
||
1793 | |||
1794 | FrameIndexSDNode(int fi, EVT VT, bool isTarg) |
||
1795 | : SDNode(isTarg ? ISD::TargetFrameIndex : ISD::FrameIndex, |
||
1796 | 0, DebugLoc(), getSDVTList(VT)), FI(fi) { |
||
1797 | } |
||
1798 | |||
1799 | public: |
||
1800 | int getIndex() const { return FI; } |
||
1801 | |||
1802 | static bool classof(const SDNode *N) { |
||
1803 | return N->getOpcode() == ISD::FrameIndex || |
||
1804 | N->getOpcode() == ISD::TargetFrameIndex; |
||
1805 | } |
||
1806 | }; |
||
1807 | |||
1808 | /// This SDNode is used for LIFETIME_START/LIFETIME_END values, which indicate |
||
1809 | /// the offet and size that are started/ended in the underlying FrameIndex. |
||
1810 | class LifetimeSDNode : public SDNode { |
||
1811 | friend class SelectionDAG; |
||
1812 | int64_t Size; |
||
1813 | int64_t Offset; // -1 if offset is unknown. |
||
1814 | |||
1815 | LifetimeSDNode(unsigned Opcode, unsigned Order, const DebugLoc &dl, |
||
1816 | SDVTList VTs, int64_t Size, int64_t Offset) |
||
1817 | : SDNode(Opcode, Order, dl, VTs), Size(Size), Offset(Offset) {} |
||
1818 | public: |
||
1819 | int64_t getFrameIndex() const { |
||
1820 | return cast<FrameIndexSDNode>(getOperand(1))->getIndex(); |
||
1821 | } |
||
1822 | |||
1823 | bool hasOffset() const { return Offset >= 0; } |
||
1824 | int64_t getOffset() const { |
||
1825 | assert(hasOffset() && "offset is unknown"); |
||
1826 | return Offset; |
||
1827 | } |
||
1828 | int64_t getSize() const { |
||
1829 | assert(hasOffset() && "offset is unknown"); |
||
1830 | return Size; |
||
1831 | } |
||
1832 | |||
1833 | // Methods to support isa and dyn_cast |
||
1834 | static bool classof(const SDNode *N) { |
||
1835 | return N->getOpcode() == ISD::LIFETIME_START || |
||
1836 | N->getOpcode() == ISD::LIFETIME_END; |
||
1837 | } |
||
1838 | }; |
||
1839 | |||
1840 | /// This SDNode is used for PSEUDO_PROBE values, which are the function guid and |
||
1841 | /// the index of the basic block being probed. A pseudo probe serves as a place |
||
1842 | /// holder and will be removed at the end of compilation. It does not have any |
||
1843 | /// operand because we do not want the instruction selection to deal with any. |
||
1844 | class PseudoProbeSDNode : public SDNode { |
||
1845 | friend class SelectionDAG; |
||
1846 | uint64_t Guid; |
||
1847 | uint64_t Index; |
||
1848 | uint32_t Attributes; |
||
1849 | |||
1850 | PseudoProbeSDNode(unsigned Opcode, unsigned Order, const DebugLoc &Dl, |
||
1851 | SDVTList VTs, uint64_t Guid, uint64_t Index, uint32_t Attr) |
||
1852 | : SDNode(Opcode, Order, Dl, VTs), Guid(Guid), Index(Index), |
||
1853 | Attributes(Attr) {} |
||
1854 | |||
1855 | public: |
||
1856 | uint64_t getGuid() const { return Guid; } |
||
1857 | uint64_t getIndex() const { return Index; } |
||
1858 | uint32_t getAttributes() const { return Attributes; } |
||
1859 | |||
1860 | // Methods to support isa and dyn_cast |
||
1861 | static bool classof(const SDNode *N) { |
||
1862 | return N->getOpcode() == ISD::PSEUDO_PROBE; |
||
1863 | } |
||
1864 | }; |
||
1865 | |||
1866 | class JumpTableSDNode : public SDNode { |
||
1867 | friend class SelectionDAG; |
||
1868 | |||
1869 | int JTI; |
||
1870 | unsigned TargetFlags; |
||
1871 | |||
1872 | JumpTableSDNode(int jti, EVT VT, bool isTarg, unsigned TF) |
||
1873 | : SDNode(isTarg ? ISD::TargetJumpTable : ISD::JumpTable, |
||
1874 | 0, DebugLoc(), getSDVTList(VT)), JTI(jti), TargetFlags(TF) { |
||
1875 | } |
||
1876 | |||
1877 | public: |
||
1878 | int getIndex() const { return JTI; } |
||
1879 | unsigned getTargetFlags() const { return TargetFlags; } |
||
1880 | |||
1881 | static bool classof(const SDNode *N) { |
||
1882 | return N->getOpcode() == ISD::JumpTable || |
||
1883 | N->getOpcode() == ISD::TargetJumpTable; |
||
1884 | } |
||
1885 | }; |
||
1886 | |||
1887 | class ConstantPoolSDNode : public SDNode { |
||
1888 | friend class SelectionDAG; |
||
1889 | |||
1890 | union { |
||
1891 | const Constant *ConstVal; |
||
1892 | MachineConstantPoolValue *MachineCPVal; |
||
1893 | } Val; |
||
1894 | int Offset; // It's a MachineConstantPoolValue if top bit is set. |
||
1895 | Align Alignment; // Minimum alignment requirement of CP. |
||
1896 | unsigned TargetFlags; |
||
1897 | |||
1898 | ConstantPoolSDNode(bool isTarget, const Constant *c, EVT VT, int o, |
||
1899 | Align Alignment, unsigned TF) |
||
1900 | : SDNode(isTarget ? ISD::TargetConstantPool : ISD::ConstantPool, 0, |
||
1901 | DebugLoc(), getSDVTList(VT)), |
||
1902 | Offset(o), Alignment(Alignment), TargetFlags(TF) { |
||
1903 | assert(Offset >= 0 && "Offset is too large"); |
||
1904 | Val.ConstVal = c; |
||
1905 | } |
||
1906 | |||
1907 | ConstantPoolSDNode(bool isTarget, MachineConstantPoolValue *v, EVT VT, int o, |
||
1908 | Align Alignment, unsigned TF) |
||
1909 | : SDNode(isTarget ? ISD::TargetConstantPool : ISD::ConstantPool, 0, |
||
1910 | DebugLoc(), getSDVTList(VT)), |
||
1911 | Offset(o), Alignment(Alignment), TargetFlags(TF) { |
||
1912 | assert(Offset >= 0 && "Offset is too large"); |
||
1913 | Val.MachineCPVal = v; |
||
1914 | Offset |= 1 << (sizeof(unsigned)*CHAR_BIT-1); |
||
1915 | } |
||
1916 | |||
1917 | public: |
||
1918 | bool isMachineConstantPoolEntry() const { |
||
1919 | return Offset < 0; |
||
1920 | } |
||
1921 | |||
1922 | const Constant *getConstVal() const { |
||
1923 | assert(!isMachineConstantPoolEntry() && "Wrong constantpool type"); |
||
1924 | return Val.ConstVal; |
||
1925 | } |
||
1926 | |||
1927 | MachineConstantPoolValue *getMachineCPVal() const { |
||
1928 | assert(isMachineConstantPoolEntry() && "Wrong constantpool type"); |
||
1929 | return Val.MachineCPVal; |
||
1930 | } |
||
1931 | |||
1932 | int getOffset() const { |
||
1933 | return Offset & ~(1 << (sizeof(unsigned)*CHAR_BIT-1)); |
||
1934 | } |
||
1935 | |||
1936 | // Return the alignment of this constant pool object, which is either 0 (for |
||
1937 | // default alignment) or the desired value. |
||
1938 | Align getAlign() const { return Alignment; } |
||
1939 | unsigned getTargetFlags() const { return TargetFlags; } |
||
1940 | |||
1941 | Type *getType() const; |
||
1942 | |||
1943 | static bool classof(const SDNode *N) { |
||
1944 | return N->getOpcode() == ISD::ConstantPool || |
||
1945 | N->getOpcode() == ISD::TargetConstantPool; |
||
1946 | } |
||
1947 | }; |
||
1948 | |||
1949 | /// Completely target-dependent object reference. |
||
1950 | class TargetIndexSDNode : public SDNode { |
||
1951 | friend class SelectionDAG; |
||
1952 | |||
1953 | unsigned TargetFlags; |
||
1954 | int Index; |
||
1955 | int64_t Offset; |
||
1956 | |||
1957 | public: |
||
1958 | TargetIndexSDNode(int Idx, EVT VT, int64_t Ofs, unsigned TF) |
||
1959 | : SDNode(ISD::TargetIndex, 0, DebugLoc(), getSDVTList(VT)), |
||
1960 | TargetFlags(TF), Index(Idx), Offset(Ofs) {} |
||
1961 | |||
1962 | unsigned getTargetFlags() const { return TargetFlags; } |
||
1963 | int getIndex() const { return Index; } |
||
1964 | int64_t getOffset() const { return Offset; } |
||
1965 | |||
1966 | static bool classof(const SDNode *N) { |
||
1967 | return N->getOpcode() == ISD::TargetIndex; |
||
1968 | } |
||
1969 | }; |
||
1970 | |||
1971 | class BasicBlockSDNode : public SDNode { |
||
1972 | friend class SelectionDAG; |
||
1973 | |||
1974 | MachineBasicBlock *MBB; |
||
1975 | |||
1976 | /// Debug info is meaningful and potentially useful here, but we create |
||
1977 | /// blocks out of order when they're jumped to, which makes it a bit |
||
1978 | /// harder. Let's see if we need it first. |
||
1979 | explicit BasicBlockSDNode(MachineBasicBlock *mbb) |
||
1980 | : SDNode(ISD::BasicBlock, 0, DebugLoc(), getSDVTList(MVT::Other)), MBB(mbb) |
||
1981 | {} |
||
1982 | |||
1983 | public: |
||
1984 | MachineBasicBlock *getBasicBlock() const { return MBB; } |
||
1985 | |||
1986 | static bool classof(const SDNode *N) { |
||
1987 | return N->getOpcode() == ISD::BasicBlock; |
||
1988 | } |
||
1989 | }; |
||
1990 | |||
1991 | /// A "pseudo-class" with methods for operating on BUILD_VECTORs. |
||
1992 | class BuildVectorSDNode : public SDNode { |
||
1993 | public: |
||
1994 | // These are constructed as SDNodes and then cast to BuildVectorSDNodes. |
||
1995 | explicit BuildVectorSDNode() = delete; |
||
1996 | |||
1997 | /// Check if this is a constant splat, and if so, find the |
||
1998 | /// smallest element size that splats the vector. If MinSplatBits is |
||
1999 | /// nonzero, the element size must be at least that large. Note that the |
||
2000 | /// splat element may be the entire vector (i.e., a one element vector). |
||
2001 | /// Returns the splat element value in SplatValue. Any undefined bits in |
||
2002 | /// that value are zero, and the corresponding bits in the SplatUndef mask |
||
2003 | /// are set. The SplatBitSize value is set to the splat element size in |
||
2004 | /// bits. HasAnyUndefs is set to true if any bits in the vector are |
||
2005 | /// undefined. isBigEndian describes the endianness of the target. |
||
2006 | bool isConstantSplat(APInt &SplatValue, APInt &SplatUndef, |
||
2007 | unsigned &SplatBitSize, bool &HasAnyUndefs, |
||
2008 | unsigned MinSplatBits = 0, |
||
2009 | bool isBigEndian = false) const; |
||
2010 | |||
2011 | /// Returns the demanded splatted value or a null value if this is not a |
||
2012 | /// splat. |
||
2013 | /// |
||
2014 | /// The DemandedElts mask indicates the elements that must be in the splat. |
||
2015 | /// If passed a non-null UndefElements bitvector, it will resize it to match |
||
2016 | /// the vector width and set the bits where elements are undef. |
||
2017 | SDValue getSplatValue(const APInt &DemandedElts, |
||
2018 | BitVector *UndefElements = nullptr) const; |
||
2019 | |||
2020 | /// Returns the splatted value or a null value if this is not a splat. |
||
2021 | /// |
||
2022 | /// If passed a non-null UndefElements bitvector, it will resize it to match |
||
2023 | /// the vector width and set the bits where elements are undef. |
||
2024 | SDValue getSplatValue(BitVector *UndefElements = nullptr) const; |
||
2025 | |||
2026 | /// Find the shortest repeating sequence of values in the build vector. |
||
2027 | /// |
||
2028 | /// e.g. { u, X, u, X, u, u, X, u } -> { X } |
||
2029 | /// { X, Y, u, Y, u, u, X, u } -> { X, Y } |
||
2030 | /// |
||
2031 | /// Currently this must be a power-of-2 build vector. |
||
2032 | /// The DemandedElts mask indicates the elements that must be present, |
||
2033 | /// undemanded elements in Sequence may be null (SDValue()). If passed a |
||
2034 | /// non-null UndefElements bitvector, it will resize it to match the original |
||
2035 | /// vector width and set the bits where elements are undef. If result is |
||
2036 | /// false, Sequence will be empty. |
||
2037 | bool getRepeatedSequence(const APInt &DemandedElts, |
||
2038 | SmallVectorImpl<SDValue> &Sequence, |
||
2039 | BitVector *UndefElements = nullptr) const; |
||
2040 | |||
2041 | /// Find the shortest repeating sequence of values in the build vector. |
||
2042 | /// |
||
2043 | /// e.g. { u, X, u, X, u, u, X, u } -> { X } |
||
2044 | /// { X, Y, u, Y, u, u, X, u } -> { X, Y } |
||
2045 | /// |
||
2046 | /// Currently this must be a power-of-2 build vector. |
||
2047 | /// If passed a non-null UndefElements bitvector, it will resize it to match |
||
2048 | /// the original vector width and set the bits where elements are undef. |
||
2049 | /// If result is false, Sequence will be empty. |
||
2050 | bool getRepeatedSequence(SmallVectorImpl<SDValue> &Sequence, |
||
2051 | BitVector *UndefElements = nullptr) const; |
||
2052 | |||
2053 | /// Returns the demanded splatted constant or null if this is not a constant |
||
2054 | /// splat. |
||
2055 | /// |
||
2056 | /// The DemandedElts mask indicates the elements that must be in the splat. |
||
2057 | /// If passed a non-null UndefElements bitvector, it will resize it to match |
||
2058 | /// the vector width and set the bits where elements are undef. |
||
2059 | ConstantSDNode * |
||
2060 | getConstantSplatNode(const APInt &DemandedElts, |
||
2061 | BitVector *UndefElements = nullptr) const; |
||
2062 | |||
2063 | /// Returns the splatted constant or null if this is not a constant |
||
2064 | /// splat. |
||
2065 | /// |
||
2066 | /// If passed a non-null UndefElements bitvector, it will resize it to match |
||
2067 | /// the vector width and set the bits where elements are undef. |
||
2068 | ConstantSDNode * |
||
2069 | getConstantSplatNode(BitVector *UndefElements = nullptr) const; |
||
2070 | |||
2071 | /// Returns the demanded splatted constant FP or null if this is not a |
||
2072 | /// constant FP splat. |
||
2073 | /// |
||
2074 | /// The DemandedElts mask indicates the elements that must be in the splat. |
||
2075 | /// If passed a non-null UndefElements bitvector, it will resize it to match |
||
2076 | /// the vector width and set the bits where elements are undef. |
||
2077 | ConstantFPSDNode * |
||
2078 | getConstantFPSplatNode(const APInt &DemandedElts, |
||
2079 | BitVector *UndefElements = nullptr) const; |
||
2080 | |||
2081 | /// Returns the splatted constant FP or null if this is not a constant |
||
2082 | /// FP splat. |
||
2083 | /// |
||
2084 | /// If passed a non-null UndefElements bitvector, it will resize it to match |
||
2085 | /// the vector width and set the bits where elements are undef. |
||
2086 | ConstantFPSDNode * |
||
2087 | getConstantFPSplatNode(BitVector *UndefElements = nullptr) const; |
||
2088 | |||
2089 | /// If this is a constant FP splat and the splatted constant FP is an |
||
2090 | /// exact power or 2, return the log base 2 integer value. Otherwise, |
||
2091 | /// return -1. |
||
2092 | /// |
||
2093 | /// The BitWidth specifies the necessary bit precision. |
||
2094 | int32_t getConstantFPSplatPow2ToLog2Int(BitVector *UndefElements, |
||
2095 | uint32_t BitWidth) const; |
||
2096 | |||
2097 | /// Extract the raw bit data from a build vector of Undef, Constant or |
||
2098 | /// ConstantFP node elements. Each raw bit element will be \p |
||
2099 | /// DstEltSizeInBits wide, undef elements are treated as zero, and entirely |
||
2100 | /// undefined elements are flagged in \p UndefElements. |
||
2101 | bool getConstantRawBits(bool IsLittleEndian, unsigned DstEltSizeInBits, |
||
2102 | SmallVectorImpl<APInt> &RawBitElements, |
||
2103 | BitVector &UndefElements) const; |
||
2104 | |||
2105 | bool isConstant() const; |
||
2106 | |||
2107 | /// If this BuildVector is constant and represents the numerical series |
||
2108 | /// "<a, a+n, a+2n, a+3n, ...>" where a is integer and n is a non-zero integer, |
||
2109 | /// the value "<a,n>" is returned. |
||
2110 | std::optional<std::pair<APInt, APInt>> isConstantSequence() const; |
||
2111 | |||
2112 | /// Recast bit data \p SrcBitElements to \p DstEltSizeInBits wide elements. |
||
2113 | /// Undef elements are treated as zero, and entirely undefined elements are |
||
2114 | /// flagged in \p DstUndefElements. |
||
2115 | static void recastRawBits(bool IsLittleEndian, unsigned DstEltSizeInBits, |
||
2116 | SmallVectorImpl<APInt> &DstBitElements, |
||
2117 | ArrayRef<APInt> SrcBitElements, |
||
2118 | BitVector &DstUndefElements, |
||
2119 | const BitVector &SrcUndefElements); |
||
2120 | |||
2121 | static bool classof(const SDNode *N) { |
||
2122 | return N->getOpcode() == ISD::BUILD_VECTOR; |
||
2123 | } |
||
2124 | }; |
||
2125 | |||
2126 | /// An SDNode that holds an arbitrary LLVM IR Value. This is |
||
2127 | /// used when the SelectionDAG needs to make a simple reference to something |
||
2128 | /// in the LLVM IR representation. |
||
2129 | /// |
||
2130 | class SrcValueSDNode : public SDNode { |
||
2131 | friend class SelectionDAG; |
||
2132 | |||
2133 | const Value *V; |
||
2134 | |||
2135 | /// Create a SrcValue for a general value. |
||
2136 | explicit SrcValueSDNode(const Value *v) |
||
2137 | : SDNode(ISD::SRCVALUE, 0, DebugLoc(), getSDVTList(MVT::Other)), V(v) {} |
||
2138 | |||
2139 | public: |
||
2140 | /// Return the contained Value. |
||
2141 | const Value *getValue() const { return V; } |
||
2142 | |||
2143 | static bool classof(const SDNode *N) { |
||
2144 | return N->getOpcode() == ISD::SRCVALUE; |
||
2145 | } |
||
2146 | }; |
||
2147 | |||
2148 | class MDNodeSDNode : public SDNode { |
||
2149 | friend class SelectionDAG; |
||
2150 | |||
2151 | const MDNode *MD; |
||
2152 | |||
2153 | explicit MDNodeSDNode(const MDNode *md) |
||
2154 | : SDNode(ISD::MDNODE_SDNODE, 0, DebugLoc(), getSDVTList(MVT::Other)), MD(md) |
||
2155 | {} |
||
2156 | |||
2157 | public: |
||
2158 | const MDNode *getMD() const { return MD; } |
||
2159 | |||
2160 | static bool classof(const SDNode *N) { |
||
2161 | return N->getOpcode() == ISD::MDNODE_SDNODE; |
||
2162 | } |
||
2163 | }; |
||
2164 | |||
2165 | class RegisterSDNode : public SDNode { |
||
2166 | friend class SelectionDAG; |
||
2167 | |||
2168 | Register Reg; |
||
2169 | |||
2170 | RegisterSDNode(Register reg, EVT VT) |
||
2171 | : SDNode(ISD::Register, 0, DebugLoc(), getSDVTList(VT)), Reg(reg) {} |
||
2172 | |||
2173 | public: |
||
2174 | Register getReg() const { return Reg; } |
||
2175 | |||
2176 | static bool classof(const SDNode *N) { |
||
2177 | return N->getOpcode() == ISD::Register; |
||
2178 | } |
||
2179 | }; |
||
2180 | |||
2181 | class RegisterMaskSDNode : public SDNode { |
||
2182 | friend class SelectionDAG; |
||
2183 | |||
2184 | // The memory for RegMask is not owned by the node. |
||
2185 | const uint32_t *RegMask; |
||
2186 | |||
2187 | RegisterMaskSDNode(const uint32_t *mask) |
||
2188 | : SDNode(ISD::RegisterMask, 0, DebugLoc(), getSDVTList(MVT::Untyped)), |
||
2189 | RegMask(mask) {} |
||
2190 | |||
2191 | public: |
||
2192 | const uint32_t *getRegMask() const { return RegMask; } |
||
2193 | |||
2194 | static bool classof(const SDNode *N) { |
||
2195 | return N->getOpcode() == ISD::RegisterMask; |
||
2196 | } |
||
2197 | }; |
||
2198 | |||
2199 | class BlockAddressSDNode : public SDNode { |
||
2200 | friend class SelectionDAG; |
||
2201 | |||
2202 | const BlockAddress *BA; |
||
2203 | int64_t Offset; |
||
2204 | unsigned TargetFlags; |
||
2205 | |||
2206 | BlockAddressSDNode(unsigned NodeTy, EVT VT, const BlockAddress *ba, |
||
2207 | int64_t o, unsigned Flags) |
||
2208 | : SDNode(NodeTy, 0, DebugLoc(), getSDVTList(VT)), |
||
2209 | BA(ba), Offset(o), TargetFlags(Flags) {} |
||
2210 | |||
2211 | public: |
||
2212 | const BlockAddress *getBlockAddress() const { return BA; } |
||
2213 | int64_t getOffset() const { return Offset; } |
||
2214 | unsigned getTargetFlags() const { return TargetFlags; } |
||
2215 | |||
2216 | static bool classof(const SDNode *N) { |
||
2217 | return N->getOpcode() == ISD::BlockAddress || |
||
2218 | N->getOpcode() == ISD::TargetBlockAddress; |
||
2219 | } |
||
2220 | }; |
||
2221 | |||
2222 | class LabelSDNode : public SDNode { |
||
2223 | friend class SelectionDAG; |
||
2224 | |||
2225 | MCSymbol *Label; |
||
2226 | |||
2227 | LabelSDNode(unsigned Opcode, unsigned Order, const DebugLoc &dl, MCSymbol *L) |
||
2228 | : SDNode(Opcode, Order, dl, getSDVTList(MVT::Other)), Label(L) { |
||
2229 | assert(LabelSDNode::classof(this) && "not a label opcode"); |
||
2230 | } |
||
2231 | |||
2232 | public: |
||
2233 | MCSymbol *getLabel() const { return Label; } |
||
2234 | |||
2235 | static bool classof(const SDNode *N) { |
||
2236 | return N->getOpcode() == ISD::EH_LABEL || |
||
2237 | N->getOpcode() == ISD::ANNOTATION_LABEL; |
||
2238 | } |
||
2239 | }; |
||
2240 | |||
2241 | class ExternalSymbolSDNode : public SDNode { |
||
2242 | friend class SelectionDAG; |
||
2243 | |||
2244 | const char *Symbol; |
||
2245 | unsigned TargetFlags; |
||
2246 | |||
2247 | ExternalSymbolSDNode(bool isTarget, const char *Sym, unsigned TF, EVT VT) |
||
2248 | : SDNode(isTarget ? ISD::TargetExternalSymbol : ISD::ExternalSymbol, 0, |
||
2249 | DebugLoc(), getSDVTList(VT)), |
||
2250 | Symbol(Sym), TargetFlags(TF) {} |
||
2251 | |||
2252 | public: |
||
2253 | const char *getSymbol() const { return Symbol; } |
||
2254 | unsigned getTargetFlags() const { return TargetFlags; } |
||
2255 | |||
2256 | static bool classof(const SDNode *N) { |
||
2257 | return N->getOpcode() == ISD::ExternalSymbol || |
||
2258 | N->getOpcode() == ISD::TargetExternalSymbol; |
||
2259 | } |
||
2260 | }; |
||
2261 | |||
2262 | class MCSymbolSDNode : public SDNode { |
||
2263 | friend class SelectionDAG; |
||
2264 | |||
2265 | MCSymbol *Symbol; |
||
2266 | |||
2267 | MCSymbolSDNode(MCSymbol *Symbol, EVT VT) |
||
2268 | : SDNode(ISD::MCSymbol, 0, DebugLoc(), getSDVTList(VT)), Symbol(Symbol) {} |
||
2269 | |||
2270 | public: |
||
2271 | MCSymbol *getMCSymbol() const { return Symbol; } |
||
2272 | |||
2273 | static bool classof(const SDNode *N) { |
||
2274 | return N->getOpcode() == ISD::MCSymbol; |
||
2275 | } |
||
2276 | }; |
||
2277 | |||
2278 | class CondCodeSDNode : public SDNode { |
||
2279 | friend class SelectionDAG; |
||
2280 | |||
2281 | ISD::CondCode Condition; |
||
2282 | |||
2283 | explicit CondCodeSDNode(ISD::CondCode Cond) |
||
2284 | : SDNode(ISD::CONDCODE, 0, DebugLoc(), getSDVTList(MVT::Other)), |
||
2285 | Condition(Cond) {} |
||
2286 | |||
2287 | public: |
||
2288 | ISD::CondCode get() const { return Condition; } |
||
2289 | |||
2290 | static bool classof(const SDNode *N) { |
||
2291 | return N->getOpcode() == ISD::CONDCODE; |
||
2292 | } |
||
2293 | }; |
||
2294 | |||
2295 | /// This class is used to represent EVT's, which are used |
||
2296 | /// to parameterize some operations. |
||
2297 | class VTSDNode : public SDNode { |
||
2298 | friend class SelectionDAG; |
||
2299 | |||
2300 | EVT ValueType; |
||
2301 | |||
2302 | explicit VTSDNode(EVT VT) |
||
2303 | : SDNode(ISD::VALUETYPE, 0, DebugLoc(), getSDVTList(MVT::Other)), |
||
2304 | ValueType(VT) {} |
||
2305 | |||
2306 | public: |
||
2307 | EVT getVT() const { return ValueType; } |
||
2308 | |||
2309 | static bool classof(const SDNode *N) { |
||
2310 | return N->getOpcode() == ISD::VALUETYPE; |
||
2311 | } |
||
2312 | }; |
||
2313 | |||
2314 | /// Base class for LoadSDNode and StoreSDNode |
||
2315 | class LSBaseSDNode : public MemSDNode { |
||
2316 | public: |
||
2317 | LSBaseSDNode(ISD::NodeType NodeTy, unsigned Order, const DebugLoc &dl, |
||
2318 | SDVTList VTs, ISD::MemIndexedMode AM, EVT MemVT, |
||
2319 | MachineMemOperand *MMO) |
||
2320 | : MemSDNode(NodeTy, Order, dl, VTs, MemVT, MMO) { |
||
2321 | LSBaseSDNodeBits.AddressingMode = AM; |
||
2322 | assert(getAddressingMode() == AM && "Value truncated"); |
||
2323 | } |
||
2324 | |||
2325 | const SDValue &getOffset() const { |
||
2326 | return getOperand(getOpcode() == ISD::LOAD ? 2 : 3); |
||
2327 | } |
||
2328 | |||
2329 | /// Return the addressing mode for this load or store: |
||
2330 | /// unindexed, pre-inc, pre-dec, post-inc, or post-dec. |
||
2331 | ISD::MemIndexedMode getAddressingMode() const { |
||
2332 | return static_cast<ISD::MemIndexedMode>(LSBaseSDNodeBits.AddressingMode); |
||
2333 | } |
||
2334 | |||
2335 | /// Return true if this is a pre/post inc/dec load/store. |
||
2336 | bool isIndexed() const { return getAddressingMode() != ISD::UNINDEXED; } |
||
2337 | |||
2338 | /// Return true if this is NOT a pre/post inc/dec load/store. |
||
2339 | bool isUnindexed() const { return getAddressingMode() == ISD::UNINDEXED; } |
||
2340 | |||
2341 | static bool classof(const SDNode *N) { |
||
2342 | return N->getOpcode() == ISD::LOAD || |
||
2343 | N->getOpcode() == ISD::STORE; |
||
2344 | } |
||
2345 | }; |
||
2346 | |||
2347 | /// This class is used to represent ISD::LOAD nodes. |
||
2348 | class LoadSDNode : public LSBaseSDNode { |
||
2349 | friend class SelectionDAG; |
||
2350 | |||
2351 | LoadSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs, |
||
2352 | ISD::MemIndexedMode AM, ISD::LoadExtType ETy, EVT MemVT, |
||
2353 | MachineMemOperand *MMO) |
||
2354 | : LSBaseSDNode(ISD::LOAD, Order, dl, VTs, AM, MemVT, MMO) { |
||
2355 | LoadSDNodeBits.ExtTy = ETy; |
||
2356 | assert(readMem() && "Load MachineMemOperand is not a load!"); |
||
2357 | assert(!writeMem() && "Load MachineMemOperand is a store!"); |
||
2358 | } |
||
2359 | |||
2360 | public: |
||
2361 | /// Return whether this is a plain node, |
||
2362 | /// or one of the varieties of value-extending loads. |
||
2363 | ISD::LoadExtType getExtensionType() const { |
||
2364 | return static_cast<ISD::LoadExtType>(LoadSDNodeBits.ExtTy); |
||
2365 | } |
||
2366 | |||
2367 | const SDValue &getBasePtr() const { return getOperand(1); } |
||
2368 | const SDValue &getOffset() const { return getOperand(2); } |
||
2369 | |||
2370 | static bool classof(const SDNode *N) { |
||
2371 | return N->getOpcode() == ISD::LOAD; |
||
2372 | } |
||
2373 | }; |
||
2374 | |||
2375 | /// This class is used to represent ISD::STORE nodes. |
||
2376 | class StoreSDNode : public LSBaseSDNode { |
||
2377 | friend class SelectionDAG; |
||
2378 | |||
2379 | StoreSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs, |
||
2380 | ISD::MemIndexedMode AM, bool isTrunc, EVT MemVT, |
||
2381 | MachineMemOperand *MMO) |
||
2382 | : LSBaseSDNode(ISD::STORE, Order, dl, VTs, AM, MemVT, MMO) { |
||
2383 | StoreSDNodeBits.IsTruncating = isTrunc; |
||
2384 | assert(!readMem() && "Store MachineMemOperand is a load!"); |
||
2385 | assert(writeMem() && "Store MachineMemOperand is not a store!"); |
||
2386 | } |
||
2387 | |||
2388 | public: |
||
2389 | /// Return true if the op does a truncation before store. |
||
2390 | /// For integers this is the same as doing a TRUNCATE and storing the result. |
||
2391 | /// For floats, it is the same as doing an FP_ROUND and storing the result. |
||
2392 | bool isTruncatingStore() const { return StoreSDNodeBits.IsTruncating; } |
||
2393 | void setTruncatingStore(bool Truncating) { |
||
2394 | StoreSDNodeBits.IsTruncating = Truncating; |
||
2395 | } |
||
2396 | |||
2397 | const SDValue &getValue() const { return getOperand(1); } |
||
2398 | const SDValue &getBasePtr() const { return getOperand(2); } |
||
2399 | const SDValue &getOffset() const { return getOperand(3); } |
||
2400 | |||
2401 | static bool classof(const SDNode *N) { |
||
2402 | return N->getOpcode() == ISD::STORE; |
||
2403 | } |
||
2404 | }; |
||
2405 | |||
2406 | /// This base class is used to represent VP_LOAD, VP_STORE, |
||
2407 | /// EXPERIMENTAL_VP_STRIDED_LOAD and EXPERIMENTAL_VP_STRIDED_STORE nodes |
||
2408 | class VPBaseLoadStoreSDNode : public MemSDNode { |
||
2409 | public: |
||
2410 | friend class SelectionDAG; |
||
2411 | |||
2412 | VPBaseLoadStoreSDNode(ISD::NodeType NodeTy, unsigned Order, |
||
2413 | const DebugLoc &DL, SDVTList VTs, |
||
2414 | ISD::MemIndexedMode AM, EVT MemVT, |
||
2415 | MachineMemOperand *MMO) |
||
2416 | : MemSDNode(NodeTy, Order, DL, VTs, MemVT, MMO) { |
||
2417 | LSBaseSDNodeBits.AddressingMode = AM; |
||
2418 | assert(getAddressingMode() == AM && "Value truncated"); |
||
2419 | } |
||
2420 | |||
2421 | // VPStridedStoreSDNode (Chain, Data, Ptr, Offset, Stride, Mask, EVL) |
||
2422 | // VPStoreSDNode (Chain, Data, Ptr, Offset, Mask, EVL) |
||
2423 | // VPStridedLoadSDNode (Chain, Ptr, Offset, Stride, Mask, EVL) |
||
2424 | // VPLoadSDNode (Chain, Ptr, Offset, Mask, EVL) |
||
2425 | // Mask is a vector of i1 elements; |
||
2426 | // the type of EVL is TLI.getVPExplicitVectorLengthTy(). |
||
2427 | const SDValue &getOffset() const { |
||
2428 | return getOperand((getOpcode() == ISD::EXPERIMENTAL_VP_STRIDED_LOAD || |
||
2429 | getOpcode() == ISD::VP_LOAD) |
||
2430 | ? 2 |
||
2431 | : 3); |
||
2432 | } |
||
2433 | const SDValue &getBasePtr() const { |
||
2434 | return getOperand((getOpcode() == ISD::EXPERIMENTAL_VP_STRIDED_LOAD || |
||
2435 | getOpcode() == ISD::VP_LOAD) |
||
2436 | ? 1 |
||
2437 | : 2); |
||
2438 | } |
||
2439 | const SDValue &getMask() const { |
||
2440 | switch (getOpcode()) { |
||
2441 | default: |
||
2442 | llvm_unreachable("Invalid opcode"); |
||
2443 | case ISD::VP_LOAD: |
||
2444 | return getOperand(3); |
||
2445 | case ISD::VP_STORE: |
||
2446 | case ISD::EXPERIMENTAL_VP_STRIDED_LOAD: |
||
2447 | return getOperand(4); |
||
2448 | case ISD::EXPERIMENTAL_VP_STRIDED_STORE: |
||
2449 | return getOperand(5); |
||
2450 | } |
||
2451 | } |
||
2452 | const SDValue &getVectorLength() const { |
||
2453 | switch (getOpcode()) { |
||
2454 | default: |
||
2455 | llvm_unreachable("Invalid opcode"); |
||
2456 | case ISD::VP_LOAD: |
||
2457 | return getOperand(4); |
||
2458 | case ISD::VP_STORE: |
||
2459 | case ISD::EXPERIMENTAL_VP_STRIDED_LOAD: |
||
2460 | return getOperand(5); |
||
2461 | case ISD::EXPERIMENTAL_VP_STRIDED_STORE: |
||
2462 | return getOperand(6); |
||
2463 | } |
||
2464 | } |
||
2465 | |||
2466 | /// Return the addressing mode for this load or store: |
||
2467 | /// unindexed, pre-inc, pre-dec, post-inc, or post-dec. |
||
2468 | ISD::MemIndexedMode getAddressingMode() const { |
||
2469 | return static_cast<ISD::MemIndexedMode>(LSBaseSDNodeBits.AddressingMode); |
||
2470 | } |
||
2471 | |||
2472 | /// Return true if this is a pre/post inc/dec load/store. |
||
2473 | bool isIndexed() const { return getAddressingMode() != ISD::UNINDEXED; } |
||
2474 | |||
2475 | /// Return true if this is NOT a pre/post inc/dec load/store. |
||
2476 | bool isUnindexed() const { return getAddressingMode() == ISD::UNINDEXED; } |
||
2477 | |||
2478 | static bool classof(const SDNode *N) { |
||
2479 | return N->getOpcode() == ISD::EXPERIMENTAL_VP_STRIDED_LOAD || |
||
2480 | N->getOpcode() == ISD::EXPERIMENTAL_VP_STRIDED_STORE || |
||
2481 | N->getOpcode() == ISD::VP_LOAD || N->getOpcode() == ISD::VP_STORE; |
||
2482 | } |
||
2483 | }; |
||
2484 | |||
2485 | /// This class is used to represent a VP_LOAD node |
||
2486 | class VPLoadSDNode : public VPBaseLoadStoreSDNode { |
||
2487 | public: |
||
2488 | friend class SelectionDAG; |
||
2489 | |||
2490 | VPLoadSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs, |
||
2491 | ISD::MemIndexedMode AM, ISD::LoadExtType ETy, bool isExpanding, |
||
2492 | EVT MemVT, MachineMemOperand *MMO) |
||
2493 | : VPBaseLoadStoreSDNode(ISD::VP_LOAD, Order, dl, VTs, AM, MemVT, MMO) { |
||
2494 | LoadSDNodeBits.ExtTy = ETy; |
||
2495 | LoadSDNodeBits.IsExpanding = isExpanding; |
||
2496 | } |
||
2497 | |||
2498 | ISD::LoadExtType getExtensionType() const { |
||
2499 | return static_cast<ISD::LoadExtType>(LoadSDNodeBits.ExtTy); |
||
2500 | } |
||
2501 | |||
2502 | const SDValue &getBasePtr() const { return getOperand(1); } |
||
2503 | const SDValue &getOffset() const { return getOperand(2); } |
||
2504 | const SDValue &getMask() const { return getOperand(3); } |
||
2505 | const SDValue &getVectorLength() const { return getOperand(4); } |
||
2506 | |||
2507 | static bool classof(const SDNode *N) { |
||
2508 | return N->getOpcode() == ISD::VP_LOAD; |
||
2509 | } |
||
2510 | bool isExpandingLoad() const { return LoadSDNodeBits.IsExpanding; } |
||
2511 | }; |
||
2512 | |||
2513 | /// This class is used to represent an EXPERIMENTAL_VP_STRIDED_LOAD node. |
||
2514 | class VPStridedLoadSDNode : public VPBaseLoadStoreSDNode { |
||
2515 | public: |
||
2516 | friend class SelectionDAG; |
||
2517 | |||
2518 | VPStridedLoadSDNode(unsigned Order, const DebugLoc &DL, SDVTList VTs, |
||
2519 | ISD::MemIndexedMode AM, ISD::LoadExtType ETy, |
||
2520 | bool IsExpanding, EVT MemVT, MachineMemOperand *MMO) |
||
2521 | : VPBaseLoadStoreSDNode(ISD::EXPERIMENTAL_VP_STRIDED_LOAD, Order, DL, VTs, |
||
2522 | AM, MemVT, MMO) { |
||
2523 | LoadSDNodeBits.ExtTy = ETy; |
||
2524 | LoadSDNodeBits.IsExpanding = IsExpanding; |
||
2525 | } |
||
2526 | |||
2527 | ISD::LoadExtType getExtensionType() const { |
||
2528 | return static_cast<ISD::LoadExtType>(LoadSDNodeBits.ExtTy); |
||
2529 | } |
||
2530 | |||
2531 | const SDValue &getBasePtr() const { return getOperand(1); } |
||
2532 | const SDValue &getOffset() const { return getOperand(2); } |
||
2533 | const SDValue &getStride() const { return getOperand(3); } |
||
2534 | const SDValue &getMask() const { return getOperand(4); } |
||
2535 | const SDValue &getVectorLength() const { return getOperand(5); } |
||
2536 | |||
2537 | static bool classof(const SDNode *N) { |
||
2538 | return N->getOpcode() == ISD::EXPERIMENTAL_VP_STRIDED_LOAD; |
||
2539 | } |
||
2540 | bool isExpandingLoad() const { return LoadSDNodeBits.IsExpanding; } |
||
2541 | }; |
||
2542 | |||
2543 | /// This class is used to represent a VP_STORE node |
||
2544 | class VPStoreSDNode : public VPBaseLoadStoreSDNode { |
||
2545 | public: |
||
2546 | friend class SelectionDAG; |
||
2547 | |||
2548 | VPStoreSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs, |
||
2549 | ISD::MemIndexedMode AM, bool isTrunc, bool isCompressing, |
||
2550 | EVT MemVT, MachineMemOperand *MMO) |
||
2551 | : VPBaseLoadStoreSDNode(ISD::VP_STORE, Order, dl, VTs, AM, MemVT, MMO) { |
||
2552 | StoreSDNodeBits.IsTruncating = isTrunc; |
||
2553 | StoreSDNodeBits.IsCompressing = isCompressing; |
||
2554 | } |
||
2555 | |||
2556 | /// Return true if this is a truncating store. |
||
2557 | /// For integers this is the same as doing a TRUNCATE and storing the result. |
||
2558 | /// For floats, it is the same as doing an FP_ROUND and storing the result. |
||
2559 | bool isTruncatingStore() const { return StoreSDNodeBits.IsTruncating; } |
||
2560 | |||
2561 | /// Returns true if the op does a compression to the vector before storing. |
||
2562 | /// The node contiguously stores the active elements (integers or floats) |
||
2563 | /// in src (those with their respective bit set in writemask k) to unaligned |
||
2564 | /// memory at base_addr. |
||
2565 | bool isCompressingStore() const { return StoreSDNodeBits.IsCompressing; } |
||
2566 | |||
2567 | const SDValue &getValue() const { return getOperand(1); } |
||
2568 | const SDValue &getBasePtr() const { return getOperand(2); } |
||
2569 | const SDValue &getOffset() const { return getOperand(3); } |
||
2570 | const SDValue &getMask() const { return getOperand(4); } |
||
2571 | const SDValue &getVectorLength() const { return getOperand(5); } |
||
2572 | |||
2573 | static bool classof(const SDNode *N) { |
||
2574 | return N->getOpcode() == ISD::VP_STORE; |
||
2575 | } |
||
2576 | }; |
||
2577 | |||
2578 | /// This class is used to represent an EXPERIMENTAL_VP_STRIDED_STORE node. |
||
2579 | class VPStridedStoreSDNode : public VPBaseLoadStoreSDNode { |
||
2580 | public: |
||
2581 | friend class SelectionDAG; |
||
2582 | |||
2583 | VPStridedStoreSDNode(unsigned Order, const DebugLoc &DL, SDVTList VTs, |
||
2584 | ISD::MemIndexedMode AM, bool IsTrunc, bool IsCompressing, |
||
2585 | EVT MemVT, MachineMemOperand *MMO) |
||
2586 | : VPBaseLoadStoreSDNode(ISD::EXPERIMENTAL_VP_STRIDED_STORE, Order, DL, |
||
2587 | VTs, AM, MemVT, MMO) { |
||
2588 | StoreSDNodeBits.IsTruncating = IsTrunc; |
||
2589 | StoreSDNodeBits.IsCompressing = IsCompressing; |
||
2590 | } |
||
2591 | |||
2592 | /// Return true if this is a truncating store. |
||
2593 | /// For integers this is the same as doing a TRUNCATE and storing the result. |
||
2594 | /// For floats, it is the same as doing an FP_ROUND and storing the result. |
||
2595 | bool isTruncatingStore() const { return StoreSDNodeBits.IsTruncating; } |
||
2596 | |||
2597 | /// Returns true if the op does a compression to the vector before storing. |
||
2598 | /// The node contiguously stores the active elements (integers or floats) |
||
2599 | /// in src (those with their respective bit set in writemask k) to unaligned |
||
2600 | /// memory at base_addr. |
||
2601 | bool isCompressingStore() const { return StoreSDNodeBits.IsCompressing; } |
||
2602 | |||
2603 | const SDValue &getValue() const { return getOperand(1); } |
||
2604 | const SDValue &getBasePtr() const { return getOperand(2); } |
||
2605 | const SDValue &getOffset() const { return getOperand(3); } |
||
2606 | const SDValue &getStride() const { return getOperand(4); } |
||
2607 | const SDValue &getMask() const { return getOperand(5); } |
||
2608 | const SDValue &getVectorLength() const { return getOperand(6); } |
||
2609 | |||
2610 | static bool classof(const SDNode *N) { |
||
2611 | return N->getOpcode() == ISD::EXPERIMENTAL_VP_STRIDED_STORE; |
||
2612 | } |
||
2613 | }; |
||
2614 | |||
2615 | /// This base class is used to represent MLOAD and MSTORE nodes |
||
2616 | class MaskedLoadStoreSDNode : public MemSDNode { |
||
2617 | public: |
||
2618 | friend class SelectionDAG; |
||
2619 | |||
2620 | MaskedLoadStoreSDNode(ISD::NodeType NodeTy, unsigned Order, |
||
2621 | const DebugLoc &dl, SDVTList VTs, |
||
2622 | ISD::MemIndexedMode AM, EVT MemVT, |
||
2623 | MachineMemOperand *MMO) |
||
2624 | : MemSDNode(NodeTy, Order, dl, VTs, MemVT, MMO) { |
||
2625 | LSBaseSDNodeBits.AddressingMode = AM; |
||
2626 | assert(getAddressingMode() == AM && "Value truncated"); |
||
2627 | } |
||
2628 | |||
2629 | // MaskedLoadSDNode (Chain, ptr, offset, mask, passthru) |
||
2630 | // MaskedStoreSDNode (Chain, data, ptr, offset, mask) |
||
2631 | // Mask is a vector of i1 elements |
||
2632 | const SDValue &getOffset() const { |
||
2633 | return getOperand(getOpcode() == ISD::MLOAD ? 2 : 3); |
||
2634 | } |
||
2635 | const SDValue &getMask() const { |
||
2636 | return getOperand(getOpcode() == ISD::MLOAD ? 3 : 4); |
||
2637 | } |
||
2638 | |||
2639 | /// Return the addressing mode for this load or store: |
||
2640 | /// unindexed, pre-inc, pre-dec, post-inc, or post-dec. |
||
2641 | ISD::MemIndexedMode getAddressingMode() const { |
||
2642 | return static_cast<ISD::MemIndexedMode>(LSBaseSDNodeBits.AddressingMode); |
||
2643 | } |
||
2644 | |||
2645 | /// Return true if this is a pre/post inc/dec load/store. |
||
2646 | bool isIndexed() const { return getAddressingMode() != ISD::UNINDEXED; } |
||
2647 | |||
2648 | /// Return true if this is NOT a pre/post inc/dec load/store. |
||
2649 | bool isUnindexed() const { return getAddressingMode() == ISD::UNINDEXED; } |
||
2650 | |||
2651 | static bool classof(const SDNode *N) { |
||
2652 | return N->getOpcode() == ISD::MLOAD || |
||
2653 | N->getOpcode() == ISD::MSTORE; |
||
2654 | } |
||
2655 | }; |
||
2656 | |||
2657 | /// This class is used to represent an MLOAD node |
||
2658 | class MaskedLoadSDNode : public MaskedLoadStoreSDNode { |
||
2659 | public: |
||
2660 | friend class SelectionDAG; |
||
2661 | |||
2662 | MaskedLoadSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs, |
||
2663 | ISD::MemIndexedMode AM, ISD::LoadExtType ETy, |
||
2664 | bool IsExpanding, EVT MemVT, MachineMemOperand *MMO) |
||
2665 | : MaskedLoadStoreSDNode(ISD::MLOAD, Order, dl, VTs, AM, MemVT, MMO) { |
||
2666 | LoadSDNodeBits.ExtTy = ETy; |
||
2667 | LoadSDNodeBits.IsExpanding = IsExpanding; |
||
2668 | } |
||
2669 | |||
2670 | ISD::LoadExtType getExtensionType() const { |
||
2671 | return static_cast<ISD::LoadExtType>(LoadSDNodeBits.ExtTy); |
||
2672 | } |
||
2673 | |||
2674 | const SDValue &getBasePtr() const { return getOperand(1); } |
||
2675 | const SDValue &getOffset() const { return getOperand(2); } |
||
2676 | const SDValue &getMask() const { return getOperand(3); } |
||
2677 | const SDValue &getPassThru() const { return getOperand(4); } |
||
2678 | |||
2679 | static bool classof(const SDNode *N) { |
||
2680 | return N->getOpcode() == ISD::MLOAD; |
||
2681 | } |
||
2682 | |||
2683 | bool isExpandingLoad() const { return LoadSDNodeBits.IsExpanding; } |
||
2684 | }; |
||
2685 | |||
2686 | /// This class is used to represent an MSTORE node |
||
2687 | class MaskedStoreSDNode : public MaskedLoadStoreSDNode { |
||
2688 | public: |
||
2689 | friend class SelectionDAG; |
||
2690 | |||
2691 | MaskedStoreSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs, |
||
2692 | ISD::MemIndexedMode AM, bool isTrunc, bool isCompressing, |
||
2693 | EVT MemVT, MachineMemOperand *MMO) |
||
2694 | : MaskedLoadStoreSDNode(ISD::MSTORE, Order, dl, VTs, AM, MemVT, MMO) { |
||
2695 | StoreSDNodeBits.IsTruncating = isTrunc; |
||
2696 | StoreSDNodeBits.IsCompressing = isCompressing; |
||
2697 | } |
||
2698 | |||
2699 | /// Return true if the op does a truncation before store. |
||
2700 | /// For integers this is the same as doing a TRUNCATE and storing the result. |
||
2701 | /// For floats, it is the same as doing an FP_ROUND and storing the result. |
||
2702 | bool isTruncatingStore() const { return StoreSDNodeBits.IsTruncating; } |
||
2703 | |||
2704 | /// Returns true if the op does a compression to the vector before storing. |
||
2705 | /// The node contiguously stores the active elements (integers or floats) |
||
2706 | /// in src (those with their respective bit set in writemask k) to unaligned |
||
2707 | /// memory at base_addr. |
||
2708 | bool isCompressingStore() const { return StoreSDNodeBits.IsCompressing; } |
||
2709 | |||
2710 | const SDValue &getValue() const { return getOperand(1); } |
||
2711 | const SDValue &getBasePtr() const { return getOperand(2); } |
||
2712 | const SDValue &getOffset() const { return getOperand(3); } |
||
2713 | const SDValue &getMask() const { return getOperand(4); } |
||
2714 | |||
2715 | static bool classof(const SDNode *N) { |
||
2716 | return N->getOpcode() == ISD::MSTORE; |
||
2717 | } |
||
2718 | }; |
||
2719 | |||
2720 | /// This is a base class used to represent |
||
2721 | /// VP_GATHER and VP_SCATTER nodes |
||
2722 | /// |
||
2723 | class VPGatherScatterSDNode : public MemSDNode { |
||
2724 | public: |
||
2725 | friend class SelectionDAG; |
||
2726 | |||
2727 | VPGatherScatterSDNode(ISD::NodeType NodeTy, unsigned Order, |
||
2728 | const DebugLoc &dl, SDVTList VTs, EVT MemVT, |
||
2729 | MachineMemOperand *MMO, ISD::MemIndexType IndexType) |
||
2730 | : MemSDNode(NodeTy, Order, dl, VTs, MemVT, MMO) { |
||
2731 | LSBaseSDNodeBits.AddressingMode = IndexType; |
||
2732 | assert(getIndexType() == IndexType && "Value truncated"); |
||
2733 | } |
||
2734 | |||
2735 | /// How is Index applied to BasePtr when computing addresses. |
||
2736 | ISD::MemIndexType getIndexType() const { |
||
2737 | return static_cast<ISD::MemIndexType>(LSBaseSDNodeBits.AddressingMode); |
||
2738 | } |
||
2739 | bool isIndexScaled() const { |
||
2740 | return !cast<ConstantSDNode>(getScale())->isOne(); |
||
2741 | } |
||
2742 | bool isIndexSigned() const { return isIndexTypeSigned(getIndexType()); } |
||
2743 | |||
2744 | // In the both nodes address is Op1, mask is Op2: |
||
2745 | // VPGatherSDNode (Chain, base, index, scale, mask, vlen) |
||
2746 | // VPScatterSDNode (Chain, value, base, index, scale, mask, vlen) |
||
2747 | // Mask is a vector of i1 elements |
||
2748 | const SDValue &getBasePtr() const { |
||
2749 | return getOperand((getOpcode() == ISD::VP_GATHER) ? 1 : 2); |
||
2750 | } |
||
2751 | const SDValue &getIndex() const { |
||
2752 | return getOperand((getOpcode() == ISD::VP_GATHER) ? 2 : 3); |
||
2753 | } |
||
2754 | const SDValue &getScale() const { |
||
2755 | return getOperand((getOpcode() == ISD::VP_GATHER) ? 3 : 4); |
||
2756 | } |
||
2757 | const SDValue &getMask() const { |
||
2758 | return getOperand((getOpcode() == ISD::VP_GATHER) ? 4 : 5); |
||
2759 | } |
||
2760 | const SDValue &getVectorLength() const { |
||
2761 | return getOperand((getOpcode() == ISD::VP_GATHER) ? 5 : 6); |
||
2762 | } |
||
2763 | |||
2764 | static bool classof(const SDNode *N) { |
||
2765 | return N->getOpcode() == ISD::VP_GATHER || |
||
2766 | N->getOpcode() == ISD::VP_SCATTER; |
||
2767 | } |
||
2768 | }; |
||
2769 | |||
2770 | /// This class is used to represent an VP_GATHER node |
||
2771 | /// |
||
2772 | class VPGatherSDNode : public VPGatherScatterSDNode { |
||
2773 | public: |
||
2774 | friend class SelectionDAG; |
||
2775 | |||
2776 | VPGatherSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs, EVT MemVT, |
||
2777 | MachineMemOperand *MMO, ISD::MemIndexType IndexType) |
||
2778 | : VPGatherScatterSDNode(ISD::VP_GATHER, Order, dl, VTs, MemVT, MMO, |
||
2779 | IndexType) {} |
||
2780 | |||
2781 | static bool classof(const SDNode *N) { |
||
2782 | return N->getOpcode() == ISD::VP_GATHER; |
||
2783 | } |
||
2784 | }; |
||
2785 | |||
2786 | /// This class is used to represent an VP_SCATTER node |
||
2787 | /// |
||
2788 | class VPScatterSDNode : public VPGatherScatterSDNode { |
||
2789 | public: |
||
2790 | friend class SelectionDAG; |
||
2791 | |||
2792 | VPScatterSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs, EVT MemVT, |
||
2793 | MachineMemOperand *MMO, ISD::MemIndexType IndexType) |
||
2794 | : VPGatherScatterSDNode(ISD::VP_SCATTER, Order, dl, VTs, MemVT, MMO, |
||
2795 | IndexType) {} |
||
2796 | |||
2797 | const SDValue &getValue() const { return getOperand(1); } |
||
2798 | |||
2799 | static bool classof(const SDNode *N) { |
||
2800 | return N->getOpcode() == ISD::VP_SCATTER; |
||
2801 | } |
||
2802 | }; |
||
2803 | |||
2804 | /// This is a base class used to represent |
||
2805 | /// MGATHER and MSCATTER nodes |
||
2806 | /// |
||
2807 | class MaskedGatherScatterSDNode : public MemSDNode { |
||
2808 | public: |
||
2809 | friend class SelectionDAG; |
||
2810 | |||
2811 | MaskedGatherScatterSDNode(ISD::NodeType NodeTy, unsigned Order, |
||
2812 | const DebugLoc &dl, SDVTList VTs, EVT MemVT, |
||
2813 | MachineMemOperand *MMO, ISD::MemIndexType IndexType) |
||
2814 | : MemSDNode(NodeTy, Order, dl, VTs, MemVT, MMO) { |
||
2815 | LSBaseSDNodeBits.AddressingMode = IndexType; |
||
2816 | assert(getIndexType() == IndexType && "Value truncated"); |
||
2817 | } |
||
2818 | |||
2819 | /// How is Index applied to BasePtr when computing addresses. |
||
2820 | ISD::MemIndexType getIndexType() const { |
||
2821 | return static_cast<ISD::MemIndexType>(LSBaseSDNodeBits.AddressingMode); |
||
2822 | } |
||
2823 | bool isIndexScaled() const { |
||
2824 | return !cast<ConstantSDNode>(getScale())->isOne(); |
||
2825 | } |
||
2826 | bool isIndexSigned() const { return isIndexTypeSigned(getIndexType()); } |
||
2827 | |||
2828 | // In the both nodes address is Op1, mask is Op2: |
||
2829 | // MaskedGatherSDNode (Chain, passthru, mask, base, index, scale) |
||
2830 | // MaskedScatterSDNode (Chain, value, mask, base, index, scale) |
||
2831 | // Mask is a vector of i1 elements |
||
2832 | const SDValue &getBasePtr() const { return getOperand(3); } |
||
2833 | const SDValue &getIndex() const { return getOperand(4); } |
||
2834 | const SDValue &getMask() const { return getOperand(2); } |
||
2835 | const SDValue &getScale() const { return getOperand(5); } |
||
2836 | |||
2837 | static bool classof(const SDNode *N) { |
||
2838 | return N->getOpcode() == ISD::MGATHER || |
||
2839 | N->getOpcode() == ISD::MSCATTER; |
||
2840 | } |
||
2841 | }; |
||
2842 | |||
2843 | /// This class is used to represent an MGATHER node |
||
2844 | /// |
||
2845 | class MaskedGatherSDNode : public MaskedGatherScatterSDNode { |
||
2846 | public: |
||
2847 | friend class SelectionDAG; |
||
2848 | |||
2849 | MaskedGatherSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs, |
||
2850 | EVT MemVT, MachineMemOperand *MMO, |
||
2851 | ISD::MemIndexType IndexType, ISD::LoadExtType ETy) |
||
2852 | : MaskedGatherScatterSDNode(ISD::MGATHER, Order, dl, VTs, MemVT, MMO, |
||
2853 | IndexType) { |
||
2854 | LoadSDNodeBits.ExtTy = ETy; |
||
2855 | } |
||
2856 | |||
2857 | const SDValue &getPassThru() const { return getOperand(1); } |
||
2858 | |||
2859 | ISD::LoadExtType getExtensionType() const { |
||
2860 | return ISD::LoadExtType(LoadSDNodeBits.ExtTy); |
||
2861 | } |
||
2862 | |||
2863 | static bool classof(const SDNode *N) { |
||
2864 | return N->getOpcode() == ISD::MGATHER; |
||
2865 | } |
||
2866 | }; |
||
2867 | |||
2868 | /// This class is used to represent an MSCATTER node |
||
2869 | /// |
||
2870 | class MaskedScatterSDNode : public MaskedGatherScatterSDNode { |
||
2871 | public: |
||
2872 | friend class SelectionDAG; |
||
2873 | |||
2874 | MaskedScatterSDNode(unsigned Order, const DebugLoc &dl, SDVTList VTs, |
||
2875 | EVT MemVT, MachineMemOperand *MMO, |
||
2876 | ISD::MemIndexType IndexType, bool IsTrunc) |
||
2877 | : MaskedGatherScatterSDNode(ISD::MSCATTER, Order, dl, VTs, MemVT, MMO, |
||
2878 | IndexType) { |
||
2879 | StoreSDNodeBits.IsTruncating = IsTrunc; |
||
2880 | } |
||
2881 | |||
2882 | /// Return true if the op does a truncation before store. |
||
2883 | /// For integers this is the same as doing a TRUNCATE and storing the result. |
||
2884 | /// For floats, it is the same as doing an FP_ROUND and storing the result. |
||
2885 | bool isTruncatingStore() const { return StoreSDNodeBits.IsTruncating; } |
||
2886 | |||
2887 | const SDValue &getValue() const { return getOperand(1); } |
||
2888 | |||
2889 | static bool classof(const SDNode *N) { |
||
2890 | return N->getOpcode() == ISD::MSCATTER; |
||
2891 | } |
||
2892 | }; |
||
2893 | |||
2894 | /// An SDNode that represents everything that will be needed |
||
2895 | /// to construct a MachineInstr. These nodes are created during the |
||
2896 | /// instruction selection proper phase. |
||
2897 | /// |
||
2898 | /// Note that the only supported way to set the `memoperands` is by calling the |
||
2899 | /// `SelectionDAG::setNodeMemRefs` function as the memory management happens |
||
2900 | /// inside the DAG rather than in the node. |
||
2901 | class MachineSDNode : public SDNode { |
||
2902 | private: |
||
2903 | friend class SelectionDAG; |
||
2904 | |||
2905 | MachineSDNode(unsigned Opc, unsigned Order, const DebugLoc &DL, SDVTList VTs) |
||
2906 | : SDNode(Opc, Order, DL, VTs) {} |
||
2907 | |||
2908 | // We use a pointer union between a single `MachineMemOperand` pointer and |
||
2909 | // a pointer to an array of `MachineMemOperand` pointers. This is null when |
||
2910 | // the number of these is zero, the single pointer variant used when the |
||
2911 | // number is one, and the array is used for larger numbers. |
||
2912 | // |
||
2913 | // The array is allocated via the `SelectionDAG`'s allocator and so will |
||
2914 | // always live until the DAG is cleaned up and doesn't require ownership here. |
||
2915 | // |
||
2916 | // We can't use something simpler like `TinyPtrVector` here because `SDNode` |
||
2917 | // subclasses aren't managed in a conforming C++ manner. See the comments on |
||
2918 | // `SelectionDAG::MorphNodeTo` which details what all goes on, but the |
||
2919 | // constraint here is that these don't manage memory with their constructor or |
||
2920 | // destructor and can be initialized to a good state even if they start off |
||
2921 | // uninitialized. |
||
2922 | PointerUnion<MachineMemOperand *, MachineMemOperand **> MemRefs = {}; |
||
2923 | |||
2924 | // Note that this could be folded into the above `MemRefs` member if doing so |
||
2925 | // is advantageous at some point. We don't need to store this in most cases. |
||
2926 | // However, at the moment this doesn't appear to make the allocation any |
||
2927 | // smaller and makes the code somewhat simpler to read. |
||
2928 | int NumMemRefs = 0; |
||
2929 | |||
2930 | public: |
||
2931 | using mmo_iterator = ArrayRef<MachineMemOperand *>::const_iterator; |
||
2932 | |||
2933 | ArrayRef<MachineMemOperand *> memoperands() const { |
||
2934 | // Special case the common cases. |
||
2935 | if (NumMemRefs == 0) |
||
2936 | return {}; |
||
2937 | if (NumMemRefs == 1) |
||
2938 | return ArrayRef(MemRefs.getAddrOfPtr1(), 1); |
||
2939 | |||
2940 | // Otherwise we have an actual array. |
||
2941 | return ArrayRef(MemRefs.get<MachineMemOperand **>(), NumMemRefs); |
||
2942 | } |
||
2943 | mmo_iterator memoperands_begin() const { return memoperands().begin(); } |
||
2944 | mmo_iterator memoperands_end() const { return memoperands().end(); } |
||
2945 | bool memoperands_empty() const { return memoperands().empty(); } |
||
2946 | |||
2947 | /// Clear out the memory reference descriptor list. |
||
2948 | void clearMemRefs() { |
||
2949 | MemRefs = nullptr; |
||
2950 | NumMemRefs = 0; |
||
2951 | } |
||
2952 | |||
2953 | static bool classof(const SDNode *N) { |
||
2954 | return N->isMachineOpcode(); |
||
2955 | } |
||
2956 | }; |
||
2957 | |||
2958 | /// An SDNode that records if a register contains a value that is guaranteed to |
||
2959 | /// be aligned accordingly. |
||
2960 | class AssertAlignSDNode : public SDNode { |
||
2961 | Align Alignment; |
||
2962 | |||
2963 | public: |
||
2964 | AssertAlignSDNode(unsigned Order, const DebugLoc &DL, EVT VT, Align A) |
||
2965 | : SDNode(ISD::AssertAlign, Order, DL, getSDVTList(VT)), Alignment(A) {} |
||
2966 | |||
2967 | Align getAlign() const { return Alignment; } |
||
2968 | |||
2969 | static bool classof(const SDNode *N) { |
||
2970 | return N->getOpcode() == ISD::AssertAlign; |
||
2971 | } |
||
2972 | }; |
||
2973 | |||
2974 | class SDNodeIterator { |
||
2975 | const SDNode *Node; |
||
2976 | unsigned Operand; |
||
2977 | |||
2978 | SDNodeIterator(const SDNode *N, unsigned Op) : Node(N), Operand(Op) {} |
||
2979 | |||
2980 | public: |
||
2981 | using iterator_category = std::forward_iterator_tag; |
||
2982 | using value_type = SDNode; |
||
2983 | using difference_type = std::ptrdiff_t; |
||
2984 | using pointer = value_type *; |
||
2985 | using reference = value_type &; |
||
2986 | |||
2987 | bool operator==(const SDNodeIterator& x) const { |
||
2988 | return Operand == x.Operand; |
||
2989 | } |
||
2990 | bool operator!=(const SDNodeIterator& x) const { return !operator==(x); } |
||
2991 | |||
2992 | pointer operator*() const { |
||
2993 | return Node->getOperand(Operand).getNode(); |
||
2994 | } |
||
2995 | pointer operator->() const { return operator*(); } |
||
2996 | |||
2997 | SDNodeIterator& operator++() { // Preincrement |
||
2998 | ++Operand; |
||
2999 | return *this; |
||
3000 | } |
||
3001 | SDNodeIterator operator++(int) { // Postincrement |
||
3002 | SDNodeIterator tmp = *this; ++*this; return tmp; |
||
3003 | } |
||
3004 | size_t operator-(SDNodeIterator Other) const { |
||
3005 | assert(Node == Other.Node && |
||
3006 | "Cannot compare iterators of two different nodes!"); |
||
3007 | return Operand - Other.Operand; |
||
3008 | } |
||
3009 | |||
3010 | static SDNodeIterator begin(const SDNode *N) { return SDNodeIterator(N, 0); } |
||
3011 | static SDNodeIterator end (const SDNode *N) { |
||
3012 | return SDNodeIterator(N, N->getNumOperands()); |
||
3013 | } |
||
3014 | |||
3015 | unsigned getOperand() const { return Operand; } |
||
3016 | const SDNode *getNode() const { return Node; } |
||
3017 | }; |
||
3018 | |||
3019 | template <> struct GraphTraits<SDNode*> { |
||
3020 | using NodeRef = SDNode *; |
||
3021 | using ChildIteratorType = SDNodeIterator; |
||
3022 | |||
3023 | static NodeRef getEntryNode(SDNode *N) { return N; } |
||
3024 | |||
3025 | static ChildIteratorType child_begin(NodeRef N) { |
||
3026 | return SDNodeIterator::begin(N); |
||
3027 | } |
||
3028 | |||
3029 | static ChildIteratorType child_end(NodeRef N) { |
||
3030 | return SDNodeIterator::end(N); |
||
3031 | } |
||
3032 | }; |
||
3033 | |||
3034 | /// A representation of the largest SDNode, for use in sizeof(). |
||
3035 | /// |
||
3036 | /// This needs to be a union because the largest node differs on 32 bit systems |
||
3037 | /// with 4 and 8 byte pointer alignment, respectively. |
||
3038 | using LargestSDNode = AlignedCharArrayUnion<AtomicSDNode, TargetIndexSDNode, |
||
3039 | BlockAddressSDNode, |
||
3040 | GlobalAddressSDNode, |
||
3041 | PseudoProbeSDNode>; |
||
3042 | |||
3043 | /// The SDNode class with the greatest alignment requirement. |
||
3044 | using MostAlignedSDNode = GlobalAddressSDNode; |
||
3045 | |||
3046 | namespace ISD { |
||
3047 | |||
3048 | /// Returns true if the specified node is a non-extending and unindexed load. |
||
3049 | inline bool isNormalLoad(const SDNode *N) { |
||
3050 | const LoadSDNode *Ld = dyn_cast<LoadSDNode>(N); |
||
3051 | return Ld && Ld->getExtensionType() == ISD::NON_EXTLOAD && |
||
3052 | Ld->getAddressingMode() == ISD::UNINDEXED; |
||
3053 | } |
||
3054 | |||
3055 | /// Returns true if the specified node is a non-extending load. |
||
3056 | inline bool isNON_EXTLoad(const SDNode *N) { |
||
3057 | return isa<LoadSDNode>(N) && |
||
3058 | cast<LoadSDNode>(N)->getExtensionType() == ISD::NON_EXTLOAD; |
||
3059 | } |
||
3060 | |||
3061 | /// Returns true if the specified node is a EXTLOAD. |
||
3062 | inline bool isEXTLoad(const SDNode *N) { |
||
3063 | return isa<LoadSDNode>(N) && |
||
3064 | cast<LoadSDNode>(N)->getExtensionType() == ISD::EXTLOAD; |
||
3065 | } |
||
3066 | |||
3067 | /// Returns true if the specified node is a SEXTLOAD. |
||
3068 | inline bool isSEXTLoad(const SDNode *N) { |
||
3069 | return isa<LoadSDNode>(N) && |
||
3070 | cast<LoadSDNode>(N)->getExtensionType() == ISD::SEXTLOAD; |
||
3071 | } |
||
3072 | |||
3073 | /// Returns true if the specified node is a ZEXTLOAD. |
||
3074 | inline bool isZEXTLoad(const SDNode *N) { |
||
3075 | return isa<LoadSDNode>(N) && |
||
3076 | cast<LoadSDNode>(N)->getExtensionType() == ISD::ZEXTLOAD; |
||
3077 | } |
||
3078 | |||
3079 | /// Returns true if the specified node is an unindexed load. |
||
3080 | inline bool isUNINDEXEDLoad(const SDNode *N) { |
||
3081 | return isa<LoadSDNode>(N) && |
||
3082 | cast<LoadSDNode>(N)->getAddressingMode() == ISD::UNINDEXED; |
||
3083 | } |
||
3084 | |||
3085 | /// Returns true if the specified node is a non-truncating |
||
3086 | /// and unindexed store. |
||
3087 | inline bool isNormalStore(const SDNode *N) { |
||
3088 | const StoreSDNode *St = dyn_cast<StoreSDNode>(N); |
||
3089 | return St && !St->isTruncatingStore() && |
||
3090 | St->getAddressingMode() == ISD::UNINDEXED; |
||
3091 | } |
||
3092 | |||
3093 | /// Returns true if the specified node is an unindexed store. |
||
3094 | inline bool isUNINDEXEDStore(const SDNode *N) { |
||
3095 | return isa<StoreSDNode>(N) && |
||
3096 | cast<StoreSDNode>(N)->getAddressingMode() == ISD::UNINDEXED; |
||
3097 | } |
||
3098 | |||
3099 | /// Attempt to match a unary predicate against a scalar/splat constant or |
||
3100 | /// every element of a constant BUILD_VECTOR. |
||
3101 | /// If AllowUndef is true, then UNDEF elements will pass nullptr to Match. |
||
3102 | bool matchUnaryPredicate(SDValue Op, |
||
3103 | std::function<bool(ConstantSDNode *)> Match, |
||
3104 | bool AllowUndefs = false); |
||
3105 | |||
3106 | /// Attempt to match a binary predicate against a pair of scalar/splat |
||
3107 | /// constants or every element of a pair of constant BUILD_VECTORs. |
||
3108 | /// If AllowUndef is true, then UNDEF elements will pass nullptr to Match. |
||
3109 | /// If AllowTypeMismatch is true then RetType + ArgTypes don't need to match. |
||
3110 | bool matchBinaryPredicate( |
||
3111 | SDValue LHS, SDValue RHS, |
||
3112 | std::function<bool(ConstantSDNode *, ConstantSDNode *)> Match, |
||
3113 | bool AllowUndefs = false, bool AllowTypeMismatch = false); |
||
3114 | |||
3115 | /// Returns true if the specified value is the overflow result from one |
||
3116 | /// of the overflow intrinsic nodes. |
||
3117 | inline bool isOverflowIntrOpRes(SDValue Op) { |
||
3118 | unsigned Opc = Op.getOpcode(); |
||
3119 | return (Op.getResNo() == 1 && |
||
3120 | (Opc == ISD::SADDO || Opc == ISD::UADDO || Opc == ISD::SSUBO || |
||
3121 | Opc == ISD::USUBO || Opc == ISD::SMULO || Opc == ISD::UMULO)); |
||
3122 | } |
||
3123 | |||
3124 | } // end namespace ISD |
||
3125 | |||
3126 | } // end namespace llvm |
||
3127 | |||
3128 | #endif // LLVM_CODEGEN_SELECTIONDAGNODES_H |